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Abstract: Our study examines how dengue incidence is associated with spatial (demographic and 
socioeconomic) alongside temporal (environmental) factors at multiple scales. We used the 
incidence of dengue in Ibagué, Colombia, from 2013 to 2018, to examine the associations with 
climate, socioeconomic and demographic factors from the census and satellite imagery at various 
levels of local spatial aggregation, including Manzanas, Secciones, Sectores, and Comunas. Our 
findings show a significant effect of spatial variables at finer levels of aggregation, showing varying 
degrees of correlation with dengue incidence. Temporal variables such as temperature and 
precipitation displayed consistent patterns across all spatial levels, with notable variations in 
Relative Risk (RR). Our study employs Geographically Weighted Regression (GWR) to identify 
relevant socioeconomic and demographic predictors. Then, these predictors were integrated into 
hierarchical models implemented in Integrated Nested Laplace Approximation (INLA) at each 
spatial level to assess spatiotemporal interactions. We comprehensively analyzed the three distinct 
models developed for each level: spatial, temporal, and spatiotemporal. A comparative evaluation 
of the models reveals that while higher aggregation levels often yield a better overall model fit, finer 
levels offer more detailed insights into the localized impacts of socioeconomic and demographic 
variables on dengue incidence. Our results underscore the importance of considering macro and 
micro-level factors in epidemiological modeling and highlight the potential for targeted public 
health interventions based on localized risk factor analysis. Notably, the intermediate level 
Secciones emerged as the most informative, balancing spatial heterogeneity and case distribution 
density, thereby providing a robust framework for understanding the spatial determinants of 
dengue. 

Keywords: Dengue incidence; Spatio-temporal Analysis; Geographically Weighted Regression; 
Integrated Nested Laplace Approximation (INLA); Spatial Aggregation Levels (Manzanas; 
Secciones; Sectores; Comunas) 

 

1. Introduction 

Dengue fever (DENV), a mosquito-borne viral disease [1], has become a critical public health 
issue globally, particularly in tropical and subtropical regions [2,3]. Ibagué, Colombia, exemplifies an 
urban area significantly affected by dengue, with its incidence rising notably over the past years [4]. 
Ibagué's rapid urbanization over the past two decades has led to densely populated, low-income 
neighborhoods that often lack regular access to water and adequate infrastructure. These 
socioeconomic conditions have been linked to higher dengue incidences and mosquito populations 
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[5–7]. Additionally, the city's specific environmental characteristics, including its elevation (1,225 
meters above sea level) and average temperature (24°C), create a conducive environment for Aedes 
mosquitoes, further exacerbating the situation [8–10]. 

Dengue transmission dynamics are complex and influenced by a myriad of factors, including 
urbanization, demographic changes, and environmental conditions [11,12]. Prior research has 
demonstrated the important role of socioeconomic and demographic variables in dengue spread 
[13,14]. However, a significant gap still needs to be addressed in understanding the interaction of 
these variables at different urban scales, namely levels of aggregation, particularly in rapidly 
urbanizing cities in developing countries [15].  

Different approaches have been considered to identify and understand the underlying behavior 
of diseases in urban environments and their relationship with socioeconomic and environmental 
variables. For instance, in 2001, authors studied the relationship between neighboring socioeconomic 
effects and health outcomes, finding consistent results on the influence of neighborhood effects on 
health [16]. Other studies between 2000 and 2010 asserted a correlation between neighborhood 
distribution and health status, suggesting not only the use of distance and proximity to determine 
neighborhoods’ composition but also random effects regarding the neighboring structures to account 
for the possible connectivity between them [17–20]. The latter has been widely used in the statistical 
modeling of DENV using a spatially structured random effect to consider spatial correlation [21–23].  

To assess the significance of socioeconomic and environmental variables regarding dengue 
incidence and relative risk (RR), authors have implemented a General Linear Model (GLM) Log-
linear model to associate the socioeconomic typology with the risk of dengue infections during winter 
in a 250 x 250 m grid of Delhi, India [24]. They found out that the lack of constant access to tap water 
was a risk factor for dengue infections; also, densely populated areas did not necessarily have higher 
mosquito populations, mainly because of the need for available breeding sites. Finally, high DENV 
seropositivity was found in wealthier neighborhoods, while low mosquito exposure was explained 
by mobility within the city. However, this study only considered socioeconomic variables but not 
demographic predictors, and they ignored possible random effects regarding spatial and seasonal 
variability. Other authors followed a different approach, implementing a Bayesian Hierarchical 
Model to determine the association between the relative risk of dengue and lag response in 
hydrometeorological hazards at a microregion level. The results showed that droughts increase the 
relative risk of dengue infection in urban areas, while wet conditions increase the risk of infection in 
rural areas [25].  

Specifically in Colombia, authors have implemented a similar methodology for DENV in the city 
of Cali, using a Space-Time Conditional Autoregressive Model with added autocorrelated random 
effects for spatial structures and time [26]. This study was conducted on a neighborhood level, where 
socioeconomic variables were controlled using a Principal Component Analysis (PCA) approach, and 
several environmental variables were included and lagged to consider the delayed effect. The results 
showed that lagged weather variables could help to identify when the peaks in the risk of 
transmission occur. Additionally, they proved that dengue infections are not exclusive to poor areas, 
and the risk of infection is related to spatial and temporal distribution. The proposed aggregation 
level of neighborhoods offers very sparse data observations with clear socioeconomic and 
demographic trends. 

Bayesian models have shown that they can be used to assess significance and make inferences 
about the predictors [22,25–27]. The implementation usually calculates the posterior distributions via 
Markov Chain Monte Carlo Simulations (MCMC) or Integrated Nested Laplace Approximation 
(INLA). MCMC has been widely used to identify marginal distributions and inference [28,29]; 
however, it takes a very high computational time [30]. To solve this issue, authors proposed the INLA 
methodology, which uses local approximations and Laplace transformations, providing very similar 
results around 300 times faster. 

