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Abstract: The research of object classification and part segmentation is a hot topic in computer vision. A 
considerable number of studies have been carried out about deep learning on 3D point clouds. However,it is 
challenging to achieve effective feature learning due to sparsity of point clouds. Recently, a variety of 
Transformers have been adopted to improve point cloud processing and display great potential. Nevertheless, 
large numbers of Transformer layers tend to incur huge computational and memory costs. PointNet++ is one 
of the most influential neural architectures for point cloud understanding. Although the accuracy of PointNet++ 
has been largely surpassed by recent networks, this does not mean that PointNet++ has no potential.Thus, this 
paper offer two major contributions that significantly improve PointNet++ performance. Firstly, we introduce 
a novel contextual feature extraction (CFE) block that significantly enhances the feature extraction capabilities 
of PointNet++ networks. Secondly, to further enhance feature fusion, we seamlessly integrate a mutual learning 
(ML) block into the network architecture. By embedding these two innovative blocks within each layer of the 
network, we not only enrich the network's functionality but also impart it with greater robustness and 
adaptability. The specific experiments were conducted on the S3DIS (6-fold cross-validation) and Modelnet40 
datasets with 86.5% and 92.7% accuracy, respectively, which proved that our model is comparable or even 
better than most existing methods for classification and segmentation tasks. 
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1. Introduction 

In recent years, the continuous evolution of 3D data acquisition techniques has fostered a 
significant surge in interest towards comprehending point clouds. As a result, numerous applications 
have surfaced, including indoor navigation [1], self-driving vehicles [2], robotics [3], hand pose 
estimation [4], underground mining environments [5], face recognition [6], city building 
reconstruction [7], multi-target recognition [8,9], and beyond. 

Unlike images with their neatly organized regular pixel grids, 3D point clouds exist as sets 
within a continuously varying space, distinguished by sparsity, irregularity, and disorder. This poses 
a significant obstacle for convolutional neural network-based models, even with their notable 
accomplishments in computer vision. The reason lies in the inherent structural mismatch between 
these models and 3D point cloud data, preventing a straightforward application for processing the 
latter. Consequently, it becomes imperative to craft a bespoke deep neural network model that caters 
to the distinctive structural nuances of 3D point cloud data. In response to this challenge, numerous 
approaches to deep learning on 3D point clouds have surfaced. 

Qi et al. were the pioneers in introducing PointNet [10], a deep learning network designed for 
feature learning through the utilization of multi-layer perceptrons (MLPs) and maxpooling 
operations. However, a limitation of PointNet is its inability to capture local features, which is a 
crucial capability exhibited by convolutional neural networks. PointNet++ [11] addresses this 
limitation by introducing a hierarchical structure that enables the extraction of local features. 
Nevertheless, it fails to consider the mutual learning among points, resulting in limitations to its local 
feature extraction capability. Such limitations may adversely affect the network's performance. 
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In this work, we construct the Mutual Learning(ML) block and the Contextual Feature 
Extraction(CFE) block for effectively extends the PointNet++ model. The intuition behind these blocks 
is intuitive: to enhance the network's ability to integrate local features. Specifically, PointNet++ 
utilizes points to represent local structural information, but overlooks the connection between these 
points. If we express structural information according to extract more point features and promote the 
further integration of feature information between centroid points, it will definitely improve the 
ability to integrate local features and the performance of the whole network model. 

In this paper, we propose an enhanced version of PointNet++ that conbines contextual feature 
extraction with mutual learning among points. This network effectively extracts spatial and semantic 
information from points, and utilizes the ML block to enhance the integration of feature information 
among centroid points. The ML block uses residual connections [12], grouped vector self-attention 
operator, and trainable position encoding [13].Extensive experiments have demonstrated that our 
model is able to process raw point sets efficiently and robustly on both 3D object datasets and indoor 
remote-sensing datasets. 

