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Abstract: Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system
over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in
educational settings over a 10-year span (2012-2022), highlighting both the evolution of this field and its integration
to address challenges in education by integrating technology to solve specific educational challenges, such as
enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and
providing real-time feedback for both students and educators. By exploring these aspects, the review sheds light
on the potential implications of WBT for the future of learning. A rigorous and systematic search of major academic
databases, including Google Scholar and Scopus, was conducted in accordance with PRISMA guidelines. Relevant
studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for
methodological quality and bias using established tools. The process of data extraction and synthesis followed a
structured framework. Key findings include the shift from theoretical exploration to practical implementation
with the EEG being the predominant measurement, aiming to explore mental states, physiological constructs,
and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as
an important resource for educators and a tool for students. Their application has the potential to transform
and optimize academic practices through sensors that capture biometric data, enabling the implementation of
metrics and models to understand the development and performance of students and professors in an academic

environment, as well as to gain insights into the learning process.

Keywords: biometrics; education; NeuroEducation; Wearable Biosensor Technology

1. Introduction

There has been a significant surge and evolution in research on Wearable Biosensor Technology
(WBT) in recent years [1], along with its integration into educational environments. WBT refers
to a subset of wearable technology devices that are designed to be worn directly or loosely by an
individual, and that are equipped with an arrangement of built-in sensors that allow the acquisition of
physiological or biometric data [2]. The wide applicability of these technologies ranges from healthcare
(for treatment, rehabilitation, or monitoring) [3], safety (for fall detection and fall prevention, fatigue
detection and environmental condition monitoring) [4], activity recognition and sports [5], education
[6], among others.

Nowadays, WBT has been used in educational contexts to enhance the learning experience and
study the effects of its incorporation [7,8]. WBTs have been used to guide the structure of learning
programs, capture data to inform the process of learning, make knowledge visible, and help instructors
learn about their students [9]. One of the first documented cases of the use of wearable devices in
education incorporated the use of virtual reality (VR) technology for mathematics and geometry
education with the help of a tutor in the virtual space. [10]. In the last years, smartwatch devices
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have been the focus of interest due to their unique features, such as comfortable portability and
the ability to support learning and everyday activities [11-13]. Currently, smartwatches have been
recognized as promising in educational contexts given their growing acceptance and adoption as a
personal wearable device [14]. Other applications of WBT include identity management systems, class
attendance, e-evaluation, security, student motivations, and learning analytics [15]. The biometric
technology market is expected to reach a value of 94 billion USD by 2025 at a compound annual growth
rate of 36% [15] when just 10 years prior, in 2015, it was valued at 9.916 million [16]. This increase in
market value points to a growth in the development and acceptance of this type of technology.

The adoption of WBTs in education provides several advantages. One of the main benefits of
adopting WBT is its ability to facilitate convenient access and interaction with biometric information
and learning materials with little restriction over time and place of access [17]. Students and teachers
can benefit from this information by accessing learning materials at any time and any place while also
guaranteeing valuable data collection in various educational settings for subsequent analysis[18]. This
would reflect a non-restrictive, unobtrusive learning experience for students. A clear example of this
can be found in [19] and [20], where WBTs are incorporated into tasks for physical activity recognition
and biomechanical feedback applications respectively to improve students’ sports performance and
health.

When combined with other tools such as the Internet of Things (IoT), smartwatches, and eye-
tracking technology, wearables can be used to estimate student attention [21]. WBT can also be used
to implement performance evaluation systems [22] or emotion recognition systems for students with
different needs, for instance, those who present a mental disorder or mood disruption [23].

A second benefit of adopting WBT in education is the value of the implicit information offered by
the collected physiological data. In [24] the term "Neurophysiological Measurement" is introduced,
which refers to an exclusive type of physiological data that is related to the Central Nervous System
(CNS) or the Autonomic Nervous System (ANS). On this note, Neurophysiological Measurements
(NPMs) related to the ANS include measurements such as eye-related measurements (blink rate and
pupil dilation), electrodermal activity (EDA) or galvanic skin response (GSR), blood pressure, and
electrocardiography (ECG), while NPMs related to the CNS include electroencephalography (EEG) and
electromyography (EMG) [24]. From this list, EEG is of particular interest to the educational context as
it measures brain activity which can be used to infer fluctuations in cognitive processes [25,26]. It is
widely known that psychological constructs such as cognitive load, attention, and emotion, play an
important role in the learning process of a student [24]. NPMs such as EEG, HR, or EDA can provide
valuable neurological data to monitor mental states and determine a student’s performance [27-31].

Figure 1 shows a summary of the physiological measurements considered for this review, along
with some of the devices used to acquire them. The combination of such measurements with Machine
Learning (ML) algorithms can aid in the detection of low academic performance and is useful for the
decision-making of preventive actions [32,33]. Additionally, integrating VR technology has allowed to
design and test different learning environments with more convenience, and to study how they affect
cognitive processes in students [34-36]
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Figure 1. Graphical abstract for the present literature review. This figure provides a summary of the
devices used to acquire each physiological measurement, and the use of each biometric in education is
also explained.

A third benefit of the use of WBT in education is that the monitoring of NPMs can be exploited to
solve educational challenges. It can be used to predict cognitive outcomes such as students” academic
performance, by using peer-to-peer or student-teacher brain-to-brain (B2B) synchronization and
interaction [37-40]. This allows the increase of the effectiveness of teaching and learning processes
[24].

The purpose of this review is to critically examine the existing literature to assess the impact
of the application of WBT in education and the limits that it encompasses. We aim to investigate
the evolution of WBT in education over the past 10 years, how it has been integrated to solve key
educational challenges, the wide range of educational areas in which it can be applied, and what are
the future perspectives, challenges, and trends for this technology. A detailed discussion over the
evolution, trends, applications, and challenges of WBT in education is presented, in order to provide a
guide for future research in this field.

The rest of the article is divided as follows: Section 2 describes the methodology used to write
this review; Section 3 presents the evolution of WBT in education, the state-of-the-art implementations,
and current applications in the field; Section 4 discusses the challenges and current trends of this
technology and provides perspectives; finally, Section 5 closes the article with the conclusions of this
work.

2. Materials and Methods

2.1. Study Design and Search Strategy

A systematic search, following the (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) PRISMA methodology [41], was applied in this review. The literature revision took place on
21 September 2022 within the Scopus database and Google Scholar, considering those publications
that were available within the January 2012 to August 2022 period. The following string represents the
equation formulated by the relevant keywords related to all aspects of WBT in education:

("Biometry” OR "Biometrics” OR "EEG"” OR ”Electroencephalography” OR "Electroencephalo-
gram” OR "Biofeedback” OR "ECG"” OR "Electrocardiogram” OR "BPM"” OR "Beats per Minute”
OR "Blood Volume Pulse” OR "HRV"” OR "Heart Rate Variability” OR "Devices” OR "Sensors”
OR "Smartwatch” OR "Wearable”) AND (”Education” OR "Remote Education” OR "Learning”
OR "e-learning” OR "Student” OR "Teacher” OR "Professor” OR "Teaching” OR "Classroom” OR
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"School Activity” OR "Academic Task” OR "Exam” OR "Academic” OR "Learning Outcomes”
OR "Reading Comprehension”) AND (”Mental Fatigue” OR "Stress” OR "Cognitive Workload”
OR " Applications” OR "Perspectives” OR ”“Limitations” OR "Challenges” OR "Innovation” OR
"Advantages” OR "Disadvantages” OR "Technology”) AND NOT ("Deep Learning”) AND NOT
("Machine Learning”) AND NOT (" Reinforcement Learning”)

2.2. Exclusion Criteria

Studies were excluded if they met one or more of the criteria of the following list:

1. Publication was not related to Biometry nor Education (n = 96).

2. Publication was related to Biometry, but not to Education (n = 57).
3. Publication was related to Education, but not to Biometry (n = 145).
4.  Search was related to a summary of conference proceedings (n = 3).
3. Results

3.1. Summary of Studies Included

A total of 368 works were detected in Scopus using the equation presented in Section 2. Duplicates
reported between the database and studies within the exclusion criteria were discarded. From the
identified papers, 301 studies were eliminated due to falling within the exclusion criteria, and only 66
were considered. Additionally, 74 studies were also included from citation searching in Google Scholar.
A summary of the results obtained from the search is shown in Figure 2.
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s
= Records identified from: Records removed before screening: R ds identified from:
;—-_’ Databases (n=1) > Duplicate records removed i ect.)r s 1 en'tll‘ 1 rgn7l‘.‘
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Reason 4 (n =3)
etc.

