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Abstract: We give a series of numerical examples of competitive evolution in the predation system, showing 
in some cases how the choice is made to increase the efficiency of the predation mechanism (or other significant 
parameters) to the detriment of populations (both of prey and predators). We then develop the mathematical 
theory that enables us to understand the causality involved, and identify a trend towards the emergence of the 
functional predation mechanism as such (and not of populations of the species involved). The realization of 
this trend only takes place when the conditions for it are offered by the hazards proposed to successive 
competitive choices. The logical structure of this trend is similar to that of the « tendency of rate of profit to fall 
» in certain economic models. 
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1. Introduction 

It is well known that the causality involved in predation is highly complex, and difficult to 
reconcile with general trends such as "survival of the fittest". Indeed, if we have predators feeding on 
prey, it is clear that, from a demographic point of view, the presence of predators is always 
detrimental to the prey, whereas, from the predators' viewpoint the consumption of prey is necessary 
for their survival, but, if excessive, it leads to a scarcity of prey, which in turn leads to predator 
starvation. Clearly, moderation of the predation mechanism is fundamental to its stability, and 
perhaps to its long-term viability (you can't kill the goose that lays the golden eggs ...). It is also clear 
that time must play an explicit role in any causal description of these mechanisms. 

The predator-prey system of population dynamics, of which there are several models, makes it 
possible to explain the various possible situations and to understand their causality, and above all, 
by placing two predators in competition, to understand the reasons for the evolutionary choices that 
follow.  

But, on the other hand, a more complete system, known as predation-commensalism, is a model 
of the global economy that enables us to proof certain properties of the latter, notably TRPF 
(Tendency of Rate of Profit to Fall), which simply results from the competition between various firms 
which, in order to increase their market share, reduce their profit margins. The consequence of TRPF 
is the pursuit of innovation and technological progress, which is precisely what allows the rate of 
profit to be reduced. (See [1] chap 9 and in particular section 9.3). In this paper, we follow an 
analogous approach in the predator-prey system to identify the natural tendency resulting from 
repeated competitive evolution. Under plausible hypotheses (see section 4), it appears that the 
natural tendency of this system is to increase its own efficiency. Clearly, this does not always 
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correspond to the demographic growth of the predator, and may even lead to its disappearance. This 
is a "tendency", a kind of "vocation" that only comes to fruition when the conditions for its realization 
are offered by the hazards of successive competitive evolutions (just as TRPF does not automatically 
lead to technological progress). It is nevertheless clear that the loss of efficiency is rejected by 
competitive evolution, which nonetheless accepts drastic population reductions (of predators and 
prey) under certain conditions. 

Let's take a predation model for two species (of populations x and y, prey and predator 
respectively), 

� 𝑥𝑥
′ = 𝑓𝑓(𝑥𝑥) − 𝑦𝑦ℎ(𝑥𝑥)

 𝑦𝑦′ = −𝑐𝑐𝑐𝑐 + 𝜏𝜏 𝑦𝑦 ℎ(𝑥𝑥) (1) 

where x'=f(x) is the equation for prey evolution in the absence of predators, for which we take the 
logistic equation: 

𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎(1 − 𝑥𝑥
𝑃𝑃
  (2) 

 (a is the natural growth rate of x and P the environmental carrying capacity). 
The functional response h(x) is taken from Holling's type-II, in the form 

ℎ(𝑥𝑥) = 𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇ℎ �
𝑒𝑒𝑒𝑒
𝑏𝑏 �

 (3) 

Remark: This predation function h(x) is essentially analogous to the widely used Holling type-II 
functional response, (see for instance [1–3] or one of Holling's original articles [4]). Holling's type-II 
functional response resembles type-I for small x, but then gradually tends towards a constant 
(representing the predator's satiety). However, here we use the hyperbolic tangent, ℎ(𝑥𝑥)=𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ(𝑒𝑒𝑒𝑒/𝑏𝑏), 
instead of the algebraic Holling type-II form, ℎ(𝑥𝑥)=𝑏𝑏(𝑒𝑒𝑒𝑒)/(𝑏𝑏+𝑒𝑒𝑒𝑒). Indeed, the hyperbolic tangent 
expresses the idea of proportionality capped by satiety much better than the algebraic expression. It 
often enables us to better understand the respective roles of proportionality for small x (chance 
encounters) and the satiety ceiling.  

Within the framework of this model, there are six significant parameters: c (death rate of 
predators in the absence of prey), e (efficiency of the predation mechanism), b (satiety ceiling of 
predators), τ (conversion rate of consumed prey into predator population), a (natural growth rate of 
prey in the absence of predators and abundance of resources) and P (carrying capacity of the 
environment, i. e. population of preys alone that it can admit). The last two concern only the behavior 
of prey with their own resources. The first four concern the behavior of predators and their 
relationship with prey. 

The parameters are fixed in all numerical simulations and are given by: 

a=1.0, P=4.0, b=1, c=0.7616 (4) 

Note that we can always take τ=1 by choosing appropriate units to measure the populations of 
x and y (the unit of y is the quantity of predators obtained by consuming a unit of x). We will always 
do so, except in cases where we need to compare several predators with different conversion rates, 
where a single choice is not possible. 

The solutions and attractors in system (1) have different properties depending on the parameter 
values. It is useful to bear these in mind before tackling the problem of competition between two 
predators. 

Apart from the (0,0) and (P,0) which are always equilibria, to find the equilibrium (x0,y0) internal 
to the domain of definition x > 0, y > 0, simply solve system (1) with the first members replaced by 0. 
From the second equation we have Eq. (5) below and then from the first we get Eq. (6): 

𝑥𝑥0 =
𝑏𝑏
𝑒𝑒
𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇ℎ(

𝑐𝑐
𝑏𝑏𝑏𝑏

) (5) 
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𝑦𝑦0 =
𝑓𝑓(𝑥𝑥0)
𝑐𝑐/𝜏𝜏

 (6) 

It is well known that, depending on the parameter values, this equilibrium may or may not be 
stable. In the latter case, the attractor is a periodic cycle surrounding the equilibrium point. It is worth 
recalling here the evolution of the equilibrium point and this attractor as a function of the parameter 
e when the other parameters are fixed. Indeed, we shall see that the variation of e implies particularly 
significant qualitative properties. We shall also see (section 4) that variations in e play a key role in 
the dynamics of evolution.  

