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Article 

Forecasting the Performance of the Energy Sector at 
the Saudi Stock Exchange Market by Using GBM and 
GFBM 
Mohammed Alhagyan 

Mathematics Department, College of Humanities and Science in Al Aflaj, Prince Sattam Bin Abdulaziz 
University, 11912, Saudi Arabia; m.alhagyann@psau.edu.sa 

Abstract: The future index prices are viewed as a critical issue for any trader and investor. For this 
craving, various models have shown up in the literature. The Geometric Brownian motion (GBM) 
is one of the popular models. This work examines four types of GBM as per the presence of memory 
or kind of volatility. These models include classical GBM with memoryless and constant volatility 
assumptions, SVGBM with memoryless and stochastic volatility assumption, GFBM with memory 
and constant volatility assumption, and SVGFBM with memory and stochastic volatility 
assumption. These models are utilized in an empirical study to forecast the future index price of 
Energy Sector in the Saudi Stock Exchange Market. The assessment was led by utilizing two error 
standards, mean square error (MSE) and mean absolute percentage error (MAPE). The outcomes 
showed that the SVGFBM occupies the highest level of accuracy according to smallest values of 
MSE and MAPE. While the accuracy of GBM come in the tail of the list models under study. These 
results have affirmed the positive affection of combining memory and stochastic volatility 
assumption into the GBM model, which agreed findings of numerous earlier works. Furthermore, 
the findings showed the GFBM models are more accurate than GBM models regardless of the type 
of volatility. While, under the same type of memory, the models with stochastic volatility 
assumption are more accurate than the corresponding models of constant volatility assumption. In 
general, all models considered in this work uncovered high accuracy through the value of MAPE ≤ 
10%. This indicates of the ability of applying these models in a real financial environment. Through 
this empirical study, we can say that the Energy Sector in Saudi Arabia is predictable and stable and 
afterward we urge financial investors and stockholder to trade and invest in this sector. 

Keywords: energy sector; GBM; GFBM; stochastic volatility 
 

1. Introduction 

The Kingdom of Saudi Arabia is the largest producer and exporter of oil in the world. For this 
reason, Saudi Arabia recognizes the significance of diversifying its energy mix to keep long-term 
economic prosperity. Both domestic and foreign partners in the energy sector are playing an 
important role in the transformation of the Kingdom to the direction of a sustainable and renewable 
future. Therefore, the Energy sector is very important in the Saudi Exchange stock market. It consists 
of six companies with a total capital exceeding 7 trillion Saudi Riyals (SAR). ($1,86 trillion). Hence, 
there are a large number of investors, traders, and speculators considering this sector. Therefore, the 
future performance of this sector is considered a fundamental issue for all types of traders to gain 
profits and avoid possible losses. For this purpose, a need for a tool that can forecast future prices as 
precisely as possible arose. Many scholars proposed several models as a tool that employing historical 
data to forecast future prices such as random walk, jump diffusion, Brownian motion process, and 
geometric Brownian motion (GBM) models. This work investigates some of the GBM models by 
incorporating the assumptions of stochastic volatility and memory. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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2. Geometric Brownian Motion Models 

The econophysics concept of GBM explains the nature of stock price randomness and arbitrary 
fluctuations calculations more accurately (Kumar et al. 2024). Occasionally, GBM has been called “the 
standard model of finance” (Ibe, 2013), where it is employed in forecasting the price of a stock over 
time. GBM is the adapted version of Brownian motion (BM) process. 
Definition 1. 

