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Abstract: The future index prices are viewed as a critical issue for any trader and investor. For this
craving, various models have shown up in the literature. The Geometric Brownian motion (GBM)
is one of the popular models. This work examines four types of GBM as per the presence of memory
or kind of volatility. These models include classical GBM with memoryless and constant volatility
assumptions, SVGBM with memoryless and stochastic volatility assumption, GFBM with memory
and constant volatility assumption, and SVGFBM with memory and stochastic volatility
assumption. These models are utilized in an empirical study to forecast the future index price of
Energy Sector in the Saudi Stock Exchange Market. The assessment was led by utilizing two error
standards, mean square error (MSE) and mean absolute percentage error (MAPE). The outcomes
showed that the SVGFBM occupies the highest level of accuracy according to smallest values of
MSE and MAPE. While the accuracy of GBM come in the tail of the list models under study. These
results have affirmed the positive affection of combining memory and stochastic volatility
assumption into the GBM model, which agreed findings of numerous earlier works. Furthermore,
the findings showed the GFBM models are more accurate than GBM models regardless of the type
of volatility. While, under the same type of memory, the models with stochastic volatility
assumption are more accurate than the corresponding models of constant volatility assumption. In
general, all models considered in this work uncovered high accuracy through the value of MAPE <
10%. This indicates of the ability of applying these models in a real financial environment. Through
this empirical study, we can say that the Energy Sector in Saudi Arabia is predictable and stable and
afterward we urge financial investors and stockholder to trade and invest in this sector.

Keywords: energy sector; GBM; GFBM,; stochastic volatility

1. Introduction

The Kingdom of Saudi Arabia is the largest producer and exporter of oil in the world. For this
reason, Saudi Arabia recognizes the significance of diversifying its energy mix to keep long-term
economic prosperity. Both domestic and foreign partners in the energy sector are playing an
important role in the transformation of the Kingdom to the direction of a sustainable and renewable
future. Therefore, the Energy sector is very important in the Saudi Exchange stock market. It consists
of six companies with a total capital exceeding 7 trillion Saudi Riyals (SAR). ($1,86 trillion). Hence,
there are a large number of investors, traders, and speculators considering this sector. Therefore, the
future performance of this sector is considered a fundamental issue for all types of traders to gain
profits and avoid possible losses. For this purpose, a need for a tool that can forecast future prices as
precisely as possible arose. Many scholars proposed several models as a tool that employing historical
data to forecast future prices such as random walk, jump diffusion, Brownian motion process, and
geometric Brownian motion (GBM) models. This work investigates some of the GBM models by
incorporating the assumptions of stochastic volatility and memory.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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2. Geometric Brownian Motion Models

The econophysics concept of GBM explains the nature of stock price randomness and arbitrary
fluctuations calculations more accurately (Kumar et al. 2024). Occasionally, GBM has been called “the
standard model of finance” (Ibe, 2013), where it is employed in forecasting the price of a stock over
time. GBM is the adapted version of Brownian motion (BM) process.

Definition 1.
A Wiener Process or Brownian motion (BM) is a stochastic process B, that satisfies
the next conditions:
i. B, is a continuous function of time with B, = 0.
ii. B has independent increments (B, — B; and B, — B,, are independent forallv>v >t >s).
iii. B, — Bs~N(0,t —s) forallt > s.

According to the definition above, BM process is continuous everywhere but it is not
differentiable anywhere. BM is self-similar (i.e if any part of the BM time series trajectory is like the
entire trajectory). If BM touches any specific value, it will return to this value again infinitely many
times.

These properties encouraged Ross in 1999 to model stock prices directly depending on BM.
However, this way of modeling has faced reasonable blame because of the nature of BM that permits
the price to be negative where the stock price is supposed to be a normal random variable. As a
treatment of this issue, GBM has been presented as an adaptation of BM.

Model 1: Geometric Brownian Motion (GBM)

The stochastic process X; is said to follow GBM if it satisfies the next stochastic
dif ferential equation (SDE):

dXt = #Xtdt + O-XtdBt (1)
where B, is a BM, i and o are drift and volatility respectively.The general solution of
this SDE is given by

1 2
Xt=X0exp{<u—§a )t+0Bt} (2)

where X, is an initial value.

GBM is a non-negative variation of BM. Consequently, GBM can be employed in many financial
applications such as index prices, exchange rates, option pricing, mortgage insurance, and value at
risk. GBM model is valuable for modeling random price fluctuation over time and investigating the
commodity’s price performance. Hence, GBM is used widely to predict future prices.