In summary, the contribution of this work is two-fold: 
• We propose an enhanced version of PointNet++ network. This approach utilizes the CFE block 

and the ML block to enhance the local feature integration capability of Point-Net++ and improve 
the overall robustness of the network. 

• The performance of the proposed approach is evaluated on public datasets, ranging from shape 
classification to scene semantic segmentation. The results demonstrate that the approach 
significantly outperforms most existing methods. 

2. Related Works 

With the rapid evolution of deep learning methods, various deep neural networks have emerged 
for the processing of point clouds and can be broadly categorized into two groups. One approach 
involves projecting the 3D point clouds data to a regular structure where convolutional neural 
networks can be effortlessly applied for representation. Alternatively, another approach involves 
directly consuming the point clouds. 

2.1. Projecting 3D Point Clouds Data to Regular Structure 

Previous approaches typically focused on projecting 3D point clouds data to a regular structure, 
such as collections of images or 3D voxel grids, before feeding the data into deep neural networks. 
Image-based networks often employ multi-view representations, utilizing a set of 2D images 
rendered from the point cloud at various viewpoints [14–17]. MVCNN [18] projects 3D point clouds 
from different perspectives to 2D images through spatial projection, and processes the 2D data using 
traditional convolutional neural networks. To depart from selecting a global projection viewpoint,  
[19] proposed projecting local neighborhoods to local tangent planes and processing them using 2D 
convolutions. ShapeNets [20] and VoxNet [21] transform the unordered point clouds into a regular 
3D grid via voxelization and proceed with feature learning using a 3D Convolutional Neural 
Network. Despite achieving commendable results, these works face a dilemma: 2D convolution falls 
short in capturing essential 3D geometry information like normals and shape, while 3D convolution 
demands extensive computation on the sparse 3D mesh resulting from voxelization. Utilizing sparse 
structures such as octrees or hash-maps enables the handling of larger grids and improved 
performance [22,23]. However, these methods still rely on the subdivision of a bounding volume 
rather than leveraging local geometric structure. 

2.2 Manipulating Point Clouds Directly 

Given the reasons outlined above, state-of-the-art deep neural networks are purposefully crafted 
to tackle the irregularity of point clouds. These networks directly manipulate raw point cloud data, 
bypasses the need for conversion to intermediate regular representations, such as voxelization or 2D 
images. This innovative approach was pioneered by PointNet [10], which achieves permutation 
invariance by extracting features of individual points through vanilla MLP layer and subsequently 
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applying a symmetric function to form global features after accumulating them. However, one 
limitation of this approach is that it treats each point independently, disregarding the geometric 
relationships among them. Consequently, local features that encode crucial spatial information may 
be overlooked. 

To overcome these limitations, subsequent to PointNet, PointNet++ [11] introduces a neural 
network structure that leverages PointNet in a hierarchical fashion. This approach employs query 
ball grouping and farthest point sampling (FPS) to meticulously construct local neighborhoods, 
enabling the network to capture richer geometric relationships and spatial patterns. The emergence 
of PointNet and PointNet++ has led to a surge in popularity for directly processing entire point clouds 
in an unstructured format using deep convolutional neural networks. Jiang et al. [24] proposed a 
module called PointSIFT that encodes information of different orientations and is adaptive to scale 
of shape. This module effectively stacks and encodes data from eight key spatial orientations through 
a three-stage sequential convolution process. PointWeb [25] extracts contextual features from the 
local neighborhood and enhances point features through the utilization of the Adaptive Feature 
Adjustment (AFA) module. 

Multiple methods center on the development of explicit convolution kernels for enhanced 
feature extraction at points. PCCN [26] represents convolutional kernels as MLPs. SpiderCNN [27] 
defines its kernel as a family of polynomial functions, with each neighbor receiving a unique weight. 
Spherical CNN [28] addresses the issue of 3D rotation equivariance by designing spherical 
convolutions. PointCNN [29] utilizes X-transformation to rearrange points into a latent and 
potentially canonical order, subsequently employing traditional convolutional operators for effective 
feature extraction. 

