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Abstract: Evolution remains an incessant process in viruses, allowing them to elude host immune
response and induce severe diseases, impacting the diagnostic and vaccine effectiveness. Predicting
emerging viral genomes is crucial, particularly in diseases like dengue, where viruses disrupt host
cells, leading to fatal outcomes. Deep learning has been applied to predict dengue fever cases; there
has been relatively less emphasis on its significance in forecasting emerging Dengue Virus (DENV)
serotype. While Recurrent Neural Networks (RNN) were originally designed for modeling
temporal sequences, our proposed DL-DVE generative and classification model, trained on
complete genome data of DENV, transcends traditional approaches by learning semantic
relationships between nucleotides in a continuous vector space instead of representing contextual
meaning of nucleotide characters. Leveraging 2000 publicly available DENV complete genome
sequences, our Long Short-Term Memory (LSTM) based generative and Feedforward Neural
Network (FNN) based classification DL-DVE model showcases proficiency in learning intricate
patterns and generating sequences for emerging serotype of DENV. The generative model showed
accuracy of 93% and the classification model provided insight into the specific serotype label,
corroborated by BLAST search verification. Evaluation metrics such as ROC-AUC value 0.818,
accuracy, precision, recall and F1 score all to be around 99.00%, demonstrated the classification
model’s reliability. Our model classified the generated sequences as DENV-4, exhibiting 65.99%
similarity to DENV-4 and around 63-65% similarity with other serotypes, indicating notable
distinction from other serotypes. Moreover, the intra-serotype divergence of sequences with a
minimum 90% similarity underscored their uniqueness. We analyzed the conserved motifs in the
genome through MEME Suite (version 5.5.5). Our research strives to contribute to the ongoing fight
against the Dengue virus by offering predictive insights into its genomic evolution. Looking ahead,
proactive predictive modeling before mutations occur holds potential for guiding vaccine design
and diagnostic kit development.

Keywords: Virus forecasting; DL modeling; virus classification; Dengue evolution;
genome sequence

1. Introduction

Understanding the evolutionary dynamics of a virus is crucial for discerning its origin, focusing
on key characteristics such as structure, classification and evolution. This knowledge plays a pivotal
role in unraveling the fundamental biological mechanisms, thereby advancing vaccine and drug
development. Despite the ongoing discoveries related to viruses, the potential existence of
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unidentified viruses remains a constant concern. The rapid and widespread dissemination of viruses
has become robust, presenting formidable challenges in controlling and predicting their expansion.
Thus leads to epidemics and pandemics, underscoring the unpredictable risks associated with these
agents [1].

Dengue infection is transmitted through the bite of an Aedes mosquito carrying the ~10kb
genome-size dengue virus (DENV). Clinically, identifying dengue fever has historically been
challenging due to the prevalence of other infections with similar syndromes in tropical
environments. The ambiguity in distinguishing dengue from various viral diseases, ranging from
yellow fever to tropical influenza has persisted. Additionally, labeling the historical dengue
outbreaks as chikungunya particularly in the 1800s is complicated due to the inconsistent and
conflicting reporting information. Despite these challenges, the global public health system has
remained engaged in addressing the persistent threats posed by the dengue virus [2]. In the landscape
of genomic analysis, deep learning (DL) has emerged as a powerful tool, particularly for extracting
features and patterns from complex genomic data. Similarly, in the context of infectious diseases like
dengue, machine learning applications have gained prominence, leveraging epidemiological and
clinical data for predictive modeling. Rachata ef al., notably utilized weather data and feature
selection algorithms to forecast dengue incidences, employing Artificial Neural Networks (ANN5s)
and Support Vector Machines (SVMs) to predict number of cases based on weather and gene
expression data [3,4]. Despite the success of SVMs using word2vec representation in specific tasks,
their efficiency waned when directly applied to nucleic acid sequences. There are multiple methods
for viral genome classification, employing both alignment and machine learning approaches. In the
alignment based approach, detection of viral sequences is carried out using tools such as USEARCH,
SCUEAL [5] and REGA [6], relying on alignment scores for genome classification. However, these
alignment based methods have limitations, notably their performance dependence on selection of
initial alignments. However, in the machine learning approach, various methods have been proposed
for the classification of viral genome sequences. But, these methods face limitations in their ability to
detect viral genome contigs and the challenge of extracting useful hidden information. Moreover,
those trained exclusively on nucleotide sequence data, further constraints their utility in
comprehensive genome analysis.

