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Abstract: Our study examines how dengue incidence is associated with spatial (demographic and
socioeconomic) alongside temporal (environmental) factors at multiple scales. We used the
incidence of dengue in Ibagué, Colombia, from 2013 to 2018, to examine the associations with
climate, socioeconomic and demographic factors from the census and satellite imagery at various
levels of local spatial aggregation, including Manzanas, Secciones, Sectores, and Comunas. Our
findings show a significant effect of spatial variables at finer levels of aggregation, showing varying
degrees of correlation with dengue incidence. Temporal variables such as temperature and
precipitation displayed consistent patterns across all spatial levels, with notable variations in
Relative Risk (RR). Our study employs Geographically Weighted Regression (GWR) to identify
relevant socioeconomic and demographic predictors. Then, these predictors were integrated into
hierarchical models implemented in Integrated Nested Laplace Approximation (INLA) at each
spatial level to assess spatiotemporal interactions. We comprehensively analyzed the three distinct
models developed for each level: spatial, temporal, and spatiotemporal. A comparative evaluation
of the models reveals that while higher aggregation levels often yield a better overall model fit, finer
levels offer more detailed insights into the localized impacts of socioeconomic and demographic
variables on dengue incidence. Our results underscore the importance of considering macro and
micro-level factors in epidemiological modeling and highlight the potential for targeted public
health interventions based on localized risk factor analysis. Notably, the intermediate level
Secciones emerged as the most informative, balancing spatial heterogeneity and case distribution
density, thereby providing a robust framework for understanding the spatial determinants of
dengue.

Keywords: Dengue incidence; Spatio-temporal Analysis; Geographically Weighted Regression;
Integrated Nested Laplace Approximation (INLA); Spatial Aggregation Levels (Manzanas;
Secciones; Sectores; Comunas)

1. Introduction

Dengue fever (DENV), a mosquito-borne viral disease [1], has become a critical public health
issue globally, particularly in tropical and subtropical regions [2,3]. Ibagué, Colombia, exemplifies an
urban area significantly affected by dengue, with its incidence rising notably over the past years [4].
Ibagué's rapid urbanization over the past two decades has led to densely populated, low-income
neighborhoods that often lack regular access to water and adequate infrastructure. These
socioeconomic conditions have been linked to higher dengue incidences and mosquito populations

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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[5-7]. Additionally, the city's specific environmental characteristics, including its elevation (1,225
meters above sea level) and average temperature (24°C), create a conducive environment for Aedes
mosquitoes, further exacerbating the situation [8-10].

Dengue transmission dynamics are complex and influenced by a myriad of factors, including
urbanization, demographic changes, and environmental conditions [11,12]. Prior research has
demonstrated the important role of socioeconomic and demographic variables in dengue spread
[13,14]. However, a significant gap still needs to be addressed in understanding the interaction of
these variables at different urban scales, namely levels of aggregation, particularly in rapidly
urbanizing cities in developing countries [15].

Different approaches have been considered to identify and understand the underlying behavior
of diseases in urban environments and their relationship with socioeconomic and environmental
variables. For instance, in 2001, authors studied the relationship between neighboring socioeconomic
effects and health outcomes, finding consistent results on the influence of neighborhood effects on
health [16]. Other studies between 2000 and 2010 asserted a correlation between neighborhood
distribution and health status, suggesting not only the use of distance and proximity to determine
neighborhoods’ composition but also random effects regarding the neighboring structures to account
for the possible connectivity between them [17-20]. The latter has been widely used in the statistical
modeling of DENV using a spatially structured random effect to consider spatial correlation [21-23].