While the importance of spatial and temporal variables in dengue transmission is recognized 
[31], limited research has been conducted on integrating these factors at different levels of urban 
spatial aggregation. This study aims to bridge this gap by leveraging detailed demographic and 
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socioeconomic data from the census, provided by the National Administrative Department of 
Statistics (Departamento Administrativo Nacional de Estadística - DANE), and environmental 
variables derived from satellite imagery and previous studies. We seek to unravel the spatial and 
temporal dynamics influencing dengue incidence in Ibagué between 2013 and 2018, examining these 
factors across various levels of spatial aggregation - Manzanas, Secciones, Sectores, and Comunas 
[32]. We introduce a novel approach by employing Geographically Weighted Regression (GWR) to 
isolate key socio-economic and demographic predictors at varying spatial scales [33]. Additionally, 
the use of INLA models allows for an in-depth examination of spatio-temporal correlations and their 
posterior distributions [34], offering new insights into the localized dynamics of dengue transmission. 

The methodological innovation of this study lies in its tripartite modeling strategy, 
encompassing spatial, temporal, and combined spatio-temporal models at each level of spatial 
aggregation. This approach allows for a comprehensive analysis of the varying impacts of different 
factors on dengue incidence, providing a nuanced understanding of the disease's transmission 
dynamics in an urban setting. Our findings will contribute significantly to public health, particularly 
in developing targeted dengue control strategies [35]. The study's framework also offers a valuable 
model for similar epidemiological investigations in other urban settings, enhancing our 
understanding of vector-borne diseases in global urbanization trends. 

2. Materials and Methods 

2.1. Study Site and Data 

Ibagué is the most populated city in the department of Tolima, with an estimated population of 
541,101 people for 2020 [36]. According to DANE, the city’s urban area is divided into 13 Comunas, 
65 Sectores, 272 Secciones, and 5,574 Manzanas, which will be used as levels of spatial aggregation. 
Groups of the minimum level, Manzanas, create the rest of the levels, as can be observed in 
supplementary Figure S1. The demographic and socioeconomic data was obtained in all four levels 
from the National Geostatistical Framework (Marco Geoestadístico Nacional - MGN) and National 
Population and Dwelling Census (Censo Nacional de Población y Vivienda - CNPV), which were 
compiled in 2018 [37]. 

Socioeconomic predictors included variables related to strata, water access and disposal, access 
to gas, garbage pick-up service, and internet connection, which allows to identify lower income and 
utility access areas inside the city. Demographic variables divide the population according to age, 
gender, and educational level. Finally, environmental variables were obtained from satellite images 
via Google Earth Engine using MODIS1A1 for Mean Temperature [38], MODIS13Q1 for NDVI [39], 
CHIRPS PENTAD for Total Precipitation [40], and previous studies on the city for wet days and hot 
days (over 32°C) [41]. The variables and their description are shown in supplementary materials. 

Data on dengue cases was obtained from the dataset provided by the local government. Out of 
the total 17,707 DENV recorded from 2013 to 2018, 16,183 were included according to the spatial 
levels of the city. The remaining cases had no readable address or were reported in the city's rural 
area. Figure 1 displays the evolution of the virus over the years. 2013 and 2015 showed the most 
extensive outbreaks, with 5,383 and 4,885 cases respectively, with another outbreak following during 
the first months of 2016. Notably, the number of cases in 2017 and 2018 was significantly lower, with 
each year reporting fewer than 1,000 cases.  
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Figure 1. Dengue Virus Cases from 2013 to 2018 in Ibagué. (A) Time series of aggregated cases for the 
whole city. (B) Kernel density estimation for georeferenced cases for each year of the studied period. 

2.2. Methodology 

2.2.1. Variable Selection and Transformation 

To demonstrate association between the variables and dengue incidence per 100,000 inhabitants, 
and reduce the dimensionality of spatial variables, we used GWR through the package GWModel in 
R [42,43]. This methodology allows the creation of different local regressions using Ordinary Least 
Squares (OLS) for every spatial feature, adding a weight parameter that was obtained from the 
distance between the geometries and a calculated bandwidth [44,45]. This analysis was performed 
for socioeconomic and demographic predictors on every level of aggregation. Only variables that 
were shown to be significant, at least in one global regression at any level of aggregation, were used 
as final predictors for the inference model. 

We also used a Wavelet Coherence analysis to confirm an existing correlation between DENV 
cases and temporal variables. This was used to analyze non-stationary time series. The methodology 
implements a decomposition between time and frequency using a windowed Fourier transform, 
which allows for local time-frequency properties while adjusting for high and low-frequency 
structures [46]. The wavelet coherence was computed for the aggregated environmental variables in 
the whole city. Results are evaluated graphically using the biwavelet library in R, keeping the variables 
that showed high correlation and significance in the wavelet coherence analysis as the final predictors 
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[47]. All temporal predicted were included, since they displayed high correlation with DENV cases 
as shown in Figure S2. 

The temporal predictors were later lagged using a Distributed Lag Nonlinear model (DLNM). 
This methodology considers delayed effects and nonlinear relationships between dengue and 
environmental time-dependent variables [48]. The package dlnm was used on R [49]; obtaining, as a 
result, a matrix that accounts for the nonlinear exposure and a delayed effect. 

2.2.2. Model fitting. 

The latent marginal distribution of chosen predictors was approximated using INLA, wherein 
the spatio-temporal influence of these predictors was considered. This approach relies on Latent 
Gaussian Models (LGM), specifically, a Latent Gaussian Markov Random Field with a sparse and 
factorizable precision matrix. Such a structure enables numeric approximations, leading to quicker 
outcomes than conventional LGM techniques like Markov Chain Monte Carlo (MCMC) [34]. 

In this project, we specifically fitted a negative binomial model to the number of cases 𝑌௦௧ for 
each spatial unit 𝑠 at a given time 𝑡, having an estimated mean of 𝜇௦௧ and a dispersion parameter 𝜙. This model allows us to account for overdispersion in the number of cases at each scale. Our link 
function considers 𝜇௦௧ from the population 𝑝௦௧ and the monthly incidence at the same location and 
time (𝜌௦௧). The model is depicted in equations (1) to (3). 𝑌௦௧|𝜇௦௧~𝑁𝐵(𝜇௦௧, 𝜙) (1) log(𝜇௦௧) = log(𝑝௦௧) + log (𝜌௦௧) (2) log(𝜌௦௧) = 𝑋்𝛽 + 𝛾௦௧ + 𝜂௦௧ (3) 

We also included two random effects that were considered to account for unobserved variability. 
An unstructured random effect for seasonal autocorrelation, regarding possible relationships in time 
for each structure along the months, being cyclic over the six-year analysis; and a second structured 
random effect, that encompasses spatial autocorrelation between the neighborhoods along the years 
regarding interconnection, interventions, herd immunity, etc. [25] The incidence was calculated from 
the fixed effects 𝑋்  and the two random effects: 𝛾௦௧  for the unstructured effect using a random 
walk, and 𝜂௦௧  for the structured one using a Besag-York-Molliè model [50]. Precision priors are 
defined from the precision parameter 𝑃(𝜎 > 0.5) = 0.01. 