Multiple methods focus on Graph-CNN as a key component for enhancing feature extraction 
and overall network performance in point cloud analysis. DGCNN [30] constructed dynamic 
neighborhoods using the k-nearest neighbor (k-NN) algorithm and subsequently performed edge 
convolution operations on these neighborhoods. ECC [31] designs dynamic edge-conditioned filters 
that are tailored based on edge labels, enabling flexible and adaptive feature extraction in point cloud 
analysis. DeepGCNs [32] delve into the construction of exceptionally deep GCNs, leveraging 
residuals and dilation convolution, techniques commonly employed by CNNs to enhance depth and 
optimize network performance. 

Recently, Transformer, which has dominated the field of natural language processing, has made 
significant strides in computer vision, showcasing its exceptional global feature learning capabilities. 
Consequently, it has found applications in a diverse range of point cloud processing tasks. Point 
Cloud Transformer(PCT) [33] innovates by replacing the shared MLP layer of PointNet with the 
original Transformer block with Offset-Attention, and introduces neighbourhood information 
embedding to achieve state-of-the-art performance. Point Transformer [13] utilizes a hierarchical 
Transformer block with a vector self-attention operator to extract local features from the point cloud. 
To reduce the resolution, it leverages transition down modules. Subsequently, global features are 
derived through a global average pooling operation. 

Despite their success, pure Transformer architectures such as these networks have a significant 
drawback: the self-attention mechanism involves numerous linear transformations, potentially 
leading to information redundancy and significant computational and memory costs. PointNet++ is 
a classically popular and widely utilized network that, despite its commendable feature extraction 
capability compared to PointNet, has limitations. Specifically, it primarily focuses on extracting point 
coordinate information without delving into additional contextual details. Furthermore, it neglects 
the mutual learning among neighboring points, limiting its overall representational power. 
Therefore, we hypothesized that the learning capabilities of PointNet++ could be significantly 
enhanced by leveraging a robust self-attention mechanism and refining its feature extraction 
capabilities. 
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3. Methods 

In this section, we introduce two blocks: one dedicated to feature extraction and the other to 
mutual learning. Leveraging recent advancements in deep learning for point clouds and drawing 
inspiration from classical point cloud networks, our method effectively captures local feature 
information, leading to improved model performance. Specifically, we introduce an innovative 
feature extraction block within PointNet++ to capture a richer set of information. Additionally, we 
employ the novel ML block grounded in a grouped vector self-attention operator, that not only 
enhances the capa-bilities of the PointNet++ network but also mitigates some of the limitations 
inherent in pure Transformer architectures. 

The first section provides a comprehensive explanation of the CFE block. The second section 
details the specific design of the ML block. Finally, the last section presents the overall architecture 
of the method. 

3.1. Contextual Feature Extraction Block 

The CFE block effectively achieves local feature extraction by aggregating relevant local features 
onto the corresponding sampling points. The specific structure is shown in Figure 1 as an example. 
Given the input point cloud, we employed FPS to generate a subset of the point cloud, referred to as 
the sampling point set. For the neighborhood of a sampling point, we presented a context fusion 
method that effectively encodes and combines both coordinate and feature information. This 
approach has been validated as effective in previous research  [34]. The proposal of this method is 
motivated by our suspicion that the feature extraction layer in PointNet++ is limited to basic 
extraction of neighborhood features, thereby failing to fully capitalize on the informational richness 
within the local vicinity. 

Sampling

... ......

 
Figure 1. The CFE block structure. From left to right, the three key steps are: sampling and 
grouping, contextual feature extraction, and local feature aggregation. 

