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Abstract: The segmentation of abnormal regions is vital in smart manufacturing. However, the existing 
segmentation system for detecting sauce-packet leakage on intelligent sensors encounters an issue of imaging 
blurring caused by uneven illumination. This issue adversely affects segmentation performance, thereby 
impeding the rapid production of industrial assembly lines. To alleviate this issue, we propose the two-stage 
Illumination-aware Sauce-packet Leakage Segmentation (ISLS) method for intelligent sensors. The ISLS 
comprises two main stages: Illumination-aware region enhancement and leakage region segmentation. In the 
first stage, YOLO-Fastestv2 is employed to capture the Region of Interest (ROI), which reduces redundancy 
computations. Additionally, we propose an image enhancement to relieve the impact of uneven illumination, 
enhancing the texture details of ROI. In the second stage, we propose a novel feature extraction network. 
Specifically, we propose the Multi-scale Feature Fusion Module (MFFM) and the Sequential Self-Attention 
Mechanism (SSAM) to capture discriminative representations of leakage. The multi-level features are fused by 
MFFM with a small number of parameters, which capture leakage semantics at different scales. The SSAM 
realizes the enhancement of valid features and the suppression of invalid features by adaptive weighting of 
spatial and channel dimensions. Furthermore, we generated a self-built dataset of sauce-packets, including 606 
images with various leakage areas. Comprehensive experiments demonstrate that our ISLS method shows 
better results than several state-of-the-art methods, with additional performance analyses deployed on 
intelligent sensors to affirm the effectiveness of our proposed method. Our code is available at 
https://github.com/LSJ5106/SauceDetect. 

Keywords: sauce-packet leakage segmentation; uneven illumination; multi-level feature fusion; attention 
mechanism 

 

1. Introduction 

With the advancement of computer vision technology, leakage segmentation has become crucial 
for intelligent industrial production [1–3]. Sauce-packet leakage segmentation is to determine 
whether a sauce-packet has leakage [4]. Unlike other segmentation scenarios, sauce-packet leakage 
segmentation faces issues of overexposure or insufficient illumination, resulting in blurred images. 
Moreover, traditional and most deep learning algorithms have insufficient performance in solving 
illumination imbalance [5–7]. The sauce-packet’s leakage results in many adverse outcomes, 
encompassing compromised product quality and increased material wastage. Hence, to facilitate the 
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industrialization process, researching leakage segmentation for sauce-packet leakage is particularly 
important. 

The leakage segmentation of sauce-packet can be divided into traditional methods and 
Convolutional Neural Network (CNN) methods [8]. Traditional methods rely on expert experience. 
Songming et al. [9] developed an improved detector using the Canny operator, which improve the 
computational efficiency and increase the precision of fibre identification. Sharma et al. [10] used a 
Histogram of Oriented Gradient (HOG) and Support Vector Machine (SVM) segmentation method, 
which integrate with a modified ResNet50 model for brain tumor detection to help clinicians. 
Similarly, Hongbin et al. [11] proposed a segmentation method by HOG and Local Binary Pattern 
(LBP), which combines both HOG and LBP features to accurately identify crack anomalies. Binwu et 
al. [12] developed a secondary template matching method, which extracted the Region of Interest 
(ROI) by using the four-threshold algorithm. However, traditional methods relied on hand-crafted 
features, and the generalization performance in real scenes is insufficient. 

The CNN methods automatically extract discriminative features, and do not rely on expert 
experience. Wang et al. [13] proposed HRNet, which connected the high-to-low resolution 
convolution streams in parallel and repeatedly exchanges the information across resolutions. Yu et 
al. [14] proposed BiseNetv2, which involved a detail branch and a semantic branch. Xie et al. [15] 
proposed SegFormer, which unified Transformers with lightweight multilayer perception decoders. 
Cao et al. [16] proposed Swin-Unet, which designed a novel pure transformer-based U-shaped 
encoder-decoder for medical image segmentation. However, the above methods have not been 
applied to the field of sauce-packet leakage segmentation. 