Total studies included in review
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Reports of total included studies [
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Figure 2. PRISMA flow diagram. The diagram shows the total works included in this review. The
review was limited to one database (n=1) and no registers (n=0). In addition, 74 studies were identified
through citation searching within Google Scholar.
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3.2. General Characteristics of the Included Studies

The general characteristics of the 66 included studies from Scopus are summarized in Table 1.
This Table presents the following characteristics for each study:

*  Objective. Describes the main goal of the study being conducted.

¢ Education Type. Classify the study according to the type of education to which it is applied, such
as academic, language, medical, Science-Technology-Engineering-Mathematics (STEM), etc.

* Education Level. Classify the study according to the level of education to which it is applied,
such as Kindergarten, Elementary School, High School, University, etc.

¢ Institute. Provides the name of the institution in which the study is being conducted.

¢  Country. Provides the name of the country in which the study is being conducted.

¢ Sample Size. Number of persons who participated as test subjects during the study.

* Analysis Tools. Provides information on the tools used to gather and analyze the study’s data.
The information collected in each study includes mainly physiological characteristics, such as EEG,
ECG, EMG, HR, GRS, Heart Rate Variability (HRV); and some questionnaires such as Medical
Student Stressor Questionnaire (MSSQ), Perceived Stress Scale (PSS-10), Behavior Assessment Sys-
tem for Children (BASC-52), Global Assessment of Recent Stress (GARS-K), Balance of Challenge
and Skill (BCS), and Momentary Test Performance (MOM-tp). On the other hand, a diverse set of
tools were used to analyze the information, including MATLAB, Statistical Package for the Social
Sciences (SPSS), Augmented Reality (AR), Virtual Reality (VR), Wearable Commercial-off-the-shelf
(COTS), and Brain Computer Interfaces (BCI). Lastly, in order to provide reliable results, the
studies employed various types of metrics or statistics, which included Standard Deviation of
NN intervals (SDNN), Root Mean Square of Successive Differences between normal heartbeats
(RMSSD), Proportion of NN50 (pNN50), Low Frequency (LF) and High Frequency (HF) ratio,
ANOVA, Radial Basis Neural Network (RBFNN), and Improved Extreme Learning Machine
(IELM).

¢  Contribution. Contains the main findings of the study.
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Table 1. General characteristics of the included studies from Scopus.
Study Objective Education Education Institute Country Sarflple Analysis Tools Contribution
Type Level Size
[42] Teovilest?;m?aer::scss Pharmacy Universit Faculty of Pharmacy Czech 375 HRYV, PSS-10, Moderate stress levels
S tucﬁents y education y in Hradec Kravolé Republic students Statistics while studying
To reduce children’s Academic Elementary Pub%,lc school fro? . 585 EmWave, BASC-S2, Blofeedl?ack Feduces
[43] . - the "Amara Berri Spain . students” anxiety and
anxiety and stress education school students Statistics
group stress
To evaluate sleep . . L Sleep behavior, Saliva .
[44] behaviors among f;izlaetril; 1; University LOC;;?:‘}:‘ES::;Y m South Korea 86 students sampling, HRV, ai?)i?alt):;xltfz t?::s
college students GARS-K, Statistics
To investigate daily Academic . . Suranaree University . - Stress among students
(451 stress levels and EEG education University of Technology Thailand 60 students  MSSQ, EEG, Statistics alters brain functions
. . Emotional stress
[46] To analxs e emotional Academlc University Not provided Japan N9t EEG signals recognition model for
stress in teachers education provided
teachers
To develop a Arduino, .
[47] cost-effective STEM University Not provided China N9t Smartphone app, C ost-effecfclve EC.G
o . education provided . signals testing device
monitoring device ECG signals
To evaluate Academic Classification Importance of stress
[48] psychological stress . University Not provided China 90 students algorithm, RBFNN portan .
. education detection in education
in students and IELM
. L . . Impact of sensing
To test technology in Language . . Korean major in a . Wireless sensing X
491 Korean teaching education University university China 50 students technology, Tests technology in

education
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Table 1. Cont.
Study Objective Education Education Institute Country Sarflple Analysis Tools Contribution
Type Level Size
Wearables can make
learning easier by
improving teaching
To use of wearables . - themes, providing
[50] in the teaching and Langufflge University Universiti Utara China 263 Statistics graphic teaching
- . education Malaysia students .
learning of English scenarios and by
creating an overall
independent teaching
environment
To create scenarios . Georgian College of 6 personal . Simulation enables to
- Medical . . . support Arduino, Bluetooth, .
[51] for students to build . University Applied Arts and Canada o reach learning
. Education worker Vibration motor
confidence Technology outcomes
students
To integrate sensors Laneuage Zheiiane Yuexiu Simulation AR is effective and
[52] and AR in EFL suag University jlang China . Sensors can support English
. education University experiment .
teaching teaching
TO;?:;;E%?& Medical Pusan National Students with higher
[53] - . University University School of ~ South Korea 97 students HRY, Statistics academic achievement
stress-achievement education . .
) - Medicine have higher stress
relationships
A Classroom Learning
. . . R, . Environment Affected
o 1den’F1fy how Language N lelgtal. Umversﬁy,' China and Not Machine Learning, by the students’
[54] sensors improve . University ~ Universiti Teknologi . ) -
. s education - Malaysia provided Statistics movements allowed
learning efficiency Malaysia .
learning free from
constraints
To detect students’ Academic DeEgﬁiEgi?gtgthe Python 3.8, Tkinter GSR resulted in the
[55] stress during education University II_)Jm'versit of Colombia 25 students library, ScikitLearn best NPM to identify
COVID-19 Pandemic y library stress

Pamplona
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Study Objective Education Education Institute Country Sarflple Analysis Tools Contribution
Type Level Size
Development of stress
264 ; .
detection algorithms
students based on an
[56] To propose a stress Academlc University Not provided N(.)t and' 32 Machlqe. lea.rnmg adversarial transfer
detection framework education provided police classification .
learning method and
school .
analysis of
students . . .
physiological signals
To L15¢ SENSOrs 10 Language N Speech and hearing . . MATLAB, Line-of-sight change
[57] audio-visual . University research center of China 4 subjects L S o
. education . . . classification estimation classifier
language teaching Peking University
To improve English Laneuage All Not An online English
[58] language teaching by suag education Not provided China ) Statistics teaching system via
. education provided
using sensors and VR levels sensors/VR
To implement motor Motor Measuring tool based
[59] learning tools for learnin Preschool Not provided Indonesia 65 students Not provided on sensors to evaluate
students & motor skills
Toanalyze teaching  py i Not 108 s and smart
[5] methods in yeie University Not provided . students (49 Statistics .
education provided bands in basketball
basketball students women)
course
To analyze stress in Academic Identification of
[60] students during education University Sastra University India 14 students Statistics higher stress before
examination testing
To create a Stb.ldent Online Lat’f‘ An automated, online
authentication . . . Moodle, Blackboard America, 350 ..
[61] . academic University Electron JS student authentication
system for online . and OpenEdx Europe and students
. education . system
learning Asia
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Type Level Size
To create a real-time Scli)eiiirglgflrcl;t?f)n Future e-learnin,
detection system of Academic Elementary . Lo . BCS, MOM-tp, 8
[62] , : National Taipei Taiwan 30 students - development with
students’ flow state education school . . Statistics
University of BCI system
through EEG .
Education
To motivate students Academic Not Statistic, HRV, Grovi Introduction of the
[63] with Al to improve . University Not provided . 4 students  Pi Sensors, Raspberry Education 4.0
. education provided .
their perfomance Pi Framework
To find links between
physiological . . . . Apple Watch, Eye A higher HR
measurements, Academic . . University of Novi .
[64] . . . University Serbia 15 students Tracker, Canvas, correlates to lower
obtained with IoT education Sad . .
. , Statistics concentration levels.
devices, and students
concentration
cogrrﬂ'(;iiue}f/vise Use of mobile devices
[65] growth of mobile Academlc University National Institute of India 58 students EEG Head‘se't, Survey, in classrooms 'to
. education Technology Agartala Statistics enhance the quality of
devices in the :
education
classroom
Mental fatigue is a
T(.) analyze g}enta.l Academic . Senior High School 2 . EEG I.-Ieads.et, life-threatening factor
[66] fatigue conditions in . High school Indonesia 13 students Questionnaire, .
- . education Malang - in high school
the occipital region Statistics
students
Reference
To study changes in . . physiological values
[67] stress patterns during Acader.mc University Gar.qa St?te Azerbaijan 68 students EEG, Excel, SPSS are needed for
education Un1ver51ty