By fixing the values of the other parameters and varying e, we can easily see (see also [5] or [1] 
chap 6) thanks to Eq. (5) and (6) with Eqs.(2)-(3), that the equilibrium point (x0,y0) moves along an arc 
of a parabola (see Figure 1) which contains the two equilibria (0,0) and (P,0) of the prey alone, i.e. in 
the absence of predator, (which therefore always exist independently of e). This parabola arc is 
traversed in the direction of decreasing x0 for increasing e. According to Eq. (6), the internal 
equilibrium point exists for f(x0 )>0, which is equivalent to x0<P. The corresponding value of e is the 
viability threshold of predation. For increasing e, the equilibrium point moves along the parabola, 
rising towards the apex A (top of the parabola) and then falling towards the origin, which 
corresponds to e = +∞. The arc of the parabola between P and A is the normal mode (as e increases, the 
equilibrium population of prey decreases and that of predators increases). For larger values of e, we 
are in the paradoxical region (between A and O; when the efficiency e increases, both equilibrium 
populations of prey and predators decrease). 

The stability of the internal equilibrium point (x0,y0) depends on e, and therefore on its position 
along the parabola. It is stable from P (i.e. for small e) up to a certain point B in the paradoxical region, 
Figure 1, where there is a PAH bifurcation (= Poincaré-Andronov-Hopf, often referred to as Hopf 
bifurcation, see for example [6,7]). Equilibrium still exists in the BO arc, but it is unstable, the attractor 
being a periodic cycle surrounding the equilibrium point. This cycle naturally depends on e; we have 
drawn it on Figure 1 for several values of e. The literature is very rich on these problems of equilibria, 
cycles, see for example [8–11] and references therein cited. 

It should be pointed out that this general pattern naturally depends on the parameter values. It 
is easy to see (see [1] section 6.5) that the bifurcation of PAH is due to the capping of satiety, 
(parameter b). As b increases, the PAH bifurcation moves towards the origin, and for b=+∞ it coincides 
with the origin; in other words, for b=+∞ (which is equivalent to h(x)=e x), there is no PAH bifurcation 
and the equilibrium is always stable (it is the attractor). 

It is useful to calculate, for each value of e beyond the PAH bifurcation, the average values of the 
densities of x(t) and y(t), along the corresponding cycle, which we will denote by 𝑥𝑥�, 𝑦𝑦�. They differ 
from (x0,y0), and describe (see Figure 1) a curve that is virtually rectilinear starting from the PAH 
bifurcation and moving for increasing e with increasing 𝑥𝑥� and decreasing 𝑦𝑦�. 

The shape of the cycles is very interesting. For values of e slightly above the PAH bifurcation, it 
is a small, approximately elliptical cycle surrounding the equilibrium point. But for larger e, the cycle 
gradually adopts a vaguely triangular shape, which becomes, for larger e, practically a curvilinear 
triangle with smooth (rounded) vertices, whose sides are the x and y axes and a curve arising from 
(P, 0) solution of the limit system for e = +∞ (which is equivalent to taking h(x)=b) and whose vertices 
are the two equilibria of the prey alone, O and P, and a point C.  

This highly significant geometry is known as the HNR triangle (for Hubris - Nemesis - Resilience). 
In fact, as we go through the cycle as a function of t, the curvilinear side close to PC is an increase in 
the predator population at the expense of the prey population, due to the hubris of e efficiency. 
Arriving near C, there are very few preys and many predators, leading to a rapid decline in the 
predator population, which almost vanishes out of food; this is the CO side (nemesis = punishment 
for hubris). At the approach of O, there are very few predators and preys, so they can proliferate 
unhindered by predators, which is what makes the side close to OP (close to the evolution of preys 
alone, it's prey resilience). This closes the cycle, which begins again periodically. 
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Figure 1. Shows the limit cycles exhibited by the system, for e ranging from 6 to 30, with increasing 
amplitude as the parameter e increases. The fixed points of the system for different values of e, with 
all other parameters fixed as given by Eq. (4), are represented by the arc of the parabola with vertex 
A (cross-shaped line). The almost rectilinear curve starting from B is the curve of means values (𝑥𝑥�, 𝑦𝑦�). 

But we can go further in describing the structure of HNR cycles for very large e: for large enough 
e, the cycle is very close to the curvilinear triangle. This is formed by the axes and the solution of the 
limit system for e=+∞ (which consists in replacing Tanh by 1) starting from the equilibrium of prey 
alone, (P,0). This solution, which is the hubris phase, intersects the y-axis with a non-zero x' velocity 
(because of Tanh=1), so that there is a matching (boundary layer for very large e) to match the y-axis 
(the nemesis phase). This matching occurs fairly quickly and is very different from the vertices (0, 0) 
and (P, 0), which are points of equilibrium, so that passing near them the movement is very slow for 
large e, unlike passing near the top vertex, which is a matching (= sudden change of direction without 
slowing down for large e). 

For very high values of e, by inspection of the solutions x(t) and y(t), we observe that the period 
(which must tend towards infinity because of the slowdowns mentioned) appears to be proportional 
to e.  

In the behavior of x(t) we observe the presence of two levels, close to 0 and P (corresponding to 
the slowdowns of the passages near the equilibrium points (0, 0) and (P, 0). See the two figures below 
for e=6 and e=30. 

  
Figure 2. The temporal series x(t) for e=6 and e=30, the other parameters are given by Eq. (4). 