𝐴𝐴 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝐵𝐵𝐵𝐵) 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐵𝐵𝑡𝑡 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 

i. 𝐵𝐵𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐵𝐵0 = 0. 
ii. 𝐵𝐵𝑡𝑡 ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠 and 𝐵𝐵𝑣𝑣 − 𝐵𝐵𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 > 𝑣𝑣 > 𝑡𝑡 > 𝑠𝑠 ). 

iii. 𝐵𝐵𝑡𝑡 − 𝐵𝐵𝑠𝑠~𝑁𝑁(0, 𝑡𝑡 − 𝑠𝑠) for all 𝑡𝑡 > 𝑠𝑠. 
According to the definition above, BM process is continuous everywhere but it is not 

differentiable anywhere. BM is self-similar (i.e if any part of the BM time series trajectory is like the 
entire trajectory). If BM touches any specific value, it will return to this value again infinitely many 
times. 

These properties encouraged Ross in 1999 to model stock prices directly depending on BM. 
However, this way of modeling has faced reasonable blame because of the nature of BM that permits 
the price to be negative where the stock price is supposed to be a normal random variable. As a 
treatment of this issue, GBM has been presented as an adaptation of BM. 

Model 1: Geometric Brownian Motion (GBM) 
𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋𝑡𝑡  𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑆𝑆𝑆𝑆𝑆𝑆): 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑡𝑡𝑑𝑑𝐵𝐵𝑡𝑡 (1) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐵𝐵𝐵𝐵, 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.𝑇𝑇ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  𝑜𝑜𝑜𝑜 
𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏 

𝑋𝑋𝑡𝑡 = 𝑋𝑋0 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝜇𝜇 −
1
2
𝜎𝜎2� 𝑡𝑡 + 𝜎𝜎𝐵𝐵𝑡𝑡  � (2) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋0 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 
GBM is a non-negative variation of BM. Consequently, GBM can be employed in many financial 

applications such as index prices, exchange rates, option pricing, mortgage insurance, and value at 
risk. GBM model is valuable for modeling random price fluctuation over time and investigating the 
commodity’s price performance. Hence, GBM is used widely to predict future prices. 

The classical GBM model assumes the independence of prices. Meanwhile, many researchers 
attracted attention to the existence of memory in the GBM model. For example Han etal. (2020), 
Rejichi and Aloui (2012), Alhagyan & Yassen (2023), Painter (1998), Alhagyan (2018), Grau-Carles 
(2000), Abbas and Alhagyan (2023) and Kim et al. (2020). 

This implied the necessity to develop the GBM model by incorporating the properties of 
memory. The developed model is called Geometric Fractional Brownian Motion (GFBM). The GFBM 
model is obtained by replacing the classical BM -process (no memory) with a developed process 
called fractional Brownian motion FBM-process (with memory). 
Definition 2. 

𝑇𝑇ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝐹𝐹𝐹𝐹𝐹𝐹), {𝐵𝐵𝐻𝐻(𝑡𝑡)},𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝐻𝐻 ∈ (0,1) 
𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 with probability 1 and its distribution 
is defined by the covariance structure: 

𝐸𝐸[𝐵𝐵𝐻𝐻(𝑡𝑡)𝐵𝐵𝐻𝐻(𝑠𝑠)] =
1
2

(𝑡𝑡2𝐻𝐻 + 𝑠𝑠2𝐻𝐻 − |𝑡𝑡 − 𝑠𝑠|2𝐻𝐻) 

The correlation between the increments of FBM (𝐵𝐵𝐻𝐻(𝑡𝑡) − 𝐵𝐵𝐻𝐻(𝑠𝑠) and 𝐵𝐵𝐻𝐻(𝑣𝑣) − 𝐵𝐵𝐻𝐻(𝑢𝑢) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 >
𝑣𝑣 > 𝑡𝑡 > 𝑠𝑠) fluctuates conveniently with self–similarity or Hurst parameter 𝐻𝐻. Hurst parameter name 
referred to Harold Edwin Hurst (1880–1978) who examined the erratic rainfall and drought 
circumstances along the Nile River over a long period. Three types of memories appeared according 
to the value of 𝐻𝐻, short memory when 0 < 𝐻𝐻 < 0.5, no memory if 𝐻𝐻 = 0.5, and long memory when 
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0.5 < 𝐻𝐻 < 1. Now, by replacing BM in Equation (1) with FBM, we got the GFBM model that is 
presented as follows. 