In this paper, we propose the two stage Illumination-aware Sauce-packet Leakage Segmentation 
(ISLS) method. Firstly, in the illumination-aware region enhancement stage, an efficient localization 
algorithm [17] is introduced to reduce the calculation of invalid areas. And we design the Uneven-
Light Image Enhancement (ULIE) method to alleviate the problems of blurred images under uneven 
illumination conditions. Specifically, the ULIE method is built upon the retinex model to enhance 
image clarity under insufficient illumination condition. And the ULIE method utilizes the contrast 
limited adaptive histogram equalization to alleviate the leakage details in overexposure image. 
Secondly, in the leakage region segmentation stage, to effectively relieve the problem of information 
missing, we propose Multi-scale Feature Fusion Module (MFFM) for capturing multi-scale 
discriminative representation. Our MFFM fuses a variety of feature maps from top to bottom. And 
the resulting fused feature map serves as the input to our proposed network decoder, thereby 
enhancing the decoder’s semantic recovery performance. Finally, the Sequential Self-Attention 
Mechanism (SSAM) utilizes a sequential structure, which combines the channel and spatial attention 
mechanisms, thereby achieving effective mining of salience information. In summary, our method 
effectively relieves the impact of uneven illumination and improves the performance of feature 
extraction for blurred images. 

Our main contributions can be summarized as follows:  
1) To alleviate blurred image issues caused by uneven illumination, we propose the ULIE 

method via illumination-aware mechanism to enhance the texture details of leakage within the ROI. 
2) The MFFM is proposed to fuse multi-level features with a small number of parameters, 

capturing multi-scale features to effectively relieve the issue of missing information. 
3) To alleviate the interference of invalid information, we introduce the SSAM by combining 

spatial and channel attention mechanisms to enhance the discriminability of valid features in the ROI.  
4) We generate a sauce-packet dataset to facilitate research. Furthermore, our method Mean 

Intersection over Union (mIoU) achieves 80.8% and Mean Pixel Accuracy (mPA) reaches 90.1% on 
the self-built dataset, which are +0.9% and +0.9% higher than the previous CNN method [18]. 

The rest of this paper is organized as follows. Section 2 describes the proposed method in detail. 
Section 3 conducts the experiments based on the self-built dataset to verify the effectiveness of the 
proposed method. Section 4 summarizes this paper. 
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2. Materials and Methods 

We propose Illumination-aware Sauce-packet Leakage Segmentation (ISLS) for the industrial 
production line, as illustrated in Figure 1. The ISLS method includes a NVIDIA GPU and an 
intelligent sensor with a hardware accelerated EdgeAI development environment. We train the 
model on NVIDIA GPU and perform inference on intelligent sensors.  

 

Figure 1. The data processing procedure of ISLS includes training and inference stages. 

The cameras capture images of sauce-packets and transfer the images to NVIDIA GPU and 
intelligent sensors, where the images are stored as a raw dataset. The sauce-packet dataset is pre-
processed using YOLO-Fastestv2 [17] detection algorithm to focus on the Region of Interest (ROI) 
and is augmented by our proposed Uneven-Light Image Enhancement (ULIE) method. We split the 
raw dataset into training and validation sets in a 7:3 ratio. 

We train our proposed leakage segmentation network on the NVIDIA GPU. Subsequently, we 
assess the robustness and generalization of our trained model by cross-validation. The trained model 
is deployed on the NVIDIA Jetson TX2 intelligent sensors for inference, where it is utilized to identify 
real-time leakage in images (i.e., highlight the areas of leakage with bounding boxes).  

We first introduce our uneven-light image enhancement in our designed ISLS, including the 
localization and ULIE method. Subsequently, we present the segmentation network, proposing the 
Multi-scale Feature Fusion Module (MFFM) and the Sequential Self-Attention Mechanisms (SSAM). 
Detailed explanations of these components will be presented in subsequent sections. 

2.1. Uneven-Light Image Enhancement for Illumination-Aware Region Enhancement 

The actual leakage segmentation of sauce-packet is often influenced by uneven-light sources, 
which consist of insufficient illumination and overexposure. To relieve the problem of image blurring 
caused by uneven illumination, we propose the Uneven-Light Image Enhancement (ULIE) method, 
employed in the illumination-aware region enhancement stage of ISLS. The ULIE method is inspired 
by the relevant image enhancement algorithms [19–21]. Our ULIE method can enhance the 
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illumination of sauce-packet images under insufficient illumination conditions and improve the 
image contrast and texture details under overexposure conditions. 