The behavior of y(t) is similar, except that the two stages merge, as y(t) values are practically 
zero for the two passages near (0, 0) and (P, 0) and the arc of orbit that connects them. In fact, all that 
remains in each cycle is the rapid rise and fall of y(t) (hubris and nemesis). In other words, the periodic 
function y(t) becomes a kind of pulse (always the same regardless of e) increasingly spaced out in 
time as e→+∞. See the two figures below for e = 6 and e = 30. 
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Figure 3. The temporal series y(t) for e=6 and e=30, the other parameters are given by Eq. (4). 

Taken together, the four figures above perfectly explain the almost rectilinear shape of the curve 
of mean values (𝑥𝑥�, 𝑦𝑦�) of the densities of x(t) and y(t) along the corresponding cycle, as a function of 
e (see Figure 1). Indeed, as e tends to infinity, 𝑦𝑦� tends to zero and 𝑥𝑥� tends to a positive constant.  

Another important point for understanding the sequel is that the unknown x0 is given by the 
second equation of system (1), which is that of predator functioning (x0 is the prey population that 
keeps the predators in equilibrium); x0 is therefore independent of a and P. This remarkable property 
is at the root of the understanding of certain aspects of the paradoxes considered in the sequel. 

Later (section 6), we'll introduce slightly more complex systems, known as predation-
commensalism, to deal with specific questions. 

It should also be noted that the mathematical properties encountered are to be taken as 
tendencies and not as exact results. This is the case for all properties established with the help of 
models; in particular here, when e→+∞, the model becomes inoperative because there are populations 
that are too small at certain instants, so that the very concept of population disappears. 

We shall see that these elements are important for correctly interpreting the causality and 
implications of the choices made by evolution. 

2. Evolution Chooses to Increase the Efficiency of the Predation Mechanism 

In this section we consider four numerical examples of competition between two predators of 
different efficiencies in different regions (normal, paradoxical, cyclic attractors). 
We consider a population x of prey and two populations y1 and y2 of predators, modeled by the 
system, 

�
𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) − 𝑦𝑦1ℎ1 (𝑥𝑥) − 𝑦𝑦2 ℎ2 (𝑥𝑥)

𝑦𝑦′1 = −𝑐𝑐1 𝑦𝑦1 + 𝜏𝜏1𝑦𝑦1 ℎ1 (𝑥𝑥)
 𝑦𝑦′2 = −𝑐𝑐2 𝑦𝑦2 + 𝜏𝜏2𝑦𝑦2 ℎ2 (𝑥𝑥)

 (7) 

Where f(x), h1 (x), h2  
(x) are given by expressions like (2) and (3) with indices 1 and 2. The values 

of the parameters (except e1 and e2) are equal for both predators:  

𝑎𝑎 = 1, 𝑃𝑃 = 4, 𝑏𝑏1 = 𝑏𝑏2 = 𝜏𝜏1 = 𝜏𝜏2 =1,  𝑐𝑐1= 𝑐𝑐2=0.45. (8) 

In the numerical computations in this section, and almost everywhere in this article, the starting 
point is taken close to the attractor of x and 𝑦𝑦1 alone, to highlight the displacement of the attractor 
in competition with 𝑦𝑦2 (if we start from another point, the final behavior is obviously the same, 
however, this initial condition must be chosen sufficiently close to the attractor to avoid the transient 
part which would distort the comparison with the attractor of x and 𝑦𝑦1 alone. On the other hand, the 
attractor of x and 𝑦𝑦1 alone is easily found by making 𝑦𝑦2(0) = 0. 

Numerical example -1- : in the normal region 
We take 𝑒𝑒1 = 0.18, 𝑒𝑒2 = 0.24, so the two predators differ only in efficiency (that of 𝑦𝑦2 being 

greater than that of 𝑦𝑦1). It is easy to check that they are both in the normal region (arc of the parabola 
between P and A: as e increases, the equilibrium population of prey decreases and that of predators 
increases). We then calculate the solution of Eq. (7) starting from initial values such that x(0) and 𝑦𝑦1 
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are very close to the equilibrium position of the system without 𝑦𝑦2, indeed we start from the initial 
condition (2.68,1.94, 0.05). The numerical solution is shown in Figure 2(a). 
Unsurprisingly, the initial predator is replaced by the more efficient predator. This is accompanied 
by a decrease in the prey population and an increase in the predator population (the final population 
of 𝑦𝑦2 is greater than the initial population of 𝑦𝑦1). 
Note that, starting from any other initial position, the final result is the same (this is the attractor), but 
initially there is a transient regime, an oscillation, since we are not starting from an equilibrium 
position. 

Numerical example -2- : in the paradoxical region 
We take 𝑒𝑒1 = 0.3, 𝑒𝑒2 = 0.5  (it's easy to check that they are both in the paradoxical region). 

Starting from the initial condition (1.61, 2.13, 0.05). The numerical solution is then shown in Figure 
2(b). 
We can see that the initial predator 𝑦𝑦1  is always replaced by the more efficient 𝑦𝑦2 . This is 
accompanied by a reduction in the prey population and also a reduction in the predator population 
(the final 𝑦𝑦2 population is smaller than the initial 𝑦𝑦1 population).  
Competitive evolution in the paradoxical region is therefore moving towards an increase in the 
efficiency of the predation mechanism, to the detriment of both predator and prey populations.  

Numerical example -3- : 𝒚𝒚𝟏𝟏 in the paradoxical region, 𝒚𝒚𝟐𝟐 slightly beyond the bifurcation of 
PAH 

We take 𝑒𝑒1 = 0.3, 𝑒𝑒2 = 0.96 (the predator 𝑦𝑦1 is the same as in the previous example, but 𝑦𝑦2 is 
more efficient, having passed the bifurcation, which takes place around 𝑒𝑒2 = 0.93). Starting from the 
initial condition (1.61, 2.13, 0.05), the numerical solution is shown in Figure 2(c). As in the previous 
example, competitive evolution leads to an increase in the efficiency of the predation mechanism, to 
the detriment of both predator and prey populations. But the final state is oscillating, this is the cyclic 
attractor of the system in (x,𝑦𝑦2). 

