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Abstract: Evolution remains an incessant process in viruses, allowing them to elude host immune 

response and induce severe diseases, impacting the diagnostic and vaccine effectiveness. Predicting 

emerging viral genomes is crucial, particularly in diseases like dengue, where viruses disrupt host 

cells, leading to fatal outcomes. Deep learning has been applied to predict dengue fever cases; there 

has been relatively less emphasis on its significance in forecasting emerging Dengue Virus (DENV) 

serotype.  While  Recurrent  Neural  Networks  (RNN)  were  originally  designed  for  modeling 

temporal  sequences,  our  proposed  DL‐DVE  generative  and  classification  model,  trained  on 

complete  genome  data  of  DENV,  transcends  traditional  approaches  by  learning  semantic 

relationships between nucleotides in a continuous vector space instead of representing contextual 

meaning  of  nucleotide  characters. Leveraging  2000  publicly  available DENV  complete  genome 

sequences,  our  Long  Short‐Term Memory  (LSTM)  based  generative  and  Feedforward  Neural 

Network  (FNN) based  classification DL‐DVE model  showcases proficiency  in  learning  intricate 

patterns and generating sequences for emerging serotype of DENV. The generative model showed 

accuracy  of  93%  and  the  classification model  provided  insight  into  the  specific  serotype  label, 

corroborated  by  BLAST  search  verification. Evaluation metrics  such  as ROC‐AUC  value  0.818, 

accuracy, precision,  recall and F1  score all  to be around 99.00%, demonstrated  the  classification 

model’s reliability.  Our model classified  the generated sequences as DENV‐4, exhibiting 65.99% 

similarity  to  DENV‐4  and  around  63‐65%  similarity  with  other  serotypes,  indicating  notable 

distinction  from  other  serotypes. Moreover,  the  intra‐serotype  divergence  of  sequences with  a 

minimum 90% similarity underscored their uniqueness. We analyzed the conserved motifs in the 

genome through MEME Suite (version 5.5.5). Our research strives to contribute to the ongoing fight 

against the Dengue virus by offering predictive insights into its genomic evolution. Looking ahead, 

proactive predictive modeling before mutations occur holds potential for guiding vaccine design 

and diagnostic kit development. 

Keywords: Virus forecasting; DL modeling; virus classification; Dengue evolution;   

genome sequence   

 

1. Introduction 

Understanding the evolutionary dynamics of a virus is crucial for discerning its origin, focusing 

on key characteristics such as structure, classification and evolution. This knowledge plays a pivotal 

role  in unraveling  the  fundamental biological mechanisms,  thereby  advancing vaccine  and drug 

development.  Despite  the  ongoing  discoveries  related  to  viruses,  the  potential  existence  of 
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unidentified viruses remains a constant concern. The rapid and widespread dissemination of viruses 

has become robust, presenting formidable challenges in controlling and predicting their expansion. 

Thus leads to epidemics and pandemics, underscoring the unpredictable risks associated with these 

agents [1]. 

Dengue  infection  is  transmitted  through  the  bite  of  an Aedes mosquito  carrying  the  ~10kb 

genome‐size  dengue  virus  (DENV).  Clinically,  identifying  dengue  fever  has  historically  been 

challenging  due  to  the  prevalence  of  other  infections  with  similar  syndromes  in  tropical 

environments. The ambiguity  in distinguishing dengue  from various viral diseases, ranging  from 

yellow  fever  to  tropical  influenza  has  persisted.  Additionally,  labeling  the  historical  dengue 

outbreaks  as  chikungunya  particularly  in  the  1800s  is  complicated  due  to  the  inconsistent  and 

conflicting  reporting  information. Despite  these  challenges,  the  global  public  health  system  has 

remained engaged in addressing the persistent threats posed by the dengue virus [2]. In the landscape 

of genomic analysis, deep learning (DL) has emerged as a powerful tool, particularly for extracting 

features and patterns from complex genomic data. Similarly, in the context of infectious diseases like 

dengue, machine  learning  applications have gained prominence,  leveraging  epidemiological  and 

clinical  data  for  predictive modeling.  Rachata  et  al.,  notably  utilized weather  data  and  feature 

selection algorithms to forecast dengue incidences, employing Artificial Neural Networks (ANNs) 

and  Support  Vector Machines  (SVMs)  to  predict  number  of  cases  based  on weather  and  gene 

expression data [3,4]. Despite the success of SVMs using word2vec representation in specific tasks, 

their efficiency waned when directly applied to nucleic acid sequences. There are multiple methods 

for viral genome classification, employing both alignment and machine learning approaches. In the 

alignment based approach, detection of viral sequences is carried out using tools such as USEARCH, 