The input of ISLS is in a three-channel RGB format, where R, G, and B represent the color space 
values of red, green, and blue, respectively. We utilize the mean function in OpenCV to calculate the 
mean value of the RGB three channels in the ROI. Through extensive experimental analysis, we define 
115 and 180 as the thresholds for insufficient illumination and overexposure, respectively. The 
implementation details of our ULIE method are as follows:  

In the case of insufficient illumination, the ULIE method is built upon the retinex model 
[22,23]. The retinex model theory posits that a color image can be decomposed into two primary 
components: the illumination component (lighting) and the reflection component, as shown in 
Equation (1). 

Li(x) = Tr(x) ◦ Re(x) (1) 

where Li(x) and Re(x) represent the input image and the image to be recovered, respectively. Tr(x) 
represents the illumination mapping image, and the ◦ operator represents the element-wise 
multiplication. 

Firstly, to simplify the computation of ULIE method, it is commonly assumed that the three 
channels of images share the same illumination map [24]. The ULIE method calculates the maximum 
value among the RGB channels of the image to independently estimate the illumination of each pixel 
x, obtaining the initial estimation: 

Tr(x) = max
c∈{R,G,B}

L ic(x) (2) 

where x represents individual pixel, c represents channels, and 𝐿𝐿𝑖𝑖𝑐𝑐(𝑥𝑥) is the input image of the 
maximum channel in the RGB. 

Secondly, to ensure that the illumination map does not cause the enhanced image to become 
overly saturated, the ULIE method modifies Re(x): 

Re(x) = Li(x)
Tr(x)+ϵ

 (3) 

where ϵ is a very small constant, to avoid denominating to zero. 
Thirdly, the ULIE method employs the augmented lagrangian multiplier optimization method 

[25] to preserve the structural information and smooth texture details of sauce-packet images. The 
ULIE method introduces the following optimization problem to accelerate the processing speed of 
sauce-packet images: 

min
𝑇𝑇𝑇𝑇

||𝑇𝑇𝑇𝑇� − 𝑇𝑇𝑇𝑇||𝐹𝐹2 + 𝛼𝛼 ||𝑊𝑊 ∘▽ Tr||1 (4) 

where ||·||𝐹𝐹 and ||·||1 represent the F norm and L1 regularization, 𝛼𝛼 is the coefficient balancing the 
F norm and L1 regularization, respectively. Additionally, W is the weight matrix, and ▽ Tr 
represents a first-order derivative filter, encompassing both horizontal and vertical directions. 

Finally, the ULIE method iteratively updates according to the retinex model, solving to obtain 
the result image Re(x) in Equation (1). The ULIE method applies BM3D [26] for denoising 
optimization of the result image Re(x). To reduce the computation of the denoising process in ULIE, 
the method transforms the RGB three channels of the result image Re(x) into YUV three channels [27] 
and performs denoising only on the Y channel: 

Y = 0.299R + 0.587G + 0.114B 

U = -0.169R - 0.331G + 0.5B + 128 

V = 0.5R - 0.419G - 0.081B + 128 

(5) 

where Y represents luminance, U and V represent blue chrominance and red chrominance, 
respectively. 

In the case of overexposure, the ULIE method divides the image into blocks to obtain 
overexposure regions (i.e., locally overexposed areas). Firstly, to obtain the illumination information 
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of ROI, we convert the RGB color space into the YUV color space, as shown in Equation (5). The ULIE 
method divides the input image into several small blocks, and performs Contrast Limited Adaptive 
Histogram Equalization (CLAHE) [28] on each block, to enhance the clarity of the image. CLAHE 
clips and redistributes the histograms of each sub-image, thereby limiting the degree of contrast 
enhancement. CLAHE prevents the amplification of noise and excessive enhancement [29]. The ULIE 
method initially divides the original image into several non-overlapping sub-images, each denoted 
as s. We compute the the frequency of pixel values ps(i), representing the data distribution of pixel 
values i within each sub-image. The definition of the ps(i) is given by Equation (6): 

ps
(i) = 

ni

N (6) 

where ps(i) represents the frequency of pixel values equal to i, ni represents the number of pixels 
with a pixel value of i, and N represents the total number of pixels in the sub-image. 