The deep learning models such as Recurrent Neural Networks (RNNs) have demonstrated their
effectiveness in the field of natural language processing. The applications of deep learning in
computational biology mainly concentrates in genome analysis and sequencing. However, the RNN
are considered black boxes due to the complexity of the model in interpreting the hidden state of the
model. Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) have been
used to detect viral genome sequences using training of pattern and frequency of branches. Whereas,
the Feedforward Neural Network (FNN), a type of CNN model, is adept at evaluating visual patterns
while accommodating the inherent heterogeneity within the data. This network is designed to map
fixed length inputs to a fixed size output and is trained using a backpropagation algorithm.
Consisting of multiple layers, the CNN effectively stores and updates information in filter weights as
it learns the intricate relationship between input and output.

This study aims to predict the genomic sequences of emerging serotype to deepen our
understanding of dengue virus evolution and also classifies predicted as well as unknown dengue
virus genome sequences respective to their serotypes. Utilizing the RNNs trained on complete
genome, the model focuses on learning patterns in tokens rather than representing character
meanings. LSTM, chosen for genomic prediction tasks, excel in handling sequential data and
mitigating the vanishing gradient problem inherent in traditional RNNs.

2. Materials and Methods

2.1. Data Collection and Preprocessing

A dataset comprising 2000 complete genome sequences of dengue virus were assembled from
the NCBI [7] and BV-BRC databases [8]. The datasets incorporated 500 sequences for each of the four
serotypes of dengue virus. Before further analysis, a preprocessing step was performed to ensure that
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the data were in suitable format. Subsequently, four distinct datasets representing serotypes
separately were built, each containing sequences spanning 10,273 base pairs. All the sequences were
concatenated into a single dataset following a labeling process. All nucleotides were selected as
features and DNV1, DNV2, DNV3 and DNV4 as serotype labels.

2.2. DL-DVE Architecture and Working for Sequence Generation

The genomic sequences of DENV were extracted from FASTA files using the Biopython library.
A tokenization approach was used, treating the sequences at the character level, and an n-gram
strategy was employed to generate the input sequences for the model from a FASTA file. To ensure
uniformity in the sequence length, the data underwent padding. The generative model, implemented
as a sequential model in Tensorflow Keras, comprised an embedding layer [9], two LSTM layers for
capturing sequential patterns, and a dense layer for output. The model was compiled using sparse
categorical cross entropy loss and the Adam optimizer. The sequential model designed for sequence
processing with a specific focus on capturing patterns in the sequences related to the classification
task.

For training, the model involved utilization of prepared predictors and labels over 15 epochs to
efficiently capture underlying patterns in the data. Additionally, a function was used to generate a
new sequence based on a given seed text and the trained generative model. The sequence generation
process involved predicting the next word with a controlled level of randomness to introduce
diversity while preserving the patterns in the entire data [10] enhancing the generative capabilities
of the model. A detailed architecture of DL-DVE model for sequence classification and generation is
shown in Figure 1.
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Figure 1. Workflow and architecture of DL-DVE for dengue virus genome classification and
prediction.

2.2.1. Comparison of Generative Models

2.2.2.ConV1ld

We used ConV1d, a CNN based model implemented with an embedding layer to represent
words in a continuous vector space. A single ConvlD layer with 128 filters and a kernel size of 5
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captured local patterns, GlobalMaxPooling1D reduced the dimensionality, and a dense layer with a
softmax activation generated a probability distribution over the entire network.

2.2.3. GRU

The model consisted of an embedding layer for word representation, followed by two GRU
layers with 100 units, capturing the sequential patterns. The final dense layer outputs a probability
distribution.

2.2.4. Simple RNN

A simple RNN model was implemented using an embedding layer converting nucleotides into
50-dimensional vectors, followed by two simple RNN layers with 100 units each. The first layer
returned sequences, capturing the temporal patterns, while the second provided a condensed
representation. The final dense layer outputs probabilities making its suitability for our sequence
generation task. We further analyzed the generated sequences using BLAST search and Pairwise2
algorithm to assess the most similar type of sequence and similarity scores with other serotypes using
Biopython. Furthermore, we used MEME Suite (version 5.5.5) to enrich our understanding of the
conserved patterns and motifs in the sequences [11].

2.3. DL-DVE Architecture and Working for Sequence Classification

The Biopython library was used to extract genomic sequences of DENV from FASTA files.
Sequence parsing facilitated the extraction of sequences and associated virus types. The unique
nucleotide characters within the sequences were identified to assess dataset diversity. To enable the
deep learning models utilization, nucleotide characters were mapped to numerical values and vice
versa. One- hot encoding transformed the sequences into numerical representations [12]. Dengue
virus types underwent conversion to numerical labels using scikit-learn’s LabelEncoder for multi-
class classification modeling [13]. The dataset was divided into training and testing sets, with 80% of
the data allocated for training and 20% for testing ensuring the model’s ability to generalize to the
unseen data.