SCUEAL [5] and REGA [6], relying on alignment scores for genome classification.   However, these 

alignment based methods have  limitations, notably  their performance dependence on selection of 

initial alignments. However, in the machine learning approach, various methods have been proposed 

for the classification of viral genome sequences. But, these methods face limitations in their ability to 

detect viral genome contigs and  the challenge of extracting useful hidden  information. Moreover, 

those  trained  exclusively  on  nucleotide  sequence  data,  further  constraints  their  utility  in 

comprehensive genome analysis. 

The deep learning models such as Recurrent Neural Networks (RNNs) have demonstrated their 

effectiveness  in  the  field  of  natural  language  processing.  The  applications  of  deep  learning  in 

computational biology mainly concentrates in genome analysis and sequencing. However, the RNN 

are considered black boxes due to the complexity of the model in interpreting the hidden state of the 

model. Long Short‐Term Memory (LSTM) and Convolutional Neural Networks (CNN) have been 

used to detect viral genome sequences using training of pattern and frequency of branches. Whereas, 

the Feedforward Neural Network (FNN), a type of CNN model, is adept at evaluating visual patterns 

while accommodating the inherent heterogeneity within the data. This network is designed to map 

fixed  length  inputs  to  a  fixed  size  output  and  is  trained  using  a  backpropagation  algorithm. 

Consisting of multiple layers, the CNN effectively stores and updates information in filter weights as 

it learns the intricate relationship between input and output. 

This  study  aims  to  predict  the  genomic  sequences  of  emerging  serotype  to  deepen  our 

understanding of dengue virus evolution and also classifies predicted as well as unknown dengue 

virus  genome  sequences  respective  to  their  serotypes. Utilizing  the  RNNs  trained  on  complete 

genome,  the  model  focuses  on  learning  patterns  in  tokens  rather  than  representing  character 

meanings.  LSTM,  chosen  for  genomic  prediction  tasks,  excel  in  handling  sequential  data  and 

mitigating the vanishing gradient problem inherent in traditional RNNs. 

2. Materials and Methods 

2.1. Data Collection and Preprocessing 

A dataset comprising 2000 complete genome sequences of dengue virus were assembled from 

the NCBI [7] and BV‐BRC databases [8]. The datasets incorporated 500 sequences for each of the four 

serotypes of dengue virus. Before further analysis, a preprocessing step was performed to ensure that 
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the  data  were  in  suitable  format.  Subsequently,  four  distinct  datasets  representing  serotypes 

separately were built, each containing sequences spanning 10,273 base pairs. All the sequences were 

concatenated  into  a  single dataset  following  a  labeling process. All nucleotides were  selected  as 

features and DNV1, DNV2, DNV3 and DNV4 as serotype labels. 

2.2. DL‐DVE Architecture and Working for Sequence Generation 

The genomic sequences of DENV were extracted from FASTA files using the Biopython library. 

A  tokenization  approach was used,  treating  the  sequences  at  the  character  level,  and  an n‐gram 

strategy was employed to generate the input sequences for the model from a FASTA file. To ensure 

uniformity in the sequence length, the data underwent padding. The generative model, implemented 

as a sequential model in Tensorflow Keras, comprised an embedding layer [9], two LSTM layers for 

capturing sequential patterns, and a dense layer for output. The model was compiled using sparse 

categorical cross entropy loss and the Adam optimizer.   The sequential model designed for sequence 

processing with a specific focus on capturing patterns in the sequences related to the classification 

task.  

For training, the model involved utilization of prepared predictors and labels over 15 epochs to 

efficiently capture underlying patterns in the data. Additionally, a function was used to generate a 

new sequence based on a given seed text and the trained generative model. The sequence generation 

process  involved  predicting  the  next word with  a  controlled  level  of  randomness  to  introduce 

diversity while preserving the patterns in the entire data [10] enhancing the generative capabilities 

of the model. A detailed architecture of DL‐DVE model for sequence classification and generation is 

shown in Figure 1. 