Secondly, the ULIE method computes the Cumulative Distribution Function (CDF) cs(i) for 
each sub-image s in Equation (7), representing the cumulative frequency of pixel values less than or 
equal to i: 

cs(i) = �ps�j�
i

j=0

 (7) 

where cs(i) represents the CDF for the pixel value i, ps(j) represents the frequency of pixel values 
equal to j. 

Thirdly, the ULIE method utilizes Equation (8) to compute the transformation function Ts(i) for 
each sub-image s, representing the function that maps the original pixel value i to a new pixel value: 

Ts(i) = ⌊cs(i)⌋ (8) 

where Ts(i) represents the transformed pixel value for the original pixel value i, L represents the 
maximum range of pixel values, and ⌊·⌋ represents the floor function. 

The ULIE method clips and redistributes ps
(i) for each sub-image s, limiting the degree of 

contrast enhancement, which prevents the amplification of noise and excessive enhancement [28]. 
Finally, the ULIE method consolidates all transformed sub-images Ts(i) into the final image and 
converts the image from YUV format back to RGB format. 

The results of ULIE images are shown in Figure 2, where the left image is the non-optimized 
image, and the right image is the optimized image. Figure 2a shows that the image has improved 
overall illumination, with a clearer boundary between the leakage and the background. The ULIE 
method effectively enhances the image contrast and clarity. Figure 2b reveals that the illumination of 
the optimized image is more balanced. The ULEIE method alleviates the phenomenon of local 
overexposure, which further proves that our method effectively avoids gray jump [30]. We perform 
convolution and downsampling operations on the yellow and red box regions, obtaining the 
corresponding feature maps between non-optimized and optimized images. It is shown that the 
details of the optimized feature map are more obvious. In summary, through the above process, our 
method can effectively enhance the details and textures of sauce-packet images under insufficient 
illumination and overexposure. 
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Figure 2. The visual results of sauce-packets under insufficient illumination and overexposure 
conditions. The left side represents non-optimized images, the right side represents optimized 
images, and the central part represents feature maps between non-optimized and optimized images. 

2.2. ISLS Network Details for Leakage Segmentation 

In the leakage region segmentation stage of the ISLS method, we propose our network with the 
EdgeNext backbone, which comprises only 1.3M parameters [31]. The EdgeNext integrates the 
advantages of Convolutional Neural Network (CNN) and Vision Transformer (ViT). The CNN 
extracts local features of images using convolution operation [32], and the ViT [33] captures global 
contextual information of images. The network is the end-to-end network, where the input channel 
dimension is 3 (i.e., RGB), and the input image size is 128×512. Our overall network structure is 
shown in Figure 3, which includes the encoder and decoder. 

 

Figure 3. The overall network structure of ISLS, consisting of encoder and decoder. The input image 
format follows the structure of (channels, height, width). 

The encoder fuses the local and global representation. Firstly, the n×n Conv encoder consists 
of three modules. The n×n Conv encoder utilizes adaptive kernels to adjust the size of convolutional 
kernels based on distinct network layers, which aims to decrease computational complexity and 
enhance the receptive field [34]. Secondly, the SDTA encoder combines spatial and channel 
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information. The SDTA encoder utilizes deep transposed convolution and adaptive attention 
mechanisms, which improve the performance of capturing local and global representation. Thirdly, 
the information of deep and shallow layer feature maps is fused by our MFFM, which improves the 
performance of encoder feature extraction. Our MFFM structure is as shown in Figure 4.  

 
Figure 4. The overall MFFM structure. The MFFM fuses information from four levels, with varying 
feature sizes for each layer. The size of feature maps is (C, H, W), where C, H, and W represent channel 
dimension, image height, and image width, respectively. 

Specifically, we extract four feature maps of different sizes from the encoder, denoted as x1, x2, 
x3, x4. Firstly, the MFFM adjusts the channel number of the feature map x1 to 512 through a 1×1 
convolution and 4× downsampling. Next, the MFFM applies similar operations with x1 to the feature 
map x2, with the 2× downsampling, as illustrated in Equation (9): 

xi
’ = MaxPooling�Conv(xi)�, i∈{1, 2} (9) 

where MaxPooling represents the downsampling process through maximum-pooling operation, 
Conv represents the convolution operator. 

