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Abstract: The importance of sleep for healthy brain function is widely acknowledged. However, it remains
unclear how the internal generation of dreams might facilitate cognitive processes. In this perspective we review
a computational approach inspired by artificial intelligence that proposes a framework for how dreams occurring
during rapid-eye-movement (REM) sleep can contribute to learning and creativity. In this framework, REM
dreams are characterized by an adversarial process that, against the dream reality, tell a discriminator network to
classify the internally created sensory activity as real. Such an adversarial dreaming process is shown to facilitate
the emergence of real-world semantic representations in higher cortical areas. We further discuss the potential
contributions of adversarial dreaming beyond learning, such as balancing fantastic and realistic dream elements,
and facilitating the occurrence of creative insights. We characterize non-REM (NREM) dreams, where a single
hippocampal memory is replayed at a time, as serving a complementary role of improving the robustness of
cortical representations to environmental perturbations. We finally explain how subjects can become aware of the
adversarial REM dreams, but less of the NREM dreams, and how the awareness phenomenon in wake, dream

and lucid dreaming may appear.

Keywords: rapid-eye-movement; sleep; learning

Introduction

Even though disconnecting us from the outside world, sleep still hosts internal conscious sensory
experiences, or dreams, triggered by the generation of an internal, virtual world [1]. Strikingly, these
experiences usually evoke the sensation of being awake, since similar features as in our external
sensorium (characters, objects, colors, places, and sounds) are incorporated in a realistic manner
[2]. Moreover, similarly to waking experiences, dreams reflect our current concerns, interests and
personality, and are highly rich in emotions [3]. As soon as we fall asleep, we stop consciously
perceiving sensory stimuli from the external world, and instead get invaded by internal thoughts and
hallucinations that are often unrelated to our previous immediate experiences [4].

Despite their realism, dreams, especially from rapid-eye-movement (REM) sleep, often feature
bizarre and creative elements, mostly because they do not simply replay previous experiences [5-7]. In
a study examining dream reports and waking activities from participants over 14 days, Fosse et al. [5]
showed that while 65% of dream reports incorporate aspects of waking experiences, the exact replay of
waking events was found in only 1-2 %. Instead, dreams are constructed from a combination of various
isolated, sometimes non-obviously related episodic fragments, [8-10]. This combination of unrelated
memories results in REM dreams often appearing bizarre and creative in retrospect. For instance, a
person may dream of attending a tea party hosted on the moon, where the guests are historical figures
speaking in riddles—a bizarre experience. Creatively, a dream could involve designing a building that
transforms itself based on the weather, showcasing innovative solutions to climate change challenges.

The observed novelty in our dreams raises the question of their potential function. How could
such a virtual, hallucinatory and fantastic experience benefit our cognitive functions? It remains
debated whether dreams have any functionality at all or whether they are mere epiphenomenal
byproducts of sleep [11-13]. Contemporary theories often relate dreaming to memory consolidation
[e.g., see 14-16] or emotional processing [e.g., see 17-19]. A further strand of theories assumes that
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the combination of memories into a new, virtual scenario during dreaming serves to enhance creativity
[e.g., see 9,20]. Motivated by anecdotal evidence of scientific discoveries originating in dreams—e.g.,
the benzene structure by Kekule (1865) or the chemical neurotransmission by Loewi (1936) [1]—the
role of dreams in creativity has been taken into wider consideration. It has been proposed that the
creative associations between unrelated memories during dreaming could lead to the discovery of
unexpected solutions which lies at the essence of creative problem-solving [9]. Through this process,
the dreamer is enabled to engage in creative experimentations that might once serve as a solution for
potential future problems [8,21], such as e.g., rehearsing threat perception and avoidance. However,
empirical studies report that dreams rarely contain practical solutions to real-life problems, in addition
to the fact that most dreams are forgotten [10,22-24].

In contrast, in a recent computational study, we [the authors of 25] argued that the creative aspect
of dreams serves a more basic function than creativity itself, that is, dreaming facilitates learning
semantic representations based on sensory experiences gathered during waking. In this study, we
proposed a cortical architecture, where sensory inputs are perceived through feedforward pathways of
sensory cortices, while dreams are generated through the feedback pathways. In particular, we show
that the generation of dreams during REM sleep can be explained by an adversarial learning mechanism
inspired by Generative Adversarial Networks [GANSs, 26] where feedback pathways trick feedforward
pathways into believing that the dream comes from outside. Crucially, this mechanism leads to the
acquisition of structured, semantic cortical representations, essential to perform downstream tasks
such as object recognition.

In this article, we provide an accessible overview of this computational approach, thereby explain-
ing how adversarial dreams could facilitate creativity and the learning of an internal representation of
objects and concepts from the external world. We show how an adversarial dream implicitly assumes
meta-structures in the brain (a ‘conductor’) that gate and represent information to interpret activity in
early sensory cortices either as dreamed/imagined, or being evoked from the external world. This
leads us to the notion of dream awareness, and more specifically to the awareness of the dream content
and the dream state. We discuss the model in light of previous theories of dream origin, functions, and
changes of dreams across lifespan.

1. A Computational Model for Creative Dreams

Even though dreaming is a universal phenomenon, characterizing its role is still, up to this day, a
challenging task. For instance, it is difficult to assess whether the improvement of skills after a night
of sleep is due to the occurrence of a certain dream, or to other physiological features of sleep such
as hippocampal replay during NREM sleep [27]. In other words, the potential effects of sleeping and
dreaming are entangled and thus confounded, since they are naturally co-occurring. Nonetheless,
there have been some attempts to investigate the effect of dreaming, notably through the use of
pharmacological interventions to suppress REM sleep in participants [see, e.g., 28]. Despite these
efforts, disentangling the effects of dreams within sleep remains complex and largely unclear.