 

Figure  1.  Workflow  and  architecture  of  DL‐DVE  for  dengue  virus  genome  classification  and 

prediction. 

2.2.1. Comparison of Generative Models 

2.2.2. ConV1d 

We used ConV1d, a CNN based model  implemented with an  embedding  layer  to  represent 

words  in a continuous vector space. A single Conv1D  layer with 128 filters and a kernel size of 5 
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captured local patterns, GlobalMaxPooling1D reduced the dimensionality, and a dense layer with a 

softmax activation generated a probability distribution over the entire network. 

2.2.3. GRU 

The model consisted of an embedding  layer  for word  representation,  followed by  two GRU 

layers with 100 units, capturing the sequential patterns. The final dense layer outputs a probability 

distribution.  

2.2.4. Simple RNN 

A simple RNN model was implemented using an embedding layer converting nucleotides into 

50‐dimensional vectors,  followed by  two  simple RNN  layers with  100 units  each. The  first  layer 

returned  sequences,  capturing  the  temporal  patterns,  while  the  second  provided  a  condensed 

representation. The  final dense  layer outputs probabilities making  its suitability  for our sequence 

generation task. We further analyzed the generated sequences using BLAST search and Pairwise2 

algorithm to assess the most similar type of sequence and similarity scores with other serotypes using 

Biopython. Furthermore, we used MEME Suite  (version 5.5.5)  to enrich our understanding of  the 

conserved patterns and motifs in the sequences [11]. 

2.3. DL‐DVE Architecture and Working for Sequence Classification 

The Biopython  library was used  to  extract genomic  sequences  of DENV  from  FASTA  files. 

Sequence  parsing  facilitated  the  extraction  of  sequences  and  associated  virus  types.  The  unique 

nucleotide characters within the sequences were identified to assess dataset diversity. To enable the 

deep learning models utilization, nucleotide characters were mapped to numerical values and vice 

versa. One‐ hot encoding  transformed  the  sequences  into numerical  representations  [12]. Dengue 

virus types underwent conversion to numerical labels using scikit‐learn’s LabelEncoder for multi‐

class classification modeling [13]. The dataset was divided into training and testing sets, with 80% of 

the data allocated for training and 20% for testing ensuring the model’s ability to generalize to the 

unseen data. 

A FNN model was deployed using Tensorflow Keras library. The model consists of a flattening 

layer, a dense hidden layer employing Rectified Linear Unit (ReLU) activation, and an output layer 

utilizing  softmax  activation  for  effective multi‐class  classification.  The  pivotal  role  of  non‐linear 

activation function is highlighted post‐convolution, particularly in comprehending CNN dynamics. 

Among the most commonly employed activation functions, namely ReLU, Sigmoid, and Tanh, ReLU 

demonstrates  accelerated  learning.  The  outer  layer  employed  Softmax  activation,  enabling  the 

assessment  of  class  probabilities  in  prediction  scenarios.  The  FNN  integrated  multiple  filters 

traversing a one‐hot encoded binary vector representing the sequence.  

The model underwent compilation utilizing the categorical cross‐entropy loss function and the 

Adam optimizer. During  training,  the Adam optimizer dynamically adjusted weights and biases, 

while  the  sparse  categorical  cross  entropy  loss  function  quantified  the  dissimilarity  between 

predicted probabilities  and  true  labels. The  training  spanned  10  epochs with  a  batch  size  of  32, 

incorporating 10% of the training data for validation purposes. Evaluation on the testing set gauged 

the model’s accuracy  in predicting virus  type, with predictions made on a  subset of  testing data 

compared against actual virus types to assess performance. To comprehensively evaluate the model’s 

effectiveness, various classification metrics, including accuracy, precision, recall, and F1 score were 

computed. A user‐friendly interface was developed to facilitate the input of new viral sequences. The 

provided  sequence  underwent  preprocessing  and was  fed  to  the  trained model  to  predict  the 

associated virus type. The workflow and architecture of classification and generative model is shown 

in Figure 1. 
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3. Results 

Complete genome sequence data of DENV from the four existing serotypes was employed in 

our LSTM model with the aim of generating sequences that exhibit the probability of emerging as a 

new serotype. Initially, we employed a range of models including ConV1d, GRU, Simple RNN and 

our proposed LSTM model, aiming to ascertain the most effective approach. Notably, at 10 epoch, 

our  LSTM model  demonstrated  37%  accuracy,  outperforming ConV1d, GRU  and  Simple  RNN. 

