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Abstract: The segmentation of abnormal regions is vital in smart manufacturing. However, the existing
segmentation system for detecting sauce-packet leakage on intelligent sensors encounters an issue of imaging
blurring caused by uneven illumination. This issue adversely affects segmentation performance, thereby
impeding the rapid production of industrial assembly lines. To alleviate this issue, we propose the two-stage
Ilumination-aware Sauce-packet Leakage Segmentation (ISLS) method for intelligent sensors. The ISLS
comprises two main stages: I[llumination-aware region enhancement and leakage region segmentation. In the
first stage, YOLO-Fastestv2 is employed to capture the Region of Interest (ROI), which reduces redundancy
computations. Additionally, we propose an image enhancement to relieve the impact of uneven illumination,
enhancing the texture details of ROIL In the second stage, we propose a novel feature extraction network.
Specifically, we propose the Multi-scale Feature Fusion Module (MFFM) and the Sequential Self-Attention
Mechanism (SSAM) to capture discriminative representations of leakage. The multi-level features are fused by
MFFM with a small number of parameters, which capture leakage semantics at different scales. The SSAM
realizes the enhancement of valid features and the suppression of invalid features by adaptive weighting of
spatial and channel dimensions. Furthermore, we generated a self-built dataset of sauce-packets, including 606
images with various leakage areas. Comprehensive experiments demonstrate that our ISLS method shows
better results than several state-of-the-art methods, with additional performance analyses deployed on
intelligent sensors to affirm the effectiveness of our proposed method. Our code is available at
https://github.com/LS]5106/SauceDetect.

Keywords: sauce-packet leakage segmentation; uneven illumination; multi-level feature fusion; attention
mechanism

1. Introduction

With the advancement of computer vision technology, leakage segmentation has become crucial
for intelligent industrial production [1-3]. Sauce-packet leakage segmentation is to determine
whether a sauce-packet has leakage [4]. Unlike other segmentation scenarios, sauce-packet leakage
segmentation faces issues of overexposure or insufficient illumination, resulting in blurred images.
Moreover, traditional and most deep learning algorithms have insufficient performance in solving
illumination imbalance [5-7]. The sauce-packet’s leakage results in many adverse outcomes,
encompassing compromised product quality and increased material wastage. Hence, to facilitate the
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industrialization process, researching leakage segmentation for sauce-packet leakage is particularly
important.

The leakage segmentation of sauce-packet can be divided into traditional methods and
Convolutional Neural Network (CNN) methods [8]. Traditional methods rely on expert experience.
Songming et al. [9] developed an improved detector using the Canny operator, which improve the
computational efficiency and increase the precision of fibre identification. Sharma et al. [10] used a
Histogram of Oriented Gradient (HOG) and Support Vector Machine (SVM) segmentation method,
which integrate with a modified ResNet50 model for brain tumor detection to help clinicians.
Similarly, Hongbin et al. [11] proposed a segmentation method by HOG and Local Binary Pattern
(LBP), which combines both HOG and LBP features to accurately identify crack anomalies. Binwu et
al. [12] developed a secondary template matching method, which extracted the Region of Interest
(ROI) by using the four-threshold algorithm. However, traditional methods relied on hand-crafted
features, and the generalization performance in real scenes is insufficient.

The CNN methods automatically extract discriminative features, and do not rely on expert
experience. Wang et al. [13] proposed HRNet, which connected the high-to-low resolution
convolution streams in parallel and repeatedly exchanges the information across resolutions. Yu et
al. [14] proposed BiseNetv2, which involved a detail branch and a semantic branch. Xie et al. [15]
proposed SegFormer, which unified Transformers with lightweight multilayer perception decoders.
Cao et al. [16] proposed Swin-Unet, which designed a novel pure transformer-based U-shaped
encoder-decoder for medical image segmentation. However, the above methods have not been
applied to the field of sauce-packet leakage segmentation.