Model 2: Geometric Fractional Brownian Motion (GFBM) 
𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆𝑆𝑆 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑋𝑋𝑡𝑡 𝑑𝑑𝐵𝐵𝐻𝐻1(𝑡𝑡) (3) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐵𝐵𝐻𝐻1(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹, 𝜇𝜇 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏 

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0 𝑒𝑒𝑒𝑒𝑒𝑒 ��𝜇𝜇 −
1
2
𝜎𝜎2𝑡𝑡2𝐻𝐻1−1� 𝑡𝑡 + 𝜎𝜎𝐵𝐵𝐻𝐻1(𝑡𝑡)� (4) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋0 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. 
The GFBM model is considered a developed version of GBM, thus they can be employed in the 

same financial applications. For example, option pricing (Misiran et al. 2010; 2012, Alhagyan et al. 
2016 a; 2016), index prices (Alhagyan & Al-Duais 2020, Abbas & Alhagyan 2022; 2023, Xiao et al. 
2015), value at risk (Alhagyan et al. 2021, Wang et al. 2017), exchange rate (Gözgör 2013, Mansour 
and Alhagyan 2022, Alhagyan 2022, Abbas and Alhagyan 2023), and mortgage insurance (Bardhan 
et al. 2006, Alhagyan et al. 2021, Chen et al. 2013). 

Constant assumption of volatility (𝜎𝜎) was used in the models of GBM to simplify calculations. 
However, this assumption was not supported by some empirical studies like Stein (1989), Bakshi et 
al. (2000), and Aїt–Sahalia and Lo (1998) where they concluded that the assumption of constant 
volatility does not describe the real situation accurately. For this reason, there have been many efforts 
to deal with this issue by replacing the constant volatility (𝜎𝜎) in GBM models deterministic function 
of a stochastic process or volatility process 𝜎𝜎(𝑌𝑌𝑡𝑡)  where  𝑌𝑌𝑡𝑡  is the solution of other stochastic 
differential equation (SDE) that is driven by other noise stochastic volatility. For example the efforts 
of Scott 1987, Hull and White (1987), Alhagyan et al. (2016 a; 2016 b), Stein and Stein (1991), Heston 
(1993), Alhagyan and Yassen (2023), Hagan et al. (2002), Alhagyan (2022), Comte and Renault (1998), 
Chronopoulou and Viens (2012 a; 2012 b), Wang and Zhang (2014) and Alhagyan (2018). 

The SV models are considerable in the environment of financial market because its ability to 
capture the effect of time–varying volatility. SV models permit of both volatility and common 
dependence between variables to fluctuate over. This implies that SV models have two sources of 
randomness. Table 1 presents some SDE equations describing the stochastic process 𝑌𝑌𝑡𝑡. 

Table 1. Models of stochastic processes describing Y_t in SV models. 

Name Model 
𝐿𝐿𝐿𝐿𝐿𝐿–𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑌𝑌𝑡𝑡 = 𝛼𝛼𝑌𝑌𝑡𝑡𝑑𝑑𝑑𝑑 +  𝛽𝛽𝑌𝑌𝑡𝑡𝑑𝑑𝐵𝐵2𝑡𝑡 

𝐶𝐶𝐶𝐶𝐶𝐶– 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼–𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐶𝐶𝐶𝐶𝐶𝐶) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑌𝑌𝑡𝑡 = 𝜃𝜃(𝜔𝜔 − 𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜉𝜉�𝑌𝑌𝑡𝑡𝑑𝑑𝐵𝐵2𝑡𝑡 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂–𝑈𝑈ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑂𝑂𝑂𝑂) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑌𝑌𝑡𝑡 = 𝛼𝛼(𝑚𝑚 − 𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽𝐵𝐵2𝑡𝑡 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑌𝑌𝑡𝑡 = 𝛼𝛼𝑌𝑌𝑡𝑡𝑑𝑑𝐵𝐵2𝑡𝑡 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂–𝑈𝑈ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹𝐹𝐹𝐹𝐹) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑡𝑡 = 𝛼𝛼(𝑚𝑚− 𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽𝐵𝐵𝐻𝐻2(𝑡𝑡) 