Numerical example -4- : 𝒚𝒚𝟏𝟏 and 𝒚𝒚𝟐𝟐 far beyond the bifurcation of PAH 
We take 𝑒𝑒1 = 1, 𝑒𝑒2 = 1.4 (both predators have much greater efficiencies than the bifurcation, 

which is at e=0.93 approximately). Starting from the initial condition (1.6, 2.1, 0.05) the numerical 
solution is shown in Figure 2(d).  
This result lies in the region of large cycles, which are only known by numerical computation, making 
it all the more difficult to interpret the results, or at least to draw general statements from them. The 
predator is always replaced by a more efficient one. The prey population is visibly increasing; the 
predator population also seems to be increasing in the higher values, but the peaks are more widely 
spaced, so that the average values over the period are smaller, in line with the Figure 1. 
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(a) (b) 

  
(c) (d) 

Figure 2. The temporal series, x(t), 𝑦𝑦1(𝑡𝑡), 𝑦𝑦2(t) for the parameters given by Eq. (8), (a): in the normal region, e1 =
0.18, e2 = 0.24, and the initial condition (2.68,1.94, 0.05), (b): in the paradoxical region, e1 = 0.3, e2 = 0.5, and 
the initial condition (1.61, 2.13, 0.05), (c): in the normal region, e1 = 0.3, e2 = 0.96, and the initial condition (1.61, 
2.13, 0.05), (d): in the paradoxical region, e1 = 1, e2 = 1.4, and the initial condition (1.6, 2.1, 0.05).  

It thus appears (on the basis of these numerical computations) that, all other parameters being 
the same, evolution always chooses to increase the efficiency e, which is not necessarily accompanied 
by a demographic boom in predators (their population decreases in the paradoxical region). This 
result is highly significant, as it seems to indicate that, as opportunities arise, the natural tendency of 
evolution is to increase the efficiency of the predation mechanism. If these opportunities arise 
repeatedly, the process eventually leads to HNR cycles, and even eventually to the disappearance of 
the mechanism as such, as the model fails for very small populations. 

3. Theory of Competitive Evolution in the Predatory System 

System (7) is in the framework of systems of the form, 

�
𝑥𝑥′ = 𝐹𝐹(𝑥𝑥,𝑦𝑦1,𝑦𝑦2 )
𝑦𝑦′1 = 𝑦𝑦1 𝑞𝑞1 (𝑥𝑥)

 𝑦𝑦′2 = 𝑦𝑦2 𝑞𝑞2  
(𝑥𝑥)

 (9) 

The equilibrium points inside the positive octant (i.e. with the three strictly positive coordinates) 
are the solutions of the system (10) below which contains two equations with the single unknown x: 

�
0 = 𝐹𝐹(𝑥𝑥,𝑦𝑦1,𝑦𝑦2 )

0 =  𝑞𝑞1 (𝑥𝑥)
0 = 𝑞𝑞2  

(𝑥𝑥)
 (10) 

It follows that, generically, there is no equilibrium point inside the octant and the point attractors 
are on the boundary. Of course, there may be non-point attractors, and we will see examples of this 
(numerical example -5-). For the solutions of (9), let us calculate the expression: 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦2
𝑦𝑦1
� =

𝑦𝑦1 𝑦𝑦′2 − 𝑦𝑦2 𝑦𝑦′1
𝑦𝑦12  

=
𝑦𝑦2
𝑦𝑦1

(𝑞𝑞2 − 𝑞𝑞1) (11) 

As the populations are positive, this shows that, at each point, the vector field passes through 
the 𝑦𝑦2 /𝑦𝑦1 =  constant plane towards the 𝑦𝑦2  or 𝑦𝑦1  axis, depending on whether 𝑞𝑞2  is larger or 
smaller than 𝑞𝑞1 at that point. 

In the special case of system (7) with (2) and (3), we have 
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𝑞𝑞 = −𝑐𝑐 + 𝜏𝜏 𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇ℎ �
𝑒𝑒𝑒𝑒
𝑏𝑏 �

 (12) 

so that competition between two predator species only concerns the significant parameters c, e, 
b, τ. This expression enjoys the remarkable property of being increasing with respect to each of the 
parameters e, b, τ and decreasing with respect to c, independently of the point x, (this is obvious for 
c, e, τ; for b too, with a simple calculation, or by thinking of its role as a satiety ceiling). This result is 
summarized in the proposition below. 

Proposition 1. Consider system (7) in the case where the difference between the two attractors concerns only 
one of the parameters c, e, b, τ. Then the attractor is necessarily in one of the planes with coordinates (x,𝑦𝑦1) or 
(x,𝑦𝑦2), precisely the one with the largest (resp. smallest) value of the parameter concerned, if this is one of the 
b, e, τ (resp. c). 

It is worth noting that this proposition, which may seem obvious from a Darwinian perspective, is 
rigorously true, concerning attractors of both a punctual or not nature (cyclic, in particular) and is 
nevertheless perfectly compatible with the paradox pointed out in section 2, which concerns the 
parameter e2 >  e1 (the attractor is therefore in the (x, 𝑦𝑦2) -plane) and where the equilibrium 
populations are smaller for (x,𝑦𝑦2) than for (x,𝑦𝑦1). 

On the other hand, if we modify two (or more) of the significant parameters, the value of (𝑞𝑞2 −
𝑞𝑞1) is no longer necessarily the same everywhere, it may depend on x, and we can only derive local 
results from (12). 

So, for example, let (x0,y10) be a stable equilibrium point of the system for x and 𝑦𝑦1 alone. Then, 
the point (0, x0,y10) is automatically an equilibrium point of the three-dimensional system; its local 
stability is given by that of the linearized system (Jacobian matrix at the point (x0, y10 ,0) ). It has two 
negative real eigenvalues (corresponding to the restriction to 𝑦𝑦2 = 0 , so this point is three-
dimensionally locally stable or not, depending on whether the eigenvalue corresponding to the 
transverse eigenvector is negative or positive (it is necessarily real). We can see from the third 
equation (9) that transverse stability may or may not hold, depending on whether 𝑞𝑞2(𝑥𝑥0) is negative 
or positive. Now, since (x0,y10) is an equilibrium point of the system in the (x,y1)-plane, we have (see 
second equation (10)) 𝑞𝑞1(𝑥𝑥0) = 0. So, we have stability if,  

𝑞𝑞2(𝑥𝑥0) < 𝑞𝑞1 (𝑥𝑥0) = 0 (13) 

or instability if the sign is >. This result is summarized in the proposition below. 