In this paper, we propose the two stage Illumination-aware Sauce-packet Leakage Segmentation
(ISLS) method. Firstly, in the illumination-aware region enhancement stage, an efficient localization
algorithm [17] is introduced to reduce the calculation of invalid areas. And we design the Uneven-
Light Image Enhancement (ULIE) method to alleviate the problems of blurred images under uneven
illumination conditions. Specifically, the ULIE method is built upon the retinex model to enhance
image clarity under insufficient illumination condition. And the ULIE method utilizes the contrast
limited adaptive histogram equalization to alleviate the leakage details in overexposure image.
Secondly, in the leakage region segmentation stage, to effectively relieve the problem of information
missing, we propose Multi-scale Feature Fusion Module (MFFM) for capturing multi-scale
discriminative representation. Our MFFM fuses a variety of feature maps from top to bottom. And
the resulting fused feature map serves as the input to our proposed network decoder, thereby
enhancing the decoder’s semantic recovery performance. Finally, the Sequential Self-Attention
Mechanism (SSAM) utilizes a sequential structure, which combines the channel and spatial attention
mechanisms, thereby achieving effective mining of salience information. In summary, our method
effectively relieves the impact of uneven illumination and improves the performance of feature
extraction for blurred images.

Our main contributions can be summarized as follows:

1) To alleviate blurred image issues caused by uneven illumination, we propose the ULIE
method via illumination-aware mechanism to enhance the texture details of leakage within the ROL.

2) The MFEM is proposed to fuse multi-level features with a small number of parameters,
capturing multi-scale features to effectively relieve the issue of missing information.

3) To alleviate the interference of invalid information, we introduce the SSAM by combining
spatial and channel attention mechanisms to enhance the discriminability of valid features in the ROL

4) We generate a sauce-packet dataset to facilitate research. Furthermore, our method Mean
Intersection over Union (mloU) achieves 80.8% and Mean Pixel Accuracy (mPA) reaches 90.1% on
the self-built dataset, which are +0.9% and +0.9% higher than the previous CNN method [18].

The rest of this paper is organized as follows. Section 2 describes the proposed method in detail.
Section 3 conducts the experiments based on the self-built dataset to verify the effectiveness of the
proposed method. Section 4 summarizes this paper.
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2. Materials and Methods

We propose Illumination-aware Sauce-packet Leakage Segmentation (ISLS) for the industrial
production line, as illustrated in Figure 1. The ISLS method includes a NVIDIA GPU and an
intelligent sensor with a hardware accelerated EdgeAl development environment. We train the
model on NVIDIA GPU and perform inference on intelligent sensors.
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Figure 1. The data processing procedure of ISLS includes training and inference stages.

The cameras capture images of sauce-packets and transfer the images to NVIDIA GPU and
intelligent sensors, where the images are stored as a raw dataset. The sauce-packet dataset is pre-
processed using YOLO-Fastestv2 [17] detection algorithm to focus on the Region of Interest (ROI)
and is augmented by our proposed Uneven-Light Image Enhancement (ULIE) method. We split the
raw dataset into training and validation sets in a 7:3 ratio.

We train our proposed leakage segmentation network on the NVIDIA GPU. Subsequently, we
assess the robustness and generalization of our trained model by cross-validation. The trained model
is deployed on the NVIDIA Jetson TX2 intelligent sensors for inference, where it is utilized to identify
real-time leakage in images (i.e., highlight the areas of leakage with bounding boxes).

We first introduce our uneven-light image enhancement in our designed ISLS, including the
localization and ULIE method. Subsequently, we present the segmentation network, proposing the
Multi-scale Feature Fusion Module (MFFM) and the Sequential Self-Attention Mechanisms (SSAM).
Detailed explanations of these components will be presented in subsequent sections.

2.1. Uneven-Light Image Enhancement for Illumination-Aware Region Enhancement

The actual leakage segmentation of sauce-packet is often influenced by uneven-light sources,
which consist of insufficient illumination and overexposure. To relieve the problem of image blurring
caused by uneven illumination, we propose the Uneven-Light Image Enhancement (ULIE) method,
employed in the illumination-aware region enhancement stage of ISLS. The ULIE method is inspired
by the relevant image enhancement algorithms [19-21]. Our ULIE method can enhance the
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illumination of sauce-packet images under insufficient illumination conditions and improve the
image contrast and texture details under overexposure conditions.