Here, computational models can help to quantify physiological features such as dreams and
replay through simulations, and thereby decipher their contributions within a defined task. This was
the challenge of our study that, through the construction of a “perturbed and adversarial dreaming”
(PAD) model, suggests a role for dreams in learning to classify objects that come in a variety of versions
in different visual scenes [25]. The PAD model is composed of a cortical feedforward (FF) pathway
with a discriminator network (D), and a feedback (FB) pathway that generates sensory activity from a
hippocampal memory. The system can either be in a wake state, where external stimuli are directly
driving the FF pathway, or in a dream state, where sensory activity is generated by a hippocampal
memory replay fed into the FB pathway:.

During wakefulness (Figure 1a), the cortex is exposed to diverse natural images that are processed
along the cortical hierarchy through the FF pathway, until incorporated in high-level neuronal rep-
resentations, for example in the Inferior-Temporal (IT) cortex [29]. Snapshots of the activity in these
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representations are temporarily stored in the hippocampus as episodic memory, that, for instance
during sleep, can be replayed into the cortical representation. During the forward processing of the
sensory input, the discriminator network D learns to recognize that the sensory activity evoked by an
image presentation is real (Figure la, red ‘D’).
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Figure 1. Creative dreams during REM sleep improve cortical representations and learning. (a)
During wakefulness (Wake), a discriminator network (D, red) reads out activity from the cortical
feedforward pathway (FF, green) and learns to correctly recognize that sensory activity (lower green
pyramidal neurons) are externally driven (real, red v). The high-level representations are stored in
the hippocampus for future replay 2(dashed arrow, not explicitly modeled as neuronal structure). (b)
During REM sleep, the feedback pathway (FB, blue) learns to adversarially generate virtual sensory
activity from a combination of multiple hippocampal memories and spontaneous cortical activity (here,
a “doggy-car”) that may be incorrectly classified by D as real. The adversarial learning of realistic
sensory activity by the FB pathway is achieved by imposing the target real! on D (red ', despite in the
sleep phase), and backpropagating the error to the FB network. (c, d) Principal component analysis
(PCA) was applied as a tool to visualize the formation of clusters in the high-level representation
of the images. Shown is a projection to the first two principal components, with different colors
representing different object categories. (e, f) Performance of a linear classifier telling which object is
in an image. The classifier is trained on high-level representations learned either without (e) or with
(f) REM dreaming. An epoch consists of 780 Wake-NREM-REM sleep cycles, in which 64 images are
sampled during Wake and replayed during the NREM and REM phases. One epoch samples roughly
5/6 of the CIFAR10 data set with 60’000 images and 10 classes. Adapted from Deperrois et al. [25].
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During the REM sleep phase (Figure 1b), the representation stored from the previous day is
replayed from the hippocampus (“dog” memory) along with past, sometimes unrelated memories
(“car” memory) and some additional cortical background activity (which is modeled as noise). The
resulting activity in higher cortical areas is representing the dream content. It is processed along the
cortical FB pathway down to low-level sensory areas where details are added to the dream. Due to the
combination of diverse memories, the dream might contain various unrelated elements, such as a car
having the texture or shape of a dog. Yet, the mere superposition of the abstract representations in
the higher cortical area does not entail instructions of how the FB pathway can succeed in generating
a realistic sensory activity out of the novel combination. This is where the principle of GAN, i.e.,
adversarial learning, comes into play. The dream is processed through the FF pathway and the
discriminator D. During the REM sleep, the discriminator learns that the internally generated sensory
activity is dreamed. The FB pathway, however, learns to improve the realism of its generated activity,
and with that makes the task for the discriminator to correctly classify the activity as dream more
difficult. This FB pathway represents the adversarial learning, leading to the adversarial dreams that
try to evoke a misclassification of the discriminator.

The described PAD model of sleep is trained by repeating many wake-sleep cycles, whereby a
set of natural images is repeatedly processed by the FF and FB pathways and the discriminator D.
Once training is completed, we can examine the quality of the learned high-level representations
(Figure 1c-d) within the learned latent space of the model (the highest cortical representation). Note
that these representations are not learned in a supervised manner with an explicit teaching signal
that would indicate the ground truth category of the observed object. Instead, the representations are
formed through unsupervised learning, leading to a clustered higher-level neuronal representation of
visual objects. The structure of the latent space can be illustrated by Principal Component Analysis
[PCA, 30] applied to the activity in the last layer of the FF network. Projecting the activity vectors
to the first two principal components, this procedure allows visualizing how the representations of
various learned objects cluster in the latent space. The visualization is not part of the model, although
PCA could itself be modeled by a neuronal network [31].

Comparing PCA projections after different training regimes allows for investigating the effect
of wakefulness versus REM dreams: If only the wake phase is present, the obtained PCA projection
shows that representations from different object categories are entangled, indicating that wakefulness
is not sufficient to construct structured semantic representations (Figure 1c). When both Wake and
REM sleep phases are simulated (Figure 1d), the PCA projection shows relatively distinct clusters
of latent representations according to the semantic category (“class identity”) of the corresponding
images. The model thus tends to organize latent representations such that high-level, semantic clusters
are distinguishable, potentially helping humans and other animals to discern different object categories
from their sensorium. This is in particular important for animals, that do not receive explicit teaching
signals in the way humans and their children do throughout development.