To assess the significance of socioeconomic and environmental variables regarding dengue
incidence and relative risk (RR), authors have implemented a General Linear Model (GLM) Log-
linear model to associate the socioeconomic typology with the risk of dengue infections during winter
in a 250 x 250 m grid of Delhi, India [24]. They found out that the lack of constant access to tap water
was a risk factor for dengue infections; also, densely populated areas did not necessarily have higher
mosquito populations, mainly because of the need for available breeding sites. Finally, high DENV
seropositivity was found in wealthier neighborhoods, while low mosquito exposure was explained
by mobility within the city. However, this study only considered socioeconomic variables but not
demographic predictors, and they ignored possible random effects regarding spatial and seasonal
variability. Other authors followed a different approach, implementing a Bayesian Hierarchical
Model to determine the association between the relative risk of dengue and lag response in
hydrometeorological hazards at a microregion level. The results showed that droughts increase the
relative risk of dengue infection in urban areas, while wet conditions increase the risk of infection in
rural areas [25].

Specifically in Colombia, authors have implemented a similar methodology for DENV in the city
of Cali, using a Space-Time Conditional Autoregressive Model with added autocorrelated random
effects for spatial structures and time [26]. This study was conducted on a neighborhood level, where
socioeconomic variables were controlled using a Principal Component Analysis (PCA) approach, and
several environmental variables were included and lagged to consider the delayed effect. The results
showed that lagged weather variables could help to identify when the peaks in the risk of
transmission occur. Additionally, they proved that dengue infections are not exclusive to poor areas,
and the risk of infection is related to spatial and temporal distribution. The proposed aggregation
level of neighborhoods offers very sparse data observations with clear socioeconomic and
demographic trends.

Bayesian models have shown that they can be used to assess significance and make inferences
about the predictors [22,25-27]. The implementation usually calculates the posterior distributions via
Markov Chain Monte Carlo Simulations (MCMC) or Integrated Nested Laplace Approximation
(INLA). MCMC has been widely used to identify marginal distributions and inference [28,29];
however, it takes a very high computational time [30]. To solve this issue, authors proposed the INLA
methodology, which uses local approximations and Laplace transformations, providing very similar
results around 300 times faster.

While the importance of spatial and temporal variables in dengue transmission is recognized
[31], limited research has been conducted on integrating these factors at different levels of urban
spatial aggregation. This study aims to bridge this gap by leveraging detailed demographic and
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socioeconomic data from the census, provided by the National Administrative Department of
Statistics (Departamento Administrativo Nacional de Estadistica - DANE), and environmental
variables derived from satellite imagery and previous studies. We seek to unravel the spatial and
temporal dynamics influencing dengue incidence in Ibagué between 2013 and 2018, examining these
factors across various levels of spatial aggregation - Manzanas, Secciones, Sectores, and Comunas
[32]. We introduce a novel approach by employing Geographically Weighted Regression (GWR) to
isolate key socio-economic and demographic predictors at varying spatial scales [33]. Additionally,
the use of INLA models allows for an in-depth examination of spatio-temporal correlations and their
posterior distributions [34], offering new insights into the localized dynamics of dengue transmission.

The methodological innovation of this study lies in its tripartite modeling strategy,
encompassing spatial, temporal, and combined spatio-temporal models at each level of spatial
aggregation. This approach allows for a comprehensive analysis of the varying impacts of different
factors on dengue incidence, providing a nuanced understanding of the disease's transmission
dynamics in an urban setting. Our findings will contribute significantly to public health, particularly
in developing targeted dengue control strategies [35]. The study's framework also offers a valuable
model for similar epidemiological investigations in other urban settings, enhancing our
understanding of vector-borne diseases in global urbanization trends.

2. Materials and Methods
2.1. Study Site and Data

Ibagué is the most populated city in the department of Tolima, with an estimated population of
541,101 people for 2020 [36]. According to DANE, the city’s urban area is divided into 13 Comunas,
65 Sectores, 272 Secciones, and 5,574 Manzanas, which will be used as levels of spatial aggregation.
Groups of the minimum level, Manzanas, create the rest of the levels, as can be observed in
supplementary Figure S1. The demographic and socioeconomic data was obtained in all four levels
from the National Geostatistical Framework (Marco Geoestadistico Nacional - MGN) and National
Population and Dwelling Census (Censo Nacional de Poblacién y Vivienda - CNPV), which were
compiled in 2018 [37].