tests

studying stress
patterns in education
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Study Objective Education Education Institute Country Sarflple Analysis Tools Contribution
Type Level Size
To demonstrate the . . . Increased student
[68] influence of AR in TeChHOIlecal University Fe(.ieral University of Brasil 5 students AR, EEG headset, attention during AR
. education Rio Grande do Sul platforms . .
concentration interaction
Method for solving
missing data
To solve missing data problems through
[69] roblems and h%lman Academic Universit Not provided Not 75 students Smart-wristband Data Completion with
p . education y P provided data, MATLAB Diurnal Regularizers
stress level prediction
and Temporally
Hierarchical Attention
Network methods
To recognize of Bosnia and Wearables can be used
[70] students” exam stress AcadeI.mC University University of Tuzla Herzegov- 10 students BITahr}o, MAT]TAB’ for building
education . Machine learning automated stress
levels ina .
detection systems
To test the effects of Academic Institute of Space Performance
[71] time limitation on . University Technology, Pakistan 14 students EEG signals deteriorates during
education .
exam performance Islamabad timed tests
To measure academic . Relation between
stress to provide Academic Smart device study-related and
[72] P . University University of Turku Finland 17 students measures stress via y
better ways to cope education . . . non-study-related
s physiological signals
with it stress
Tadika Advent
To use EEG to . Goshen Kota 98 students Eff'ectl.ve learner E-lea'rrung success is
. Academic . Marudu, Pacos Trust . application for EEG, best judged in short
[73] measure e-Learning . Kindergarten Malaysia and 6 . . . .
offectiveness education Penampang, Pusat teachers and a mobile learning sessions with
Minda Lestari UMS app suburban children

Kota Kinabalu
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Table 1. Cont.
Study Objective Ed;;;t;on Ed::::lon Institute Country Sasr?zlzle Analysis Tools Contribution
T H
Ch:nm:jzlfu;u dI:Zts Academic HR, SDNN, RMSSD, Gender differences
[74] & . - University Lebanese University Lebanon 90 students PNNG50, LE, HE, during assessment of
during different education
stages of an exam LF/HF stress in real exams
To find statistical . Correlations were
differences between Academic - American University GRS data, MI'CI‘OSOft found between GSR
[75] . . University Jordan 19 students Band 2, Mobile app, .
lifestyles and stress education of Madaba X values and physical
Online survey .
levels activity level
. Improving learning
To perform review on . - .
[76] the learning behavior AcadeI.mC University Not provided China 106 EEG headset., Eye efficiency in .
with biofeedback education students tracker, Statistics autonomous learning
settings is essential
To evaluate Students with higher
psychological state of ~ Academic Junior Not MATLAB, EEG, test stress are more
[77] : Not provided . 15 students Neural networks, likely to face
college students education college provided . .
under test stress Test questions psychological health
problems
To compare students examir?:teilgr‘i?;oduce
78] stress.appearlng for Medlc.al University Navodaya Dente.il India 70 students Statistics, Mobile app, situational stress in
previva/postviva education College and Hospital Smartphone .
during exams students and result in
anxiety
T
s tres:-:ggic}:ltion Biofeedback was not
. ;i Academic . . . Not HR, Blood pressure, effective to reduce
[79] techniques during education University Not provided provided 100 teachers Statistics stress in this sample of

microteaching in
preservice teachers

preservice teachers
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Table 1. Cont.
Study Objective Ed;;;t;on Ed::::lon Institute Country Sasr?zlzle Analysis Tools Contribution
To evaluate solutions A protocol to evaluate
for stress in students Academic . . . . . . COTS. wrlstbapds, student stress in
[80] using COTS education University University of Vigo Spain 12 students machine learning, classrooms, based on
wrisgtban ds lectures HR, temperature, and
GSR
To understand EEG signals, E-prime .
[81] interactions with Academic eduﬁzﬂion Not provided Not 20 students 2, EEGO, ASA, ll:;giszipae;l;n be;sti;j 22
visual search education p provided Minitab17, ANOVA, . i,
. levels o judge cognitive errors
interface Statistics
werlz;(;asl?lle(iysﬂow ¢ All Wearables in teaching
ppor ; . . .
. L Academic . Oslo Metropolitan Not and learning provides
[82] learning activities . education . . Norway . Wearables .
and ethical education levels University provided pedagogl.c.al
responsibilities opportunities
A desktop app that
Universidad del MONItOrs stress
To monitor stress Academic Magdalena according to
[83] levels during exams . University rages . Colombia 20 students =~ EEG Emotiv Insight ~ parameters obtained
. education Universidad del .
in students Norte from EEG signals and
the Emotiv Insight
Software
To help teachers with
[84] wearables to collect Academic Elementary ~ An elementary school China Not Wearable device A g:;:zl;g C(i)ileed
data and provide education school in Zhaoqing City provided &

feedback

feedback
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Table 1. Cont.
Study Objective Ed;;;t;on Ed::::lon Institute Country Sasr?zlzle Analysis Tools Contribution
A way to help people
with disabilities by
To he}p students with Academic Alli Middle East ‘ creatlr}g an app and
[85] intellectual education education Technical Universit Turkey 4 students Wearable clothing plushies with smart
disabilities to learn levels y clothing that facilitate
the learning of
internal body organs
To improve the Techniques in the
[86] uality of teachin Academic Universit Technische German 30 students Smart watch, fithess design process
cinicrz)ytechnolo & education y Universitat [Imenau y tracker, EEG, EMG through formative
gy evaluation
To analyze human Academic St Petersburg State Improved educational
[87] motivation and . Universit University’s Russian 20 students Biofizpribor, ECG and therapeutic
education y Y p P
efficacy processes Psychology Faculty interventions
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3.3. Temporal Distribution of the Included Studies

Figure 3 shows the temporal distribution of the selected papers from Scopus and Google Scholar
that were published from 2012 to 2022. During this period, an increasing trend in the implementation
and exploration of WBTs in the field of education can be observed. This illustrates how researchers,
scientists, and scholars have adapted to new challenges, harnessed emerging technologies, and forged
pathways to address the complexities of the educational system during the last decade.

Furthermore, this trend of increase observed from 2012 to 2022 can be attributed to different
factors; since, during the first years of research (2012 to 2017, mean: 4.83 studies, std: 3.92) the
theoretical part and the practical bases of the field were established. Following this, starting in 2018
until 2022 (mean: 22.20 studies, std: 4.60), there has been a growing recognition of the importance of
these technologies in education, as these became more sophisticated and more accessible.

In summary, the temporal graph of publications related to the implementation of WBT in educa-
tion shows a four-fold increase in numer pf published articles per year from 2018 to 2022 compared to
the articles publised between 2012 and 2017. This reflects an increased focus on the convergence of
technology and education, which promises significant advances in improving the quality of teaching
and learning over the next decade.
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Figure 3. Temporal distribution of included studies from Scopus and Google Scholar.

3.4. Geographical Distribution of the Included Studies

Figure 4 shows the geographical distribution of the included studies from 2012 to 2022. It reveals
a diverse and widespread interest in WBT in education across the globe. Notably, China emerges as a
pioneer in this field, with 20 studies contributing valuable insights. Following closely, the United States
demonstrates significant engagement with 18 studies, underlining its prominent role in advancing
research in this area. Mexico also surfaces as a noteworthy participant, with 10 studies highlighting a
growing interest in wearable biosensors within the educational context.
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The collective picture is truly international, with a total of 45 countries actively contributing to the
body of knowledge on WBTs in education during the specified time period. This extensive global in-
volvement underscores the universal significance and appeal of WBT in shaping educational practices.
As diverse nations collaborate and contribute, it fosters a rich and comprehensive understanding of the
implications and applications of this technology in enhancing educational methodologies worldwide.
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Figure 4. Geographical distribution of included studies from Scopus and Google Scholar.

3.5. Literature Review

3.5.1. Evolution of WBT in Education

It has been observed over the years that for educational institutions, it is difficult to extract
information that helps understand the way students learn, as well as to guarantee enhancing learning
experiences [88], taking into account the challenges represented by teaching people with different
educational backgrounds and learning engagement [89,90]. Educational institutions have been incor-
porating and implementing new gadgets like wearable and mobile devices, making it easier to get
data from students in order to improve how students learn by making data-based changes to their
infrastructure or teaching methodologies [91,92].

In July 2012, a study was conducted in which EEG was used to estimate and predict mathematical
problem-solving outcomes. The study aimed to evaluate whether estimates of attention and cognitive
workload of students obtained from recorded EEG data while they solved math problems could be
useful in predicting success or failure. The signals were processed to obtain the mental states of
students in the frequency domain. Based on the results obtained from a Support Vector Machine (SVM)
model, the transitions between different state levels can predict problem-solving outcomes with an
average accuracy of 62 percent in both easy and hard difficulty [93].