These results can be quantified by evaluating the performance of a linear decoder (classifier)
trained on high-level cortical representations obtained throughout the model simulation. If the REM
phase is included in the training, the accuracy of the classifier tends to be much higher than if only the
Wake phase is simulated (Figure 1le-f). The results show that the generation of dreams during REM
sleep is essential to organize high-level representations according to the semantics of the sensorium,
suggesting that dreaming is an essential component of learning.

2. Semantization Requires More than Memory Replay

Previous cognitive theories of sleep, such as “semantization” theories [32,33], suggest that the
commonalities between multiple experienced episodes are extracted during NREM sleep to form a
cortical semantic representation. A cognitive model [34] proposed that semantic formation is based on
the invariant overlapping and statistical regularities between single replayed episodic memories. Areas
of overlap are strengthened via Hebbian learning, allowing for an abstraction of shared elements among
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these memories, the so-called semantic “gist". For example, the reactivation of various memories
of “cat experiences" facilitates the extraction and consolidation of the concept “cat" from repeating
features with episodic memories (four legs, pointed ears, tail, etc.) in cortical representations.

The PAD model offers a further perspective on the semantization process during sleep. It suggests
that the semantization of cortical representations is more likely induced by REM dreams, featuring
combinations of episodic memories, than by the replay of single episodic memories during NREM
sleep. We incorporated NREM sleep into our model by a phase where individual hippocampal
memories are replayed without combination with other memories. Instead, the activity in the sensory
area after processing through the FB pathway is perturbed by randomized patches (see Figure 2 and
section on NREM sleep below). We find that NREM sleep in our model has little or no impact on
the acquisition of semantic representations—even when adversarial learning based on individual
memory replays is enabled in the FF/D and FB pathway (see Deperrois et al. [25] for details). The
simulations indicate that, to extract semantic concepts from sensory data, the brain must go beyond
merely replaying previous experiences as classically accounted for in NREM sleep [35]. It appears
that novel but realistic contents must be internally created from simultaneous multiple memories that
explore the boundaries between object categories, and help to form a representation of these objects
based on contents and content differences. The suggested role of creative REM dreams may help to
refine cognitive theories about sleep function and to delineate the role of NREM and REM sleep in
memory semantization.

¥l - =
o
Wake NREM sleep REM sleep

Perturbed dream /

X . Adversarial dream
Contrastive learning

Sensory observation
Figure 2. The role of NREM sleep in improving robustness to perturbations. Beside the wake
phase (left) consisting of observing sensory inputs from the outside world, and the REM phase (right)
generating adversarial dreams, the PAD model also features a NREM phase (middle) where a single
memory is replayed from the hippocampus in a corrupted manner. In other words, a dream is generated
from the latent representation of an input that has been observed during wakefulness and is now
re-activating a higher cortical area (top right in blue), and perturbed along the FB path to the sensory
cortex with some random perturbations (bottom, pale squares). This non-creative, but perturbed
activity, is sent through the FF pathway upwards again. The FF pathway learns (red oblique arrow
/") to map the sensory activity back to the higher cortical area so that there it represents the original
memory replay (red arrow with the ‘?’, here the representation of the dog without perturbations).
Through this mechanism, the classification through the FF pathway becomes more robust to sensory
perturbations and may generalize better to variations of the objects. Adapted from Deperrois et al. [25].

The described creative memory replay can be seen in the light of the overfitted brain hypothesis,
which proposes that “nightly dreams evolved to combat the brain’s overfitting during its daily
learning” [24]. More specifically, the overfitted brain hypothesis posits that the creation of corrupted
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sensory activity from stochastic memory replay during sleep increases the generalizability of the object
representations learned during the day. The stochastic memory replay aligns with the NREM phase in
our model. In our NREM phase, hippocampal memories are fed back into the cortex and randomly
perturbed, in order to train the cortical representations in the FF pathway to become noise resistant.
Yet, as we showed, the random perturbations in single memories alone are not as efficient in separating
objects in the cortical representation as when memories are paired in a creative replay during REM
[25, Figure 1d]. The PAD model therefore suggests that sleep increases generalizability with both,
stochastic replay during NREM and — going beyond the overfitted brain hypothesis [24] — also with
creative replay during REM sleep.

3. Adversarial dreams on the edge between fantasy and reality

Aside from proposing a role for dream function, the adversarial dreaming principle of the PAD
model suggests a mechanism for how internal sensory activity can be generated in the brain, and
how an equilibrium between fantastic and realistic aspects can be maintained, potentially beyond the
stage of dreaming. Following the PAD framework, we assume that different memories, for example a
memory of an eagle and a human (the dreamer), are concurrently replayed from the hippocampus and
combined in high-level cortical areas (Figure 3). The combined activity is sent through the FB pathway,
leading to the generation of a dream representing a flying human, which is, while being novel and
creative, not very convincing in terms of realism. This lack of realism allows the discriminator to easily
detect that the sensory activity is dreamed and not real.
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Figure 3. Adversarial learning at the edge between fantasy and reality. A creative dream is initiated
by the combination of two memory elements (e.g., a bird and a human). Propagating this combination
down through the FB pathway (blue) generates a sensory activity that may be perceived as a flying
human. The sensory activity is then passed through the FF pathway (green), featuring the discriminator
(D, red), that likely detects that this experience is to be dreamed (indicated by the ‘?’). But the target
of the discriminator is adversarially set to real! (top left). This produces an error in the D output that
is backpropagated through D and the FF pathway to the sensory area. On its way back, the error
transforms into the visual elements necessary to correct the sensory activity so D effectively reproduces
the wrong the target, and hence erroneously confirms that the sensory activity is real (e.g., a cliff
and a lake background, red dashed arrows). This is done by modifying the synaptic weights of the
Feedback pathway (oblique * crossing FB) such that this generates a more realistic sensory activity.
The adversarial corrections eventually lead to more realistic dreams (such as cliff jumping instead
of flying) across the duration of the learning procedure that may extend across the life span of an
individual. Plasticity in the discriminator network in the REM phase is inverted so that D still has a
chance to learn to correctly classify the internally generated sensory activity as dreamed (negative sign
at /* crossing D), in a race against the adversarial plasticity in the FB pathway. Creative and potentially
realistic dreams may help the dreamer in creative problem solving after sleeping [9,36,37]. Images
represent a sketch, not simulation results.