Proposition 2. Let (x0,y10) be a stable equilibrium point of the system for (x,y1) alone. Then the point (x,y1,0) 
is a three-dimensional attractor if (13) is satisfied, and is transversely unstable if (13) with sign > is satisfied. 
A similar result holds for a stable equilibrium in the (x,y2)-plane.  

We have an analogous result in the case of a cyclic attractor 𝝘𝝘 of the system for (x,y1) alone, 
replacing q by its integral along 𝝘𝝘. Let (x0(t),y10(t)) be the parametric representation of 𝝘𝝘 as a function 
of time. From the first two equations (10) we have, 

𝑑𝑑𝑦𝑦1
𝑦𝑦1𝑑𝑑𝑑𝑑

 = 𝑞𝑞1� 𝑥𝑥0(𝑡𝑡)�  ⇒  ∫ 𝑞𝑞1� 𝑥𝑥0(𝑡𝑡)�𝑑𝑑𝑑𝑑 = 0𝑇𝑇
0  (14) 

(which is the analogue of 𝑞𝑞1 (𝑥𝑥0) above). The variational equation of (10) with respect to 𝑦𝑦2 in 
(3.1) gives: 

 
𝑑𝑑𝑦𝑦2 

𝑦𝑦2 𝑑𝑑𝑑𝑑
 =  𝑞𝑞2 � 𝑥𝑥0(𝑡𝑡)�   ⇒  

𝑦𝑦2(𝑇𝑇0)
𝑦𝑦2(0)

 = exp(� 𝑞𝑞2� 𝑥𝑥0(𝑡𝑡)�𝑑𝑑𝑑𝑑)
𝑇𝑇

0
 (15) 

So that stability amounts to, 

� 𝑞𝑞2� 𝑥𝑥0(𝑡𝑡)�𝑑𝑑𝑑𝑑)
𝑇𝑇

0
<  � 𝑞𝑞1� 𝑥𝑥0(𝑡𝑡)�𝑑𝑑𝑑𝑑 = 0

𝑇𝑇

0
 (16) 

This result is summarized in the proposition below. 
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Proposition 3. Let (x0(t),y10(t)) be the parametric representation a cyclic attractor of the system for (x,y1) alone. 
Then it is also a three-dimensional attractor if (16) is satisfied, and it is transversely unstable if we have (16) 
with the sign > instead of <. A similar result holds for a stable equilibrium in the (x,y2)-plane.  

Naturally, Propositions 2 and 3 hold in the framework of the local theory of differential 
equations (whereas system (9) is perfectly general). Specific examples can be found by numerical 
computations. 

4. General Comment. The choice of Evolution as a Functional Vocation  

Finally, it is easy to get a synthetic idea of the (often paradoxical) behavior of competition 
between two predators by taking the following two elements into account: 

-i- The dynamics of the system with regard to competition between 𝑦𝑦1  and 𝑦𝑦2 is given by 
equation (11) (and the analogue by exchanging indices 1 and 2), which we reproduce here in a slightly 
different form: 

⎩
⎨

⎧
𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑦𝑦2
𝑦𝑦1
� = �

𝑦𝑦2
𝑦𝑦1
� (𝑞𝑞2 − 𝑞𝑞1) 

𝑞𝑞𝑖𝑖 = −𝑐𝑐𝑖𝑖 + 𝜏𝜏𝑖𝑖 𝑏𝑏𝑖𝑖𝑇𝑇𝑇𝑇𝑇𝑇ℎ �
𝑒𝑒𝑖𝑖 𝑥𝑥
𝑏𝑏𝑖𝑖
� , 𝑖𝑖 = 1,2

 (17) 

which holds true for all positive x,𝑦𝑦1,𝑦𝑦2. 
-ii- Of the significant parameters of this predation model, e, b, τ, c, a, P, only e, b, τ, c, are involved 

in (17). The other two, a,P, are not involved, as they relate to prey behavior. The expression q is 
increasing with respect to e,τ, and b (for the latter this results from its meaning as a predation ceiling, 
or from a little calculation) and decreasing with respect to c. 

Let's consider the case where only one of the parameters e,τ,b and c is different for the two 
attractors. Expression (17) has constant sign everywhere, so the attractor (whatever its nature, point-
like or not) is necessarily on one of the coordinate planes (x,y1) or (x,y2), the one corresponding to the 
larger e,b,τ or the smaller c. This is elementary Darwinism, as long as we interpret "advantage" and 
"disadvantage" in the sense of larger or smaller q and not the predator population or anything else 
large or small. The same applies when there are several parameters with different values, provided 
that the differences in the values of these parameters are all in the same direction of increasing or 
decreasing q (examples: increasing τ and b, or decreasing e and increasing c). 

On the other hand, if several of the parameters e,τ,b and c are different for the two predators, 
and the differences in the values of these parameters produce variations of various signs on q, the 
sign of the right hand term in (17) may be different for different values of x, making it possible for a 
cyclic attractor to exist inside the positive octant (orbit returning to the starting point, see for instance 
the numerical example -5- hereafter). The attractor can then lie on one of the coordinate planes or 
inside the positive octant. Note in any case that there can be no point attractor outside the coordinate 
planes, as we pointed out in connection with Eq. (10). 