As another example of these types of implementations, in 2018 Hui Zheng and Vivian Genaro
Motti [94] created "WELI" to investigate how smartwatches can support students with Intellectual
and Developmental Disabilities (IDDs). The goal was to help students with IDDs in the performance
of activities requiring high emotional and behavioral skills, as well as involvement, communication,
collaboration, and planning. Furthermore, in 2017, a multibiometric system was developed, aimed
at authenticating students on online learning platforms. The algorithm verifies the presence and
interaction of students by calculating the score-level fusion of different biometric responses. This
system serves as a tool to accredit the identity of the person undergoing the learning experience[95].
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In 2019, a paper showed an implementation of adaptability and Artificial Intelligence (AI) methods
within the Education 4.0 framework and also investigated embedded biosensors used in smartphones
and smartwatches [96]. In this context, Education 4.0 is the integration of emerging technologies
such as analytics, Al, biometrics, and IoT within the educational framework in preparation for the
industry. They proposed a framework for education that uses embedded biosensor data (EMG, EDA,
ECG, blood pressure, and EEG) and environmental data to estimate students” well-being and health.
Recent studies have continued to explore learning/education 4.0 by exploring emotional and cognitive
engagement classification through EEG [97]. This study classified states of low /high engagement with
a 77% accuracy.

In another study, the authors developed a Brain-Computer Interface (BCI) for gathering data and
detecting a learner’s mental state while watching MOOCs (Massive Open Online Courses) videos
through EEG devices. Their proposal was based on John Sweller’s Cognitive Load Theory to develop
a model with preprocessed training data and test the classifiers to validate their ensemble classifiers’
performance [98]. Other studies have continued to explore the approach of assessing a learner’s
engagement and attention during video lectures through inter-subject metrics [99].

During the recent COVID-19 pandemic, the University of Pamplona, in Colombia, conducted a
research study where they measured EDA, ECG and EMG in an academic context during stressful
situations. This is a study for the detection and identification of the Volatile Organic Compounds
profiles emitted by the skin. The aim was to measure the student’s stress state and then, during the
relaxation state, after the exam period [55].

New developments have not only occurred with hardware, but new software and processing
techniques have emerged. In 2022 [48], a study found better classification results from EEG data as a
predictor of student stress through the use of an improved Extreme Learning Machine model. A useful
approach for EEG processing uses traditional SVMs whose features were extracted through Empirical
Mode Decomposition to obtain a higher classification accuracy to predict student interest [100]. An-
other metric that has already been used in real-world applications, but is still being developed, is B2B
synchrony measured through EEG [101-103]. Software advancements have also been implemented to
enable adaptive learning to, for example, provide video feedback to increase engagement upon the
detection of low attention by EEG [104].

As it is evidenced in Figure 5, a wide variety of biosensors have been used in education with
diverse applications [105]. Another study [106] identified EEG, ECG, EMG, skin temperature (ST),
photoplethysmography (PPG), GSR, and EDA as some of the main physiological signals obtained
by sensors to monitor students’ engagement. In the early 2000s, a trend for e-textiles in educational
contexts began, but almost all data was related to posture, gestures, and respiratory patterns. Wearables
for learning purposes reached peak development around 2014-2016 when technological advances,
such as smart wristbands, watches, and glasses arrived with the possibility of acquiring precise
physiological data [9]. In recent years, there has been a notable surge in technological progress, marked
by the emergence of solutions employing more advanced algorithms and machine learning techniques
[35,36,106]. These innovations are designed to efficiently process vast amounts of data, addressing
specific problems within defined scenarios.
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Figure 5. Significant progress timeline of WBT evolution in educational contexts from 2004 to 2022.

3.5.2. Solving Educational Problems with WBTs

The educational system has been integrating new methods and techniques to improve how
students learn. Educational demands change over time, and institutions have to adapt their teaching
methods to ensure an optimal learning process. Technology development increases continuously and,
as a result, new technologies, have allowed monitoring students while they learn and have feedback
about the efficiency of teaching methodologies [107,108].

WBT has been useful in the academic field in various aspects, considering that emotional states
and cognitive status are considered good metrics to be aware of the student’s academic progress [109].
Having access to this kind of data allows teachers to identify motivations and optimize the learning
process. In this respect, HRV monitoring shows good performance regulating emotional state, as
six breaths per minute are shown to reduce stressful emotions and contribute to improved learning
experiences [43], but techniques to characterize cognitive statuses are still being studied. Additionally,
WBTs can save institutional resources, optimizing systems like access points, transportation, and other
control criteria, which not only shows an impact on education but also on safety and security [110].

A high academic load often drives students to coping behaviors. EEG recordings during exam
situations can serve as adequate indicators of adaptive responses as frontal cortex activation correlates
with brain processes that support motivational systems. Stressful situations, such as coping behavior,
may push students towards less effective ways of handling the situation. [111]. In this context,
neurofeedback represents a growing opportunity to monitor mental states. For this reason, various
universities tested an Adaptive Neuro-Learning System using a BCI for online education, showing
an enhanced learning performance (average test scores out of 100 of 83.83 on the experimental group
compared to 56.67 on the control group) [104]. Considering that changes in EEG alpha asymmetry
have been observed in the prefrontal cortex, depending on the approach or avoidance of motivational
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systems using positive or negative affect in students, it has demonstrated how positive traits lead to
left hemispheric activation, influencing the adaptive response of brain processes and manifesting in
academic performance [111].

Specific studies have been developed attending different problems in education, regarding
intellectual disabilities. The implementation of a monitoring system using EEG, ECG, and Near
Infrared Spectroscopy (NIRS) offers a valuable tool for assessing cognitive states, in this case, to
measure the educational effect on children with mental retardation over four years [112]. In 2022 [43],
a study to reduce anxiety and social stress in primary students was released. It shows how having an
instant biofeedback of the heart rate variability, allows to teach an easier way to conscious breathing,
having in consequence a positive impact on the emotional experience of the students who know how
to perform slow and steady breathing.

Given that cognitive load is a fundamental factor in cognitive processing and has a significant
impact on clinical reasoning, a study that recorded ECG signals from students at the Uniformed
Services University of the Health Sciences was able to identify a correlation between cardiovascular
measures and activities associated with high levels of cognitive load [30]. This leads to the conclusion
that this type of feedback can aid in enhancing instructional materials and, in turn, improve the
future performance of medical students while reducing cognitive load. Using similar physiological
measurement techniques with ECG, a study was conducted on college students. In this case, the
objective was to analyze how the environment affects students’ learning performance and their
psychophysiological responses depending on thermal conditions. The results showed that ECG
measurements served as objective indicators to control the task’s load [31].

Understanding the relevance of the fields of Science, Technology, Engineering, and Mathematics
(STEM) in industry settings, and assessing vocational interests in these areas can be a complex task,
traditionally achieved through various psychometric tests. However, it is possible to evaluate these
interests using EEG data [113]. A study was conducted to evaluate the performance of children in topics
offered by Machine Care Education (children’s education in STEM), such as Programming, 3D Design,
and Robotics. This study aimed to demonstrate how the development of a Machine Learning algorithm,
capable of analyzing physiological signals (HRV, EDA, and EEG), can predict an individual’s affinity
for engineering. Additionally, WBT can promote STEAM education and involvement of students
by exposing them to fun and engaging hands-on activities related to do-it-yourself electronics for
wearable computing [6].

NPMs including brain activity, cardiac function, and skin conductance, have been analyzed
in various contexts, leading to the development of models capable of classifying mental fatigue.
This demonstrates how the use of wearable devices that measure physiological signals can enhance
the experiences of students and workers [114]. Depending on the tasks being undertaken, specific
autonomic responses are generated by the human body, with adequate Machine Learning classification
extracting ECG and EDA measurements in non-invasive manners, it is possible to identify the type
of task being performed [115]. EEG and cardiac activity have also been used to address the issue of
the effects of different learning and teaching methods on the learning process and cognitive state of
students with the hopes of implementing personalized learning experiences in the future [116,117].

Overall, wearable biosensors have served as a guiding structure for learning. All kinds of
physiological feedback and data interpretation provide the possibility to construct a framework for
students and evaluate user performance but they are also helpful in supporting current teaching
methodologies and how tasks can be managed [9,106]. Biometric systems are still evolving and offer a
wide range of applications not only in education, leading to meaningful strategies to enhance human
performance [110].