Socioeconomic predictors included variables related to strata, water access and disposal, access
to gas, garbage pick-up service, and internet connection, which allows to identify lower income and
utility access areas inside the city. Demographic variables divide the population according to age,
gender, and educational level. Finally, environmental variables were obtained from satellite images
via Google Earth Engine using MODIS1A1 for Mean Temperature [38], MODIS13Q1 for NDVI [39],
CHIRPS PENTAD for Total Precipitation [40], and previous studies on the city for wet days and hot
days (over 32°C) [41]. The variables and their description are shown in supplementary materials.

Data on dengue cases was obtained from the dataset provided by the local government. Out of
the total 17,707 DENV recorded from 2013 to 2018, 16,183 were included according to the spatial
levels of the city. The remaining cases had no readable address or were reported in the city's rural
area. Figure 1 displays the evolution of the virus over the years. 2013 and 2015 showed the most
extensive outbreaks, with 5,383 and 4,885 cases respectively, with another outbreak following during
the first months of 2016. Notably, the number of cases in 2017 and 2018 was significantly lower, with
each year reporting fewer than 1,000 cases.
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Figure 1. Dengue Virus Cases from 2013 to 2018 in Ibagué. (A) Time series of aggregated cases for the
whole city. (B) Kernel density estimation for georeferenced cases for each year of the studied period.

2.2. Methodology
2.2.1. Variable Selection and Transformation

To demonstrate association between the variables and dengue incidence per 100,000 inhabitants,
and reduce the dimensionality of spatial variables, we used GWR through the package GWModel in
R [42,43]. This methodology allows the creation of different local regressions using Ordinary Least
Squares (OLS) for every spatial feature, adding a weight parameter that was obtained from the
distance between the geometries and a calculated bandwidth [44,45]. This analysis was performed
for socioeconomic and demographic predictors on every level of aggregation. Only variables that
were shown to be significant, at least in one global regression at any level of aggregation, were used
as final predictors for the inference model.

We also used a Wavelet Coherence analysis to confirm an existing correlation between DENV
cases and temporal variables. This was used to analyze non-stationary time series. The methodology
implements a decomposition between time and frequency using a windowed Fourier transform,
which allows for local time-frequency properties while adjusting for high and low-frequency
structures [46]. The wavelet coherence was computed for the aggregated environmental variables in
the whole city. Results are evaluated graphically using the biwavelet library in R, keeping the variables
that showed high correlation and significance in the wavelet coherence analysis as the final predictors
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[47]. All temporal predicted were included, since they displayed high correlation with DENV cases
as shown in Figure S2.

The temporal predictors were later lagged using a Distributed Lag Nonlinear model (DLNM).
This methodology considers delayed effects and nonlinear relationships between dengue and
environmental time-dependent variables [48]. The package dinm was used on R [49]; obtaining, as a
result, a matrix that accounts for the nonlinear exposure and a delayed effect.

2.2.2. Model fitting.

The latent marginal distribution of chosen predictors was approximated using INLA, wherein
the spatio-temporal influence of these predictors was considered. This approach relies on Latent
Gaussian Models (LGM), specifically, a Latent Gaussian Markov Random Field with a sparse and
factorizable precision matrix. Such a structure enables numeric approximations, leading to quicker
outcomes than conventional LGM techniques like Markov Chain Monte Carlo (MCMC) [34].

In this project, we specifically fitted a negative binomial model to the number of cases Y, for
each spatial unit s at a given time ¢, having an estimated mean of u;, and a dispersion parameter
¢. This model allows us to account for overdispersion in the number of cases at each scale. Our link
function considers g, from the population p,; and the monthly incidence at the same location and
time (ps). The model is depicted in equations (1) to (3).

Yselthse~NB (Use, P) 1)
log(use) = log(pst) + log (pse) 2)
log(pst) = XTﬁ + yst + nst (3)

We also included two random effects that were considered to account for unobserved variability.
An unstructured random effect for seasonal autocorrelation, regarding possible relationships in time
for each structure along the months, being cyclic over the six-year analysis; and a second structured
random effect, that encompasses spatial autocorrelation between the neighborhoods along the years
regarding interconnection, interventions, herd immunity, etc. [25] The incidence was calculated from
the fixed effects X” and the two random effects: y,, for the unstructured effect using a random
walk, and 7y for the structured one using a Besag-York-Mollie¢ model [50]. Precision priors are
defined from the precision parameter P(c > 0.5) = 0.01.