The adversarial learning of the FB pathway will restore the realism in this scene. The key point
of adversarial dreaming is that the FB pathway attempts to fool the discriminator into believing
that the dream actually is a sensory experience. There are two ways to implement this fooling:
either by reverting the synaptic plasticity in the FB pathway and keep the correct target for the
discriminator (as described and simulated in Deperrois et al. [25]), or keep the plasticity in the FB
pathway untouched, while reverting the target for D. It is this second version that we suggest here as a
biological implementation. The reason is that the target imposed on the discriminator may provide
an awareness signal for the content, as we elaborate later (see Figure 5). The REM phase still needs a
sign-switch in the synaptic plasticity, and this is now on the synapses of the discriminator network
during REM sleep (Figure 3). In fact, while D learns during wakefulness to correctly classify externally
generated sensory activity as real, it should learn to correctly classify internally generated sensory
activity as dreamed during the REM phase. A sign-switch of synaptic plasticity (necessary in the D
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network when the target remains real during the REM phase) was experimentally observed by the
action of acetylcholine [38] that is also involved in the regulation of REM sleep [21].

In detail, the “adversarial game” during the REM sleep starts by imposing the wrong target
real! on the discriminator output. This typically leads to an error between the target and what the
input from D would like to produce. To still improve the discriminator, plasticity in D is inverted, as
just explained. But plasticity in the FB pathway remains the same, so that the FB network now tries
to produce a sensory activity that becomes more real, as requested by the target real! for D. The FB
pathway is also told how to improve because the error from D, that carries the instruction to improve
the realism in the sensory activity, is propagating down through D and the FF pathway to the FB
network (for a biological form error backpropagation see Sacramento ef al. [39]). In other words, the FB
pathway adapts such that the internally generated activity in the sensory area will more likely fool the
discriminator into believing that the activity is real and produced from the outside. As a consequence,
after thousands of wake-sleep cycles, the dream is thus better blended into the reality of the outside
world. The same computational principles may also apply to improve creative imagination during
wakefulness (see Discussion).

To come back to our example, we consider the experience of dreaming about flying through the
clouds, resulting from combining the hippocampal memory of a bird and a human (Figure 3). The
dream could be easily unmasked as “fake” by the discriminator D. Yet, sometimes humans engage in
sports such as cliff jumping, whereby it appears as if the jumper is flying. Accordingly, the realism
of the dream could be increased by adding visual details such as some cliffs and water. On the other
hand, the omission of these details signifies errors that must be corrected to enhance the dream’s
plausibility. In this case, the synaptic connections of the FB pathway are modified to generate a more
realistic, plausible dream. Consequently, in a subsequent REM phase, we might find ourselves leaping
off a cliff to fly over the sea. The novel dreams created during the REM phase in our model will also
change the early cortical activity produced during wakefulness when ‘mind-wandering’ through the
latent representation. This in turn may influence our future actions. For instance, we may go cliff
jumping the next day after the REM dream has generated the corresponding scene.

Adversarial learning might thus explain how dreams, originating in a creative combination of
memories, can be constrained to become more realistic and make them compatible with our waking
experiences and actions. This is in line with Hobson’s pioneer activation-synthesis theory that claims
that REM dreams result from the brain “making the best of a bad job in producing even partially
coherent dream imagery from the relatively noisy signals sent up to it from the brain stem” [40, p.
1347]. In the spirit of this citation, the modeled generative process during REM sleep starts with a
noise signal added to random combinations of memories and tries to produce a coherent and realistic
cortical activity through adversarial learning. We will next see how the resulting balance between
fantastic and creative dream elements can be useful to trigger creative insights.

4. Adversarial Dreaming at the Heart of Creativity?

Adversarial dreaming may also influence creativity during wakefulness. As a consequence of
adversarial dreaming, the FB projection can lead to the generation of sensory activity patterns that have
unlikely been evoked by previously experienced stimuli (novel combination of episodic memories),
but that nevertheless may be possible in reality (increased realism through the adversarial game). This
kind of constrained simulation may have functional benefits in terms of creative thinking and gaining
insights in general.

Novel cognitive insights were argued to result from a period of “incubation”, where non-obvious,
remote associations from memory (or knowledge) elements are brought into our thinking [41,42].
These associations can sometimes be compatible with reality, in which case they can provide a solution
to a complex problem through a creative insight [43, “Aha moments”] that deliberate reasoning alone
may not provide. Dreaming appears to be an ideal stage to promote novel associations and eventually
enhance creative insights, as previously suggested [9,44—46]. More recent studies show that subjects
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with narcolepsy, characterized by falling asleep directly into REM sleep and having a higher percentage
of REM sleep [47], show higher creative potential [36].