3.5.3. Applications of WBTs in Education

With the ongoing evolution of WBTs, their integration has brought about a profound transfor-
mation in the pedagogical landscape, reshaping the methodologies of teaching and learning. WBTs
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have risen as powerful tools, offering a wide range of applications that harness NPMs to deepen
our understanding of the intricate processes involved in human learning, a trend that can be seen in
Figure 6.

Figure 6 shows a graphical description of the contrast between the periods from 2012 to 2016
and from 2018 to 2022, since in more recent years, there is an increasing trend in the applications
of wearables in education based on their physiological signal. In the case of applications with EEG
signals, it is shown that in the period from 2018 to 2022, there is an increase in the studies performed
of 133% compared to the studies of the period from 2012 to 2018. Furthermore, the application that
had the greatest increase, taking into account its relevance in both periods, was the Heart Monitoring
application, which is mainly due to the fact that it benefited from the easy access of society to wearable
devices such as smartwatches. Finally, applications related to physiological signals such as EMG or
EDA also had an important growth; nevertheless, compared to other physiological signals, they have
not been of total interest to researchers.
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Figure 6. Temporal distribution of included studies divided according to their application.

It is necessary to consider that each of our physiological signals may shed light on distinct facets
of the learning process [106]. Many of the applications provide multiple perspectives of how the
process of knowledge acquisition occurs in individuals. Below, a summary of the main applications of
WBTs within the realm of education (with a specific focus on NPMs) is presented.

Electroencephalography Since learning is a cognitive process that involves changes in brain
activity [60] and considering that some methods to measure levels of attention and engagement
by students may be intrusive [99], EEG signals have been of great relevance to researchers in the
development of tools, technologies, and methodologies for the benefit of education. One of the first
studies to test students in a naturalistic high school setting analyzed attention, self-reported enjoyment,
personality traits, and other social and engagement metrics derived from surveys and EEG to discover
the relationship to the student’s brain synchrony. This study found statistically significant associations
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suggesting brain-to-brain synchrony as a useful marker for predicting classroom interactions and
engagement [102]. With the use of portable and low-cost EEG devices, the authors were able to take
measurements from students throughout many sessions of their semester in a non-laboratory setting.
Follow-up publications expanded on this idea to understand how the student-teacher relationship and
retention of class content are correlated with closeness and brain-to-brain synchrony [101].

EEG-based technologies can also be used as predictors of cognitive performance [29] by using
alpha/theta ratio and delta band power (which are indicators of mental fatigue and drowsiness).
Alongside facial expressions, EEG can be predictive of states of engagement, attention [118], planning
[119], shifting [120] and even student effort [121]. Regarding attention, considering that it is the
most important factor in learning, protocols have been proposed to classify the levels of attention
in educational environments [122]. Other studies have generated offline algorithms to evaluate
primary and middle school children’s STEM interests [123]. Wearable technologies can also make EEG
research more approachable and accessible. A study created a research-based laboratory curriculum
for undergraduate students to learn about the theoretical foundation of EEG and the different protocols
used in research [124].

Another possible application enabled by detecting cognitive states can be biofeedback systems
[107]. This study built a system where learners engaged in a task while their biometrics were displayed
in a separate interface to the teacher. Afterward, the data was fed to a random forest classification
algorithm that could accurately discern states of mental fatigue. Furthermore, NPMs are a useful
tool to detect stress and anxiety in students. This could allow for more particular interventions in
high-stress situations, such as college evaluations [60,125]. In [126], a review can be found where the
effects of stress on education have been studied using EEG signals.

Electrocardiography, Photoplethysmography, and Heart Rate. HRV is a commonly used metric
to detect stress. HRYV is not a single metric, but usually an analysis performed on both time and
frequency domains during varying lengths of time over a heartbeat signal. A study conducted on
medical students [53] related HRV to both stress and academic achievement, which showed a positive
correlation between those variables. A study [30] attempted to measure how heart rate and HRYV,
measured by ECG, related to cognitive load and performance in medical students watching videos
of physician-patient interactions and filling out a post-encounter-form. The study found positive
correlations between cognitive load, HR, and HRV, while performance was negatively correlated with
cognitive load measures. A larger study performed during university final evaluations [74], used HRV
and HR to measure the changes in stress amongst students of different academic years throughout
the exam. In this case, HRV was lowest when stress was released after the exam. It also showed a
lack of adaptation techniques amongst undergraduates of different semesters; with only a measurable
difference in heart rate present between first-year graduate and undergraduate students. This study
required the use of a small ECG device (made by CardioDiagnostic) and electrodes to be placed on the
participant’s chest and abdomen during the evaluation.

With a focus on biofeedback and interventions, another study used HRV in elementary school
students to reduce anxiety and social stress [43]. This study used HeartMath emWave software
and hardware, both of which are consumer-grade non-invasive devices for HRV measurements and
stress management. Heart rate by itself has also been used as a physiological measure to improve
engagement and motivation of university students by combining wearable data (Fitbit, Apple Watch,
or JINS MEME) with data of academic performance [127].

Electromyography, Electrodermal Activity, and Others. Combined with HRV, EDA can be used
to identify different cognitive tasks that a person is performing [115], which has the potential to
improve coordination and performance in a classroom. Galvanic Skin Response (GSR) —a term used
interchangeably with EDA that also measures skin conductance—has also been in studies [35,55,75]
to measure academic stress. EMG is highly accurate at detecting stress using measurements from
the left and right trapezius muscles and the left and right erector spinae muscles, which all showed
higher activity during stress-inducing tasks. This study also used ECG to derive HRV and improve
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the accuracy of the SVM classifier [128]. Considering that different biometric signals or data are
implemented in the academic environment, some studies have opted to use a combination of these
to make the learning environment intelligent, such data includes heart rate, emotion detection and
sweat levels [88]. Another study [55] also used the EMG of the upper trapezius muscle, alongside ECG,
and GSR to differentiate students in a state of stress (during an exam) and relaxation (after the exam).
With simple classification methods, such as SVMs and linear discriminant analysis (LDA), this study
achieved a high accuracy with these variables, particularly GSR, in classifying stress and relaxation
states.

WBTs have evolved to include multiple sensors and encompass a wide range of devices in
education. Table 2 includes many of these devices, that have been reported in the literature. This table
aims to provide a brief summary of the technologies used in multiple studies. It includes technical
details of the device, such as sensors, communication protocol, type of storage and whether it used a
simulated or experimental signal. Moreover, the table also provides information about the qualitative
metrics, the software and data processing. In terms of applications, this review will maintain its focus
on new and unique learning experiences enabled by WBT.

4. Discussion

The search results from the present review show that EEG was the most popular NPM among the
studies. It was found to be used as a stand-alone measurement, or along with other biometrics such as
EDA [70], eye tracking [76], ECG [87], or even EMG and blood pressure [86]. Two main objectives were
identified regarding the use of EEG in classrooms: to analyze the mental state of a student through the
estimation of physiological constructs or to evaluate teaching and learning effectiveness with the help
of qualitative or biofeedback strategies [73,76,86,87].

First, physiological responses to stress have been used to evaluate the performance of students in
an academic setting. Stress analysis was of particular interest for researchers, especially during exams
or tests, to examine the change in studying and learning patterns of students [67]. Overall, it was
found that investigation of stress levels improves the quality of academic classes [45,129]. Students’
stress levels increase before examinations and during timed exams [60,71,130], and high levels of
stress are correlated to poorer evaluation performance and psychological health problems [77,83].
Other analyzed physiological constructs include motivation [87], flow state [62], concentration [68],
and sustained attention [118], where an increase in all of them correlates to improved educational
interventions and allows the possibility of implementation of e-learning platforms through BClIs or
Augmented Reality (AR) systems [62,68]. Meanwhile, the increase of mental fatigue was discovered to
increase on 8-hour school days (or longer), and it was identified as a factor of high concern in high
school education [66]. Some studies also developed algorithms for emotion recognition in teachers
[46], and to evaluate psychological stress in students [48,70].

Secondly, to evaluate teaching and learning effectiveness, researchers tested the acceptability
of wearable and mobile devices by also implementing qualitative surveys [49,65], and biofeedback
strategies were used to evaluate the effectiveness of lessons and judge cognitive errors in students
[76,81,86].