An adaptative strategy was selected as it is considered the best fit from Gaussian and simplified
Laplace approximations. Finally, the hyperparameters posterior distributions were calculated with a
Central Composite Design as it offers the best tradeoff between precision and computational time
among the possible strategies implemented in the R library INLA [30,34,51].

Three models were adjusted per level: one containing only spatial variables (socioeconomic and
demographic), a second containing only temporal variables (environmental), and a third containing
both. This enabled us to distinguish between the effects of spatial and temporal covariates, while
assessing whether incorporating both yielded a more informative model. Comparison was
performed for the models at each level using the Deviance Information Criterion (DIC) and Widely
Applicable Information Criterion (WAIC).

2.2.3. Aggregation Level Comparison

From selected best-fitting models at each level of aggregation, fitted values were obtained from
the marginal posterior distributions of the selected models at each level of aggregation. These values
were then compared with the observed data over the study period to determine the best fitting model
at each level considering the Root Mean Squared Error (RMSE).
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3. Results
3.1. Variable Selection

The Geographically Weighted Regression (GWR) analysis revealed a significant association for
seven critical variables at a minimum of one spatial level over different years. These variables
encompassed critical aspects of the socio-economic landscape, including population density
(Density), sewage connection (Sewage), gas connection (Gas), garbage collection service (Garbage),
population with higher education degrees (Higher Ed.), percentage of women (Women), and
percentage of children (Children).

Figure 2 visually presents the space-time trends of these variables across diverse spatial levels.
The visualization aids in understanding the spatial patterns and temporal changes exhibited by each
variable, contributing to a comprehensive understanding of the intricate dynamics within the studied
region. This provides a concise summary of the outcomes derived from the GWR analysis,
emphasizing the spatial and temporal significance of the identified variables.
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Figure 2. GWR significance for individual spatial features at each level. Columns represent the
different levels, while rows are the significant variables. Colored areas indicate statistical significance
in local regressions.

3.2. Model Fitting and Comparison

Table 1 shows the results of model selection based on DIC and WAIC by level of aggregation. It
is important to note that these models can be compared within the same level but not across different
levels. A significant shift in both DIC and WAIC values is evident in the temporal models as opposed
to the spatial models. Notably, the spatio-temporal models, which integrate a comprehensive set of
covariates encompassing socioeconomic, demographic, and transformed environmental predictors,
exhibit the most favorable scores in these comparison metrics across all levels and were selected as
the best model for multilevel comparison.

Table 1. Model comparison using DIC and WAIC at each level of spatial aggregation.

Model
Level Metric Spatial Temporal tSpatlo-
emporal
Comunas DIC 5,345 4,861 4,860
WAIC 5,358 4,863 4,863
Sectores DIC 14,646 13,874 13,871
WAIC 14,656 13,874 13,869
Secciones DIC 33,942 32,206 32,163
WAIC 33,871 32,185 32,139
Manzanas DIC 89,900 84,728 84,051
WAIC 89,845 84,667 83,988

Figure 3 provides an insight into the spatial fixed effects of each spatiotemporal model inferred
from posterior distributions, showing the variations of these effects across different levels of spatial
aggregation.
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Figure 3. Results for spatial fixed effects in spatio-temporal fitted models. Points represent the median
of the marginal posterior distributions, and the lines draw the 95% credible interval for each level.
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At the level of Comunas, spatial variables exhibit non-significance, as indicated by the inclusion
of zero within the 95% credible intervals for all variables. This lack of significance aligns with the
comparable DIC and WAIC values observed for both temporal and spatiotemporal models in Table
1, implying that incorporating spatial variables at this aggregation level does not substantially
enhance the model’s explanatory capacity for DENV incidence.