Creative problem-solving is also promoted by the twilight stage before sleep, as allegedly exploited
by the great inventor Thomas Edison [37]. While napping down, he held two balls that would drop
and awaken him as he entered deep sleep, enabling him to capture thoughts about his inventions
that would otherwise be lost. Experimental examination confirmed this anecdotal evidence and
revealed that creative problems are easier solved on the verge of falling asleep and being awakened
from the first stage of NREM sleep (N1), as opposed to being awakened from the second stage of
NREM sleep (N2) or staying awake throughout [37]. Creative problem-solving is further fostered
by a 60-minute nap as opposed to a 60-minute rest [48]. In a similar line, Ritter et al. [49] found that
creative performance is already boosted by a simple eye-closure as opposed to keeping eyes opened.
To relate these findings to our model of creative dreaming and imagination, we postulate that during
the described creative stages our adversarial processes are triggered. The specific form of memory
replay and synaptic plasticity arising in the adversarial learning may be induced through differential
activation of neuromodulators, as it is also observed during the transition across sleep stages [50], and
in shaping the memory replay in general [51].

Beyond Edison’s nap technique, anecdotal evidence exists from August Kekulé who discovered
the Benzene structure through a dream in which he combined two non-related concepts, a snake biting
its tail, and the carbohydrate molecular chain [1]. Here, the adversarial dreaming framework could
explain the occurrence of such insights (Figure 4). The memories of a depiction of the ouroboros symbol
(a snake eating its tail) and the hexane molecule could be randomly replayed from the hippocampus
and combined in high-level areas during REM sleep. Propagating this activity down through the FB
pathway, the adversarial learning mechanism could allow the generation of a dreamed molecule that
contains aspects of the ouroboros, such as its cyclic shape. By forcing this dream to be realistic against
the discriminator judgement, the dreamed molecule could be harmonized with known properties of
chemistry, so that it might exist in reality. Naturally, not all creative combinations experienced during
dreaming are useful, and their usefulness is ultimately determined by how compatible they are with
the actual external world.

d0i:10.20944/preprints202403.0684.v2
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Benzene?

adversarial REM dream

Figure 4. Adversarial dreaming and creative insights. (a) Dreams could promote creative insights,
such as the discovery of the structure of benzene through a dream experienced by Kekulé, where the
knowledge of carbohydrates structures and the concept of a snake biting its own tail are combined
(Ouroboros-Benzene by Haltopub, 2013). (b) The adversarial dreaming framework can explain the
occurrence of such insights. Here, hippocampal memories of a snake and a hexane molecule are
combined to generate a potentially realistic dream through the FB pathway that would represent
the benzene molecule. To ensure that this dream is compatible with the reality, it is fed through the
FF pathway and the discriminator (D) that itself is adversarially encoding the target real (red). The
discrepancy between the imposed real-target and the forward drive from the D network represents the
discrimination error. This discrimination error teaches the FB pathway (red ,* crossing FB) how to
improve the realism of the random memory combination of a snake and a hexane to represent — what
Kekulé inspired to become — the benzene (bottom, see Figure 3 for the learning mechanism).

This suggests that additional steps may be involved, such as experimentally verifying the occurred
insight—reflected in Kekulé ’s words: “Let us learn to dream, gentlemen, and then perhaps we shall
learn the truth... but let us beware of publishing our dreams before they have been put to the proof by
the waking understanding.” (account of his famous dream of the benzene structure, as quoted in Olah
[52], p. 54)

5. NREM: Improving Memory Robustness by Perturbed Replay

The suggested adversarial REM dreams represent part of the full PAD model that also includes
NREM sleep. For the past decades, NREM sleep has been associated with memory consolidation
[35,53,54] and memory semantization [32,34]. The main mechanism hypothesized to drive these
consolidation processes is the reactivation of hippocampal representations observed during slow-wave
sleep, the deepest stage of NREM sleep[55]. Accordingly, replaying hippocampal memories allows a
transfer to cortical networks for long-term retention via Hebbian learning [54], possibly through an
abstraction of semantic concepts by discarding spatiotemporal details and keeping the commonalities
between replayed memories [32-34].

The PAD model also incorporates hippocampal replay during NREM sleep and suggests a
complementary role of REM sleep in memory consolidation and semantization. While memory
replay has been extensively associated with memory consolidation, as such, it is not obvious how the
reactivation of previous memories alone could improve cortical representations. Here we argue that
non-creative dreams might be beneficial if some perturbations are applied, making the recognition of
dreamed objects more challenging. During NREM phases in the PAD model, a single episodic memory
is retrieved from the hippocampus (instead of multiple memories in the case of REM) (Figure 2,
middle), resulting in dreaming of a sensory input previously experienced. Additionally, this dream is
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perturbed by some randomized occlusions in the sensory area, and the FF pathway is trained to map
the perturbed dream to the initially replayed latent activity in the higher cortical area. Such a learning
paradigm is reminiscent of the sleep phase in the Wake-Sleep algorithm [56]. In this algorithm, the FF
recognition pathway is trained during the Sleep phase so that it inverts the FB generative pathway.
The generative FB pathway is itself trained during the Wake phase so that it learns to reproduce the
sensory activity from the internal representation generated by the FF pathway.

By replaying and perturbing previously experienced inputs, the PAD model shows that learned
cortical representations are more robust to perturbations that might occur in the visual field when an
object is partially hidden by obstacles (see Figure 5c&d in Deperrois et al. [25]). While REM dreams tend
to semanticize cortical representations through their creative process, NREM dreams make them more
robust to environmental noise. Together, NREM and REM dreams act complementary to construct
semantic, robust representations.