It is useful to return to the extremely simple case where only one of the significant parameters 
e,τ,b and c is varied. We can say that the predation mechanism has a tendency (or vocation) to increase 
e,τ,b and decrease c. This statement should be understood in the sense that, if it is proposed to the 
choice of evolution a variation in just one of these parameters, the competition will result in a choice 
of the highest (resp. lowest) value of e,τ,b (resp. c). This corresponds to the meaning of the terms 
tendency, vocation (and even to the term wish) in common parlance: a volitional agent can have one 
or several vocations, which means that, given the opportunity, he will choose to follow each of these 
vocations if the others are not affected, whereas a proposition implementing several vocations of 
opposite tendencies can have diverse outcomes (think of a person with artistic and welfare vocations, 
who has to choose between a "standard" job and a more artistic but less well-paid one). 

This approach to interpreting results can be taken much further. If the choice of evolution is 
proposed repeatedly, always involving variations in just one of the parameters e,τ,b,c, it will 
systematically result in an increase in e,τ,b, or a decrease in c (proposals of opposite sign being 
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rejected). This may seem natural and trivial, but we must realize that these trends or vocations do not 
always go in the direction of the predator's demographic boom, as the paradoxical examples show. 

Now, if we think of the biological interpretation of the predation system, we can imagine that, 
in certain cases, τ,b,c depend on the physiological properties of the predator, whereas e depends on 
the ethological properties of the predator in its relationship with the prey and the environment. It is 
therefore natural to consider e as much more subject to the vagaries of evolution than τ,b,c. This makes 
the problem we are dealing with particularly interesting when only e is subject to variation. And it is 
precisely the variation of e with the other fixed parameters that reveals the paradoxical region and 
bifurcation of PAH developed in section 1. 

We saw the special role of the parameter e and the interest in increasing it over time. It's easy to 
make a non-autonomous example, with slowly varying, increasing e-efficiency. As the variation is 
slow, the solution is practically quasi-static, so that at each instant we practically have the attractor 
for the corresponding value of e. For this purpose, we always use system (1)-(2)-(3) with,  

a=1.0, P=4.0, b=0.53, c=0.43, τ1=1.0 
and efficiency,   e1=0.145+εt,  ε = 0.0008,  

with time t varying from 0 to 1000. We start from an initial condition close to the equilibrium of the 
preys alone. The solution is shown in Figs. 3(a-b). Note that the non-autonomous system with 
e1=0.145+εt can be transformed into an autonomous system with the new unknown e and the new 
equation e'=ε, which highlights the fast and slow dynamics if ε is small enough,  

   
(a) (b) (c) 

Figure 3. Solutions of system (1)-(2)-(3), for the parameters given by a=1.0, P=4.0, b=0.53, c=0.43, τ1=1.0 
and efficiency e1=0.145+εt, where ε = 0.0008, with time t varying from 0 to 1000. We start from an initial 
condition close to the equilibrium of the preys alone:. (a): temporal series x(t) and y(t), (b): the orbit in 
(x,y)-plane, (c): parametric representation of the solution in space (t,x,y) of the natural evolution of a 
predation mechanism whose efficiency is subject to evolutionary choice. 

This can be compared with Figure 1 in section 1, identifying initially a non-paradoxical behavior, 
which becomes paradoxical after passing through the apex A (vertex of the parabola). Then appears 
the PAH bifurcation and the dilating cycles adopting the HNR gait. 

We can also make a parametric representation in space, Figure 3(c), which can thus be seen as a 
symbolic vision (or artist's view) of the natural evolution of a predation mechanism whose efficiency 
is subject to evolutionary choice, which accepts (resp. refuses) the positive (resp. negative) variations 
that chance submits to it. 

Instead of the straight-line e(t) =0.145+εt used above, we can advantageously use other function 
e(t) of the proposed evolution, such as the one proposed in the other allegorical figure below (which 
is a regular curve with relative maxima and minima, Figure 4). The time will appear very slow, so 
that we can consider the state of the system as a sequence of asymptotic states on the attractor (in the 
particular case where the attractors are points, we say it's a quasi-static evolution). By taking a larger 
b, the onset of cycles is delayed. 
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. 

Figure 4. Another function e(t) of the proposed evolution, a regular curve with relative maxima and 
minima. 

5. Miscellaneous Examples with Variation of One or More Significant Parameters. 

Numerical example -5a- :  
We take advantage of the well-known property that increasing b delays the bifurcation of PAH 

to modify the numerical example -2- with a much higher b. We then set the e2 value even higher, and 
the paradox becomes even more obvious. We start from the equilibrium of x with the y1 and the choice 
of evolution is based on the equilibrium of x with the y2, which involves demographic losses of prey 
from 1.51 to 0.45 and of predators from 2.08 to 0.9. This situation is close to the "killing of the goose that 
lays the golden egg". Specifically, the parameters are given by Eq. (18) below, See Figure 5(a). 

𝑒𝑒1 = 0.3, 𝑒𝑒2, = 1,𝑎𝑎 = 1,𝑃𝑃 = 4, 𝑏𝑏1 = 𝑏𝑏2 = 3, 𝜏𝜏1 = 𝜏𝜏2 =1, 𝑐𝑐1= 𝑐𝑐2=0.45. (18) 

 
Figure 5. (a). Temporal series for system (1)-(2)-(3), where the parameters are given by Eq. (17bis). 

Numerical example -5b- : 
Figure 5(b) below, is close to the previous one, but with a much smaller b2 (b2 =0.8), keeping b1=3. 

This is a first example of evolution by changing e (to a large value) and b (to a smaller value). Both e 
and b tend to increase, and e prevails. The result is a replacement as in the previous example, but the 
final result is oscillating, which could be described as a kind of "intermittent paradox". Specifically, 
the parameters are given by Eq. (18), but with 𝑏𝑏2 = 0.8; see Figure 5(b).  
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. 

Figure 5. (b). Temporal series x(t), y1(t) and y2(t) for system (1)-(2)-(3), where the parameters are given 
by Eq. (18), except for 𝑏𝑏2 = 0.8. 