Secondly, x3 has the same size as the output. Therefore, the MFFM only needs to utilize a 1×1 
convolution, to adjust the channel number of the feature map x3 to 512, as shown in Equation (10): 

x3
’  = Conv(x3) (10) 

Thirdly, the channel number of x4 is same with the output, therefore the MFFM performs only 
an Upsampling2  operation on the feature map x4  The Upsampling2  is achieved using nearest-
neighbor interpolation, as depicted in Equation (11): 

x4’  = Upsampling2(𝑥𝑥4) (11) 

where Upsampling2 represents 2× upsampling operation. 
Through the above operations, the feature maps x1

’ , x2’ , x3’  and x4’  are obtained. Finally, we 
fuse the feature information of x1

’ , x2’ , x3’  and x4’  to output the feature map x5, as shown in Equation 
(12): 

x5=� xi

4

i=1

 (12) 

The reasons of MFFM small parameter number is that the Conv operator employs a 1×1 
convolutional, the Upsampling2 operation uses nearest-neighbor interpolation, and downsampling 
is achieved through Maxpooling. 1×1 convolution operation only increases a small number of 
parameters, upsampling and downsampling operations do not increase the number of parameters. 
Compared to Feature Pyramid Network (FPN) [35] and AF-FPN [36], the parameter number of our 
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MFFM is relatively small. That is, our MFFM has a parameter number of only 0.23M, with only 3.05% 
of the FPN and AF-FPN parameter number. 

The decoder includes skip-connection and SSAM. The SSAM in the stage 1 of decoder aims to 
improve the identification of salient features. The SSAM keeps high-resolution in both channel and 
spatial branches, which enhances the salient features of sauce-packet ROI. Specifically, the SSAM 
contains two modules, consisting of channel-only module and the spatial-only module, as shown in 
Figure 5. For the channel-only module of SSAM, the output yin is generated by fusing the feature 
map xin, obtained from both the skip connection and the channel attention mechanism. The specific 
computational process for channel attention mechanism is shown in Equation (13). 

 
Figure 5. Sequential Self-Attention Mechanism (SSAM), which includes the channel-only branch (left) 
and the spatial-only branch (right). 

ych = S �Re�Conv(xin)�� ⊗Re�Conv(xin)� 

ych
’  = Sig �LN �Conv�ych��� 

(13) 

where xin and ych represent the input and output of SSAM channel-only module. Conv represents 
for the convolution operator, Re represents reshape operator, and S represents softmax operator. 
Additionally, LN represents layer normalization, Sig represents the sigmoid function. 

The process of the SSAM spatial-only module is similar, with one part from skip-connection, 
and the other part from spatial attention mechanism, as shown in Equation (14) for specific 
operations: 

ysp = S�Re �GP �Conv�yin���� ⊗Re �Conv�yin�� 

yout = yin⊙Sig�LN �ysp�� 
(14) 

where yin and yout represent the input and output of SSAM spatial-only module. GP, S, and LN 
represent to the global pooling operator, softmax operator, and layer normalization, respectively. ⊗ 
and ⊙ represent the tensor product and multiplication operations, respectively. 

The stages 2 to 5 of our proposed network decoder contains SSAM and Concat operator. The 
Concat operator concatenates feature maps of two branches in the channel dimension, as shown in 
green box of Figure 3. Specifically, the one branch feature map comes from the SSAM output, which 
is upsampled 2×. The other branch feature map comes from skip connections, which can avoid 
gradient vanishing and improve the training speed of the network [37]. 

3. Experiments and Results 

3.1. Dataset and Experiment Setting 

Currently, there are almost no publicly available datasets for sauce-packet leakage 
segmentation. Therefore, we generate a dataset at Nanjing University of Posts and 
Telecommunications, captured by an industrial high-speed camera namely the MER2-134-90GC, and 
the Daheng Image industrial lens HN-P-1628-6M-C2/3. Our self-built dataset comprises images with 
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varying degrees of leakage. Specifically, it includes 315 images under normal illumination conditions, 
143 images under insufficient illumination, and 148 images with overexposure. Some examples from 
the self-built dataset are presented in Figure 6. 