In the following, two models of SV under study are presented. 
Model 3: GBM perturbed by FOU (SVGBM) 
𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑆𝑆𝑆𝑆 (𝐹𝐹𝐹𝐹𝐹𝐹) 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑆𝑆𝑆𝑆𝑆𝑆: 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑌𝑌𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝐵𝐵1𝑡𝑡 (5) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑌𝑌𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐵𝐵1𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐵𝐵𝐵𝐵,𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎(𝑌𝑌𝑡𝑡) =
𝑌𝑌𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑌𝑌𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂– 

𝑈𝑈ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹𝐹𝐹𝐹𝐹) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆 

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝛼𝛼(𝑚𝑚− 𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽𝐵𝐵𝐻𝐻2(𝑡𝑡) (6) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼,𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝐵𝐵𝐻𝐻2(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐵𝐵1𝑡𝑡. 
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Model 4: GFBM perturbed by FOU (SVGFBM) 
𝑇𝑇ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋𝑡𝑡 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑏𝑏𝑏𝑏 𝑆𝑆𝑆𝑆 (𝐹𝐹𝐹𝐹𝐹𝐹)𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑡𝑡ℎ𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆: 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜇𝜇 𝑋𝑋𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎(𝑌𝑌𝑡𝑡)𝑋𝑋𝑡𝑡𝑑𝑑𝐵𝐵𝐻𝐻1(𝑡𝑡) (7) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑌𝑌𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝐵𝐵𝐻𝐻1(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
𝐻𝐻1, 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎(𝑌𝑌𝑡𝑡) = 𝑌𝑌𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝐿𝐿𝐿𝐿𝐿𝐿 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑌𝑌𝑡𝑡 𝑏𝑏𝑏𝑏 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂–𝑈𝑈ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝐹𝐹𝐹𝐹𝐹𝐹)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑆𝑆𝑆𝑆𝑆𝑆 

𝑑𝑑𝑌𝑌𝑡𝑡 = 𝛼𝛼(𝑚𝑚− 𝑌𝑌𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝛽𝛽𝛽𝛽𝐵𝐵𝐻𝐻2(𝑡𝑡) (8) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼,𝛽𝛽  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝐵𝐵𝐻𝐻2(𝑡𝑡) 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑖𝑖𝑖𝑖 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐵𝐵𝐻𝐻1(𝑡𝑡). 

3. Forecasting 

This work employs the four models mentioned in the previous section to forecast future index 
prices of seven companies in the energy sector in Saudi Arabia depending on historical data. In this 
empirical study, we examine the influence of incorporating both memory and stochastic volatility 
into the GBM model. 

We relied on two measures of error to evaluate and compare the performance of each model 
under study. These measures are mean square error (𝑀𝑀𝑀𝑀𝑀𝑀) and mean absolute percentage error 
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). 

𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑌𝑌𝑖𝑖−𝐹𝐹𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 & 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

∑ �𝑌𝑌𝑖𝑖−𝐹𝐹𝑖𝑖�
𝑌𝑌𝑖𝑖

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, 

where 𝐹𝐹𝑖𝑖 and 𝑌𝑌𝑖𝑖 represent forecast and price actual price at day 𝑖𝑖, respectively. While 𝑛𝑛 the total of 
forecasting days. Lawrence (2009) recapped the judgment on any forecasting method using MAPE in 
the following table. 

Table 2. 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜. 