 Numerical example -5c- : 
In the previous example, it is sufficient to reduce a little further the value of  𝑏𝑏2 (from 0.8 to 

0.55) to destroy the replacement of 𝑦𝑦1 by 𝑦𝑦2. Instead of this, the two predators cohabit (in addition to 
the prey) in an internal stable cycle. This is an example of the persistence of two predators on a prey, 
see [5,12–14] or [1] chap 10 on this interesting subject. Naturally, this type of solution cannot exist in 
the cycle-free region (i.e. with e small enough to be below the PAH bifurcation). See Figs. 5(c)-(d). 

  
(c) (d) 

Figure 5. (c-d). Solutions for system (1)-(2)-(3), where the parameters are given by Eq. (18), except for 
𝑏𝑏2 = 0.55.(c) Temporal series (t,x), (t,y1), (t,y2) (d) The limit cycle in the (x,y1,y2)-space. 

6. Predation-Commensalism System and the Role of Neutral Parameters. 

It will prove useful to present here a slightly more complex system, which was introduced in [1] 
chap 9) to model the global economy. Precisely the interpretation in terms of this system of the well-
known property of TRPF (Tendency of Rate of Profit to Fall), which concerns the parameter c, was 
the starting point of the present work. 

In this system, known as predation-commensalism, predation activity exerts a beneficial 
function on the prey substrate, increasing the capacity of the environment. In concrete terms, the 
predation-commensalism system is still (1)-(2)-(3), but the capacity of the medium P is no longer a 
constant, but a function of x: 

𝑃𝑃 =  𝑃𝑃0 + 𝜆𝜆 𝑦𝑦 ℎ(𝑥𝑥) =  𝑃𝑃0 + 𝜆𝜆 𝑦𝑦 𝑏𝑏 𝑇𝑇𝑇𝑇𝑇𝑇ℎ �𝑒𝑒𝑒𝑒
𝑏𝑏
� (19) 

where the new (positive) constants 𝑃𝑃0  and 𝜆𝜆 are the capacity of the substrate in the absence of 
predation activity and the coefficient of influence of this activity on capacity. 𝑃𝑃0  is completely 
independent of the predator, whereas 𝜆𝜆 depends on it in its relationship with the prey, so that in the 
case of two competing predators, the system is naturally (7) with 

  𝑃𝑃 =  𝑃𝑃0 + 𝜆𝜆1 ℎ1 (𝑥𝑥) + 𝜆𝜆2 𝑦𝑦2 ℎ2 (𝑥𝑥) (20) 
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This system is always of the form (9) so the properties of section 3 remain valid. It is remarkable 
that the parameters 𝜆𝜆1 and 𝜆𝜆2, which, as we have just indicated, are clearly associated with one or 
other of the predators, are nevertheless perfectly neutral in the evolutionary competition. From a 
mathematical point of view, this follows from equation (11), which does not contain them. From a 
modeling point of view, this property is perfectly natural, since the influence (coming from either of 
the two predators) is put into the common pot (capacity of the environment in terms of prey quantity) 
and therefore constitutes no advantage or disadvantage for one of the predators over the other. In 
particular, if the two predators differ only in the values of 𝜆𝜆, the system has the first integral y2/y1 
=constant as it follows from (11) with q1=q2. 

On the other hand, commensal terms have a huge influence on the equilibrium population of 
predators. We also observe that the value of the x0 of the equilibrium is independent of these new 
terms; it therefore appears that the terms of influence of predation on the substrate capacity are 
reflected on y0 and not on x0. This (still paradoxical) property is a consequence of the property 
reported at the end of section 1 that x0 is obtained directly from the equation in y', which is not 
concerned by 𝜆𝜆. 

It is therefore clear that the parameters e,τ,b and c retain the properties reported in Section 4 with 
regard to their character as advantages or disadvantages in the competition, while 𝜆𝜆 is neutral. A 
consequence of this is that parameter 𝜆𝜆, while being elusive by the competition when it is the only 
one to undergo a variation, can be dragged along by even an infinitesimal variation of e, c, b, τ. It is 
therefore highly unstable. 

Numerical example -6a-:  
We start with an example in the non-paradoxical region, with values of all parameters equal for 

both predators, and add commensalism terms 𝜆𝜆1 = 0.25 and 𝜆𝜆2 = 1.25. Figure 6(a) shows three orbits 
in space starting from points close to the equilibrium of the prey alone (𝑃𝑃0, 0, 0). Starting with 𝑦𝑦2(0) =
0 (resp 𝑦𝑦1(0) = 0) we naturally have an orbit for the system of 𝑥𝑥,𝑦𝑦1 (resp 𝑥𝑥,𝑦𝑦2) alone; the orbits are 
naturally in the coordinate planes. This clearly shows the demographic advantage of 𝑦𝑦2 compared 
with 𝑦𝑦1 . But starting with non-null 𝑦𝑦1(0)  and 𝑦𝑦2(0) , the orbit is in the plane 𝑦𝑦2

𝑦𝑦1
= 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

 
𝑦𝑦2(0)

𝑦𝑦1(0)
 and in no way chooses 𝑦𝑦1 at the expense of 𝑦𝑦2. See Figure 6(a) in which the parameter values 

are given by Eq. (21),  

a=1.0, 𝑃𝑃0=4.0, b1 = b2 =1.0, e1 =e2 =0.18, c1=c2=0.45, τ1=τ2 =1.0, λ1 =0.25, λ2 =1.25 (21) 

 Numerical example -6b-: 
We repeat exactly the previous calculations (example -6a-), with parameter values as given in 

Eq. (21), but taking 𝑐𝑐2 = 0.44  (instead of 0.45). This minimal difference implies that evolution 
chooses 𝑦𝑦2 , and 𝑦𝑦1  disappears (Figure 6(b)). It can also be seen that the three-dimensional orbit 
clearly has an initial phase very little different from that of the previous case (fast dynamics), followed 
by a second phase where it joins the attractor on the plane (slow dynamics). 