The input of ISLS is in a three-channel RGB format, where R, G, and B represent the color space
values of red, green, and blue, respectively. We utilize the mean function in OpenCV to calculate the
mean value of the RGB three channels in the ROI. Through extensive experimental analysis, we define
115 and 180 as the thresholds for insufficient illumination and overexposure, respectively. The
implementation details of our ULIE method are as follows:

In the case of insufficient illumination, the ULIE method is built upon the retinex model
[22,23]. The retinex model theory posits that a color image can be decomposed into two primary
components: the illumination component (lighting) and the reflection component, as shown in
Equation (1).

Li(x) = Tr(x) » Re(x) 1)

where Li(x) and Re(x) represent the input image and the image to be recovered, respectively. Tr(x)
represents the illumination mapping image, and the ° operator represents the element-wise
multiplication.

Firstly, to simplify the computation of ULIE method, it is commonly assumed that the three
channels of images share the same illumination map [24]. The ULIE method calculates the maximum
value among the RGB channels of the image to independently estimate the illumination of each pixel
x, obtaining the initial estimation:

-C
Tr(x) = cerf}z?é(,B}Ll x) )
where x represents individual pixel, ¢ represents channels, and Li¢(x) is the input image of the
maximum channel in the RGB.

Secondly, to ensure that the illumination map does not cause the enhanced image to become

overly saturated, the ULIE method modifies Re(x):

Li(x)

Re(x) = Tr(x)+e (3)

where € is a very small constant, to avoid denominating to zero.

Thirdly, the ULIE method employs the augmented lagrangian multiplier optimization method
[25] to preserve the structural information and smooth texture details of sauce-packet images. The
ULIE method introduces the following optimization problem to accelerate the processing speed of
sauce-packet images:

min ||Tr — Tr||2 + a||W oV Tr||, @)
Tr

where ||||r and ||-]|; represent the F norm and L1 regularization, « is the coefficient balancing the
F norm and L1 regularization, respectively. Additionally, W is the weight matrix, and V Tr
represents a first-order derivative filter, encompassing both horizontal and vertical directions.

Finally, the ULIE method iteratively updates according to the retinex model, solving to obtain
the result image Re(x) in Equation (1). The ULIE method applies BM3D [26] for denoising
optimization of the result image Re(x). To reduce the computation of the denoising process in ULIE,
the method transforms the RGB three channels of the result image Re(x) into YUV three channels [27]
and performs denoising only on the Y channel:

Y =0.299R + 0.587G + 0.114B
U=-0.169R - 0.331G + 0.5B + 128 5)
V =0.5R-0.419G - 0.081B + 128

where Y represents luminance, U and V represent blue chrominance and red chrominance,
respectively.

In the case of overexposure, the ULIE method divides the image into blocks to obtain
overexposure regions (i.e., locally overexposed areas). Firstly, to obtain the illumination information
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of ROI, we convert the RGB color space into the YUV color space, as shown in Equation (5). The ULIE
method divides the input image into several small blocks, and performs Contrast Limited Adaptive
Histogram Equalization (CLAHE) [28] on each block, to enhance the clarity of the image. CLAHE
clips and redistributes the histograms of each sub-image, thereby limiting the degree of contrast
enhancement. CLAHE prevents the amplification of noise and excessive enhancement [29]. The ULIE
method initially divides the original image into several non-overlapping sub-images, each denoted
as s. We compute the the frequency of pixel values p;(i), representing the data distribution of pixel
values i within each sub-image. The definition of the p4(i) is given by Equation (6):
n;
p)=1 ©)
where ps(i) represents the frequency of pixel values equal to i, n; represents the number of pixels
with a pixel value of i, and N represents the total number of pixels in the sub-image.
Secondly, the ULIE method computes the Cumulative Distribution Function (CDF) c;(i) for
each sub-image s in Equation (7), representing the cumulative frequency of pixel values less than or
equal to i:

= p,() )
=0

where c(i) represents the CDF for the pixel value i, ps(j) represents the frequency of pixel values
equal toj.