An adaptative strategy was selected as it is considered the best fit from Gaussian and simplified 
Laplace approximations. Finally, the hyperparameters posterior distributions were calculated with a 
Central Composite Design as it offers the best tradeoff between precision and computational time 
among the possible strategies implemented in the R library INLA [30,34,51]. 

Three models were adjusted per level: one containing only spatial variables (socioeconomic and 
demographic), a second containing only temporal variables (environmental), and a third containing 
both. This enabled us to distinguish between the effects of spatial and temporal covariates, while 
assessing whether incorporating both yielded a more informative model. Comparison was 
performed for the models at each level using the Deviance Information Criterion (DIC) and Widely 
Applicable Information Criterion (WAIC). 

2.2.3. Aggregation Level Comparison 

From selected best-fitting models at each level of aggregation, fitted values were obtained from 
the marginal posterior distributions of the selected models at each level of aggregation. These values 
were then compared with the observed data over the study period to determine the best fitting model 
at each level considering the Root Mean Squared Error (RMSE). 
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3. Results 

3.1. Variable Selection 

The Geographically Weighted Regression (GWR) analysis revealed a significant association for 
seven critical variables at a minimum of one spatial level over different years. These variables 
encompassed critical aspects of the socio-economic landscape, including population density 
(Density), sewage connection (Sewage), gas connection (Gas), garbage collection service (Garbage), 
population with higher education degrees (Higher Ed.), percentage of women (Women), and 
percentage of children (Children). 

Figure 2 visually presents the space-time trends of these variables across diverse spatial levels. 
The visualization aids in understanding the spatial patterns and temporal changes exhibited by each 
variable, contributing to a comprehensive understanding of the intricate dynamics within the studied 
region. This provides a concise summary of the outcomes derived from the GWR analysis, 
emphasizing the spatial and temporal significance of the identified variables. 
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Figure 2. GWR significance for individual spatial features at each level. Columns represent the 
different levels, while rows are the significant variables. Colored areas indicate statistical significance 
in local regressions. 

3.2. Model Fitting and Comparison 

Table 1 shows the results of model selection based on DIC and WAIC by level of aggregation. It 
is important to note that these models can be compared within the same level but not across different 
levels. A significant shift in both DIC and WAIC values is evident in the temporal models as opposed 
to the spatial models. Notably, the spatio-temporal models, which integrate a comprehensive set of 
covariates encompassing socioeconomic, demographic, and transformed environmental predictors, 
exhibit the most favorable scores in these comparison metrics across all levels and were selected as 
the best model for multilevel comparison. 

Table 1. Model comparison using DIC and WAIC at each level of spatial aggregation. 

  Model 

Level Metric Spatial Temporal Spatio-
temporal 

Comunas DIC 5,345 4,861 4,860 
WAIC 5,358 4,863 4,863 

Sectores DIC 14,646 13,874 13,871 
WAIC 14,656 13,874 13,869 

Secciones DIC 33,942 32,206 32,163 
WAIC 33,871 32,185 32,139 

Manzanas DIC 89,900 84,728 84,051 
WAIC 89,845 84,667 83,988 

Figure 3 provides an insight into the spatial fixed effects of each spatiotemporal model inferred 
from posterior distributions, showing the variations of these effects across different levels of spatial 
aggregation. 

 
Figure 3. Results for spatial fixed effects in spatio-temporal fitted models. Points represent the median 
of the marginal posterior distributions, and the lines draw the 95% credible interval for each level. 
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At the level of Comunas, spatial variables exhibit non-significance, as indicated by the inclusion 
of zero within the 95% credible intervals for all variables. This lack of significance aligns with the 
comparable DIC and WAIC values observed for both temporal and spatiotemporal models in Table 
1, implying that incorporating spatial variables at this aggregation level does not substantially 
enhance the model’s explanatory capacity for DENV incidence.  

For the intermediate level of Sectores, certain variables such as garbage collection, higher 
education, and the percentage of children demonstrate significance and display inverse correlations 
with DENV incidence. The negative coefficients suggest that improved access to garbage collection, 
higher educational attainment, and a larger proportion of children are associated with reduced 
DENV spread, potentially highlighting the impact of enhanced public services and education on 
disease mitigation. 

At the Secciones level, most spatial variables exhibit significance, with garbage collection and 
the percentage of women showing negative correlations with DENV cases. This inverse relationship 
suggests that areas with more efficient waste management and a higher proportion of women tend 
to have lower DENV prevalence. Moreover, factors such as higher population density, gas 
connections, education levels, and the percentage of children consistently demonstrate negative 
correlations with DENV cases, echoing the trends observed at the Sectores level and underscoring 
the influence of these variables on disease incidence. 

Finally, at the granular level of Manzanas, sewage connection emerges with a unique positive 
correlation with DENV cases. Conversely, population density, higher education, and the percentage 
of children maintain inverse correlations with DENV incidence, aligning with observations made at 
the Secciones level. This consistency across different levels of spatial analysis suggests that certain 
factors consistently relate to lower disease incidence despite the finer granularity of data. 

Integrating this insight into the preceding analysis highlights a consistent negative correlation 
between spatial variables such as higher education, population density, and the percentage of 
children with DENV incidence across various levels, while the association between garbage collection 
services and DENV cases appears less definitive, suggesting disparities in waste management 
service.  