Judgment of Accuracy MAPE 
𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 10% 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 10% ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 20% 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 20% ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 < 50% 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 50% 

3.1. Description of Historical Data 

The historical data is available online at https://www.saudiexchange.sa. The total working days are 
43 days begin from 1st November 2023 to 31st December 2023. To avoid high fluctuation in data, 
return series is considered in logarithm (i.e., 𝑟𝑟𝑛𝑛 = ln (𝑆𝑆/𝑆𝑆𝑛𝑛−1)). Figures 1 and 2 show the close prices 
and its return series. 
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Figure 1. Daily energy index close price. 

 
Figure 2. Daily returns of energy index. 

3.2. Forecasting and Evaluation 

According to the historical data of energy sector indices, all parameters involved in the four 
models under study are calculated by using Mathematica 10 software and then employed to compute 
constant volatility and stochastic volatility. Table 3 lists all computed parameters and volatilities. 

Table 3. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 

Parameter Value Parameter Value 
𝐻𝐻1 0.3279 𝛽𝛽 0.00002 
𝐻𝐻2 0.2520 𝑚𝑚 0.00001 
𝜇𝜇 0.00004 𝛼𝛼 4.62705 

Computed Volatility 
𝜎𝜎 0.0036   

𝜎𝜎(𝑌𝑌𝑡𝑡) 0.0010   

Then the forecasting of close price of the next month (Jan 2024) is conducting based on the values 
of the parameters in Table 3. The forecasting is computed using four models; GBM, GFBM, SVGBM, 
and SVGFBM. Table 4 shows the level of accuracy of each model. Meanwhile, Tables 5 shows the 
forecasted prices in addition to the actual prices of energy indices. 
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Table 4. The accuracy ranking level of forecasting model based on MAPE and MSE. 

Model MAPE MSE 
SVGFBM 2.753% 44861 

GFBM 2.758% 44921 
SVGBM 2.759% 44946 

GBM 2.887% 48457 

Table 5. Actual and forecasted prices. 

Date Actual GBM GFBM SV GBM SV GFBM 
1/1/2024 6,231.24 6,240.65 6,230.96 6,228.20 6,231.33 
1/2/2024 6,234.45 6,243.74 6,231.77 6,231.27 6,231.74 
1/3/2024 6,208.98 6244.15 6230.47 6,231.68 6231.56 
1/4/2024 6,231.12 6244.03 6228.52 6231.59 6231.21 
1/7/2024 6,264.88 6243 6232.38 6230.56 6232.46 
1/8/2024 6,298.10 6245.29 6232.93 6232.84 6232.8 
1/9/2024 6,258.55 6247.55 6230.89 6235.09 6232.42 
1/10/2024 6,194.68 6243.82 6233.67 6235.34 6233.37 
1/11/2024 6,184.72 6243.25 6233.11 6230.77 6233.4 
1/14/2024 6,185.47 6244.28 6233.75 6234.82 6233.76 
1/15/2024 6,104.82 6245.72 6235.91 6233.24 6234.54 
1/16/2024 6,026.77 6246.9 6233.81 6234.45 6234.14 
1/17/2024 5,989.73 6246.56 6235.95 6234.11 6234.92 
1/18/2024 6,014.71 6246.06 6233.42 6236.59 6234.4 
1/21/2024 6,030.20 6246.09 6235.19 6236.62 6235.07 
1/22/2024 5,973.57 6248.83 6235.01 6236.35 6233.2 
1/23/2024 5,978.97 6247.24 6233.49 6236.75 6234.97 
1/24/2024 5,987.34 6246.39 6236.14 6236.91 6235.89 
1/25/2024 5,958.15 6246.5 6236.04 6234.04 6233.04 
1/28/2024 5,932.13 6247.66 6234.01 6235.19 6235.66 
1/29/2024 5,904.70 6243.1 6237.73 6236.62 6236.87 
1/30/2024 5,896.26 6247.03 6235.71 6234.57 6235.5 
1/31/2024 5,766.84 6247.19 6236.92 6234.71 6237.01 

That is what the discoveries showed, in light of the smaller MSE and MAPE values; SVGFBM 
has the first level in accuracy. This outcome was accomplished due to the presence of two sources of 
memory (𝐻𝐻1and 𝐻𝐻2) along with stochastic volatility assumption. While GBM placed last because of 
the existence of one sources of randomness in addition to constant volatility assumption. The 
outcomes endorsed that models under memory assumption (SVGFBM and GFBM) are more 
appropriate in forecasting future stock costs than the models without memory (SVGBM and GBM). 