In the PAD model the REM phase is the main driver of semantization. Future modeling work
could identify other elements so that the NREM phase, while still replaying a single memory at a time,
could contribute more to memory semantization, not only to making memories robust against noise.
As recently suggested [57], NREM sleep could, for instance, host a contrastive learning process to push
object representation farther apart and hence improve semantization. Contrastive learning [58-60] is
in fact a training procedure used in recent artificial intelligence models as a way to efficiently learn
semantic representations. The main idea is to construct a latent space such that similar sensory inputs
(positive examples) are represented close together, while dissimilar sensory inputs (negative examples)
are pushed apart within the latent space. During the NREM phase, positive examples can be obtained
by systematically perturbing the activity generated in the sensory area out of the single memory replay,
for instance by mimicking the view point of the object, and with this creating two different instances
from the same hippocampal memory. These two instances of the low-level object representation are
then learned to be mapped close to each other in the high-level representation. Negative examples in
a NREM memory replay can be obtained by pushing the projection of the FF pathway to the higher
cortical area away from previous hippocampal memories replays in this higher area [57].

6. Adversarial Processes Explaining Dream Awareness?

Our model for unsupervised learning of object representations out of naturalistic sensory inputs —
what we call semantization — implicitly assumes various meta-structures that gate the learning process.
A first meta-structure pops up when considering the classical Wake-Sleep algorithm [56] described
above as a model for NREM sleep (that we extended by random perturbations in the replay). For
instance, when replaying a memory from the hippocampus into the FB pathway at the level of the
higher cortical area, this activity serves as a target for the activity that is re-created through the FB—FF
loop back to the same higher cortical area (red ‘?’ in Figure 2). One way to biologically implement the
hippocampal replay as a target or “teaching signal” for the FF neurons is to “nudge” these neurons in
the soma, while the synapses projecting from the FF pathway to their dendrites learn to reproduce the
somatic nudging [61]. When the somatic nudging is strong enough, the match between the dendritic
input and somatic activity may elicit a dendritic calcium spike, and with this also the perception [62]. It
was argued that during sleep, when such dendritic calcium spikes arise, the dreamer is becoming aware
of the content of the dream [63], although not necessarily of the fact that this is a dream (Figure 5b).
Becoming aware of the dreaming content is what dreams differentiate from the more general state of
sleep without dreaming.
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Figure 5. Explaining stimulus awareness, dream and lucid dreaming in the adversarial framework.
(a) During wakefulness, the subject may become aware of a sensory content through a teaching signal

W

from the FF pathway to the FB pathway (red rightward arrow with ‘") that may elicit a dendritic
calcium spike in the FB neurons (middle blue pyramidal neuron, [62]). The output of the discriminator
D receives the (non-adversarial) teaching signal real from the conductor (C) and may also elicit a
calcium spike (red filled pyramidal neuron), signaling the real-awareness. (b) During NREM sleep,
the higher cortical representation in the FB pathway teaches the latent representation generated by
the FF pathway (red leftward arrow with ‘!") that may be matched by the FF drive and, if strong
enough, generate a calcium spike in selected neurons (middle green) so that subject may become aware
of the dream content [63]. Yet, D does not receive a teaching signal. (c) During an adversarial REM
dream, the conductor (red C) imposes the same target real (red) to the discriminator output as in Wake
(red-filled neuron, activated via leftward arrow from C). The teaching of the FF pathway is as in the
NREM sleep (lower red arrow). The discriminator activity real tells that the dream content (filled green
pyramidal neurons of the FF pathway) are (adversarially) perceived as real. (d) In a lucid REM dream,
the conductor (C) may non-adversarially impose the dream awareness (red) onto the discriminator
output (right red-filled neuron) so that the subject realizes that the content represented by the FF
pathway (green-filled pyramidal neurons) is dreamed.

During the Wake, the FB neurons in the sensory area are nudged by the FF sensory neurons (that
are themselves driven by the sensory input). A possible match between the teacher signal an the
top-down signal through the FB pathway may elicit a dendritic calcium spike in these FB neurons,
and again signal the awareness of the sensory content (Takahashi et al. [62], Figure 5a). Crucially, and
different to NREM sleep, the output of the discriminator network D receives an additional nudging
input from the conductor C, signaling the target real. This conductor is itself a neuronal population
representing the meta-information whether the sensory activity should be perceived as externally or
internally generated. We postulate that the teaching signal in the FB neurons from the low-level FF
neurons makes us aware of seeing an object (content-awareness), while the teaching signal in the D
neurons from the conductor makes us aware that the object is real (state-awareness, upper red in part
in Figure 5a). The same conductor was suggested to be also involved in forming consciousness Benitez
et al. [64].

During REM sleep, the adversarial learning also requires activity in the discriminator network. As
we suggest here, the conductor adversarially sets the target real for the output of the discriminator D
(while it reverts the plasticity in D so that this still can learn that the sensory activity is dreamed). With
the real-target being backpropagated, the FB pathway is told how to improve the realism of the sensory
activity it generates. As in Wake, the conductor signal in the discriminator neurons tells the subject that
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the sensory activity is (incorrectly) generated from outside and is considered as real (state-awareness).
In addition, subjects may become aware of the dream content because the FF neurons in the higher
cortical areas are nudged by the FB neurons, initiated by the memory replay (content-awareness,
Figure 5¢). It is tempting to postulate that the double nudging of the FF neurons and the specific
real-discriminator neurons during REM sleep is the reason that subjects perceive the sensory activity
as real during sleep, and remember more often REM dreams, as compared to NREM activity where
the D neurons do not receive a teaching signal. According to the PAD model we become aware of a
REM dream because it is adversarial (Figure 5c).