Thirdly, the ULIE method utilizes Equation (8) to compute the transformation function T,(i) for
each sub-image s, representing the function that maps the original pixel value i to a new pixel value:

T () =[c, ()] (8)

where T,(i) represents the transformed pixel value for the original pixel value i, L represents the
maximum range of pixel values, and |] represents the floor function.

The ULIE method clips and redistributes p_(i) for each sub-image s, limiting the degree of
contrast enhancement, which prevents the amplification of noise and excessive enhancement [28].
Finally, the ULIE method consolidates all transformed sub-images T;(i) into the final image and
converts the image from YUV format back to RGB format.

The results of ULIE images are shown in Figure 2, where the left image is the non-optimized
image, and the right image is the optimized image. Figure 2a shows that the image has improved
overall illumination, with a clearer boundary between the leakage and the background. The ULIE
method effectively enhances the image contrast and clarity. Figure 2b reveals that the illumination of
the optimized image is more balanced. The ULEIE method alleviates the phenomenon of local
overexposure, which further proves that our method effectively avoids gray jump [30]. We perform
convolution and downsampling operations on the yellow and red box regions, obtaining the
corresponding feature maps between non-optimized and optimized images. It is shown that the
details of the optimized feature map are more obvious. In summary, through the above process, our
method can effectively enhance the details and textures of sauce-packet images under insufficient
illumination and overexposure.
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(b) Images under overexposure

Figure 2. The visual results of sauce-packets under insufficient illumination and overexposure
conditions. The left side represents non-optimized images, the right side represents optimized
images, and the central part represents feature maps between non-optimized and optimized images.

2.2. ISLS Network Details for Leakage Segmentation

In the leakage region segmentation stage of the ISLS method, we propose our network with the
EdgeNext backbone, which comprises only 1.3M parameters [31]. The EdgeNext integrates the
advantages of Convolutional Neural Network (CNN) and Vision Transformer (ViT). The CNN
extracts local features of images using convolution operation [32], and the ViT [33] captures global
contextual information of images. The network is the end-to-end network, where the input channel
dimension is 3 (i.e,, RGB), and the input image size is 128x512. Our overall network structure is
shown in Figure 3, which includes the encoder and decoder.
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Figure 3. The overall network structure of ISLS, consisting of encoder and decoder. The input image
format follows the structure of (channels, height, width).

The encoder fuses the local and global representation. Firstly, the nxn Conv encoder consists
of three modules. The nxn Conv encoder utilizes adaptive kernels to adjust the size of convolutional
kernels based on distinct network layers, which aims to decrease computational complexity and
enhance the receptive field [34]. Secondly, the SDTA encoder combines spatial and channel
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information. The SDTA encoder utilizes deep transposed convolution and adaptive attention
mechanisms, which improve the performance of capturing local and global representation. Thirdly,
the information of deep and shallow layer feature maps is fused by our MFFM, which improves the
performance of encoder feature extraction. Our MFFM structure is as shown in Figure 4.

%

I

X1 =P el X
L x4
(24,32,128)  Conv MaxPooling (512,8,32)
2 = X2
] : v
(48,16,64) Conv (512,8,32)
) > X
-=u ’ + 5
lill ,
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8 i
X4 —> — X4
(512,4,16) UpSampling, (512,8,32)

Figure 4. The overall MFFM structure. The MFFM fuses information from four levels, with varying
feature sizes for each layer. The size of feature mapsis (C, H, W), where C, H, and W represent channel
dimension, image height, and image width, respectively.

Specifically, we extract four feature maps of different sizes from the encoder, denoted as x4, X,,
X3, X4. Firstly, the MFEM adjusts the channel number of the feature map x; to 512 through a 1x1
convolution and 4x downsampling. Next, the MFFM applies similar operations with x; to the feature
map X,, with the 2x downsampling, as illustrated in Equation (9):

X; = MaxPooling(ConV(xi)), i€{1,2} 9)

where MaxPooling represents the downsampling process through maximum-pooling operation,
Conv represents the convolution operator.