For each neighbor 𝑥𝑥𝑗𝑗  within the neighborhood of a sampled point 𝑥𝑥𝑖𝑖 , two distinct contexts 
emerge: a spatial context 𝑃𝑃𝑗𝑗, which characterizes geometric information, and a feature context 𝐹𝐹𝑗𝑗, 
which embodies semantic information. To achieve a comprehensive representation of these contexts, 
we integrated both 𝑃𝑃𝑗𝑗 and 𝐹𝐹𝑗𝑗 as follows: 

𝐶𝐶𝑗𝑗 = 𝑃𝑃𝑗𝑗  ⊕  𝐹𝐹𝑗𝑗 (1) 

where 𝐶𝐶𝑗𝑗  is the contextual representation of 𝑥𝑥𝑗𝑗 . Using these representations as a foundation, we 
formulate the relationship between 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 as follows: 

∆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑖𝑖  ⊕  𝑃𝑃𝑗𝑗  ⊕  � 𝑃𝑃𝑖𝑖  −  𝑃𝑃𝑗𝑗  �  ⊕  � 𝐶𝐶𝑖𝑖  −  𝐶𝐶𝑗𝑗  � (2) 

where ⊕ is the concatenation operation, and � 𝑃𝑃𝑖𝑖  −  𝑃𝑃𝑗𝑗  � calculates the Euclidean distance between 
the neighbouring and center points. 

In this way, we can acquire initial local information that serves as a foundation for subsequent 
feature aggregation. Subsequently, we aggregate the information to form a comprehensive local 
information representation. Specifically, ∆𝐶𝐶𝑖𝑖𝑖𝑖 is encoded using a MLP, followed by a max-pooling 
function to extract the novel feature. The above operations can be summarized as: 

𝑦𝑦𝑖𝑖 = max 
𝑘𝑘

( 𝑀𝑀𝑀𝑀𝑀𝑀 ( ∆𝐶𝐶𝑖𝑖𝑖𝑖  ) ) (3) 
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By doing so, we arrive at a precise feature representation of the sampled point's local 
neighborhood. 

3.2 Mutual Learning Block 

To enhance the capture of local structures and elevate network performance, we need to 
integrate the features of the point set more comprehensively. Consequently, we design the ML block 
between neighborhoods to facilitate this integration. The ML block employs a grouped attention 
mechanism along with a vector attention operator, incorporating a trainable positional coding. 

We assume that the input point clouds of each ML block, denoted as {𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑛𝑛} , are 
represented by 𝑌𝑌 with dimensions 𝐵𝐵 × 𝑁𝑁 × 𝐶𝐶. Here, 𝐵𝐵 refers to the batch size, 𝑁𝑁 represents the 
number of point clouds per sample, and 𝐶𝐶  denotes the number of channels. First, the k-NN 
algorithm is employed to identify k neighboring points for each point in Y, subsequently organizing 
them into n distinct neighborhoods. Then, the relationships within each neighborhood are 
thoroughly analyzed and precisely calculated. 

To compute neighborhood relations, we initially elaborate on the grouping vector self-attention 
operator, followed by the introduction of trainable positional coding. For the neighborhood of a 
sampling point 𝑦𝑦𝑖𝑖, the classical vector attention operator employing the subtraction relation can be 
represented as follows: 

𝑧𝑧𝑖𝑖 = ∑ 𝜌𝜌 �𝛾𝛾�𝜑𝜑(𝑦𝑦𝑖𝑖) − 𝜔𝜔�𝑦𝑦𝑗𝑗� + 𝛿𝛿��⊙ �𝛼𝛼�𝑦𝑦𝑗𝑗� + 𝛿𝛿�𝑘𝑘
𝑗𝑗=1  (4) 

where 𝑧𝑧𝑖𝑖 is the output feature. 𝜑𝜑, 𝜔𝜔, and 𝛼𝛼 are linear layers, implemented as a 1 × 1 convolution. 
𝛿𝛿 is a position encoding function and 𝜌𝜌 is a normalization function such as softmax. The mapping 
function 𝛾𝛾 is an MLP with two linear layers and one ReLU nonlinearity. 