A FNN model was deployed using Tensorflow Keras library. The model consists of a flattening
layer, a dense hidden layer employing Rectified Linear Unit (ReLU) activation, and an output layer
utilizing softmax activation for effective multi-class classification. The pivotal role of non-linear
activation function is highlighted post-convolution, particularly in comprehending CNN dynamics.
Among the most commonly employed activation functions, namely ReLU, Sigmoid, and Tanh, ReLU
demonstrates accelerated learning. The outer layer employed Softmax activation, enabling the
assessment of class probabilities in prediction scenarios. The FNN integrated multiple filters
traversing a one-hot encoded binary vector representing the sequence.

The model underwent compilation utilizing the categorical cross-entropy loss function and the
Adam optimizer. During training, the Adam optimizer dynamically adjusted weights and biases,
while the sparse categorical cross entropy loss function quantified the dissimilarity between
predicted probabilities and true labels. The training spanned 10 epochs with a batch size of 32,
incorporating 10% of the training data for validation purposes. Evaluation on the testing set gauged
the model’s accuracy in predicting virus type, with predictions made on a subset of testing data
compared against actual virus types to assess performance. To comprehensively evaluate the model’s
effectiveness, various classification metrics, including accuracy, precision, recall, and F1 score were
computed. A user-friendly interface was developed to facilitate the input of new viral sequences. The
provided sequence underwent preprocessing and was fed to the trained model to predict the
associated virus type. The workflow and architecture of classification and generative model is shown
in Figure 1.
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3. Results

Complete genome sequence data of DENV from the four existing serotypes was employed in
our LSTM model with the aim of generating sequences that exhibit the probability of emerging as a
new serotype. Initially, we employed a range of models including ConV1d, GRU, Simple RNN and
our proposed LSTM model, aiming to ascertain the most effective approach. Notably, at 10 epoch,
our LSTM model demonstrated 37% accuracy, outperforming ConV1d, GRU and Simple RNN.
Moreover, when trained at 10 epochs, our LSTM model generated sequences exceeding 10kb in size,
which distinguished it from the other models that generated sequences of less than 10kb.

Recognizing the potential for enhancement, we extended the training duration of our LSTM
model to 15 epochs. This adjustment yielded a substantial increase in accuracy, reaching 93%. This
improvement underscored the efficacy of prolonged training in refining the model’s predictive
capabilities as shown in Table 1.

Table 1. Performance comparison of different models for emerging sequence generation.

Sr. no. Model Acigl;acyEpochSequence generated (length)
o
1 ConV1d 29 10 <10kb
2 GRU 35 10 <10kb
3 Simple RNN 30 10 <10kb
37 10 >10kb
4  Our proposed LSTM model 93 15 ~10kb

To further analyze the origin of generated sequences, we employed a multi-class classification
approach using the FNN model for genomic sequence classification. Our study contributes to the
landscape of genomic analysis, employing one-hot encoding, a proven method for next generation
sequencing reads and phenotype label abstraction. Our CNN based FFN classification model trained
on DENV complete genome data achieved an accuracy of approximately 99.00%. Across the 10
training epochs, the model consistently improved, achieving a final validation accuracy of 98.12%
(Figure 2).
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Figure 2. The validation accuracy of FFNN model over 10 epochs.
The model demonstrated reliable results in achieving high-quality predictions across multiple

evaluation metrics with an overall accuracy, precision, recall, and F1 score of 99.00% as shown in
Figure 3.
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Figure 3. Classification metrics illustrating accuracy, precision, recall and F1 score.

The model’s performance was assessed through the ROC-AUC curve. The loss function
appeared to decrease significantly and the area under the ROC-AUC on the validation set showed
fluctuations, ultimately stabilizing around 0.818. This robust accuracy, coupled with the low training
loss, suggests the model's effectiveness in accurately classifying instances as shown in Figure 4.
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Figure 4. ROC-AUC for FEFNN model.

We investigated the model’s performance by inserting unknown sequences of the dengue virus
genome. The model defined a serotype for that sequence. Which was further cross-checked the
predicted serotype with the actual serotype confirmed from its source. The FNN model worked
efficiently on the unknown dengue virus sequence data and predicted the actual classes or serotypes
of dengue virus Figure 5.
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Figure 5. FFNN model accuracy through predicted vs actual virus types.