Secondly, x3; has the same size as the output. Therefore, the MFFEM only needs to utilize a 1x1
convolution, to adjust the channel number of the feature map x; to 512, as shown in Equation (10):

x5 = Conv(x3) (10)

Thirdly, the channel number of x, is same with the output, therefore the MFFM performs only
an Upsampling, operation on the feature map x, The Upsampling, is achieved using nearest-

neighbor interpolation, as depicted in Equation (11):
X, = Upsampling, (x,) 11)

where Upsampling, represents 2x upsampling operation.
Through the above operations, the feature maps x;, X,, x3 and x, are obtained. Finally, we
fuse the feature information of x;, X, x3 and x, to output the feature map xg, as shown in Equation

(12):
4
Xs= ) % (12)

i=1

The reasons of MFFM small parameter number is that the Conv operator employs a 1x1
convolutional, the Upsampling, operation uses nearest-neighbor interpolation, and downsampling
is achieved through Maxpooling. 1x1 convolution operation only increases a small number of

parameters, upsampling and downsampling operations do not increase the number of parameters.
Compared to Feature Pyramid Network (FPN) [35] and AF-FPN [36], the parameter number of our
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MFFM is relatively small. That is, our MFFM has a parameter number of only 0.23M, with only 3.05%
of the FPN and AF-FPN parameter number.

The decoder includes skip-connection and SSAM. The SSAM in the stage 1 of decoder aims to
improve the identification of salient features. The SSAM keeps high-resolution in both channel and
spatial branches, which enhances the salient features of sauce-packet ROL Specifically, the SSAM
contains two modules, consisting of channel-only module and the spatial-only module, as shown in
Figure 5. For the channel-only module of SSAM, the output y;, is generated by fusing the feature
map X;,, obtained from both the skip connection and the channel attention mechanism. The specific
computational process for channel attention mechanism is shown in Equation (13).

Figure 5. Sequential Self-Attention Mechanism (SSAM), which includes the channel-only branch (left)
and the spatial-only branch (right).

Vg =S (Re(ConV(xin))) ®Re(ConV(xin))

Y;h =Sig (LN (Conv(ych)))

where X, and y , represent the input and output of SSAM channel-only module. Conv represents

(13)

for the convolution operator, Re represents reshape operator, and S represents softmax operator.
Additionally, LN represents layer normalization, Sig represents the sigmoid function.

The process of the SSAM spatial-only module is similar, with one part from skip-connection,
and the other part from spatial attention mechanism, as shown in Equation (14) for specific
operations:

Yop = S (Re (GP (Conv(yin))» eRe (Conv(yin))

(14)
yout = ym@Slg (LN (ysp)>

where y. and y_  represent the input and output of SSAM spatial-only module. GP, S, and LN
represent to the global pooling operator, softmax operator, and layer normalization, respectively. @
and © represent the tensor product and multiplication operations, respectively.

The stages 2 to 5 of our proposed network decoder contains SSAM and Concat operator. The
Concat operator concatenates feature maps of two branches in the channel dimension, as shown in
green box of Figure 3. Specifically, the one branch feature map comes from the SSAM output, which
is upsampled 2x. The other branch feature map comes from skip connections, which can avoid
gradient vanishing and improve the training speed of the network [37].

3. Experiments and Results

3.1. Dataset and Experiment Setting

Currently, there are almost no publicly available datasets for sauce-packet leakage
segmentation. Therefore, we generate a dataset at Nanjing University of Posts and
Telecommunications, captured by an industrial high-speed camera namely the MER2-134-90GC, and
the Daheng Image industrial lens HN-P-1628-6M-C2/3. Our self-built dataset comprises images with
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varying degrees of leakage. Specifically, it includes 315 images under normal illumination conditions,
143 images under insufficient illumination, and 148 images with overexposure. Some examples from
the self-built dataset are presented in Figure 6.

Figure 6. Partial sample of sauce-packet dataset. The yellow dotted boxes indicate the connection of
sauce-packet (i.e., ROI).