The classical GBM model assumes the independence of prices. Meanwhile, many researchers
attracted attention to the existence of memory in the GBM model. For example Han etal. (2020),
Rejichi and Aloui (2012), Alhagyan & Yassen (2023), Painter (1998), Alhagyan (2018), Grau-Carles
(2000), Abbas and Alhagyan (2023) and Kim et al. (2020).

This implied the necessity to develop the GBM model by incorporating the properties of
memory. The developed model is called Geometric Fractional Brownian Motion (GFBM). The GFBM
model is obtained by replacing the classical BM -process (no memory) with a developed process
called fractional Brownian motion FBM-process (with memory).

Definition 2.

The fractional Brownian motion (FBM),{By(t)}, with Hurst parameter H € (0,1)
is a centered Gaussian process whose paths are continuous with probability 1 and its distribution
is defined by the covariance structure:

ElBu()B(s)] = 5 (124 + 52 — |t - s|2)

The correlation between the increments of FBM (B (t) — By(s) and By (v) — By(w) forallv >
v >t > 5) fluctuates conveniently with self-similarity or Hurst parameter H. Hurst parameter name
referred to Harold Edwin Hurst (1880-1978) who examined the erratic rainfall and drought
circumstances along the Nile River over a long period. Three types of memories appeared according
to the value of H, short memory when 0 < H < 0.5, no memory if H = 0.5, and long memory when



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024

3

0.5 < H < 1. Now, by replacing BM in Equation (1) with FBM, we got the GFBM model that is
presented as follows.
Model 2: Geometric Fractional Brownian Motion (GFBM)
The stochastic process X, is said to follow GFBM if it satisfies the next SDE

where By, (t) is FBM, p and o are drift and volatility respectively.The solution is given by

X(t) = X, exp [(u — %azt”’l_l) t+ 0By, (t)] 4)

where X, is an arbitrary initial value.

The GFBM model is considered a developed version of GBM, thus they can be employed in the
same financial applications. For example, option pricing (Misiran et al. 2010; 2012, Alhagyan et al.
2016 a; 2016), index prices (Alhagyan & Al-Duais 2020, Abbas & Alhagyan 2022; 2023, Xiao et al.
2015), value at risk (Alhagyan et al. 2021, Wang et al. 2017), exchange rate (Gozgor 2013, Mansour
and Alhagyan 2022, Alhagyan 2022, Abbas and Alhagyan 2023), and mortgage insurance (Bardhan
et al. 2006, Alhagyan et al. 2021, Chen et al. 2013).

Constant assumption of volatility (o) was used in the models of GBM to simplify calculations.
However, this assumption was not supported by some empirical studies like Stein (1989), Bakshi et
al. (2000), and Ait-Sahalia and Lo (1998) where they concluded that the assumption of constant
volatility does not describe the real situation accurately. For this reason, there have been many efforts
to deal with this issue by replacing the constant volatility (o) in GBM models deterministic function
of a stochastic process or volatility process o(Y;) where Y; is the solution of other stochastic
differential equation (SDE) that is driven by other noise stochastic volatility. For example the efforts
of Scott 1987, Hull and White (1987), Alhagyan et al. (2016 a; 2016 b), Stein and Stein (1991), Heston
(1993), Alhagyan and Yassen (2023), Hagan et al. (2002), Alhagyan (2022), Comte and Renault (1998),
Chronopoulou and Viens (2012 a; 2012 b), Wang and Zhang (2014) and Alhagyan (2018).

The SV models are considerable in the environment of financial market because its ability to
capture the effect of time—varying volatility. SV models permit of both volatility and common
dependence between variables to fluctuate over. This implies that SV models have two sources of
randomness. Table 1 presents some SDE equations describing the stochastic process Y.

Table 1. Models of stochastic processes describing Y_t in SV models.

Name Model
Log-normal process dY; = aY.dt + BY,dBy;
Cox-Ingersoll- Ross (CIR) process dY; = 8(w — Yp)dt + &,/Y,dBy,
Ornstein- Uhlenbeck (OU) process dY; = a(m —Y,)dt + BdB,;
Not mean reverting process dY; = aY,dB,;
Fractional Ornstein- Uhlenbeck (FOU) process dY, = a(m —Y,)dt + fdBy, (t)

In the following, two models of SV under study are presented.
Model 3: GBM perturbed by FOU (SVGBM)
The stochastic process X, is said to follow GBM perturbed by SV (FOU) if it satisfies
the next SDE:

dXt s ‘U.Xtdt + O-(Yt)XtdBlt (5)

where u is a mean of return,Y; is a stochastic process, By, is a BM,and a(Y;) =
Y; is a deterministic function. Let the dynamics of volatility Y, follow fractional Ornstein-
Uhlenbeck (FOU) process which is the solution of the following SDE

dY, = a(m — Y,)dt + BdBy, (t) ©)

where a, § and m are mean reverting of volatility, volatility of volatility, and mean
of volatility, respectively. By, (t) is a FBM which is independent from By;.