HR is shown to be the second preferred NPM in classrooms. HRV is estimated either through
ECG or PPG and. Contrary to the EEG, which is sometimes used as a stand-alone physiological
measurement, these measurements are usually always used in parallel with others, such as motion [52],
blood pressure [5,79], eye tracking [64], EEG [87], GSR, EMG, temperature, and respiration [55,56,80,86].
Once more, stress is the main focus of the studies, with the proposal of stress detection and monitoring
frameworks based on HRV, GSR, and EMG [42,47,55,56,131] gender-centered evaluations [53,78], and
the proposal of stress-reduction techniques [79,80]. Some studies also researched the relationship
between stress levels and sleep, where high stress levels proved to be associated with poor sleep
behaviors in students [44,91]. It was once again proved that WBT offers pedagogical opportunities
[5,74,82,84,86,87] and supports learning activities through the integration of AR, Al, and IoT devices
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[52,63,64]. Finally, other NPMs found in the studies are temperature [54], motion [58,59,69], EDA [72],
GSR [75], EOG, EMG [57], and voice [61].

Figure 7 presents a summary of the results. China and the United States were the top two countries
with the most papers published related to wearable technology in education. MATLAB and Python
proved to be the most popular software to perform signal processing, and EEG and ECG were the
most popular measurements.
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Figure 7. A graphical depiction of the results found for this review. It shows the countries, signals,
devices, and institutions, among other characteristics, that are most present in the papers found.

4.1. Perspectives

One of the main limitations identified in the studies is the variability of the WBT used. This
technology field is characterized by its diversity, with various devices offering different features and
capabilities, but this represents a drawback. Comparing results between studies may be challenging,
given that researchers may not consistently evaluate the same types of devices. This also opens the
way for variability in protocols for the usage of this technology, limiting the consistency of results
across studies. For example, the NeuroSky MindWave Headset is shown to be the most used device for
EEG recording (Table 2). However, the data processing techniques vary, as well as the used software
for the task [62,65,68,73,76].

Additionally, few studies seem to consider the acceptance and user experience of WBT by students
and teachers as an important research variable. Most studies did apply surveys to qualitatively measure
stress or attention levels; however only a few implemented surveys to determine the acceptability of
WBT in classrooms [61,65] or others did not implement any type of qualitative measurement at all.
From the application of Technology Readiness Models (TRM) to measure physical education teachers’
perspectives on WBT, it is possible to identify conditions in infrastructure that better accommodate
the use of technological innovations that improve physical education and performance [132]. Another
study shows that teachers report benefits in the incorporation of WBT in teaching, by receiving
real-time feedback on students’ cognitive states and representing tools for the implementation of
more dynamic studying sessions; however, students share that they find several challenges related to
affordability, technical infrastructure, distraction, security, ethics, and privacy of these technologies
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[133]. Providing insights into the perspectives of the main stakeholders of these technologies would
allow for their seamless adoption and implementation, and would offer better performance results.

It is suggested that future research focuses further on enriching application and implementation
scenarios of WBT, instead of limiting only to the theoretical analysis or evaluation of the frameworks.
This would increase the robustness of the analysis of the true impact of this technology in teaching,
learning, or in any educational context [134]. Finally, collaboration would also play an important role
in standardizing data and processing methodologies, facilitating the reproduction of studies, and the
comparison of their performances in the future. Research community efforts such as the EEG extension
of the Brain Imaging Data Structure (BIDS) [135] and the Standard Roadmap for Neurotechnologies
[136] provide a standard for the storage and organization of EEG data and the requirements for the
standardization of Neurotechnologies respectively, and could be valuable tools in building future
efforts to contribute to this technology’s standardization.

4.2. Challenges and Trends

WBT is emerging as a game-changing trend that is set to shape the future of learning methods. By
harnessing these technologies in educational settings, it is possible to unlock endless possibilities for
personalized and immersive learning experiences [29,35,36,107,137]. The exponential advances in this
field have developed new ways to improve education, but with this growth came several challenges
that must be addressed to ensure improved learning outcomes [138].

One of the major challenges of this technology field is the extraction of useful and actionable health
information from the large volumes of data generated by wearable biosensors [139,140]. Analyzing
and interpreting this data requires complex algorithms and Machine Learning techniques to gain
meaningful insights [141].

Another obstacle is the consistency and accuracy of NPMs, which are highly dependent on the
interface method between the biosensing electrode and the human body [142]. Ensuring the accuracy
and reliability of the data collected by WBTs is crucial for their effective implementation in educational
settings [143].

Furthermore, integrating WBT into existing educational infrastructure represents a multi-level
challenge. It involves not only incorporating big data analysis methodologies and building environ-
ments that take advantage of WBT and adapt to the education type presented [144-147], but also
addressing issues related to privacy and data security, as WBTs collect sensitive personal information
[82,148,149]. Privacy and security issues are challenges that need to be considered, all biometric infor-
mation must be obtained with the user’s consent and therefore must be included in the incorporation
of privacy-protective solutions to ensure the user that the information collected is secured [43].

The application of WBT in education requires training and support for educators to effectively
use the data generated by these devices [17,150]. Also, the cost of WBT and the availability of technical
support may limit their widespread deployment and scalability in educational settings [151].

Despite these challenges, there are several trends in wearable biosensing technology that have the
potential to improve education. These biosensors can provide valuable information about students’
physiological responses during learning activities, allowing for adaptive and personalized educational
interventions [37,119,152]. Additionally, the integration of physical sensors, machine learning, mul-
tifunctional Al and VR with wearable biosensors is promising to improve the capabilities of these
devices and solve some of the challenges [134,153].

The development of WBT capable of monitoring and analyzing emotional responses in real-time
has the potential to revolutionize the field of education [143]. By understanding students” emotional
states, educators can adjust their teaching strategies to optimize engagement and learning outcomes
[126,154]. The use of wearable biosensors in collaborative learning environments can facilitate peer-to-
peer collaboration and improve the quality of classroom engagement [155].
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Finally, due to the pandemic of COVID-19, different alternatives to continue the school programs
had to emerge to ensure that students continue with their studies. Here is where the new modality of
virtual education entered the panorama.

In recent years, a large number of learners around the world have enrolled in MOOC:s offered by
various online platforms. MOOCs stand out among the most popular e-learning methods. In 2017,
there were more than 58 million learners, 800 universities and 9,400 MOOCs on MOOCs platforms and
the leading MOOC, Coursera has reached thirty million learners and 2,700 different courses [98]. This
shows the relevance that was in that decade in virtual education and with the COVID-19 pandemic,
this e-learning tendency entered its peak [149]. In the realm of virtual education, MOOCs provide
significant flexibility for learning, but there is room for improvement in course structures. Students
often face challenges related to their levels of consciousness while participating in online courses;
physiological monitoring and WBT utilization can assist in recognizing students’ performance patterns,
for instance, high blood pressure in chronic stress conditions or confusion detection depending on
acquired data of EEG signals [156].

Virtual reality environments have found applications in educational contexts, suggesting that
immersive technologies of this kind can effectively facilitate learning. In recent years, the integration of
psychophysiological methods with VR technology has emerged as a tool for objectively evaluating its
impact on learning. Among these methods, EEG has gained significant traction due to its association
with cognitive processing data [36,157]. One noteworthy finding in this field is that virtual scenarios
provide an opportunity to apply learned concepts and techniques instantaneously, emulating real
conditions effectively [34]. However, when dealing with factual information and a high memory
workload, the comparison of physical versus virtual environments should always be taken into
account.

As every trend shows, their implementations imply challenges that need to be solved in order to
be executed successfully. Here is where biometrics can help to improve the quality of virtual education
to assure that the students receive the knowledge they should. Some studies have proposed the use
of sensors and software to collect the biometric behavior of the students to measure their attention
level, the presence of stress, or their pulse rate to identify specific behaviors in students [70,128].
Wearables are intertwined with technology-enhanced learning, a concept that explores scalability
and data aggregation, carrying implications across various domains. More significantly, it introduces
innovative approaches, devices, and techniques to enhance education [151].

5. Conclusion

Wearables and biometric signals are in constant relationship today due to technological advances
in both fields. New devices are constantly being researched, designed, and distributed with the
capacity to obtain a wider variety of biometric data more efficiently, and with greater precision. As
time goes by, devices are progressively becoming more cost-effective [158]. As stated in previous
studies, biometric data allows us to accurately determine the state and behavior of a person considering
the subject’s profile and description [44]. This paves the way for further exploration into novel realms
of research that could not be explored in the past due to the subjectivity and absence of devices capable
of capturing biometric data in order to be analyzed [159].

This review includes a total of 140 WBT studies that discuss their implementations in academic
environments. In the studies analyzed, various focal points are discerned, such as the examination
of emotional and academic stress of students in class or exams [72,77,78,80], the development of the
student as a whole [84-87], the academic achievement and improvement in students [58], the impact
of the use of different teaching resources and techniques [49], among others.