The backbone of our proposed network is EdgeNext. Our experimental environment is PyTorch
2.0.1. We divide the dataset into training and validation sets, containing 424 and 182 images,
respectively. During the training phase, we employed the NVIDIA RTX GPU 4060, while for
inference, we deployed it to the NVIDIA Jetson TX2. Meanwhile, we utilize the cross-validation
strategy to verify the robustness of the model. During training, we use DiceLoss [38] to measure the
degree of similarity between the predicted results and the ground truth. In addition, we employ
FocalLoss [39] to relieve class imbalance by emphasizing hard-to-classify examples, which makes the
model pay more attention to challenging pixels. During deployment, we utilize pruning technology
to accelerate our model.

3.2. Evaluation Indexes

To evaluate the performance of the method, we selected 5 widely used evaluation indices: Mean
Intersection over Union (mloU), Mean Pixel Accuracy (mPA), Fl-score, Params, and Frames per
Second (FPS). Params is employed as the evaluation index for the model parameters. And FPS is the
evaluation index for the inference speed of a model. The definitions are shown in Equation (15)—(17):

IoU = AN v 15
miot = nZ L TP+FP+FN (15)
p
PA = Iy TP 16
= L TP+EP (16)
P
2xprecisionxrecall
F1-score= — (17)
precisiontrecall

where precision and recall represent TP/(TP+FP) and TP/(TP+FN) respectively.

3.3. Experiment Analysis of ULIE

We employ the controlled variable method to explore the optimal thresholds of ULIE for
insufficient illumination and overexposure. In the case of insufficient illumination, to validate the
optimal threshold as 115, we maintain the overexposure threshold at 180. We adjust the insufficient
illumination threshold within the range of 75 to 145. The ISLS evaluation indices (i.e., mIoU, mPA,
Accuracy, F1-score) for different thresholds are shown in Figure 7. We observe that the evaluation
indices reach optimum when the threshold is set at 115.
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Figure 7. The performance indices under different insufficient illumination thresholds, with a fixed

overexposure threshold of 180.

Simultaneously, to verify the optimal threshold for overexposure as 180, we maintain the
insufficient illumination threshold at 115. We adjust the overexposure threshold within the range of
150 to 220. The ISLS evaluation indices for various thresholds are presented in Figure 8. It is noted
that the evaluation indices achieve their peak performance when the threshold is set at 180.
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Figure 8. The performance indices under different overexposure thresholds, with a fixed insufficient

illumination threshold of 115.

In summary, we define the thresholds of insufficient illumination and overexposure are 115 and

180, respectively.

3.4. Analysis of Ablation Study

In this paper, we propose the two stage lllumination-aware Sauce-packet Leakage Segmentation
(ISLS) method. The ISLS method consists of the Uneven-Light Image Enhancement (ULIE) method,
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Multi-scale Feature Fusion Module (MFFM), and Sequential Self-Attention Mechanism (SSAM). To
assess the performance of ISLS, we conducted ablation studies on each component.

Ablation for ULIE: We propose ULIE to alleviate the problem of blurring images in uneven
illumination conditions, which improves the visibility of the images. In Table 1, compared to the
baseline, mIoU improves by about 1.5% and mPA by about 3.9% after using ULIE. The ULIE method
is not based on deep learning, which relies on the adjustment and optimization of image illumination
and contrast. Hence, the ULIE method does not require training any parameters. Through section 2.1
methods and formulas, the ULIE method adaptively enhances the illumination and contrast of
images.

Table 1. Detailed performance comparison of ablation experiment without attention mechanisms.
Baseline: our proposed network without ULIE, MFFM and attention mechanism. ULIE: Uneven-Light
Image Enhancement method. MFFM: Multi-scale Feature Fusion Module.

Methods UEIE FPN [35] AF-FPN [36] MFFM | mloU (%) mPA (%) F1-score (%) Params (M)
Baseline 75.6 85.6 85.2 11.333
+ULIE v 774 89.6 86.5 11.333
+FPN v 773 85.2 86.3 18.906
+AF-FPN v 75.3 83.6 84.8 18.908
+MFFM v 78.7 87.9 87.3 11.564
+ULIE +FPN v v 78.5 86.7 87.2 11.906
+ULIE +AF-FPN| v v 75.9 84.3 85.3 11.908
+ULIE +MFFM | ¢ v 79.2 89.1 87.7 11.564