d0i:10.20944/preprints202403.0699.v1
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Model 4: GFBM perturbed by FOU (SVGFBM)
The stochastic process X; is said to follow a GFBM perturbed by SV (FOU)if it satisfies
the following SDE:

dX; = u Xedt + o(Yp) X dBy, (t) )

where p is mean of return,Y; is a stochastic process, By, (t) is a FBM with Hurst index
H,, and o(Y,) =Y, is a deterministic function. Let the dynamics ofvolatility Y, be
described by fractional Ornstein-Uhlenbeck (FOU)process which is solution of the
following SDE

dY, = a(m — Y,)dt + BdBy, (t) (8)

where a, § and m are constant parameters that represent mean reverting of volatility,
volatility of volatility,and mean of volatility, respectively. By,(t) is a FBM which is

independent from By, (t).

3. Forecasting

This work employs the four models mentioned in the previous section to forecast future index
prices of seven companies in the energy sector in Saudi Arabia depending on historical data. In this
empirical study, we examine the influence of incorporating both memory and stochastic volatility
into the GBM model.

We relied on two measures of error to evaluate and compare the performance of each model
under study. These measures are mean square error (MSE) and mean absolute percentage error
(MAPE).

_ X (i-Fp? =1y
n

MSE & MAPE = —

where F; and Y; represent forecast and price actual price at day i, respectively. While n the total of
forecasting days. Lawrence (2009) recapped the judgment on any forecasting method using MAPE in

the following table.
Table 2. MAPE to judgment accuracy of forecasting method.
Judgment of Accuracy MAPE
Highly accurate MAPE < 10%
Good accurate 10% < MAPE < 20%
Reasonable 20% < MAPE < 50%
Inaccurate MAPE = 50%

3.1. Description of Historical Data

The historical data is available online at https://www.saudiexchange.sa. The total working days are
43 days begin from 1st November 2023 to 31st December 2023. To avoid high fluctuation in data,
return series is considered in logarithm (i.e., 1, = In (§/S,_1)). Figures 1 and 2 show the close prices
and its return series.
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Figure 1. Daily energy index close price.

Return

0.008
0.006
0.004
0.002

-0.002
-0.004
-0.006
-0.008

-0.01
-0.012

Figure 2. Daily returns of energy index.

3.2. Forecasting and Evaluation

According to the historical data of energy sector indices, all parameters involved in the four
models under study are calculated by using Mathematica 10 software and then employed to compute
constant volatility and stochastic volatility. Table 3 lists all computed parameters and volatilities.

Table 3. Parameters and volatilities values of ARAMCO.

Parameter Value Parameter Value
H; 0.3279 B 0.00002
H, 0.2520 m 0.00001
U 0.00004 a 4.62705
Computed Volatility
o 0.0036
o(Y,) 0.0010

Then the forecasting of close price of the next month (Jan 2024) is conducting based on the values
of the parameters in Table 3. The forecasting is computed using four models; GBM, GFBM, SVGBM,
and SVGFBM. Table 4 shows the level of accuracy of each model. Meanwhile, Tables 5 shows the
forecasted prices in addition to the actual prices of energy indices.
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Table 4. The accuracy ranking level of forecasting model based on MAPE and MSE.

Model MAPE MSE
SVGFBM 2.753% 44861
GFBM 2.758% 44921
SVGBM 2.759% 44946
GBM 2.887% 48457

Table 5. Actual and forecasted prices.

Date Actual GBM GFBM SV GBM SV GFBM
1/1/2024 6,231.24 6,240.65 6,230.96 6,228.20 6,231.33
1/2/2024 6,234.45 6,243.74 6,231.77 6,231.27 6,231.74
1/3/2024 6,208.98 6244.15 6230.47 6,231.68 6231.56
1/4/2024 6,231.12 6244.03 6228.52 6231.59 6231.21
1/7/2024 6,264.88 6243 6232.38 6230.56 6232.46
1/8/2024 6,298.10 6245.29 6232.93 6232.84 6232.8
1/9/2024 6,258.55 6247.55 6230.89 6235.09 6232.42
1/10/2024 6,194.68 6243.82 6233.67 6235.34 6233.37
1/11/2024 6,184.72 6243.25 6233.11 6230.77 6233.4
1/14/2024 6,185.47 6244.28 6233.75 6234.82 6233.76
1/15/2024 6,104.82 6245.72 6235.91 6233.24 6234.54
1/16/2024 6,026.77 6246.9 6233.81 6234.45 6234.14
1/17/2024 5,989.73 6246.56 6235.95 6234.11 6234.92
1/18/2024 6,014.71 6246.06 6233.42 6236.59 6234.4
1/21/2024 6,030.20 6246.09 6235.19 6236.62 6235.07
1/22/2024 5,973.57 6248.83 6235.01 6236.35 6233.2
1/23/2024 5,978.97 6247.24 6233.49 6236.75 6234.97
1/24/2024 5,987.34 6246.39 6236.14 6236.91 6235.89
1/25/2024 5,958.15 6246.5 6236.04 6234.04 6233.04
1/28/2024 5,932.13 6247.66 6234.01 6235.19 6235.66
1/29/2024 5,904.70 6243.1 6237.73 6236.62 6236.87
1/30/2024 5,896.26 6247.03 6235.71 6234.57 6235.5
1/31/2024 5,766.84 6247.19 6236.92 6234.71 6237.01