To achieve a lighter and more efficient version, we utilize grouped vector self-attention. We 
divide the 𝜑𝜑(𝑞𝑞𝑖𝑖)  and the 𝜔𝜔�𝑞𝑞𝑗𝑗�  into G groups along the channel direction, denoted as 
{𝜑𝜑𝑖𝑖1,𝜑𝜑𝑖𝑖2,⋯ ,𝜑𝜑𝑖𝑖𝑖𝑖} and �𝜔𝜔𝜔𝜔1,𝜔𝜔𝑗𝑗2,⋯ ,𝜔𝜔𝑗𝑗𝑗𝑗�. Equation 4 can be reformulated as follows: 

𝑧𝑧𝑖𝑖 = ∑ 𝜌𝜌 �𝛾𝛾�∑ �𝜑𝜑𝑖𝑖𝑖𝑖 − 𝜔𝜔𝜔𝜔𝑔𝑔�𝐺𝐺
𝑔𝑔=1 + 𝛿𝛿1�� ⊙ �𝛼𝛼�𝑞𝑞𝑗𝑗� + 𝛿𝛿2�𝑘𝑘

𝑗𝑗=1  (5) 

where 𝛿𝛿1 and 𝛿𝛿2 represent trainable location codes. Utilizing a grouping cumulative approach, we 
can effectively amplify useful information, ultimately leading to the extraction of more recognizable 
features. 

Position encoding plays a crucial role in self-attention mechanisms, enabling the operator to 
adaptively capture local structural patterns within the data, as highlighted in  [35]. In the vector 
attention mechanism, a learnable position encoding is introduced to effectively fuse local spatial 
information. Let 𝑃𝑃 = {𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛} represent a set of vectors encoding the coordinates of points 
within a neighborhood. Our 3D position coding function is defined as follows:  

𝛿𝛿 = 𝜃𝜃 �

𝑝𝑝1 − 𝑝𝑝1
𝑝𝑝2 − 𝑝𝑝1

⋮
𝑝𝑝𝑛𝑛 − 𝑝𝑝1

𝑝𝑝1 − 𝑝𝑝2
𝑝𝑝2 − 𝑝𝑝2

⋮
𝑝𝑝𝑛𝑛 − 𝑝𝑝2

⋯
⋯
⋱
⋯

𝑝𝑝1 − 𝑝𝑝𝑛𝑛
𝑝𝑝2 − 𝑝𝑝𝑛𝑛

⋮
𝑝𝑝𝑛𝑛 − 𝑝𝑝𝑛𝑛

� (6) 

and 𝜃𝜃  is implemented as an MLP consisting of two linear layers interspersed with batch 
normalization and ReLU activation functions. In Eq.(5), 𝛿𝛿1  and 𝛿𝛿2  serve to transform the 3D 
coordinate information into the corresponding dimension, facilitating channel summation. 

To improve the selectivity and adaptability of the network learning process, and to prevent 
network degradation, the output establishes a residual connection with the original input. The 
structure of the ML block is shown in Figure 2 as an example. 
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Figure 2. The ML block structure, which adopted the grouped vector attention mechanism. 

3.3 Overall Architecture 

The overall pipeline of our network, as depicted in Fig. 3. Taking the original point cloud as 
input, the network can be categorized into two main parts: the front-end and the back-end. The front-
end serves as the core component of the network, responsible for feature extraction. For the 
classification task, the front-end comprises two modules, whereas for the segmentation task, it 
consists of four modules. Each module within the front-end incorporates two blocks: the CFE block 
and the ML block, which operate on the set of points.  

CFE
Contextual Feature Extraction Block

ML
Mutual Learning Block

FC
Fullly Connected Layer

FP
Feature Propogation Module

CFE

ML

CFE

ML

CFE

ML

CFE

ML

s

FP

FP

FP

FP

FC

Input

Loss

Input

CFE

ML

CFE

ML

MLP

FC

Loss

c . 