Moreover, when trained at 10 epochs, our LSTM model generated sequences exceeding 10kb in size, 

which distinguished it from the other models that generated sequences of less than 10kb.  

Recognizing  the potential  for enhancement, we extended  the  training duration of our LSTM 

model to 15 epochs. This adjustment yielded a substantial increase in accuracy, reaching 93%. This 

improvement  underscored  the  efficacy  of  prolonged  training  in  refining  the model’s  predictive 

capabilities as shown in Table 1. 

Table 1. Performance comparison of different models for emerging sequence generation. 

Sr. no.  Model   
Accuracy 

(%)   
Epoch Sequence generated (length)

1  ConV1d  29  10  <10kb 

2  GRU  35  10  <10kb 

3  Simple RNN  30  10  <10kb 

4  Our proposed LSTM model 
37  10  >10kb 

93  15  >10kb 

To further analyze the origin of generated sequences, we employed a multi‐class classification 

approach using  the FNN model  for genomic sequence classification. Our study contributes  to  the 

landscape of genomic analysis, employing one‐hot encoding, a proven method for next generation 

sequencing reads and phenotype label abstraction. Our CNN based FFN classification model trained 

on DENV  complete  genome  data  achieved  an  accuracy  of  approximately  99.00%. Across  the  10 

training epochs, the model consistently  improved, achieving a final validation accuracy of 98.12% 

(Figure 2).  

 

Figure 2. The validation accuracy of FFNN model over 10 epochs. 

The model demonstrated reliable results in achieving high‐quality predictions across multiple 

evaluation metrics with an overall accuracy, precision, recall, and F1 score of 99.00% as shown  in 

Figure 3.  
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Figure 3. Classification metrics illustrating accuracy, precision, recall and F1 score. 

The  model’s  performance  was  assessed  through  the  ROC‐AUC  curve.  The  loss  function 

appeared to decrease significantly and the area under the ROC‐AUC on the validation set showed 

fluctuations, ultimately stabilizing around 0.818. This robust accuracy, coupled with the low training 

loss, suggests the modelʹs effectiveness in accurately classifying instances as shown in Figure 4. 

 

Figure 4. ROC‐AUC for FFNN model. 

We investigated the model’s performance by inserting unknown sequences of the dengue virus 

genome.  The model  defined  a  serotype  for  that  sequence. Which was  further  cross‐checked  the 

predicted  serotype with  the  actual  serotype  confirmed  from  its  source. The FNN model worked 

efficiently on the unknown dengue virus sequence data and predicted the actual classes or serotypes 

of dengue virus Figure 5.   
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Figure 5. FFNN model accuracy through predicted vs actual virus types. 

Using  our  DL‐DVE  generative  and  classification  model,  the  generated  sequences  were 

successfully classified as belonging to the DENV‐4 serotype. We assessed the similarity between the 

sequences  generated  by  our  LSTM model  and DENV‐4  serotype.  Surprisingly  our  investigation 

revealed a similarity of approximately 66%, suggesting that the generated sequences did not align 

closely  with  DENV‐4  serotype. We  checked  the  similarity  of  generated  sequences  with  other 

serotypes  and  the approximate  similarity observed was  63  to 66%  suggesting  that  the generated 

sequences did not align closely with any known serotype as shown in Figure 6. 

 

Figure 6. Sequence  similarity of  intra and  inter DENV  serotypes and  comparison with generated 

sequences. 

The generated  sequences met  the  specified  sequence  length  requirement and emphasize  the 

effectiveness of our model in accurately predicting and classifying DENV serotypes.  

The MEME Suite analysis contributed  to an  enhanced  comprehension of  conserved patterns 

shedding light on motifs within all serotypes and the emerging serotype as shown in Figure 7. 
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Figure  7. Sequence Logo Analysis: A visual  representation of  conserved motifs  in  the nucleotide 

sequences, where  the y‐axis depicts  information content  in bits  (0, 1, 2), and  the x‐axis  represents 

nucleotides. E‐values highlight the statistical significance of motifs, with the first motif at 1.0e‐028, the 

second  at  3.8e‐026,  the  third  at  1.8e‐019,  and  the  fourth  at  3.7e‐018. This  sequence  logo provides 

insights into the nucleotide composition and conservation within the analyzed motifs. 