Complementing the spatial analysis, Figure 4 introduces lagged temporal predictors through 
contour plots, which offer insight into the temporal dynamics of the disease. The data underlying the 
cyclical influence of weather patterns on the RR associated with DENV. For instance, temperature-
related metrics, such as mean temperature and the number of days exceeding 32°C, reveal a lower 
RR at cooler temperatures and greater lags, transitioning to a higher RR as temperatures climb and 
lag decreases. Conversely, precipitation indicators, such as total precipitation and number of wet 
days, demonstrate an inverse relationship, with higher precipitation levels correlating with a 
decreased RR in subsequent periods. Additionally, the NDVI exhibits variability and lacks 
consistency across different levels of aggregation, suggesting complex interactions between 
vegetation density and disease transmission that warrant further investigation. 
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Figure 4. Contour plots for the results of temporal variables showing relative risk of dengue cases 
from exposure and different time lags. Relative risk is calculated from baseline observations for each 
covariate as follows: mean temperature risk is calculated relative to 22°C, Total precipitation relative 
to 0 mm/month, and NDVI, Wet Days and Days Over 32°C are calculated relative to 0. 

3.3. Level Comparison 

Figure 5 depicts the compared values of observed DENV cases and the fitted values from 
posterior distributions at each level, aggregated for the entire city.  
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Figure 5. Aggregated fitted values from marginal posterior distributions, compared to observed 
DENV cases in the city for the studied period. Fitted values are plotted with a 95% credible interval 
at each level. 

The model's performance varies across different levels of spatial aggregation. At the Comunas 
level, the model achieves a high degree of correlation with the actual DENV case data, although it 
tends to underestimate case numbers during outbreak peaks, a trend that was particularly 
pronounced towards the end of 2015. In times of lower disease incidence, such as December 2017 and 
June 2018, the model also falls short of accurately capturing the case numbers. Despite these 
limitations, it performs commendably in periods of low case counts, notably, throughout most of 
2017 and the early months of 2018. 

Moving to the Sectores level, the model has a propensity to overestimate the incidence of DENV 
cases, with this trend being especially evident in January 2015 and January 2016. This tendency for 
overestimation continues through the endemic years of 2017 and 2018. Moreover, there is a noticeable 
misalignment in the timing of predicted outbreaks compared to actual data, highlighting a phase 
discrepancy between model predictions, and observed case trends. 

Similarly, in Secciones level, there is a need for phase alignment. Still, the model demonstrates 
an accurate fit during epidemic periods, both in terms of case count and pattern, as seen between 
September 2015 and January 2016. This level also accurately captures smaller peaks during endemic 
periods, such as December 2016 and June 2018. However, during periods characterized by generally 
low DENV activity, such as the late 2017 to early 2018 timeframe, the model tends to overpredict the 
number of cases, indicating a challenge in accurately modeling low incidence rates. 

At the most granular level of spatial aggregation, Manzanas, the model's fit shows the greatest 
fluctuation among all levels. While it aligns more closely with the observed data during epidemic 
periods, similar to Secciones, its predictive performance is significantly less accurate during endemic 
years, indicating a disparity in model fit across different disease prevalence periods.  
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The differences in model performance underscore the challenges in capturing the complex 
dynamics of DENV transmission, which vary temporally with epidemic and endemic cycles and 
spatially at different levels of urban granularity. These insights emphasize the need for models that 
can adjust to both the scale of analysis and the fluctuating nature of disease transmission, highlighting 
the intricate balance between spatial resolution and predictive accuracy in epidemiological modeling. 

Table 2 rectifies the observed behavior observed in Figure 5. Lower RMSE was found for 
Comunas, since it provided the best overall fit; however, the level of Secciones provided a lower 
RMSE than Manzanas and Sectores, which might be due to the better fit exhibited during epidemic 
seasons.  

Table 2. Root Mean Square Error (RMSE) for each level’s posterior marginals. 

 Comunas Sectores Secciones Manzanas 

RMSE 32.69 45.80 42.34 66.63 

4. Discussion 

GWR analysis shows variation for spatial covariates among levels of aggregation. 
Socioeconomic predictors are mostly significance at the lowest level, Manzanas, while demographic 
predictors were also significant at intermediate levels like Secciones or Sectores. Only two predictors 
were significant at Comunas. GWR analysis solely identifies significant spatial variables and 
overlooks non-linear interaction, which is crucial for understanding the endemic-epidemic patterns 
of DENV. This limitation may result in models that only partially capture the disease's dynamics.  

Our study shows that the spatio-temporal models, which integrate spatial and temporal 
variability, generally offered a better fit, and were selected for further analysis at all levels of 
aggregation. However, the improvement in the spatio-temporal models at levels like Comunas and 
Sectores was minimal, indicating that the added complexity of spatio-temporal models may only 
sometimes lead to significantly improved fit. This underscores the importance of careful 
consideration when increasing model complexity and highlights the need to balance detailed spatial-
temporal dynamics with model simplicity.  

The significance of spatial predictors in DENV incidence varied markedly across different levels 
of spatial aggregation. At the highest levels, namely Comunas and Sectores, many variables were 
found to be non-significant, possibly due to the homogeneity within these broader spatial categories. 
The lack of variability within spatial covariates at these levels leads to a limited ability to discern 
significant impacts on DENV cases, as observed in the narrow covariate ranges detailed in 
supplementary Table S1. In contrast, population density was notably significant at the more granular 
Secciones and Manzanas levels and inversely correlated with DENV incidence. However, This 
counterintuitive finding is supported by previous studies that have suggested that higher densities 
may not favor mosquito breeding, particularly in areas with sufficient sanitation and utility services 
[52,53]. 

Socioeconomic variables, such as sewage, gas connection, and garbage collection service, exhibit 
diverse correlations with DENV cases. Sewage connection is positively correlated, attributed to urban 
infrastructure and vector ecology (adaptation to breed in manmade environments), including 
improperly designed systems creating mosquito breeding sites [54–57]. Conversely, areas with higher 
gas connection rates tend to have lower DENV incidence, reflecting socioeconomic status. The 
relationship with garbage collection services varies; a positive correlation at the Secciones level and 
an inverse relationship at Sectores suggest complex dynamics influenced by local practices and 
infrastructure. [58,59]. 

 The observed variability among socioeconomic variables underscores the intricate interplay of 
individual and collective dynamics, sometimes resulting in counterintuitive outcomes. Nevertheless, 
these variables offer valuable insights into the internal dynamics of spatial distribution, exhibiting 
distinct characteristics across different levels of spatial aggregation.  
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Demographic predictors, including higher education, percentage of children, and percentage of 
women, demonstrate a consistent pattern across spatial levels. Higher educational attainment in 
populations may lead to increased implementation of disease prevention measures, potentially 
reducing breeding sites and subsequent DENV cases [60,61]. The inverse correlation with the 
percentage of children may reflect the demographic profile of DENV cases during specific outbreaks, 
with adults and young adults being more frequently affected. Lastly, the percentage of women may 
reflect the broader demographic composition of the city and the roles women play in household 
management and potential exposure to mosquito breeding sites. 