Lucid dreaming in this model is explained by nudging the higher cortical FF neurons with the
target activity set by the FB pathway (as in NREM and REM), but the discriminator neurons are now
nudged to encode dreamed, corresponding to the true (non-adversarial) state of the sensory activity
(Figure 5d). The teaching signal dreamed for the discriminator neurons may give the subject the
awareness that its current state is the dream, as in fact happening in lucid dreaming [65]. To keep
a functional benefit of lucid dreaming, the plasticity in the FB pathway has to be turned of, as in
NREM sleep (Figure 2), so that the FB pathway is not unlearned by reverting the discriminator target.
Correspondingly, plasticity in the discriminator network should not be reverted (and instead can be as
in the Wake state).

If during lucid dreaming the described plasticity modulations are not correctly implemented,
while the target in D is still switched from real to dream, negative consequences of the dream experience
are expected. With a discriminator target being dream and plasticity in the FB pathway remaining
turned on, random combinations of memory replays would be pushed further away from any realism,
easy detectable by D as dream. In fact, failed induction of lucid dreaming, potentially explained
by an unilateral switch of the discriminator target alone without stopping FB plasticity, may lead to
harrowing dysphoric dreams [66]. However, if the switch in the D-label is correctly synchronised
with the required plasticity changes, the awareness of the dream and the dream content during
lucid dreaming may help to consolidate specifically selected memories, as also exploited in therapy
therapeutic applications [66].

Overall, the meta-structure of a discriminator and a conductor coming with adversarial dreaming
opens a door to differentiate between (i) sensory activity that we become aware of, or not, during
wakefulness, (i) the memory replay during sleep without dreaming, likely happening in NREM
sleep, (iii) the awareness of the dream content while sleeping, but not being aware of the dream
state itself, as in REM sleep, and (iv) the awareness of the dream content and the dream state, as in
lucid dreaming. These awareness modulations, and in particular the state-awareness of the dream, is
potentially modulated by the same ratio of acetylcholine over noradrenaline and serotonin that is also
shown to tune NREM sleep and other metacognitive processes [21,67].

Discussion

In this perspective article we have reviewed the PAD (Perturbed & Adversarial Dream) model—a
novel proposal for the formation, function, and interplay of NREM and REM dreams. This model
is based on the concept of GANs (Generative Adversarial Networks, Goodfellow et al. [68]), which
have been proposed to be implemented in the brain [69]. GANs come with a discriminator network
that tells the internally generated sensory activity apart from the externally induced sensory activity.
Such a discriminator network may be realized in the brain by a reality monitoring region located in
the anterior prefrontal cortex [70].

The PAD model suggests that during REM sleep new sensory contents are created out of a
combination of stored hippocampal memories, shaped by an adversarial game between FB and FF
pathways improving the realism of the dream. While the proposed adversarial mechanism has shown
benefits for learning semantic representations in silico, we have also discussed its potential implications
for higher-level cognitive functions, such as enhancing creative insight. We suggested a complementary
role of non-creative dreams, mostly occurring during NREM sleep, in improving the robustness of
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cortical representations against variations in the sensory inputs. While our model focuses on the
role of sleep and dreams in memory semantization and creativity enhancement, dreams are also
assumed to be involved in processing emotions and motivation [71] that are not explicitly addressed
here. Nevertheless, the suggested functional structure of REM and NREM sleep aligns with various
empirical findings and implicates some promising directions for empirical studies in human subjects.
In general, the PAD model with the ‘neuronal conductor” that orchestrates the learning in the various
sleep stages offers a framework to study metacognition. It may explain how the awareness of dream
contents in REM versus NREM sleep, and how the phenomenon of lucid dreaming as a state-awareness,
may arise.

Empirical Justifications and Predictions

The PAD model generates empirical predictions that can be organized along three distinct lines.
First, REM dreams should facilitate the emergence of semantic representations. Second, REM dreams
should enhance creative insights. And third, dreams can only enhance creative insights if they are
balanced in terms of fantastic and realistic elements—if a dream is overly detached from, or too close
to reality, it cannot help creative problem-solving. The PAD model predicts, that the adversarial game
between FF and FB pathways results in an equilibrium of fantastic and realistic elements, beneficial
for creative insight. Before we further elaborate on empirical findings and suggest possible studies, it
is worth pointing out that evaluating the effects of REM dreaming encompasses several significant
problems. Measuring the effects of dreaming is complicated by the fact that dreaming naturally occurs
only during sleep. This co-occurrence renders it hard to disentangle the unique effects of dreaming
versus sleeping. Additionally, it is difficult to directly attest whether a subject is dreaming or not, or
determine what the subject is dreaming about (although a real-time dialogue between experimenter
and dreamer is possible [72] and images can be reconstructed from fMRI activity [73]). Finally, sleep
deprivation is not only experimentally challenging but also ethically delicate.