For the intermediate level of Sectores, certain variables such as garbage collection, higher
education, and the percentage of children demonstrate significance and display inverse correlations
with DENV incidence. The negative coefficients suggest that improved access to garbage collection,
higher educational attainment, and a larger proportion of children are associated with reduced
DENYV spread, potentially highlighting the impact of enhanced public services and education on
disease mitigation.

At the Secciones level, most spatial variables exhibit significance, with garbage collection and
the percentage of women showing negative correlations with DENV cases. This inverse relationship
suggests that areas with more efficient waste management and a higher proportion of women tend
to have lower DENV prevalence. Moreover, factors such as higher population density, gas
connections, education levels, and the percentage of children consistently demonstrate negative
correlations with DENV cases, echoing the trends observed at the Sectores level and underscoring
the influence of these variables on disease incidence.

Finally, at the granular level of Manzanas, sewage connection emerges with a unique positive
correlation with DENV cases. Conversely, population density, higher education, and the percentage
of children maintain inverse correlations with DENV incidence, aligning with observations made at
the Secciones level. This consistency across different levels of spatial analysis suggests that certain
factors consistently relate to lower disease incidence despite the finer granularity of data.

Integrating this insight into the preceding analysis highlights a consistent negative correlation
between spatial variables such as higher education, population density, and the percentage of
children with DENV incidence across various levels, while the association between garbage collection
services and DENV cases appears less definitive, suggesting disparities in waste management
service.

Complementing the spatial analysis, Figure 4 introduces lagged temporal predictors through
contour plots, which offer insight into the temporal dynamics of the disease. The data underlying the
cyclical influence of weather patterns on the RR associated with DENV. For instance, temperature-
related metrics, such as mean temperature and the number of days exceeding 32°C, reveal a lower
RR at cooler temperatures and greater lags, transitioning to a higher RR as temperatures climb and
lag decreases. Conversely, precipitation indicators, such as total precipitation and number of wet
days, demonstrate an inverse relationship, with higher precipitation levels correlating with a
decreased RR in subsequent periods. Additionally, the NDVI exhibits variability and lacks
consistency across different levels of aggregation, suggesting complex interactions between
vegetation density and disease transmission that warrant further investigation.
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Figure 4. Contour plots for the results of temporal variables showing relative risk of dengue cases
from exposure and different time lags. Relative risk is calculated from baseline observations for each
covariate as follows: mean temperature risk is calculated relative to 22°C, Total precipitation relative
to 0 mm/month, and NDVI, Wet Days and Days Over 32°C are calculated relative to 0.

3.3. Level Comparison

Figure 5 depicts the compared values of observed DENV cases and the fitted values from
posterior distributions at each level, aggregated for the entire city.
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Figure 5. Aggregated fitted values from marginal posterior distributions, compared to observed
DENV cases in the city for the studied period. Fitted values are plotted with a 95% credible interval
at each level.

The model's performance varies across different levels of spatial aggregation. At the Comunas
level, the model achieves a high degree of correlation with the actual DENV case data, although it
tends to underestimate case numbers during outbreak peaks, a trend that was particularly
pronounced towards the end of 2015. In times of lower disease incidence, such as December 2017 and
June 2018, the model also falls short of accurately capturing the case numbers. Despite these
limitations, it performs commendably in periods of low case counts, notably, throughout most of
2017 and the early months of 2018.

Moving to the Sectores level, the model has a propensity to overestimate the incidence of DENV
cases, with this trend being especially evident in January 2015 and January 2016. This tendency for
overestimation continues through the endemic years of 2017 and 2018. Moreover, there is a noticeable
misalignment in the timing of predicted outbreaks compared to actual data, highlighting a phase
discrepancy between model predictions, and observed case trends.

Similarly, in Secciones level, there is a need for phase alignment. Still, the model demonstrates
an accurate fit during epidemic periods, both in terms of case count and pattern, as seen between
September 2015 and January 2016. This level also accurately captures smaller peaks during endemic
periods, such as December 2016 and June 2018. However, during periods characterized by generally
low DENV activity, such as the late 2017 to early 2018 timeframe, the model tends to overpredict the
number of cases, indicating a challenge in accurately modeling low incidence rates.