Variations in correlation between spatial variables and DENV incidence across different spatial 
aggregation levels indicate diverse roles of socioeconomic and demographic factors in disease 
transmission dynamics. While broader scales may obscure these factors amidst other influences, finer 
scales highlight their heterogeneity, allowing for a more precise understanding of their impact on 
DENV transmission. This underscores the complexity of disease incidence modeling and emphasizes 
the importance of considering scale when interpreting variable influences.  

Despite consistent trends in temporal variables across all spatial aggregation levels, subtle 
variations in relative risk suggest differing degrees of correlation with DENV cases. Temperature and 
precipitation influence were relatively consistent across the city's spatial structures, resulting in 
similar impacts on relative risk regardless of aggregation level. Our results show an association 
between Mean Temperature and increased Relative Risk (RR) during high-temperature periods 
(zero-month lag), and elevated disease risk due to total precipitation at a three to six-month lag across 
Comunas, Sectores, and Secciones, which underscores the influence of weather patterns on DENV 
transmission in urban areas. This relationship, consistent with regional climate patterns where cooler 
seasons precede warmer periods by approximately four to six months [62], which is further 
intensified by ENSO phenomena, such as the El Niño events of 2015 and 2016. These extreme weather 
events, characterized by higher temperatures and drought, impact mosquito breeding and access to 
utilities in vulnerable areas, leading to community adjustments in water management practices and 
influencing DENV transmission dynamics [25,63]. 

Days Over 32°C exhibited a comparable trend with mean temperature, where a higher frequency 
of hot days at shorter lags was linked to an increased RR. The same relationship is displayed by the 
number of wet days and total precipitation, with increased RR at two and six-month lags, reflecting 
bimodal rainy seasons. Finally, NDVI showed irregular patterns, with minimal variation at broader 
levels like Comunas and Sectores due to its non-seasonal nature.  

While the temporal patterns hold consistently across spatial aggregation levels, the changes in 
RR's for each covariate vary, suggesting differing strengths of correlation with DENV incidence. This 
variance could stem from how DENV cases are distributed across each spatial level and how spatial 
covariates account for the observed effects at more granular levels. 

This study highlights the importance of considering temporal and spatial variables in 
understanding DENV transmission dynamics. While temporal variables play a significant role, 
spatial covariates at finer levels of aggregation are also crucial for a nuanced understanding of DENV 
transmission. The analysis suggests that the Comunas level model provides the best overall fit for the 
city, with the Secciones level model closely following. However, the Manzanas level model performs 
weaker due to extreme case dispersion. Despite this, intermediate aggregation levels like Secciones 
reveal discernible links with socioeconomic and demographic variables, aiding in understanding 
local patterns for targeted interventions. This underscores the importance of considering macro and 
micro-level factors in epidemiological modeling and intervention planning to tailor public health 
strategies and reduce disease prevalence effectively. 

The accuracy of DENV case reporting relies on local population engagement, often hampered 
by underreporting due to symptom recognition without seeking formal diagnosis and the prevalence 
of asymptomatic cases [64]. This underreporting significantly impacts case counts' accuracy, 
hindering model precision [65]. Census data limitations are apparent, with only 2018 data available, 
assuming socio-economic and demographic variables remain unchanged over six years, neglecting 
potential variations. Modeling efforts focusing on endemic or epidemic periods may offer immediate 
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insights into socio-economic and demographic influences on disease patterns but may overlook long-
term effects. Detailed research at lower observational levels is needed to address data scarcity and 
the influence of local entomological and virological factors on disease dynamics. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Table S1: List of independent socioeconomic, demographic, and environmental 
variables for Ibagué; Figure S1: Ibagué’s spatial division, from which aggregation levels are obtained. Comunas 
are the biggest group, each composed of multiple manzanas as shown in the figure. Smaller groups of manzanas 
build secciones and sectores; Figure S2: Wavelet coherence analysis for environmental variables. Each plot shows 
the coherence between the environmental variables and DENV cases. High-significance (0.05) regions are plotted 
as bounded areas. A cone of influence is included to discard any significant regions outside it. Arrows indicate 
the relationship of the two series included in each plot. 

Author Contributions: Conceptualization, M.S.-V., A.T., and J.O.; methodology, M.S.-V., A.T., and J.O.; 
software, J.O.; formal analysis, J.O.; investigation, J.O., M.S.-V., and A.T.; resources, M.S.-V.; data curation, J.O. 
and M.S.-V.; writing—original draft, A.T., J.O. and M.S.-V.; writing—review and editing, A.T., J.O. and M.S.-V.; 
visualization, J.O.; supervision, A.T. and M.S.-V. All authors have read and agreed to the published version of 
the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: All data and code is available at https://github.com/jd-otero/dengue_ibague.  

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Kurane, I. Dengue Hemorrhagic Fever with Special Emphasis on Immunopathogenesis. Comparative 
Immunology, Microbiology and Infectious Diseases 2007, 30, 329–340. 
https://doi.org/10.1016/j.cimid.2007.05.010. 

2. Dengue and Severe Dengue Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-
and-severe-dengue (accessed on 28 October 2022). 

3. Silva, M.M.O.; Rodrigues, M.S.; Paploski, I.A.D.; Kikuti, M.; Kasper, A.M.; Cruz, J.S.; Queiroz, T.L.; Tavares, 
A.S.; Santana, P.M.; Araújo, J.M.G.; et al. Accuracy of Dengue Reporting by National Surveillance System, 
Brazil. Emerg. Infect. Dis. 2016, 22, 336–339. https://doi.org/10.3201/eid2202.150495. 

4. Padilla, J.C.; Rojas, D.P.; Sáenz Gómez, R. Dengue en Colombia: epidemiología de la reemergencia a la 
hiperendemia; Primera edición en español.; Verlag nicht ermittelbar: Erscheinungsort nicht ermittelbar, 2012; 
ISBN 978-958-46-0661-7. 