 

Figure 6. Partial sample of sauce-packet dataset. The yellow dotted boxes indicate the connection of 
sauce-packet (i.e., ROI). 

The backbone of our proposed network is EdgeNext. Our experimental environment is PyTorch 
2.0.1. We divide the dataset into training and validation sets, containing 424 and 182 images, 
respectively. During the training phase, we employed the NVIDIA RTX GPU 4060, while for 
inference, we deployed it to the NVIDIA Jetson TX2. Meanwhile, we utilize the cross-validation 
strategy to verify the robustness of the model. During training, we use DiceLoss [38] to measure the 
degree of similarity between the predicted results and the ground truth. In addition, we employ 
FocalLoss [39] to relieve class imbalance by emphasizing hard-to-classify examples, which makes the 
model pay more attention to challenging pixels. During deployment, we utilize pruning technology 
to accelerate our model. 

3.2. Evaluation Indexes 

To evaluate the performance of the method, we selected 5 widely used evaluation indices: Mean 
Intersection over Union (mIoU), Mean Pixel Accuracy (mPA), F1-score, Params, and Frames per 
Second (FPS). Params is employed as the evaluation index for the model parameters. And FPS is the 
evaluation index for the inference speed of a model. The definitions are shown in Equation (15)–(17):  

mIoU = 
1
n�

TP
TP+FP+FN

n

i=1

 (15) 

mPA = 
1
n�

TP
TP+FP

n

i=1

 (16) 

F1-score=
2×precision×recall
precision+recall  (17) 

where precision and recall represent TP/(TP+FP) and TP/(TP+FN) respectively. 

3.3. Experiment Analysis of ULIE 

We employ the controlled variable method to explore the optimal thresholds of ULIE for 
insufficient illumination and overexposure. In the case of insufficient illumination, to validate the 
optimal threshold as 115, we maintain the overexposure threshold at 180. We adjust the insufficient 
illumination threshold within the range of 75 to 145. The ISLS evaluation indices (i.e., mIoU, mPA, 
Accuracy, F1-score) for different thresholds are shown in Figure 7. We observe that the evaluation 
indices reach optimum when the threshold is set at 115. 
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Figure 7. The performance indices under different insufficient illumination thresholds, with a fixed 
overexposure threshold of 180. 

Simultaneously, to verify the optimal threshold for overexposure as 180, we maintain the 
insufficient illumination threshold at 115. We adjust the overexposure threshold within the range of 
150 to 220. The ISLS evaluation indices for various thresholds are presented in Figure 8. It is noted 
that the evaluation indices achieve their peak performance when the threshold is set at 180. 

 
Figure 8. The performance indices under different overexposure thresholds, with a fixed insufficient 
illumination threshold of 115. 

In summary, we define the thresholds of insufficient illumination and overexposure are 115 and 
180, respectively. 

3.4. Analysis of Ablation Study 

In this paper, we propose the two stage Illumination-aware Sauce-packet Leakage Segmentation 
(ISLS) method. The ISLS method consists of the Uneven-Light Image Enhancement (ULIE) method, 
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Multi-scale Feature Fusion Module (MFFM), and Sequential Self-Attention Mechanism (SSAM). To 
assess the performance of ISLS, we conducted ablation studies on each component. 

Ablation for ULIE: We propose ULIE to alleviate the problem of blurring images in uneven 
illumination conditions, which improves the visibility of the images. In Table 1, compared to the 
baseline, mIoU improves by about 1.5% and mPA by about 3.9% after using ULIE. The ULIE method 
is not based on deep learning, which relies on the adjustment and optimization of image illumination 
and contrast. Hence, the ULIE method does not require training any parameters. Through section 2.1 
methods and formulas, the ULIE method adaptively enhances the illumination and contrast of 
images. 

Table 1. Detailed performance comparison of ablation experiment without attention mechanisms. 
Baseline: our proposed network without ULIE, MFFM and attention mechanism. ULIE: Uneven-Light 
Image Enhancement method. MFFM: Multi-scale Feature Fusion Module. 