Figure 3. The proposed network architecture is tailored for classification (c) and segmentation (s) 
tasks. It features a front end, which is constructed from a stack of modules that seamlessly integrate 
CFE blocks with ML blocks. The subsequent component, comprising the remainder of the 
architecture, serves as the back end. 
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In the classification task, the sampling point set of the two modules is configured with [𝑁𝑁/2, 𝑁𝑁/8] 
points respectively, where 𝑁𝑁 denotes the total number of input points. Following this, the back-end 
component employs an MLP layer to enhance the extracted features to 1024 dimensions. 
Subsequently, a global max pooling operation is applied to derive the definitive global feature 
representation for the target point cloud. Ultimately, global classification results are achieved 
through the utilization of an FC layer, which comprises three linear layers, incorporating batch 
normalization and ReLU activation. For the segmentation task, the sampling point set of the four 
modules is configured with [N, N/4, N/8, N/16] points, respectively. The back-end component 
consists of four FP modules (Feature Propagation Modules) and two linear layers, incorporating 
batch normalization and ReLU activation. 

4. Experiment Result and Discussion 

In this section, we meticulously evaluate the efficiency of our proposed framework across 
multiple benchmark datasets. Initially, we undertake a comprehensive assessment of the 
segmentation task model, specifically utilizing the challenging Stanford Large-Scale 3D Indoor 
Spaces (S3DIS) dataset [36]. Subsequently, we expand our experimental horizons to encompass the 
classification task on the ModelNet40 [20] dataset, conducting ablation experiments to further 
validate our approach. 

For our specific parameter settings, we utilize the Adam optimizer as the chosen optimization 
method. We use the Adam optimizer with momentum and weight decay set to 0.9 and 0.0001. The 
initial learning rate was set to 0.01, with a cosine annealing schedule to adjust the learning rate at 
every epoch. It is noteworthy that all our experiments are conducted on an Intel Xeon(R) Platinum 
8350C 2.6GHz CPU, equipped with a powerful NVIDIA GeForce RTX 3090 GPU. 

4.1. Segmentation Results 

The S3DIS [36] dataset, designed for semantic scene parsing, comprises 271 rooms spanning six 
areas from three distinct buildings. Each point in the scans is annotated with a semantic label from a 
total of 13 categories, including ceiling, floor, table, and others. Consistent with standard evaluation 
practices outlined in  [11], we evaluate the proposed approach in two distinct modes: (a) Area 5 is 
exclusively reserved for testing purposes and is excluded from the training process, and (b) a 
thorough 6-fold cross-validation is conducted to ensure robust and reliable performance assessment.  

We treat each scene as a unit sample and randomly select 4096 point clouds from each sample 
for training. For training, we adopt a batch size of 16 and conduct 32 epochs to ensure sufficient 
iterations for effective learning. Additionally, we set the number of CFE blocks and ML blocks to 4, 
which are key components in our architecture. Table 1 presents the segmentation results of our 
proposed method in comparison with other techniques. We offer a thorough evaluation by reporting 
the mean classwise intersection over union (mIoU) and overall accuracy (OA) to demonstrate the 
performance of our approach. As evident from Table 2, our method achieved a notable improvement 
of 5.5% in OA and 9.2% in mIoU. These experimental results clearly indicate that our network model 
exhibits excellent performance in the task of semantic segmentation. 

Table 1. Comparison of Semantic segmentation results on the S3DIS dataset, evaluated with 6-fold 
cross-validation. 

Method mIoU(%) OA(%) 
PointNet [10] 47.6 78.5 

RSNet [37] 56.5 - 
PointNet++ [11] 54.5 81.0 

DGCNN [30] 56.1 84.1 
SPGraph [38] 62.1 85.5 

DeepGCN [32] 60.0 85.9 
ours 63.7 86.5 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2024                   doi:10.20944/preprints202403.0743.v1



 8 

 

4.2. Classification Results 

ModelNet40, the benchmark dataset for 3D shape classification tasks, comprises a diverse 
collection of 12,311 CAD models, encompassing 40 distinct categories of man-made objects. For our 
experiments, we utilize the point cloud representation of ModelNet40, as provided by  [10]. This 
representation involves sampling 1024 points uniformly from the mesh surface of each model, taking 
into account the face area, and subsequently normalizing them into a unit sphere. We adhere to the 
official split, employing 9843 shapes for training and reserving 2468 for testing purposes. 