As per Lawrence’s table (Table 2) all models achieved MAPE <10% which indicating that high 
accuracy in forecasting by these models. Moreover, one can observe that the values of MSE of 
SVGFBM, GFBM, and SVGBM are close together while GBM is relatively far. These outcomes run in 
the same direction as many experimental researches for instance Willinger et al. (1999), Rejichi and 
Aloui (2012), Alhagyan (2022), Painter (1998), Alhagyan and Yassen (2023), Alhagyan and Alduais 
(2020), and Abbas and Alhagyan (2022; 2023). Figure 3 illustrates the comparison between the actual 
close prices versus forecasted close prices. This Figure showed that the forecasted prices are less 
fluctuated than the actual prices and ensured that the forecasted prices are closer together. 
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Figure 3. Actual prices vs Forecast prices . 
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4. Conclusion 

Index price reflects the financial stability and level of economic growth. Therefore, forecasting 
the future performance of index prices is in the top tasks of stakeholders and investors. For this task, 
several models have been presented in literature. GBM model is one of the famous and important 
models. There are some models emanated from classical GBM model. This emanation depending the 
assumption of existence (or absence) of memory in time series financial data in addition to the 
assumption of volatility (constant or stochastic). To discuss the affection of these assumptions on 
GBM model, this work examined four models of GBM including; classical GBM (absence of memory 
and constant volatility), GFBM (existence of memory and constant volatility), SVGBM (absence of 
memory and stochastic volatility), and SVGFBM (memory and stochastic volatility). All these models 
stated in Section 2 of this manuscript. The examination was conducted by exploiting these models to 
forecast Energy Sector in the Saudi Stock Exchange Market. Two statistical criterions of error was 
utilized (MSE and MAPE) to evaluate the performance of each model. 

The findings of this empirical examination exposed that SVGFBM achieved the smallest values 
of both MSE and MAPE and then the best performance. This result achieved because of the existence 
of two sources of randomness with memory (𝑑𝑑𝐵𝐵𝐻𝐻1 & 𝑑𝑑𝐵𝐵𝐻𝐻2 ) and the assumption of stochastic 
volatility. While GBM ranked last because of existence of one source of randomness without memory 
(𝐻𝐻 = 0.5) and the assumption of constant volatility. 

The results ensured that GFBM models are more accurate than GBM models for forecasting 
future stock prices. Furthermore, under the same assumption of memory, the models of stochastic 
volatility assumption are more accurate than the models of constant volatility assumption. This 
outcome has proved that the direct positive affection of incorporating memory and stochastic 
volatility together into GBM. 

Moreover, values of the MSE and MAPE for SVGFBM, GFBM, and SVGBM are relatively close 
together while GBM was moderately far. Generally, according to the Lawrence’s table to judgment 
accuracy (Table 2), all models exhibited high level of performance because of the MAPE <10% which 
indicate that all models under study can used as a tool of forecasting future index price of Energy 
Sector in Saudi Arabia. 

In general, the empirical results of this study agree with earlier empirical works such as Abbas 
& Alhagyan (2022; 2023), Mansour & Alhagyan (2022), Alhagyan & Yassen (2023), Alhagyan (2022), 
Willinger et al. (1999), Painter (1998), Rejichi & Aloui (2012) and Alhagyan & Alduais (2020) to name 
just a few. Subsequently, we are strongly recommend investors and trader to invest in the Energy 
Sector in Saudi Arabia because of its predictability and stability. 
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