WBT is employed to examine teaching and learning effectiveness through data collection, anal-
ysis, biofeedback strategies, and qualitative surveys. This review presents EEG as the predominant
neurophysiological measurement (NPM) used in education studies. Some studies utilize EEG inde-
pendently or in conjunction with other biometrics such as EDA, eye tracking, ECG, EMG, and blood
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pressure. The analysis and interpretation of this data in classrooms aim to explore mental states, assess
physiological constructs, and evaluate teaching effectiveness from a cognitive perspective. Some of
these studies focus on examining various facets of students, including stress analysis, motivation, flow
state, concentration, and cognition. They observe the impact of these factors on academic performance
and psychological well-being, employing different algorithms for these assessments [21].

As stated previously, data captured via high-tech devices, have shed light on the understanding
of student behavior and performance in academic environments. This information gives professors
insight into the student’s academic performance, learning outcome, and achievement [5]. The recent
technique of computing and analyzing the brain synchrony between students and professors has
shown to have an impact on a student’s performance and achievement in their academic pathway, as
this tool gives professors a broader understanding of their class engagement. Providing this feedback
to professors allows them to further tailor and adapt their teaching according to the needs of the
class [63].

Nowadays some educational institutions are adopting and exploring the use of biometrics in
education [160], in which some of its applications are to predict the performance of a student, to
personalize the student experience, and to improve the efficiency of e-learning systems. Finally, it’s
crucial to keep in mind that the projects analyzed are making use of sensitive biometric data collected
by WBT. For this reason, and as mentioned in Section 4, it is important to prioritize and look after the
privacy of the students by ensuring that the data is under appropriate protections to maintain this
sensitive information safe [43].

The research in this field ought to gravitate towards some approaches as it is the development
of educational models tailored to the unique learning requirements of each student, or to generate
better predictive algorithms to accurately forecast academic performance and learning needs in them.
Another recommendation for future studies is the impact of brain synchrony between students and
educators on academic outcomes, which could lead to more effective teaching methods. By closely
analyzing the data collected during this approach, it could be possible to contribute to providing
constructive feedback to both students and educators, thereby enhancing the teaching and learning
processes.

When discussing biometrics and wearable technology applied in educational settings, several
research approaches were detected. These include the development of educational models tailored to
the unique learning requirements of each student and the improvement of predictive algorithms to
accurately forecast academic performance and learning needs. Using these technologies can provide
details about the teaching or learning quality in academic programs from a physiological perspective.
This is of great importance in cases where the evaluation of students’ learning and/or skills is com-
plicated. As WBTs provide a physiological-based assessment of mental and cognitive states, they are
expected to be more and more often used in the future academic context, in order to provide a more
complete evaluation of educational objectives.
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Infrared PPG ear PS5-10, Total power, VLF, LE, No significant changes in
[42] sensor EmWavePro Experimental Not provided Not provided No Statistics Kubios HRV sociodemographic HF, LF/HF, SDNN, Pgs—l O and HR%/
data Coherence5
431 No‘n -invasive Not provided Experimental USB No No Statistics emWave BASC II test HRV Students learr}ed to
auditory sensor breathe consciously
. . . AA and HRV are
" Heart Rhythm Octagonal Motion logger . . . e Action W-2, IBM SPSS . Saliva, HR, SD, 5 i S
[44] Seanner. PE Sleep Watch-L Experimental Not provided Not provided No Statistics Statistics 25 GARS-K SDNN, LE/HF mgmcfllicsaor:; 2 :leep
MSSQ, Stress analysis improves
[45] EEG electrodes Not provided Experimental Not prvided Not provided No Statistics Statistical software SPSS Sociodemographic EEG signals chsses P
data
DFA, Linear Deep Learning for
[46] EEG electrodes Not provided Experimental Not provided Not provided No Feature Selection, Not provided Not provided EEG signals P 8 ¢
Statistics emotion recognition
[47] ADB8232 ECG chip Not provided Experimental Bluetooth HC-05 Not provided No Signal filtering Not provided Not provided HRV Syst;ln];\t/h:rt‘s;;lilstates
y . . . . . AdaBoost, . Sociodemo-graphic . Algorithm with excellent
[48] EEG electrodes Not provided Experimental Not provided Not provided No RBENN, IELM Not provided data, self-evaluation EEG signals accuracy
[49] EEG electrodes Not provided Experimental WHEI.ESS . Intemet. and No Statistics Not provided Not provided Not provided . Wireless sensors can
communication satellite improve students grades
Wearables use is
[50] Not provided Not provided Experimental Not provided Not provided No Statistics Spss 13.0 software Not provided Not provided associated with better test
scores
. Wearables provided
[51] Arduino MKR1010, Not provided Experimental _bruethooth and Not provided No Statistics Aruduino, Wix Not provided Not provided insight into a medical
vibration motor visual via website scenario
High-bandwidth . .
[52] Track movement, Not provided Simulation optical fiber Not provided No Survey summary Not provided Not provided Temp, Dls},) ; Rs.’ ME, AR support the practice
heartbeat, trajectory technology and statistics Stress, Vibration of English teaching
. SA2000E HRV analytic . . . Not . . Socio-demographic BMI, HRV, SDNN, LF, ‘Women suffer more
[53] Not provided equipment Experimental Not provided Not provided provided Statistics IBM SPSS Statistics 24.0 data HE LF/HF academic stress than men
[54] Light and Not provided Experimental WiFi Not provided Nf)t Machine learning Not provided Satisfaction survey Light and Students approve the
temperature sensors provided temperature system
GSR sensor, MOX . HRV of ECG, GSR, GSR data were best in
[55] gas sensors, LifeCare GSR’.ECG’ EMG, Experimental 12C, Wifi Not provided No LDA, KNN, SVM Python .3'8’ Raspbian SISCO Inventory gas sensors’ response, relaxed and stressed
Electronic Nose System environment
electrodes states
EDA, PPG, ST, ACC ‘Wrist-worn wearable . . Self-reported stress Mean, SD, HRV, BPM, Classification of stress
[56] sensors device Experimental Bluetooth Not provided No SVM, KNN Fython levels IBI, LE, HF, Average and relaxed states
Window slicing, R
[57] Heog, NEMG, and NeuroScan synamps 2 Experimental Not provided Not provided No FCN, LSTM and MATLAB No HeOg. Value, NEMG Es{lmahof‘ of Chénge
IMU sensors system SVM amplitude and RMS angle of line of sight
. . Skeleton position, . N
58] Odometer, Polaroid Milodometer and Sonar No Not provided Not provided No SIFA, KF, statistics Not provided No movement, rotation VR for z{r\ online Enghsh
6500 sonar modules systems angle teaching experience
Scoring of motor Time between A motor skl test tool
591 Movement sensor Limit switch sensor Experimental Not provided Not provided No No Not provided 8 O from locomotor
ability movements
component
. Semantic . Better student
[5] Heart rate and blood Smart Redmi bracelet Experimental Wireless Sensor Not provided Mobile Statistics SPSS17.0 No Score.s of physical performance in basketball
pressure sensors Network . exercises, P value
computing classes




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints202403.0831.v1

27 of 39
Table 2. Cont.
. . . Communication Type of Computing . - -
Study Sensors Biometry Device Sim or Exp Protocol Storage Engine Processing Software Qualitative Index Quantitative Index Study Outcome
Stored in the Not EEG relevant alpha Students were highly
[60] Dry EEG electrodes Enobio system Experimental Not provided N WPT, Statistics PSYTASK, ENOBIO NIC Arithmetic task and theta component stressed before
computer provided S
energy examination
Microphone, . . FaceBoxes, M3L, . Images, audioclips, Better biometric models
[61] webcam, keyboard Proctoring system Experimental VoIP DB Cloud NN, Kaldi Electron JS User experience test keystroke dynamics are needed
[62] Mobile dry EEG NeuroSky MindWave Experimental Not provided Not provided No Average, EEG SPSS, Excel, WEKA SR-F EEG signals EEG-F det.ects flow
sensors Headset power, Statistics experience
PPG, Grove Pi Smartphone, Raspberry . - . Google - Python, ECG for HRYV, Temp, Cal, Relation between selftest
[63] sensors Pi, Smartwatch Experimental 12C, Wifi, Bluetooth Not provided Cloud TTS Statistics Everybody Sound Hiim, Steps and biosignals
[64] HR and eye tracking Apple Watch Experimental Not provided Health Mobile Cloud Statistics Not provided Quiz evaluation Heart Rate Initial FIR in the quz
sensor App affects concentration
. . . Bayes factor supports
[65] Mobile dry EEG NeuroSky MindWave Experimental Not provided Not provided No ThmkG?ar. ASIC, JASP 0.10.2 Survey EEG signals mobile devices have
sensors Headset Statistics L .
positive effects in classes
[66] EEG electrodes EMOTIV EPOC+ Experimental Bluetooth Not provided No MAV and SD Not provided IFS EEG signals 8-h school days can cause

mental fatigue

Differences in brain
[67] EEG electrodes Not provided Experimental Not provided Not provided No Statistics SPSS, Excel Not provided EEG signals signals between 1st and
5th year students