We establish the batch size as 24 and proceed with 200 epochs of training. Additionally, we set 
the number of CFE blocks and ML blocks to 2, ensuring the optimal configuration for our model. 
Table 2 presents the findings of the classification task, wherein our proposed method surpasses most 
of the current methodologies on this particular dataset. For the conducted experiments, we utilized 
the (x, y, z)-coordinates of 1024 points as the primary input. Specifically, our proposed method 
demonstrates a significant improvement in overall accuracy, surpassing ShapeNets by 8.0% and 
VoxNet by 6.8%. In comparison to PointNet++, our method achieves an impressive OA of 92.7% and 
mAcc of 90.2%, representing a notable increase of 2% and 2.6%, respectively, over the original 
network. To further validate the effectiveness of each block, we conducted ablation experiments. The 
results revealed that the CFE block contributes to a 1.1% OA improvement and a 1.7% mAcc 
enhancement, while the ML block enhances OA by 1.6% and mAcc by 2.3%. These outcomes firmly 
establish the superiority of our method and validate the effectiveness of its constituent blocks. 
Additionally, by learning sufficiently enriched features, our method outperforms SpiderCNN by 
0.3% in OA, further confirming its competitiveness. 

Table 2. Comparison of Classifification results on ModelNet40 dataset. 

Method Input mAcc(%) OA(%) 
3DShapeNets [20] 1024 77.3 84.7 

VoxNet [21] - 83.0 85.9 
MVCNN [18] - - 90.1 
PointNet [10] 1024 86.2 89.2 

PAT [39] 1024 - 91.7 
PointCNN [29] 1024 88.1 92.2 
DGCNN [30] 1024 90.2 92.2 

SpiderCNN [27] 1024 - 92.4 
PointNet++ [11] 1024 87.6 90.7 

PointNet++(+CFE) 1024 89.3 91.8 
PointNet++(+ML) 1024 89.9 92.3 

ours 1024 90.2 92.7 

5. Conclusions 

We introduce an enhanced version of the PointNet++ network, focusing on advancements in 
both feature extraction and aggregation. Leveraging the downsampled point cloud as our input, our 
method meticulously extracts global features by seamlessly integrating two distinct blocks. Initially, 
we capture the contextual features of the point cloud through the CFE block. Subsequently, we 
employ the ML block to further consolidate these features, harnessing the self-attention mechanism 
to enable sampling points to mutually learn from each other. By conducting ablation experiments 
within a single dataset and comparing our method with others across different datasets, we 
demonstrate the efficient and robust capabilities of our proposed approach in processing raw point 
sets, whether it be on 3D object datasets or indoor remote-sensing datasets. Specifically, our proposed 
method achieves a prediction accuracy of 88.4% on the S3DIS dataset and 92.7% on the ModelNet40 
dataset, respectively. Furthermore, on the ModelNet40 dataset, the CFE block enhances accuracy by 
1.1%, while the ML block boosts it by 1.6%. The experimental results clearly demonstrate that our 
proposed network outperforms other point cloud-based methods on the semantic segmentation task. 
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This superior performance is attributed to the network's ability to efficiently learn contextual features 
and facilitate mutual learning among sampling points. In processing tasks involving point sets, our 
proposed network model has achieved comparable or superior performance compared to most 
existing networks. 

While the method proposed in this research demonstrates promising results, it is not without 
limitations. One such limitation lies in the feature extraction process, as the CFE block does not fully 
maximize the extraction of relevant features. Additionally, the FPS method utilized in our approach 
could benefit from further optimization techniques that are now available. Moreover, the self-
attention operator remains an underexplored area in point cloud tasks, offering ample opportunities 
for further exploration. In the future, we aim to delve deeper into these areas and enhance our 
method's performance even further. 
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