 Numerical example -6c-:  
This is now an analogous case with loss of 𝜆𝜆 instead of gain. More precisely, we choose a system 

in x,y2 with λ2 = 0, and e2=0.101, sufficiently small for predation not to be viable, so that the attractor 
is simply the equilibrium of prey alone (𝑃𝑃0, 0, 0). The system in 𝑥𝑥,𝑦𝑦1 has even smaller efficiency 𝑒𝑒1 =
0.1, but, thanks to the commensalism term (with 𝜆𝜆1 = 2.2), there is a stable equilibrium (𝑥𝑥0,  𝑦𝑦 10, 0) 
with  𝑦𝑦 10 > 0.  Competition between the two populations naturally chooses who has greater 
efficiency, and so it disappears. Figure6(c) shows this process starting from a point very close to the 
system attractor in 𝑥𝑥,𝑦𝑦1. The two predators disappear. The parameter values are given by Eq. (21) 
but taking e2 =0.102 and λ1 = 2.2, λ2 = 0. 
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(a) (b) (c) 

Figure 6. Predation-commensalism system (1)-(2)-(3), with a capacity of the medium P as a function 
of x given by Eq. (19). In the case of two competing predators, the system is Eq. (7) with Eq. (20). The 
parameter values are given by Eq. (21): (a): shows three orbits in space starting from points close to 
the equilibrium of the prey alone (𝑃𝑃0, 0, 0), with 𝑐𝑐2 = 0.45; the third orbit starts from (4, 0.04, 0.02). 
(b): with 𝑐𝑐2 = 0.44 (instead of 0.45). (c): with λ1 = 2.2, λ2 = 0 and e2=0.101 (instead of λ1 =0.25, λ2 =1.25 
and e2 =0.18). 

7. Conclusion and Discussions 

Within the general framework of mathematical ecosystems ecology, the aim of this work is to 
show how, in a number of situations that are perfectly plausible from an ecological point of view, the 
choice of evolution is not based on the demographic advantages of the populations in question, but 
on the functional refinement of the mechanisms (particularly predation) that link them, leading to 
the appearance of new structures, particularly of a pulsating nature. These are functional emergence 
phenomena, sometimes to the detriment of the quantitative properties of populations. 

An important point is the consideration of the significant parameters of the functional 
mechanism under consideration, whose variations are proposed at the choice of the evolution, unlike 
the mathematical theory of structural stability, which involves general disturbances. 

The starting point is an analogy with the general law of Tendency of Rate of Profit to Fall (TRPF) 
in the global economy. This law, initially derived from heuristic considerations, can be obtained 
mathematically from appropriate models of the economy (see [1] chap 9 sect 9.3). The epistemological 
status of the properties we are establishing is analogous to those of the TRPF. It's a kind of general 
tendency, a vocation that occurs under specific conditions (and often in the absence of others), but 
not automatically. 

We have focused on the role of parameter e (the efficiency of the predation mechanism), whose 
role it is useful to understand. Under conditions of scarcity of prey population x, it is the ratio of the 
number of preys consumed per unit of predator and time, and the prey population. This is the pure 
predation mechanism, with no relation to the predator's needs and abilities (which relate to other 
parameters). Clearly, e depends not only on the physiological properties of prey and predator, but 
also on environment and habitat, and can be easily influenced by environmental agents. This is why 
it seems obvious to us that the parameter e is subject to disturbance under conditions where all the 
others (particularly physiological ones) remain constant. 

However, the parameter e of predation efficiency enjoys paradoxical properties with regard to 
equilibrium populations and their stability. For moderate values of e, an increase in its value leads to 
an increase in the equilibrium population of predators and a decrease in that of preys (which seems 
normal), but beyond a certain value of e, its increase leads to a decrease in both equilibrium 
populations (of predators and preys alike). This is the paradoxical mode, because the scarcity of preys 
leads to a lack of resources for predators, whose equilibrium population in turn declines. But, in 
addition, beyond a certain value of e, the equilibrium loses its stability (Poincaré-Andronov-Hopf 
bifurcation) and the attractor becomes a periodic cycle around the equilibrium. By further increasing 
the value of e, the cycle takes on the characteristic shape of a curvilinear triangle; in each period we 
can distinguish three phases: Hubris (excessive predation, or rapid increase in the predator 
population to the detriment of the prey population), Nemesis (punishment for hubris, or subsequent 
reduction in the predator population) and Resilience (or slow recovery of the preys, back to the initial 
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state). Finally, for very high values of e, the periodic phenomenon takes on a form akin to that of 
seasonal epidemics (the predator population is always practically zero, except at certain moments 
periodically spaced in time). 

Our work shows why and how, when two predators compete for prey, evolution always chooses 
the most efficient predator (and not any kind of population optimization). 

As a result, the efficiency e of the predation mechanism appears to be an emergent property, 
which can only increase through evolutionary choice when the suitable conditions are present, and 
is therefore irreversible in this context. This implies a natural tendency for periodic cycles to emerge, 
and even for them to be structured into sequences of hubris, nemesis and resilience. This tendency often 
runs counter to demographic optimization.   

Furthermore, since the choice of evolution is also based on increasing e, as the period increases 
according to evolution, it sweeps through a wide range of frequencies, making it possible 
synchronization with other phenomena through small interactions. This furnishes a plausible 
explanation to the fact that seasonal phenomena are very widespread. Indeed, synchronization is a 
ubiquitous phenomenon characteristic of many processes in natural systems and (nonlinear) science. 
It is today considered as one of the basic nonlinear phenomena studied in mathematics, physics, 
engineering or life science, see for example [1] chap 12 or [15] and references therein cited.  

Obviously, the phenomena become much more complex if variations in several significant 
parameters are simultaneously involved. Several examples have been given (sections 5 and 6), in 
particular one that leads to a non-choice (example of the coexistence of two predators, often 
controversial). 

It's worth noting, however, that all this is related to the diversity-stability debate, which goes 
back a long way! See [13,16] or [17]. Indeed, the relationship between diversity and stability has 
fascinated ecologists for decades. Some argued that more diverse communities enhanced the stability 
of ecosystems. Others argued that simple communities were more easily disrupted than richer ones, 
noting that invasions occur most often on cultivated land where human influence has produced 
highly simplified ecological communities, see [18]. 
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