5. Guha-Sapir, D.; Schimmer, B. Dengue Fever: New Paradigms for a Changing Epidemiology. Emerg Themes 
Epidemiol 2005, 2, 1. https://doi.org/10.1186/1742-7622-2-1. 

6. Reiter, P.; Lathrop, S.; Bunning, M.; Biggerstaff, B.; Singer, D.; Tiwari, T.; Baber, L.; Amador, M.; Thirion, J.; 
Hayes, J.; et al. Texas Lifestyle Limits Transmission of Dengue Virus. Emerg. Infect. Dis. 2003, 9, 86–89. 
https://doi.org/10.3201/eid0901.020220. 

7. Queiroz, E.R. da S.; Medronho, R. de A. Spatial Analysis of the Incidence of Dengue, Zika and Chikungunya 
and Socioeconomic Determinants in the City of Rio de Janeiro, Brazil. Epidemiol. Infect. 2021, 149, e188. 
https://doi.org/10.1017/S0950268821001801. 

8. Alcaldía Municipal de Ibagué - Ibagué Vibra Available online: 
https://ibague.gov.co/portal/seccion/contenido/index.php?type=3&cnt=53 (accessed on 28 October 2022). 

9. Carrasquilla, M.C.; Ortiz, M.I.; León, C.; Rondón, S.; Kulkarni, M.A.; Talbot, B.; Sander, B.; Vásquez, H.; 
Cordovez, J.M.; González, C.; et al. Entomological Characterization of Aedes Mosquitoes and Arbovirus 
Detection in Ibagué, a Colombian City with Co-Circulation of Zika, Dengue and Chikungunya Viruses. 
Parasites Vectors 2021, 14, 446. https://doi.org/10.1186/s13071-021-04908-x. 

10. Faruk, M.O.; Jannat, S.N.; Rahman, Md.S. Impact of Environmental Factors on the Spread of Dengue Fever 
in Sri Lanka. Int. J. Environ. Sci. Technol. 2022, 19, 10637–10648. https://doi.org/10.1007/s13762-021-03905-y. 

11. Rose, N.H.; Sylla, M.; Badolo, A.; Lutomiah, J.; Ayala, D.; Aribodor, O.B.; Ibe, N.; Akorli, J.; Otoo, S.; Mutebi, 
J.-P.; et al. Climate and Urbanization Drive Mosquito Preference for Humans. Current Biology 2020, 30, 3570-
3579.e6. https://doi.org/10.1016/j.cub.2020.06.092. 

12. Lee, S.A.; Jarvis, C.I.; Edmunds, W.J.; Economou, T.; Lowe, R. Spatial Connectivity in Mosquito-Borne 
Disease Models: A Systematic Review of Methods and Assumptions. J. R. Soc. Interface. 2021, 18, 20210096. 
https://doi.org/10.1098/rsif.2021.0096. 

13. Kuddus, M.A.; Tynan, E.; McBryde, E. Urbanization: A Problem for the Rich and the Poor? Public Health 
Rev 2020, 41, 1. https://doi.org/10.1186/s40985-019-0116-0. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2024                   doi:10.20944/preprints202403.0782.v1



 14 

 

14. Vatanpour, N.; Malvandi, A.M.; Hedayati Talouki, H.; Gattinoni, P.; Scesi, L. Impact of Rapid Urbanization 
on the Surface Water’s Quality: A Long-Term Environmental and Physicochemical Investigation of Tajan 
River, Iran (2007–2017). Environ Sci Pollut Res 2020, 27, 8439–8450. https://doi.org/10.1007/s11356-019-07477-
w. 

15. Romeo-Aznar, V.; Picinini Freitas, L.; Gonçalves Cruz, O.; King, A.A.; Pascual, M. Fine-Scale Heterogeneity 
in Population Density Predicts Wave Dynamics in Dengue Epidemics. Nat Commun 2022, 13, 996. 
https://doi.org/10.1038/s41467-022-28231-w. 

16. Pickett, K.E. Multilevel Analyses of Neighbourhood Socioeconomic Context and Health Outcomes: A 
Critical Review. Journal of Epidemiology & Community Health 2001, 55, 111–122. 
https://doi.org/10.1136/jech.55.2.111. 

17. Diez Roux, A.V. Investigating Neighborhood and Area Effects on Health. Am J Public Health 2001, 91, 1783–
1789. https://doi.org/10.2105/AJPH.91.11.1783. 

18. Waller, L.A.; Gotway, C.A. Applied Spatial Statistics for Public Health Data; Wiley series in probability and 
statistics; John Wiley & Sons: Hoboken, N.J, 2004; ISBN 978-0-471-38771-8. 

19. Chaix, B.; Merlo, J.; Evans, D.; Leal, C.; Havard, S. Neighbourhoods in Eco-Epidemiologic Research: 
Delimiting Personal Exposure Areas. A Response to Riva, Gauvin, Apparicio and Brodeur. Social Science & 
Medicine 2009, 69, 1306–1310. https://doi.org/10.1016/j.socscimed.2009.07.018. 

20. Diez Roux, A.V.; Mair, C. Neighborhoods and Health: Neighborhoods and Health. Annals of the New York 
Academy of Sciences 2010, 1186, 125–145. https://doi.org/10.1111/j.1749-6632.2009.05333.x. 

21. Jaya, I.G.N.M.; Folmer, H. Bayesian Spatiotemporal Mapping of Relative Dengue Disease Risk in Bandung, 
Indonesia. J Geogr Syst 2020, 22, 105–142. https://doi.org/10.1007/s10109-019-00311-4. 

22. Rotejanaprasert, C.; Ekapirat, N.; Areechokchai, D.; Maude, R.J. Bayesian Spatiotemporal Modeling with 
Sliding Windows to Correct Reporting Delays for Real-Time Dengue Surveillance in Thailand. Int J Health 
Geogr 2020, 19, 4. https://doi.org/10.1186/s12942-020-00199-0. 

23. Sani, A.; Abapihi, B.; Mukhsar, M.; Kadir, K. Relative Risk Analysis of Dengue Cases Using Convolution 
Extended into Spatio-Temporal Model. Journal of Applied Statistics 2015, 42, 2509–2519. 
https://doi.org/10.1080/02664763.2015.1043863. 