Methods UEIE FPN [35] AF-FPN [36] MFFM mIoU (%) mPA (%) F1-score (%) Params (M) 
Baseline     75.6 85.6 85.2 11.333 
+ULIE ✔    77.4 89.6 86.5 11.333 
+FPN  ✔   77.3 85.2 86.3 18.906 

+AF-FPN   ✔  75.3 83.6 84.8 18.908 
+MFFM    ✔ 78.7 87.9 87.3 11.564 

+ULIE +FPN ✔ ✔   78.5 86.7 87.2  11.906 
+ULIE +AF-FPN ✔  ✔  75.9 84.3 85.3  11.908 
+ULIE +MFFM ✔   ✔ 79.2 89.1 87.7  11.564 

Ablation for MFFM: The mIoU and mPA of the MFFM reach 78.7% and 87.9%, as shown in Table 
1. Compared with baseline, the mIoU and mPA of MFFM increase 3.1% and 2.3%. In comparison to 
other feature fusion modules, MFFM exhibits significantly fewer parameters than both FPN and AF-
FPN, with only 3.05% of FPN and AF-FPN. Additionally, the mIoU and mPA of MFFM are 1.4% and 
2.7% higher than FPN, and the mIoU and mPA of MFFM are 3.4% and 4.3% higher than AF-FPN. 
Significantly, FPN and AF-FPN structures are intricate, and the features of leakage are monotonous, 
rendering the extraction of salient features less effective. 

Ablation for SSAM: We add attention mechanism to ISLS to improve the performance of feature 
extraction and compare with Global Attention Mechanism (GAM) [40] and Simple, Parameter-Free 
Attention Module (SimAM) [41]. In Table 2, it can be observed that utilizing SSAM results in an 
improvement of about 2.4% in mIoU compared to GAM and around 3.7% compared to SimAM. 
Additionally, mPA shows an increase of approximately 0.9% and 3.5%, respectively.  

Table 2. A detailed performance comparison of ablation experiments involving attention 
mechanisms. BUM represents Baseline with ULIE and MFFM. 

Methods GAM [40] SimAM [41] SSAM [42] mIoU (%) mPA (%) F1-score (%) Params (M) 

BUM    79.2 89.1 87.7 11.564 

+GAM ✔   78.4 89.2 87.7 20.273 
+SimAM  ✔  77.1 86.6 86.2 11.564 
+SSAM   ✔ 80.8 90.1 88.8 12.266 

To further analyze the effectiveness of our method, we use the Grad-cam [43] to visualize the 
attention heatmap. As shown in Figure 9, the redder the heatmap, the more the attention mechanism 
focuses on the feature. Figure 9c exhibits strong capabilities for global feature extraction but shows 
insufficient performance in capturing local information. Figure 9b,d does not fully focus on the 
leakage regions and exists the problem of attention divergence. Our ISLS method with SSAM 
effectively alleviates interference from invalid information, which results in a more focused on 
leakage regions, as shown in Figure 9e. 
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Figure 9. Heatmap results using different attention mechanisms. 

The leakage segmentation results of sauce-packet with different attention mechanisms are 
shown in Figure 10. Our method with SSAM achieves more refined leakage boundary segmentation 
for sauce-packets by employing spatial and channel adaptive weighting. 

 
Figure 10. Prediction results using different attention mechanisms. 

Our proposed ISLS achieves 4 FPS on the NVIDIA Jetson TX2. Our ISLS meets the real-time 
requirements for industrial applications, which demand a minimum of 3 FPS. Figure 11a illustrates 
the CPU utilization of the ISLS method. The GPU utilization of the leakage segmentation stage is 
illustrated in Figure 11b. 

 

Figure 11. Relevant performance statistics of ISLS method during inference: (a) the CPU utilization of 
our method after optimization, (b) comparison of GPU utilization before and after optimization, (c) 
comparison of FPS changes before and after optimization. 

Before optimization, the GPU utilization often approached 100% (green line), posing risks of 
system crashes or failures. To ensure system stability and device reliability, we optimized the ISLS 
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method by integrating L1 unstructured pruning technology [44], with a reduction of 20% in the 
model’s parameter. Performing fine-tuning training while pruning can effectively mitigate the 
performance degradation caused by pruning, with almost no decrease in accuracy. The GPU 
utilization after optimization decreases to a certain extent (red line), accelerating model inference 
while simultaneously decreasing GPU load and enhancing system stability. 