Semantization. The first line of experimental investigation arises from the model’s prediction that
REM dreams facilitate the emergence of semantic representations. We propose to employ a category
learning task in which subjects must acquire representations for novel objects. As a dependent measure,
it is evaluated how well the acquired representations can be generalized to previously unseen images
of the objects. Immediately after completing the task, the performance of one group of participants is
evaluated, while the performance of another group is evaluated after a night’s sleep. In addition to a
night’s sleep after the learning task, the third group of participants receives a pharmacological agent
known for inhibiting REM sleep, such as e.g., an anti-depressant. [e.g., see 28,74]. This design would
allow us to investigate the potential effects of REM dreams on the semantization process of cortical
representations. However, as pointed out above, such a design does not allow to disentangle the
effects of dreaming vs. sleeping. Nevertheless, evidence that REM sleep improves category learning,
compared to no sleep and REM-inhibited sleep, would be consistent with the PAD model’s predictions.
Given the difficulties arising from the entanglement of sleeping and dreaming, we further suggest
testing the experimental predictions of the PAD model by investigating the effects of mental imagery—
another process that internally generates visual experience. The cognitive process of mental imagery is
assumed to cause perception-like experience of visual stimuli in the absence of corresponding external
stimulation [e.g., 75,76]. In contrast to dreaming, mental imagery is voluntarily triggered, its content
is relatively controllable [77], and there is no entanglement with sleep. These characteristics render
it comparably more suitable for testing the effects of internally generated experiences on category
learning. Considering that mental imagery shares the same neuronal substrates as dreaming [2,77],
we suggest that mental imagery is a valid proxy process to test the predictions of the PAD model on
semantization. We propose to employ a category learning task as described above. During the task,
some subjects are asked to perform additional mental imagery training sessions, whereby the objects
to be learned (for instance a ‘doggy car’) need to be imagined. In parallel, a control group of subjects
would perform the category learning task without engaging in any mental imagery. The PAD model
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predicts that subjects who internally generate additional visual input by mental imagery (postulated
to activate the adversarial process of improving the realism of the imagination), learn representations
that become easier to linearly separate (as compared to the control group).

Finally, while model simulations suggest, that the creative combination of episodic memories
during REM dreams facilitates semantization, this should not be the case for the non-creative replay
during NREM sleep. Yet, the PAD model predicts that dreams during NREM increase the robustness
of learned representations. After completing the category learning task, participants proceed to sleep.
They are then awakened from sleep upon the onset of REM sleep, as indicated by polysomnographic
recordings. Upon awakening, participants are tasked with categorizing perturbed versions of the
images from the categorization task (e.g., added noise, blurring, or occlusions). According to the
PAD model, we hypothesize that classification accuracy will be higher for participants who have
experienced a phase of NREM sleep compared to a control group who have not undergone a NREM
sleep phase.

Creativity and REM dreams. The second line of experimental investigation arises from the
central claim that creativity is nurtured by REM dreams, as has previously been shown [9,20]. Further
evidence that adversarial learning could be involved arises from the observation that prefrontal
networks implicated in reality monitoring [78] are generally deactivated during REM sleep [79], while
leaving the question open whether specific REM activation sites may also be related to daydreaming
and creative visual imagery during wakefulness [30].

We also postulate a difference between NREM dreams (non-creative; only replay of memories)
and REM dreams (creative; recombination of memories). In this line, semantic analysis of dream
protocols showed that REM dreams are likely composed of more minimal-story-units than NREM
dreams [81], consistent with the model assumption that REM dreams are composed of a mixture
of episodic memories. Moreover, the analysis of dream protocols by non-semantic word graphs
has shown that REM dreams are more complex and have a larger connectedness (although they are
graph-theoretically less random-like) than NREM dreams [82].

Since creative problem solving is also shown to be boosted in the first NREM sleep stage (N1,
Lacaux et al. [37]) by exploiting Edison’s technique, or by simply closing the eyes [49] during active
imagination, one may wonder whether an adversarial process postulated during REM sleep is likewise
in play during the N1 stage or the imagination with closed eyes. To test such a hypothesis one may
look at similarities in the local characterization of REM vs. N1 sleep stages in MEG signals [83,84], for
instance. While similarities in metacognitive processes during REM sleep and wakefulness have been
linked to similarities in EEG signals [21,67], linking adversarial and creative processes to specific brain
signals, however, will remain a challenge.

REM dreams becoming more realistic. The PAD model posits that REM dreams become more
realistic during our learning process and during the refinement of cortical representations in general.
In the model, the formation of a good representation requires 10 to 40 thousand Wake-NREM-REM
cycles (with 4 cycles/night corresponding to roughly 8-27 years). In the human brain, the formation
of cortical representations of objects and concepts spans over childhood into adolescence [e.g., see
85-87]. Hence, when applied to a real-world scenario, the learning process covered by the model
may extend beyond the period during which humans acquire representations. It has been reported
that children’s recurrent dreams are more likely to contain monsters and ghoulish creatures, while
with aging and maturation, recurrent dreams are more likely to represent personal competences [88].
Likewise, the frequency of nightmares decreases from early adolescence to late adulthood [89], and
so does the frequency of dream recalls [90]. The hypothesis that REM dreams become more realistic
with age has yet to be tested. Several questionnaires could be employed to quantitatively assess the
reduction of bizarreness of dreams across time, like the bizarreness score [91], in combination with the
dream frequency scale [92] or the Creative Achievement Questionnaire [93].
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Conclusion

Inspired by modern artificial intelligence, the PAD model connects cortical structures and dream
phenomenology to a functional model of sleep. The model complements the memory consolidation
theory during sleep with a creative process that combines memories to form new contents. Adversarial
dreaming during REM sleep allows for exploring, testing and structuring the newly formed cortical
representations while keeping these representations compatible with wake experiences. Adversarial
dreams may improve our creative abilities by reenacting the past to generate novel virtual experiences
that later may enrich reality. Adversarial processes include a discriminator network to tell apart
externally from internally generated sensory activity, together with a ‘conductor’ that orchestrates the
teaching signals for the involved networks (FF, D, and FB) during wakefulness, NREM and REM sleep.
The framework also offers to introduce a notion of content-awareness and state-awareness. These
notions help to delineate sleep from dream and lucid dreaming, and could explain why we become
aware of REM dreams, but not so much of NREM dreams. The suggested experimental approaches
may help to validate these concepts, and hopefully help to elucidate the mystery of sleep, including its
variation of awareness.
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manuscript.
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