Using our DL-DVE generative and classification model, the generated sequences were
successfully classified as belonging to the DENV-4 serotype. We assessed the similarity between the
sequences generated by our LSTM model and DENV-4 serotype. Surprisingly our investigation
revealed a similarity of approximately 66%, suggesting that the generated sequences did not align
closely with DENV-4 serotype. We checked the similarity of generated sequences with other
serotypes and the approximate similarity observed was 63 to 66% suggesting that the generated
sequences did not align closely with any known serotype as shown in Figure 6.

sequence similarity of DENV Types in %

-95

DENV4 DENV3 DENV2 DENV1

DENV5

DENV1 DENV2 DENV3 DENV4

Figure 6. Sequence similarity of intra and inter DENV serotypes and comparison with generated
sequences.

The generated sequences met the specified sequence length requirement and emphasize the
effectiveness of our model in accurately predicting and classifying DENV serotypes.

The MEME Suite analysis contributed to an enhanced comprehension of conserved patterns
shedding light on motifs within all serotypes and the emerging serotype as shown in Figure 7.
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Figure 7. Sequence Logo Analysis: A visual representation of conserved motifs in the nucleotide
sequences, where the y-axis depicts information content in bits (0, 1, 2), and the x-axis represents
nucleotides. E-values highlight the statistical significance of motifs, with the first motif at 1.0e-028, the
second at 3.8e-026, the third at 1.8e-019, and the fourth at 3.7e-018. This sequence logo provides
insights into the nucleotide composition and conservation within the analyzed motifs.

4. Discussion

With the advent of next generation sequencing, predictions have become feasible or at least
possible using complete genome sequence data [14]. Genomic data have been used to classify
COVID-19 variants and other viruses using deep learning approaches [15-17]. CNNs and LSTMs
have been more frequently used for prediction of dengue cases [3,18-24]. That underscores the
importance of neural networks combined with genomic sequences as a futuristic method capable of
revolutionizing virus studies [25-27].

Machine learning models go beyond human reasoning and build prediction models from a
number of complex combinations. The DL models such as LSTM, GRU and CNN have been used for
sequence classification and generative tasks [28]. Complete genome sequencing data was used to
detect HCV variants that showed resistance to direct-acting antivirals. And the identified variants
were incorporated into machine learning algorithms for assessment of effectiveness of the predictive
model [29]. The LSTM model is considered effective in capturing the complex patterns in data and
multiple features to make accurate predictions [30]. Being a subtype of RNNs, these models possess
an enhanced capability to learn information from distant points in time. While traditional RNNs
encounter the vanishing gradient problem impeding their ability to capture changes that occurred in
data long ago. LSTMs overcome this challenge through a gating mechanism where the gates open
and close based on values learned from each input. This mechanism enables LSTMs to accumulate
information over an extended period by dynamically learning to forget certain aspects of information.
This aspect of sequence length carried significant implications for the model’s predictive capacity and
biological relevance.

In the realm of biological sequence analysis, machine learning and deep learning using
CNNs have demonstrated high precision for binary or multi-class classification [31]. Nucleotide
sequence based studies have typically employed one-hot encoding vectors to represent each
nucleotide and with all unknown nucleotides represented as all zero vectors. Chaos game
representation (CGR), particularly Frequency CGR (FCGR) has shown promise in encoding
sequences in image format and has been applied to predict drug resistance [32]. The identification of
novel genomic regions in viral pathogens using CNNs and LSTMs have emerged as compelling areas
of exploration among researchers [1]. In the CNN framework, the initialization of filter weights
involves random uniformness, and these weights are subsequently refined through the
backpropagation process to minimize the loss or cost function. The iterative learning process allowed
the network to adapt and optimize its performance enhancing its ability to discern meaningful
patterns and features within the given data.

An approximate sequence similarity of 65% among DENYV serotypes has been demonstrated in
multiple studies [33-35]. The exploration of motifs with statistical significance was integral in our
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study of complete genome sequence data encompassing DENV 1 to 4 serotypes, juxtaposed with the
generated sequences [36].

5. Conclusions

Our study demonstrates the effectiveness of utilizing sequential models for classifying and
generating DENV genomic sequences resulting in the generation of sequences resembling a potential
emerging serotype. Our predictive model classified the generated sequences as belonging to DENV-
4 serotypes, showing a close resemblance to DENV-4 with a 65.99% sequence similarity while
diverging significantly from existing serotypes. The intra-serotype divergence was characterized by
a sequence similarity of at least 90%, affirming the distinctiveness of generated sequences within the
DENV serotype landscape; further exploration includes the analysis of conserved motifs.
Considering the complete genome sequence size of DENV genome is approximately 10kb, our
trained model is limited to predict DENV sequences of similar size. Nonetheless, in future directions,
predictive modeling applied well in advance of mutations holds promise for informing vaccine
design and the development of diagnostic kits.
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