At the most granular level of spatial aggregation, Manzanas, the model's fit shows the greatest
fluctuation among all levels. While it aligns more closely with the observed data during epidemic
periods, similar to Secciones, its predictive performance is significantly less accurate during endemic
years, indicating a disparity in model fit across different disease prevalence periods.
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The differences in model performance underscore the challenges in capturing the complex
dynamics of DENV transmission, which vary temporally with epidemic and endemic cycles and
spatially at different levels of urban granularity. These insights emphasize the need for models that
can adjust to both the scale of analysis and the fluctuating nature of disease transmission, highlighting
the intricate balance between spatial resolution and predictive accuracy in epidemiological modeling.

Table 2 rectifies the observed behavior observed in Figure 5. Lower RMSE was found for
Comunas, since it provided the best overall fit; however, the level of Secciones provided a lower
RMSE than Manzanas and Sectores, which might be due to the better fit exhibited during epidemic

seasons.
Table 2. Root Mean Square Error (RMSE) for each level’s posterior marginals.
Comunas Sectores Secciones Manzanas
RMSE 32.69 45.80 42.34 66.63

4. Discussion

GWR analysis shows variation for spatial covariates among levels of aggregation.
Socioeconomic predictors are mostly significance at the lowest level, Manzanas, while demographic
predictors were also significant at intermediate levels like Secciones or Sectores. Only two predictors
were significant at Comunas. GWR analysis solely identifies significant spatial variables and
overlooks non-linear interaction, which is crucial for understanding the endemic-epidemic patterns
of DENV. This limitation may result in models that only partially capture the disease's dynamics.

Our study shows that the spatio-temporal models, which integrate spatial and temporal
variability, generally offered a better fit, and were selected for further analysis at all levels of
aggregation. However, the improvement in the spatio-temporal models at levels like Comunas and
Sectores was minimal, indicating that the added complexity of spatio-temporal models may only
sometimes lead to significantly improved fit. This underscores the importance of careful
consideration when increasing model complexity and highlights the need to balance detailed spatial-
temporal dynamics with model simplicity.

The significance of spatial predictors in DENV incidence varied markedly across different levels
of spatial aggregation. At the highest levels, namely Comunas and Sectores, many variables were
found to be non-significant, possibly due to the homogeneity within these broader spatial categories.
The lack of variability within spatial covariates at these levels leads to a limited ability to discern
significant impacts on DENV cases, as observed in the narrow covariate ranges detailed in
supplementary Table S1. In contrast, population density was notably significant at the more granular
Secciones and Manzanas levels and inversely correlated with DENV incidence. However, This
counterintuitive finding is supported by previous studies that have suggested that higher densities
may not favor mosquito breeding, particularly in areas with sufficient sanitation and utility services
[52,53].

Socioeconomic variables, such as sewage, gas connection, and garbage collection service, exhibit
diverse correlations with DENV cases. Sewage connection is positively correlated, attributed to urban
infrastructure and vector ecology (adaptation to breed in manmade environments), including
improperly designed systems creating mosquito breeding sites [54-57]. Conversely, areas with higher
gas connection rates tend to have lower DENV incidence, reflecting socioeconomic status. The
relationship with garbage collection services varies; a positive correlation at the Secciones level and
an inverse relationship at Sectores suggest complex dynamics influenced by local practices and
infrastructure. [58,59].

The observed variability among socioeconomic variables underscores the intricate interplay of
individual and collective dynamics, sometimes resulting in counterintuitive outcomes. Nevertheless,
these variables offer valuable insights into the internal dynamics of spatial distribution, exhibiting
distinct characteristics across different levels of spatial aggregation.
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Demographic predictors, including higher education, percentage of children, and percentage of
women, demonstrate a consistent pattern across spatial levels. Higher educational attainment in
populations may lead to increased implementation of disease prevention measures, potentially
reducing breeding sites and subsequent DENV cases [60,61]. The inverse correlation with the
percentage of children may reflect the demographic profile of DENV cases during specific outbreaks,
with adults and young adults being more frequently affected. Lastly, the percentage of women may
reflect the broader demographic composition of the city and the roles women play in household
management and potential exposure to mosquito breeding sites.