Figure 11c illustrates the comparison between the FPS before optimization (green line) and after 
optimization (red line). Experimental results demonstrate a significant improvement in the 
performance of our method after optimization. Compared with the unoptimized method, the 
optimized method improves FPS by 2.7 times. 

Experimental results demonstrate that ISLS performs well under uneven illumination 
conditions. We deploy the ISLS on intelligent sensors, the system fulfills the real-time requirements 
of industrial applications. 

3.5. Comparison with Other Segmentation Methods 

In this section, we compare ISLS with several state-of-the-art (SOTA) semantic segmentation 
networks, including HRNet [13], BiseNetv2 [14], SegFormer [15], PSPNet [45], DeepLabv3 [46], and 
LIEPNet [18]. The evaluation results are shown in Table 3. The design advantage of our model 
alleviates the negative impact of uneven illumination and effectively captures semantic features of 
multi-level leakage. Consequently, we achieved the highest accuracy, with mIoU, mPA, and F1-score 
reaching 80.8%, 90.1%, and 88.8%, respectively. 

Table 3. Evaluation results of our ISLS and the SOTA CNN methods. 

Methods mIoU (%) mPA (%) F1-score (%) Params (M) 

HRNet [13] 77.7 83.0 85.5 9.637 
BiseNetv2 [14] 75.5 79.1 85.6 5.191 
SegFormer [15] 76.5 80.8 85.1 3.715 

PSPNet [45] 63.4 67.6 75.4 46.707 
DeepLabv3 [46] 78.4 83.6 86.2 54.709 

LIEPNet [18] 79.9 89.2 87.5 3.271 
ISLS (Ours) 80.8 90.1 88.8 12.266 

Additionally, we compare ISLS with several classical traditional segmentation methods, 
including template matching [48], Canny edge segmentation [49], contour segmentation [50], PCA 
segmentation [51], and iForest segmentation [54]. The evaluation results of traditional leakage 
segmentation algorithms are shown in Table 4. The performance of traditional methods is insufficient 
in the sauce-packet leakage segmentation. On the one hand, some traditional algorithms mistakenly 
identify sealing imprints on the sauce-packet and the black blocks. On the other hand, these 
algorithms significantly affected by uneven-lighting conditions. These above problems of traditional 
algorithms result in lower accuracy in sauce-packet leakage segmentation. 

Table 4. Evaluation results of our ISLS and the traditional methods. 

Methods mIoU (%) mPA (%) F1-score (%) 

Template Matching [47] 40.9 59.8 54.0 

Canny Edge Segmentation [48] 32.5 44.5 43.6 

Contour Segmentation [49] 32.5 44.5 43.6 

PCA Segmentation [50] 36.6 58.6 50.4 

iForest Segmentation [51] 48.0 59.1 58.8 

ISLS (Ours) 80.8 90.1 88.8 
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4. Conclusions 

In this paper, our objective is to address the issue of detecting leakage in blurred images under 
uneven illumination conditions. We propose the Illumination-aware Sauce-packet Leakage 
Segmentation (ISLS) method, consisting of illumination-aware region enhancement and leakage 
region segmentation stages. The first stage of ISLS reduces redundant computations of image 
enhancement processing and alleviates the image blurring caused by uneven illumination, which 
effectively enhances image details and textures. In the second stage of ISLS, we design a leakage 
segmentation network. In our proposed network, the Multi-scale Feature Fusion Module (MFFM) 
efficiently fuses the shallow and deep layer features with a small number of parameters, which 
improves the feature extraction performance. Additionally, the Sequential Self-Attention Mechanism 
(SSAM) achieves feature enhancement in both channel and spatial dimensions, improving the 
identification of salient features. Extensive experiments on our self-built dataset demonstrate that our 
method effectively alleviates the blurred sauce-packet imaging issue and outperforms existing 
algorithms. Furthermore, our method improves the stability and reliability of industrial systems and 
reduces the waste of production resources. The performance testing of the intelligent sensors also 
validates the suitability of our ISLS method for the current scenario. 

In future work, we will further focus on model parameter compression and precision tuning. 
Meanwhile, we will contemplate the deployment of the state-of-the-art SAM large model on the edge 
to augment the quality inspection rate of industrial sauce-packet products, thereby enhancing the 
efficacy of quality control processes. 
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