24. Telle, O.; Nikolay, B.; Kumar, V.; Benkimoun, S.; Pal, R.; Nagpal, B.; Paul, R.E. Social and Environmental 
Risk Factors for Dengue in Delhi City: A Retrospective Study. PLoS Negl Trop Dis 2021, 15, e0009024. 
https://doi.org/10.1371/journal.pntd.0009024. 

25. Lowe, R.; Lee, S.A.; O’Reilly, K.M.; Brady, O.J.; Bastos, L.; Carrasco-Escobar, G.; de Castro Catão, R.; Colón-
González, F.J.; Barcellos, C.; Carvalho, M.S.; et al. Combined Effects of Hydrometeorological Hazards and 
Urbanisation on Dengue Risk in Brazil: A Spatiotemporal Modelling Study. The Lancet Planetary Health 2021, 
5, e209–e219. https://doi.org/10.1016/S2542-5196(20)30292-8. 

26. Desjardins, M.R.; Eastin, M.D.; Paul, R.; Casas, I.; Delmelle, E.M. Space–Time Conditional Autoregressive 
Modeling to Estimate Neighborhood-Level Risks for Dengue Fever in Cali, Colombia. The American Journal 
of Tropical Medicine and Hygiene 2020, 103, 2040–2053. https://doi.org/10.4269/ajtmh.20-0080. 

27. Mukhsar; Abapihi, B.; Sani, A.; Cahyono, E.; Adam, P.; Aini Abdullah, F. Extended Convolution Model to 
Bayesian Spatio-Temporal for Diagnosing the DHF Endemic Locations. Journal of Interdisciplinary 
Mathematics 2016, 19, 233–244. https://doi.org/10.1080/09720502.2015.1047591. 

28. Krüger, F.; Lerch, S.; Thorarinsdottir, T.L.; Gneiting, T. Predictive Inference Based on Markov Chain Monte 
Carlo Output. 2016. https://doi.org/10.48550/ARXIV.1608.06802. 

29. Speagle, J.S. A Conceptual Introduction to Markov Chain Monte Carlo Methods. 2019. 
https://doi.org/10.48550/ARXIV.1909.12313. 

30. Martino, S.; Havard Rue Implementing Approximate Bayesian Inference Using Integrated Nested Laplace 
Approximation: A Manual for the Inla Program 2009. 

31. Scott, T.W.; Morrison, A.C. Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue 
Surveillance and Prevention Strategies. In Dengue Virus; Rothman, A.L., Ed.; Current Topics in 
Microbiology and Immunology; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; Vol. 338, pp. 115–128 
ISBN 978-3-642-02214-2. 

32. MANUAL DE USO DEL MARCO GEOESTADÍSTICO NACIONAL EN EL PROCESO ESTADÍSTICO; 
Departamento Administrativo Nacional de Estadística, 2018; p. 40;. 

33. McMillen, D.P. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. 
American Journal of Agricultural Economics 2004, 86, 554–556. 

34. Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian Inference for Latent Gaussian Models by Using 
Integrated Nested Laplace Approximations. Journal of the Royal Statistical Society Series B: Statistical 
Methodology 2009, 71, 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x. 

35. Kyle, J.L.; Harris, E. Global Spread and Persistence of Dengue. Annu. Rev. Microbiol. 2008, 62, 71–92. 
https://doi.org/10.1146/annurev.micro.62.081307.163005. 

36. DANE La información del DANE en la toma de decisiones regionales: Ibagué, Colombia 2020. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2024                   doi:10.20944/preprints202403.0782.v1



 15 

 

37. Departamento Administrativo Nacional de Estadística Geoportal DANE Available online: 
https://geoportal.dane.gov.co/servicios/descarga-y-metadatos/descarga-mgn-marco-geoestadistico-
nacional/ (accessed on 23 November 2022). 

38. Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km 
SIN Grid V061 2021. 

39. Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061 2021. 
40. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, 

L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—a New Environmental Record 
for Monitoring Extremes. Sci Data 2015, 2, 150066. https://doi.org/10.1038/sdata.2015.66. 

41. Kache, P.; Ruiz-Carrascal, D.; Lowe, R.; Stewart-Ibarra, A.M.; Seto, K.; Diuk-Wasser, M.; Santos-Vega, M. 
Climate Extremes Increase Dengue Risk along Socio-Economic and Elevation Gradients. Nature Climate 
Change Under review. 

42. Gollini, I.; Lu, B.; Charlton, M.; Brunsdon, C.; Harris, P. GWmodel : An R Package for Exploring Spatial 
Heterogeneity Using Geographically Weighted Models. J. Stat. Soft. 2015, 63. 
https://doi.org/10.18637/jss.v063.i17. 

43. Lu, B.; Harris, P.; Charlton, M.; Brunsdon, C. The GWmodel R Package: Further Topics for Exploring Spatial 
Heterogeneity Using Geographically Weighted Models. Geo-spatial Information Science 2014, 17, 85–101. 
https://doi.org/10.1080/10095020.2014.917453. 

44. Thapa, R.B.; Estoque, R.C. Geographically Weighted Regression in Geospatial Analysis. In Progress in 
Geospatial Analysis; Murayama, Y., Ed.; Springer Japan: Tokyo, 2012; pp. 85–96 ISBN 978-4-431-53999-5. 

45. Wheeler, D.C.; Páez, A. Geographically Weighted Regression. In Handbook of Applied Spatial Analysis; 
Fischer, M.M., Getis, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp. 461–486 ISBN 978-
3-642-03646-0. 

46. Cazelles, B.; Chavez, M.; Berteaux, D.; Ménard, F.; Vik, J.O.; Jenouvrier, S.; Stenseth, N.C. Wavelet Analysis 
of Ecological Time Series. Oecologia 2008, 156, 287–304. https://doi.org/10.1007/s00442-008-0993-2. 

47. Gouhier, T.C.; Grinsted, A.; Simko, V. R Package Biwavelet: Conduct Univariate and Bivariate Wavelet 
Analyses 2021. 

48. Lowe, R.; Gasparrini, A.; Van Meerbeeck, C.J.; Lippi, C.A.; Mahon, R.; Trotman, A.R.; Rollock, L.; Hinds, 
A.Q.J.; Ryan, S.J.; Stewart-Ibarra, A.M. Nonlinear and Delayed Impacts of Climate on Dengue Risk in 
Barbados: A Modelling Study. PLoS Med 2018, 15, e1002613. https://doi.org/10.1371/journal.pmed.1002613. 