Variations in correlation between spatial variables and DENV incidence across different spatial
aggregation levels indicate diverse roles of socioeconomic and demographic factors in disease
transmission dynamics. While broader scales may obscure these factors amidst other influences, finer
scales highlight their heterogeneity, allowing for a more precise understanding of their impact on
DENYV transmission. This underscores the complexity of disease incidence modeling and emphasizes
the importance of considering scale when interpreting variable influences.

Despite consistent trends in temporal variables across all spatial aggregation levels, subtle
variations in relative risk suggest differing degrees of correlation with DENV cases. Temperature and
precipitation influence were relatively consistent across the city's spatial structures, resulting in
similar impacts on relative risk regardless of aggregation level. Our results show an association
between Mean Temperature and increased Relative Risk (RR) during high-temperature periods
(zero-month lag), and elevated disease risk due to total precipitation at a three to six-month lag across
Comunas, Sectores, and Secciones, which underscores the influence of weather patterns on DENV
transmission in urban areas. This relationship, consistent with regional climate patterns where cooler
seasons precede warmer periods by approximately four to six months [62], which is further
intensified by ENSO phenomena, such as the El Nifio events of 2015 and 2016. These extreme weather
events, characterized by higher temperatures and drought, impact mosquito breeding and access to
utilities in vulnerable areas, leading to community adjustments in water management practices and
influencing DENV transmission dynamics [25,63].

Days Over 32°C exhibited a comparable trend with mean temperature, where a higher frequency
of hot days at shorter lags was linked to an increased RR. The same relationship is displayed by the
number of wet days and total precipitation, with increased RR at two and six-month lags, reflecting
bimodal rainy seasons. Finally, NDVI showed irregular patterns, with minimal variation at broader
levels like Comunas and Sectores due to its non-seasonal nature.

While the temporal patterns hold consistently across spatial aggregation levels, the changes in
RR's for each covariate vary, suggesting differing strengths of correlation with DENV incidence. This
variance could stem from how DENV cases are distributed across each spatial level and how spatial
covariates account for the observed effects at more granular levels.

This study highlights the importance of considering temporal and spatial variables in
understanding DENV transmission dynamics. While temporal variables play a significant role,
spatial covariates at finer levels of aggregation are also crucial for a nuanced understanding of DENV
transmission. The analysis suggests that the Comunas level model provides the best overall fit for the
city, with the Secciones level model closely following. However, the Manzanas level model performs
weaker due to extreme case dispersion. Despite this, intermediate aggregation levels like Secciones
reveal discernible links with socioeconomic and demographic variables, aiding in understanding
local patterns for targeted interventions. This underscores the importance of considering macro and
micro-level factors in epidemiological modeling and intervention planning to tailor public health
strategies and reduce disease prevalence effectively.

The accuracy of DENV case reporting relies on local population engagement, often hampered
by underreporting due to symptom recognition without seeking formal diagnosis and the prevalence
of asymptomatic cases [64]. This underreporting significantly impacts case counts' accuracy,
hindering model precision [65]. Census data limitations are apparent, with only 2018 data available,
assuming socio-economic and demographic variables remain unchanged over six years, neglecting
potential variations. Modeling efforts focusing on endemic or epidemic periods may offer immediate
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insights into socio-economic and demographic influences on disease patterns but may overlook long-
term effects. Detailed research at lower observational levels is needed to address data scarcity and
the influence of local entomological and virological factors on disease dynamics.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org, Table S1: List of independent socioeconomic, demographic, and environmental
variables for Ibagué; Figure S1: Ibagué’s spatial division, from which aggregation levels are obtained. Comunas
are the biggest group, each composed of multiple manzanas as shown in the figure. Smaller groups of manzanas
build secciones and sectores; Figure S2: Wavelet coherence analysis for environmental variables. Each plot shows
the coherence between the environmental variables and DENV cases. High-significance (0.05) regions are plotted
as bounded areas. A cone of influence is included to discard any significant regions outside it. Arrows indicate
the relationship of the two series included in each plot.
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