That is what the discoveries showed, in light of the smaller MSE and MAPE values; SVGFBM
has the first level in accuracy. This outcome was accomplished due to the presence of two sources of
memory (Hyand H,) along with stochastic volatility assumption. While GBM placed last because of
the existence of one sources of randomness in addition to constant volatility assumption. The
outcomes endorsed that models under memory assumption (SVGFBM and GFBM) are more
appropriate in forecasting future stock costs than the models without memory (SVGBM and GBM).

As per Lawrence’s table (Table 2) all models achieved MAPE <10% which indicating that high
accuracy in forecasting by these models. Moreover, one can observe that the values of MSE of
SVGFBM, GFBM, and SVGBM are close together while GBM is relatively far. These outcomes run in
the same direction as many experimental researches for instance Willinger et al. (1999), Rejichi and
Aloui (2012), Alhagyan (2022), Painter (1998), Alhagyan and Yassen (2023), Alhagyan and Alduais
(2020), and Abbas and Alhagyan (2022; 2023). Figure 3 illustrates the comparison between the actual
close prices versus forecasted close prices. This Figure showed that the forecasted prices are less
fluctuated than the actual prices and ensured that the forecasted prices are closer together.
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Figure 3. Actual prices vs Forecast prices .
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4. Conclusion

Index price reflects the financial stability and level of economic growth. Therefore, forecasting
the future performance of index prices is in the top tasks of stakeholders and investors. For this task,
several models have been presented in literature. GBM model is one of the famous and important
models. There are some models emanated from classical GBM model. This emanation depending the
assumption of existence (or absence) of memory in time series financial data in addition to the
assumption of volatility (constant or stochastic). To discuss the affection of these assumptions on
GBM model, this work examined four models of GBM including; classical GBM (absence of memory
and constant volatility), GFBM (existence of memory and constant volatility), SVGBM (absence of
memory and stochastic volatility), and SVGFBM (memory and stochastic volatility). All these models
stated in Section 2 of this manuscript. The examination was conducted by exploiting these models to
forecast Energy Sector in the Saudi Stock Exchange Market. Two statistical criterions of error was
utilized (MSE and MAPE) to evaluate the performance of each model.

The findings of this empirical examination exposed that SVGFBM achieved the smallest values
of both MSE and MAPE and then the best performance. This result achieved because of the existence
of two sources of randomness with memory (dBy, & dBy,) and the assumption of stochastic
volatility. While GBM ranked last because of existence of one source of randomness without memory
(H = 0.5) and the assumption of constant volatility.

The results ensured that GFBM models are more accurate than GBM models for forecasting
future stock prices. Furthermore, under the same assumption of memory, the models of stochastic
volatility assumption are more accurate than the models of constant volatility assumption. This
outcome has proved that the direct positive affection of incorporating memory and stochastic
volatility together into GBM.

Moreover, values of the MSE and MAPE for SVGFBM, GFBM, and SVGBM are relatively close
together while GBM was moderately far. Generally, according to the Lawrence’s table to judgment
accuracy (Table 2), all models exhibited high level of performance because of the MAPE <10% which
indicate that all models under study can used as a tool of forecasting future index price of Energy
Sector in Saudi Arabia.

In general, the empirical results of this study agree with earlier empirical works such as Abbas
& Alhagyan (2022; 2023), Mansour & Alhagyan (2022), Alhagyan & Yassen (2023), Alhagyan (2022),
Willinger et al. (1999), Painter (1998), Rejichi & Aloui (2012) and Alhagyan & Alduais (2020) to name
just a few. Subsequently, we are strongly recommend investors and trader to invest in the Energy
Sector in Saudi Arabia because of its predictability and stability.
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