Ablation for MFFM: The mIoU and mPA of the MFFM reach 78.7% and 87.9%, as shown in Table
1. Compared with baseline, the mIoU and mPA of MFFM increase 3.1% and 2.3%. In comparison to
other feature fusion modules, MFFM exhibits significantly fewer parameters than both FPN and AF-
FPN, with only 3.05% of FPN and AF-FPN. Additionally, the mIoU and mPA of MFFM are 1.4% and
2.7% higher than FPN, and the mloU and mPA of MFFM are 3.4% and 4.3% higher than AF-FPN.
Significantly, FPN and AF-FPN structures are intricate, and the features of leakage are monotonous,
rendering the extraction of salient features less effective.

Ablation for SSAM: We add attention mechanism to ISLS to improve the performance of feature
extraction and compare with Global Attention Mechanism (GAM) [40] and Simple, Parameter-Free
Attention Module (SimAM) [41]. In Table 2, it can be observed that utilizing SSAM results in an
improvement of about 2.4% in mloU compared to GAM and around 3.7% compared to SimAM.
Additionally, mPA shows an increase of approximately 0.9% and 3.5%, respectively.

Table 2. A detailed performance comparison of ablation experiments involving attention
mechanisms. BUM represents Baseline with ULIE and MFFM.

Methods | GAM [40] SimAM [41] SSAM [42] | mIoU (%) mPA (%) Fl-score (%) Params (M)
BUM 79.2 89.1 87.7 11.564
+GAM v 78.4 89.2 87.7 20.273

+SimAM v 77.1 86.6 86.2 11.564
+SSAM 4 80.8 90.1 88.8 12.266

To further analyze the effectiveness of our method, we use the Grad-cam [43] to visualize the
attention heatmap. As shown in Figure 9, the redder the heatmap, the more the attention mechanism
focuses on the feature. Figure 9c exhibits strong capabilities for global feature extraction but shows
insufficient performance in capturing local information. Figure 9b,d does not fully focus on the
leakage regions and exists the problem of attention divergence. Our ISLS method with SSAM
effectively alleviates interference from invalid information, which results in a more focused on
leakage regions, as shown in Figure 9e.

d0i:10.20944/preprints202403.0826.v1
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(d) Heatmap with SimAM (e) Heatmap with SSAM (f) Ground truth

Figure 9. Heatmap results using different attention mechanisms.

The leakage segmentation results of sauce-packet with different attention mechanisms are
shown in Figure 10. Our method with SSAM achieves more refined leakage boundary segmentation
for sauce-packets by employing spatial and channel adaptive weighting.

(a) Input (b) Prediction with No Attention (c) Prediction with GAM
(d) Prediction with SimAM (e) Prediction with SSAM (f) Ground truth

Figure 10. Prediction results using different attention mechanisms.

Our proposed ISLS achieves 4 FPS on the NVIDIA Jetson TX2. Our ISLS meets the real-time
requirements for industrial applications, which demand a minimum of 3 FPS. Figure 11a illustrates
the CPU utilization of the ISLS method. The GPU utilization of the leakage segmentation stage is
illustrated in Figure 11b.

CPU (%) GPU (%)
60 100 s

0 time 0 time time

—ISLS —Before Optimazation  —— After Optimazation ——Before Optimazation  —— After Optimazation

(a) CPU Utilization (b) GPU Utilization (c) FPS

Figure 11. Relevant performance statistics of ISLS method during inference: (a) the CPU utilization of
our method after optimization, (b) comparison of GPU utilization before and after optimization, (c)
comparison of FPS changes before and after optimization.

Before optimization, the GPU utilization often approached 100% (green line), posing risks of
system crashes or failures. To ensure system stability and device reliability, we optimized the ISLS
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method by integrating L1 unstructured pruning technology [44], with a reduction of 20% in the
model’s parameter. Performing fine-tuning training while pruning can effectively mitigate the
performance degradation caused by pruning, with almost no decrease in accuracy. The GPU
utilization after optimization decreases to a certain extent (red line), accelerating model inference
while simultaneously decreasing GPU load and enhancing system stability.