4. Discussion 

With  the advent of next generation  sequencing, predictions have become  feasible or at  least 

possible  using  complete  genome  sequence  data  [14].  Genomic  data  have  been  used  to  classify 

COVID‐19 variants and other viruses   using deep learning approaches [15–17]. CNNs and LSTMs 

have  been more  frequently  used  for  prediction  of  dengue  cases  [3,18–24].  That  underscores  the 

importance of neural networks combined with genomic sequences as a futuristic method capable of 

revolutionizing virus studies [25–27]. 

Machine  learning models go beyond human  reasoning  and build prediction models  from  a 

number of complex combinations. The DL models such as LSTM, GRU and CNN have been used for 

sequence classification and generative tasks [28].  Complete genome sequencing data was used to 

detect HCV variants that showed resistance to direct‐acting antivirals. And the  identified variants 

were incorporated into machine learning algorithms for assessment of effectiveness of the predictive 

model [29].   The LSTM model is considered effective in capturing the complex patterns in data and 

multiple features to make accurate predictions [30]. Being a subtype of RNNs, these models possess 

an enhanced capability  to  learn  information  from distant points  in  time. While  traditional RNNs 

encounter the vanishing gradient problem impeding their ability to capture changes that occurred in 

data long ago. LSTMs overcome this challenge through a gating mechanism where the gates open 

and close based on values learned from each input. This mechanism enables LSTMs to accumulate 

information over an extended period by dynamically learning to forget certain aspects of information. 

This aspect of sequence length carried significant implications for the model’s predictive capacity and 

biological relevance.  

In  the  realm  of  biological  sequence  analysis,  machine  learning  and  deep  learning  using 

CNNs   have demonstrated high precision  for binary or multi‐class  classification  [31]. Nucleotide 

sequence  based  studies  have  typically  employed  one‐hot  encoding  vectors  to  represent  each 

nucleotide  and  with  all  unknown  nucleotides  represented  as  all  zero  vectors.  Chaos  game 

representation  (CGR),  particularly  Frequency  CGR  (FCGR)  has  shown  promise  in  encoding 

sequences in image format and has been applied to predict drug resistance [32]. The identification of 

novel genomic regions in viral pathogens using CNNs and LSTMs have emerged as compelling areas 

of  exploration  among  researchers  [1].  In  the CNN  framework,  the  initialization  of  filter weights 

involves  random  uniformness,  and  these  weights  are  subsequently  refined  through  the 

backpropagation process to minimize the loss or cost function. The iterative learning process allowed 

the  network  to  adapt  and  optimize  its  performance  enhancing  its  ability  to  discern meaningful 

patterns and features within the given data. 

An approximate sequence similarity of 65% among DENV serotypes has been demonstrated in 

multiple studies  [33–35]. The exploration of motifs with statistical significance was  integral  in our 
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study of complete genome sequence data encompassing DENV 1 to 4 serotypes, juxtaposed with the 

generated sequences [36].  

5. Conclusions 

Our  study demonstrates  the  effectiveness  of utilizing  sequential models  for  classifying  and 

generating DENV genomic sequences resulting in the generation of sequences resembling a potential 

emerging serotype. Our predictive model classified the generated sequences as belonging to DENV‐

4  serotypes,  showing  a  close  resemblance  to DENV‐4 with  a  65.99%  sequence  similarity while 

diverging significantly from existing serotypes. The intra‐serotype divergence was characterized by 

a sequence similarity of at least 90%, affirming the distinctiveness of generated sequences within the 

DENV  serotype  landscape;  further  exploration  includes  the  analysis  of  conserved  motifs. 

Considering  the  complete  genome  sequence  size  of DENV  genome  is  approximately  10kb,  our 

trained model is limited to predict DENV sequences of similar size. Nonetheless, in future directions, 

predictive modeling  applied well  in  advance  of mutations  holds  promise  for  informing  vaccine 

design and the development of diagnostic kits.  
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