49. Gasparrini, A. Distributed Lag Linear and Non-Linear Models in R: The Package Dlnm. Journal of Statistical 
Software 2011, 43, 1–20. https://doi.org/10.18637/jss.v043.i08. 

50. Besag, J.; York, J.; Molliè, A. Bayesian Image Restoration, with Two Applications in Spatial Statistics. Ann 
Inst Stat Math 1991, 43, 1–20. https://doi.org/10.1007/BF00116466. 

51. Martins, T.G.; Simpson, D.; Lindgren, F.; Rue, H. Bayesian Computing with INLA: New Features. 
Computational Statistics & Data Analysis 2013, 67, 68–83. https://doi.org/10.1016/j.csda.2013.04.014. 

52. Schmidt, W.-P.; Suzuki, M.; Dinh Thiem, V.; White, R.G.; Tsuzuki, A.; Yoshida, L.-M.; Yanai, H.; Haque, U.; 
Huu Tho, L.; Anh, D.D.; et al. Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: 
Cohort Study and Spatial Analysis. PLoS Med 2011, 8, e1001082. 
https://doi.org/10.1371/journal.pmed.1001082. 

53. Romeo-Aznar, V.; Paul, R.; Telle, O.; Pascual, M. Mosquito-Borne Transmission in Urban Landscapes: The 
Missing Link between Vector Abundance and Human Density. Proc. R. Soc. B. 2018, 285, 20180826. 
https://doi.org/10.1098/rspb.2018.0826. 

54. Rasid, H.; Mallsk, A.U. Living on the Edge of Stagnant Water: An Assessment of Environmental Impacts 
of Construction-Phase Drainage Congestion along Dhaka City Flood Control Embankment, Bangladesh. 
Environmental Management 1996, 20, 89–98. https://doi.org/10.1007/PL00006705. 

55. Chitolina, R.F.; Anjos, F.A.; Lima, T.S.; Castro, E.A.; Costa-Ribeiro, M.C.V. Raw Sewage as Breeding Site to 
Aedes ( Stegomyia ) Aegypti (Diptera, Culicidae). Acta Tropica 2016, 164, 290–296. 
https://doi.org/10.1016/j.actatropica.2016.07.013. 

56. Foster, W.A.; Walker, E.D. MOSQUITOES ( Culicidae ). In Medical and Veterinary Entomology; Elsevier, 2002; 
pp. 203–262 ISBN 978-0-12-510451-7. 

57. Sur, D.; Von Seidlein, L.; Manna, B.; Dutta, S.; Deb, A.K.; Sarkar, B.L.; Kanungo, S.; Deen, J.L.; Ali, M.; Kim, 
D.R.; et al. The Malaria and Typhoid Fever Burden in the Slums of Kolkata, India: Data from a Prospective 
Community-Based Study. Transactions of the Royal Society of Tropical Medicine and Hygiene 2006, 100, 725–
733. https://doi.org/10.1016/j.trstmh.2005.10.019. 

58. Krystosik, A.; Njoroge, G.; Odhiambo, L.; Forsyth, J.E.; Mutuku, F.; LaBeaud, A.D. Solid Wastes Provide 
Breeding Sites, Burrows, and Food for Biological Disease Vectors, and Urban Zoonotic Reservoirs: A Call 
to Action for Solutions-Based Research. Front. Public Health 2020, 7, 405. 
https://doi.org/10.3389/fpubh.2019.00405. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2024                   doi:10.20944/preprints202403.0782.v1



 16 

 

59. Klafke, F.; Barros, V.G.; Henning, E. Solid Waste Management and Aedes Aegypti Infestation 
Interconnections: A Regression Tree Application. Waste Manag Res 2023, 41, 1684–1696. 
https://doi.org/10.1177/0734242X231164318. 

60. Naqvi, S.A.A.; Sajjad, M.; Tariq, A.; Sajjad, M.; Waseem, L.A.; Karuppannan, S.; Rehman, A.; Hassan, M.; 
Al-Ahmadi, S.; Hatamleh, W.A. Societal Knowledge, Attitude, and Practices towards Dengue and 
Associated Factors in Epidemic-Hit Areas: Geoinformation Assisted Empirical Evidence. Heliyon 2024, 10, 
e23151. https://doi.org/10.1016/j.heliyon.2023.e23151. 

61. Diaz-Quijano, F.A.; Martínez-Vega, R.A.; Rodriguez-Morales, A.J.; Rojas-Calero, R.A.; Luna-González, 
M.L.; Díaz-Quijano, R.G. Association between the Level of Education and Knowledge, Attitudes and 
Practices Regarding Dengue in the Caribbean Region of Colombia. BMC Public Health 2018, 18, 143. 
https://doi.org/10.1186/s12889-018-5055-z. 

62. Urrea, V.; Ochoa, A.; Mesa, O. Seasonality of Rainfall in Colombia. Water Resour. Res. 2019, 55, 4149–4162. 
https://doi.org/10.1029/2018WR023316. 

63. Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 
2015/2016 El Niño. Reviews of Geophysics 2017, 55, 1079–1129. https://doi.org/10.1002/2017RG000560. 

64. Elsinga, J.; Lizarazo, E.F.; Vincenti, M.F.; Schmidt, M.; Velasco-Salas, Z.I.; Arias, L.; Bailey, A.; Tami, A. 
Health Seeking Behaviour and Treatment Intentions of Dengue and Fever: A Household Survey of 
Children and Adults in Venezuela. PLoS Negl Trop Dis 2015, 9, e0004237. 
https://doi.org/10.1371/journal.pntd.0004237. 

65. Duong, V.; Lambrechts, L.; Paul, R.E.; Ly, S.; Lay, R.S.; Long, K.C.; Huy, R.; Tarantola, A.; Scott, T.W.; 
Sakuntabhai, A.; et al. Asymptomatic Humans Transmit Dengue Virus to Mosquitoes. Proc. Natl. Acad. Sci. 
U.S.A. 2015, 112, 14688–14693. https://doi.org/10.1073/pnas.1508114112. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2024                   doi:10.20944/preprints202403.0782.v1