Figure 11cillustrates the comparison between the FPS before optimization (green line) and after
optimization (red line). Experimental results demonstrate a significant improvement in the
performance of our method after optimization. Compared with the unoptimized method, the
optimized method improves FPS by 2.7 times.

Experimental results demonstrate that ISLS performs well under uneven illumination
conditions. We deploy the ISLS on intelligent sensors, the system fulfills the real-time requirements
of industrial applications.

3.5. Comparison with Other Segmentation Methods

In this section, we compare ISLS with several state-of-the-art (SOTA) semantic segmentation
networks, including HRNet [13], BiseNetv2 [14], SegFormer [15], PSPNet [45], DeepLabv3 [46], and
LIEPNet [18]. The evaluation results are shown in Table 3. The design advantage of our model
alleviates the negative impact of uneven illumination and effectively captures semantic features of
multi-level leakage. Consequently, we achieved the highest accuracy, with mloU, mPA, and F1-score
reaching 80.8%, 90.1%, and 88.8%, respectively.

Table 3. Evaluation results of our ISLS and the SOTA CNN methods.

Methods mloU (%) mPA (%) F1-score (%) Params (M)
HRNet [13] 77.7 83.0 85.5 9.637
BiseNetv2 [14] 75.5 79.1 85.6 5.191
SegFormer [15] 76.5 80.8 85.1 3.715
PSPNet [45] 63.4 67.6 75.4 46.707
DeepLabv3 [46] 78.4 83.6 86.2 54.709
LIEPNet [18] 79.9 89.2 87.5 3.271
ISLS (Ours) 80.8 90.1 88.8 12.266

Additionally, we compare ISLS with several classical traditional segmentation methods,
including template matching [48], Canny edge segmentation [49], contour segmentation [50], PCA
segmentation [51], and iForest segmentation [54]. The evaluation results of traditional leakage
segmentation algorithms are shown in Table 4. The performance of traditional methods is insufficient
in the sauce-packet leakage segmentation. On the one hand, some traditional algorithms mistakenly
identify sealing imprints on the sauce-packet and the black blocks. On the other hand, these
algorithms significantly affected by uneven-lighting conditions. These above problems of traditional
algorithms result in lower accuracy in sauce-packet leakage segmentation.

Table 4. Evaluation results of our ISLS and the traditional methods.

Methods mloU (%) mPA (%) F1-score (%)
Template Matching [47] 40.9 59.8 54.0
Canny Edge Segmentation [48] 32.5 44.5 43.6
Contour Segmentation [49] 32.5 44.5 43.6
PCA Segmentation [50] 36.6 58.6 50.4
iForest Segmentation [51] 48.0 59.1 58.8
ISLS (Ours) 80.8 90.1 88.8
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4. Conclusions

In this paper, our objective is to address the issue of detecting leakage in blurred images under
uneven illumination conditions. We propose the Illumination-aware Sauce-packet Leakage
Segmentation (ISLS) method, consisting of illumination-aware region enhancement and leakage
region segmentation stages. The first stage of ISLS reduces redundant computations of image
enhancement processing and alleviates the image blurring caused by uneven illumination, which
effectively enhances image details and textures. In the second stage of ISLS, we design a leakage
segmentation network. In our proposed network, the Multi-scale Feature Fusion Module (MFFM)
efficiently fuses the shallow and deep layer features with a small number of parameters, which
improves the feature extraction performance. Additionally, the Sequential Self-Attention Mechanism
(S5AM) achieves feature enhancement in both channel and spatial dimensions, improving the
identification of salient features. Extensive experiments on our self-built dataset demonstrate that our
method effectively alleviates the blurred sauce-packet imaging issue and outperforms existing
algorithms. Furthermore, our method improves the stability and reliability of industrial systems and
reduces the waste of production resources. The performance testing of the intelligent sensors also
validates the suitability of our ISLS method for the current scenario.

In future work, we will further focus on model parameter compression and precision tuning.
Meanwhile, we will contemplate the deployment of the state-of-the-art SAM large model on the edge
to augment the quality inspection rate of industrial sauce-packet products, thereby enhancing the
efficacy of quality control processes.
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