(681 Mobile dry EEG NeuroSky MindWave Both Bluetooth _Student s No Statistics Moodle, AR,_ Unity 3, Self—l:eported EEG signals, attention High concentration with
sensors Headset inventory Vuforia attention levels levels AR app
Sleep, walk, run, . . . . . . . Data from Data filling and stress
[69] bike sensor data Smart-wristband Experimental Not provided Not provided No Machine learning MATLAB, Tensorflow Online survey smart-wristband level prediction
EDA and ECG . . . Statistics, KNN, " N SVM was the most
[70] sensors BlITalino Experimental Bluetooth Not provided No SVM, LDA MATLAB Not provided ECG and EDA signals accurate with 91%
[71] EEG electrodes OpenBCI Cyton Experimental Wireless At the device No Mean and SD of MATLAB and EEGLAB Mat test EEG signals Stress increases in timed
transmission level PSD exams
[72] EDA sensor Moodmetric smart ring Experimental Not provided Not provided No Statistics Excel Written diary EDA signal Correlation bemee.n
non-study and studying
Mobile learnin: Suburban students tend
[73] EEG electrodes MindWave EEG headset Experimental Not provided Not provided No Statistics learning Questionnaire EEG signals to learn more with
application mlearning
Ambu WhiteSensor . . . . . - . . . HRYV in females is lower
[74] WS electrodes Cardio Diagnostics Experimental Not provided Not provided No Statistics Kubios HRV Questionnaire HRV parameters before/after examination
. . . - . . GSR data is dependent on
[75] GSR sensor Microsoft Band 2 Experimental Bluetooth Mobile app No Statistics Not provided Online survey GSR data .
human behavior
[76] Mobile dry EEG NeuroSky MindWave Experimental Not provided Not provided No Statistics Minxp, IMB SPSS 19 Bloom’s taxonomy EEG signal Blofeedback.may actas a
sensors, eye tracker Headset survey metacognitive method
77 EEG electrodes Not provided Experimental Not provided Not provided No Neural networks MATLAB Test questions EEG signals EEG signals are
multi-fractal signals
HR, Oxygen and Android S-HEALTH HR, Oxygen Gender differences in
[78] " Smartphone Samsung S7 Experimental Not provided Mobile app No Statistics Not provided saturation, Stress .
Stress sensors software levels stress aptitude
HR, Blood pressure EmWave, GE Dinamap . . . Not - . HR and Blood No differences in stress
1791 sensors PRO 400 Vitals Experimental Not provided Not provided provided No Statistics Online survey pressure data levels after microteaching
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[80] HR, ST, GSR, ACC Wristband Experimental Bluetooth Server’s No Machine learning Not provided Quiz am_:l lecture Information from Average classmcat:on
sensors database sessions wearable accuracy of 97.62%
. . . . . - E-prime 2, EEGO, ASA, . . . N200 is produced by
[81] EEG electrodes Not provided Experimental Not provided Not provided No ANOVA, statistics Minitab17 Not provided EEG signals visual attention
Computer Location and pulse Wearables are not yet
[82] GPS and HR Fitbit Experimental WiFi P Cloud Statistics Excel Not provided P ready for use in teaching
storage data and learning
[83] EEG electrodes EMOTIV Insight Experimental ~ Bluetooth Smart 4.0 Excel No Not provided Excel, S[;K .del EMOTIV Test IDARE EEG signals Increased stress in both
nsight subjects
y Love buckle health . System . . Measured data should be
[84] HR sensor (CoCoQCB2) Experimental Bluetooth platform Server Statistics Not provided RPE scale Hear Rate more accurate
[85] Not provided Clothes Experimental Not provided Not provided No Not provided App Positicion of organs Not provided StUdna]SOl::tEf]S organs
EEG, ECG, EDA, .
. ’ i . . . . . . EEG, ECG, EDA, E-learning system
[86] EMG, HR, BP, BG, Not provided Experimental Not provided Not provided No Not provided Not provided SR-F EMG, HR, BP, BG, BO prototype
BO sensors
871 EEG and ECG Not provided Experimental Not provided Not provided No Statistics Not provided FAM test EEG and ECG signals Stress was related to
electrodes poorly answers
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Biometry Device Signal Sensing Device Communication Protocol Type of Data Storage Power Studies
EmWavePro HRV PPG, ear sensor USB Software Lithium Ion rechargeable battery [42,79]
Octagonal Motion logger Sleep Watch-L Not provided Not provided Serial Communications (COM) Port 2Mb of non-volatile memory Power Supply, Changeable batteries [44]
SA2000E HRV analytic equipment HRV Not provided Not provided Not provided Not provided [53]
NeuroScan synamps 2 system EEG EEG Electrodes USB 2.0 Neuroscan software 120V AC [57]
Heart Rate, Blood pressure, Oxygen 6-axis sensor: 3-axis accelerometer and
Smart Redmi bracelet ! Pr s XY 3-axis gyroscope, PPG heart rate sensor Bluetooth Low Energy App 200mAh [5]
saturation f
and Light sensor
Enobio system EEG Wet, semi-dry and dry electrodes 'WiFi or USB MicroSD or Software Rechargeable system using Li-Ion battery [60]
12 bit Raw-Brainwaves and Power
NeuroSky MindWave Headset EEG and ECG signals Spectrum, eSense, Sensor Arm Up and BT/BLE dual mode module App AAA battery [62,65,68,73,76]
Down
Raspberry Pi Not provided GPIO to connect sensors SSH, UART, I2C, SPL, USB, LAN, WIFL, DAS, NAS 1.8a54W [63]
Bluetooth
Apple Watch Heart Rate, Blf)od pressure, Oxygen PPG heart rate sensor, Lllght sensor, 3-axis Bluetooth DAS, NAS, App Rechargeable lithium battery [64]
Saturation, Movement accelerometer, 3-axis gyroscope
EMOTIV EPOC+ EEG signals 9 axis sensor. 3-axis accelerometer, 3-axis Bluetooth low energy Software Internal Lithium Polymer battery 640mAh 66]
magnetometer. EGG sensors. (rechargeable)
Bluetooth 2.0 + EDR or Bluetooth 4.1 BLE,
BlTalino ECG, EMG, EDA, and EEG signals MCU, Bluetooth, Power, EMC.;’ EDA, ECG, Bluetooth (BT) or Bluetooth low energy OpenSignals Software Battery: 700 mA 3.7V LiPo (rechargeable) [70]
Accelerometer, LED, and Light Sensor
(BLE) / BT dual mode
OpenBCI Cyton EEG, EMG, ECG Not applicable - it serves as a connection BLE, USB dongle via RFDuino radio PC, mobile device 3.6V DC 71
between sensors module
Moodmetric smart ring EDA Not provided Bluetooth Smart Moodmetric app and Moodmetric cloud Internal, nor{:i:;:)l\;:zleer,yrechargeable [72]
Cardio Diagnostics ECG Transmitter Adhesive Patch Not provided Cloud Rechargeable battery [74]
Optical sensor, Three-axis accelerometer,
Microsoft Band 2 ECG and Temperature Gyrometer, Galvanic skin sensors and Skin Bluetooth 4.0 Not provided Charge by 200 mAh Li-Polymer battery. [75]
temperature sensor.
Smartphone Samsung S7 Heart rate and Oxygen saturation spO2 and heart rate sensor Not provided Samsung S-health software Rechargeable Li-Ion battery [78]
GE Dinamap PRO 400 Vitals Blood Pressure, Teml?eratum/ Oxygen Blood pressure cuff, sensor SpO2, oral Remote operation w1§h DINAMAP® Host Not provided DC input, battery power, host port power 1791
Saturation Temp sensor Communications Protocol
Fitbit Surge ECG A MEMS 3-axis accelerometer and Optical Bluetooth 4.0 fitbit.com dashboard Rechargeable lithium-polymer battery. [82]
heart rate tracker.
. . EEG Semi-dry Sensors, IMU, .
EMOTIV Insight EEG signals Accel Gyroscope, Ma Bluetooth Low Energy Not provided 480mAh battery [83]
Love buckle health (CoCoQCB2) Heart rate Not provided 433 MHz Radio, Bluetooth App, Server Not provided [84]
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