Pre prints.org

Article Not peer-reviewed version

Comparison of drone-assisted maize
seedling detection models based on
deep learning

Zhijie Jia , Xinglong Zhang , Hongye Yang, Yuan Lu, Jiale Liu, Xun Yu, Dayun Feng , Kexing Gao , Jianfu Xue

", BoMing ", Chenwei Nie , Shaokun Li
Posted Date: 12 March 2024
doi: 10.20944/preprints202403.0629.v1

Keywords: Maize Seedling Detection, Counting, Unmanned Aerial Vehicle

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2024 d0i:10.20944/preprints202403.0629.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Comparison of Drone-Assisted Maize Seedling

Detection Models Based on Deep Learning

Zhijie Jia 1, Xinglong Zhang ?, Hongye Yang 3, Yuan Lu 4, Jiale Liu %, Xun Yu 3, Dayun Feng?3,
Kexing Gao 3, Jianfu Xue »*, Bo Ming **, Chenwei Nie 5and Shaokun Li 3

1 College of Agriculture, Shanxi Agricultural University, Taigu, Jingzhong 030801, China; 511998815@qq.com(Z.].)

2 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, Hebei 075000, China; 274387042@qq.com

3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / State Key Laboratory of Crop Gene Resources
and Breeding, Beijing100081, China; 82101231082@caas.cn (H.Y.); 82101211308@caas.cn(X.Y.);
18735269762@163.com(D.F.); 1582152032@qq.com(K.G.); lishaokun@caas.cn(S.L.)

4 College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong 266000, China;

luyuan5251@163.com(Y.L.); 1327558758@qq.com(].L.)

5 Surveying and Municipal Engineering, Zhejiang Institute of Water Resources and Hydropower, Hangzhou, Zhejiang
310000, China; niechw@zjweu.edu.cn

* Correspondence: fudange95@163.com(J.X.) and mingbo@caas.cn (B.M.)

Abstract: Effective agricultural management in maize production operations starts with the early quantification
of seedlings. Accurately determining plant presence allows growers to optimize planting density, allocate
resources, and detect potential growth issues early on. This study presents an in-depth analysis of multiple
object detection models used by drones to count maize seedlings, while concurrently investigating the
influence of planting density, flight altitude, and plant growth stage. The findings of this study demonstrate
that one-stage models are able to more accurately detect maize seedlings than two-stage models. In particular,
YOLOv8n exhibits outstanding performance, achieving an Fl-score of over 0.92 under various density
conditions and maintaining a stable performance, especially under densities below 105,000 plants/ha.
Additionally, planting density and growth stage were observed to significantly affect detection accuracy, with
performance declining as density and growth stage increased. Image resolution and detection were impacted
by flight altitude, with lower flights producing higher-quality results. Ultimately, YOLOv8n displays optimal
performance under various conditions, providing crucial data to support intelligent decision-making. This
research offers valuable insights into the application of object detection technology and provides a basis for the
future development of precision agriculture.

Keywords: maize seedling detection; counting; unmanned aerial vehicle

1. Introduction

Maize is among the world’s most widely cultivated and traded crops, serving various purposes
including human consumption, animal feed, and production of adhesives[1]. Maize yield is
significantly influenced by factors like emergence rate and planting density, necessitating growers to
carefully observe their crops[2]. Inspections during the early phases of maize cultivation allow
growers to identify and reseed areas with no germination. Therefore, the rapid detection and
quantification of maize seedlings are key prerequisites for ensuring a maximal yield. Current
traditional methods of seedling detection rely on manual visual assessments of selected plots. As
global maize production shifts towards large-scale operations, manual surveys are increasingly time-
intensive. This method is also prone to human error, resulting in insufficient or inaccurate planting
information[3]. Alternatively, advancements in drone technology have enabled the rapid and
accurate collection of data in large-scale plantations. This information provides support for intelligent
decision-making regarding field management strategies. Additionally, precision agriculture
significantly increases efficiency while reducing time and labor costs.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Unmanned Aerial Vehicles (UAV) are revered for their affordability, portability, and flexibility.
They can be equipped with a diverse array of sensors such as RGB[4], multispectral[5],
hyperspectral[6], and LiDAR[7] to ensure robust data capture. Initially, images captured by UAVs
required traditional processing techniques such as skeletonization algorithms and multiple
despeckling processes to extrapolate pertinent information, including seedling count[8]. While these
approaches were effective, they necessitated intricate processing workflows and high-quality images.
As the technology has evolved, the integration of computer vision algorithms into UAV image
analysis has significantly improved the efficiency and precision of crop counting. Peak detection
algorithms have especially improved the localization and enumeration of crop rows and seedlings in
high-resolution images[9]. Moreover, corner detection techniques have enabled the effective counting
of overlapping leaves which tend to complicate data, especially as plants mature[10].

UAV data extrapolation still relies on traditional image processing techniques which face many
challenges such as complex target feature design, poor portability, slow operation speed, and
cumbersome manual design!'ll. The ongoing development of deep learning is continuously
broadening the scope of agricultural applications. Currently, object detection technology presents
one of the most practical methods of identifying plants in various background environments. A
variety of deep learning models have recently been developed to enhance the accuracy and efficiency
of crop detection. For instance, the Faster R-CNN model has been incorporated into field robot
platforms, enabling them to accurately identify corn seedlings at different growth stages and
distinguish them from weeds!'2. Additionally, the model is able to automatically recognize and
record different developmental stages of rice panicles, a previously labor-intensive manual process!3l.
The multiple required complex processing stages render R-CNN models relatively slow, limiting
their application potential in large-scale operations. Based on the improvements of YOLOv4, Gao et
al. proposed a lightweight model for seedling detection with an enhanced feature extraction network,
a novel attention mechanism, and a k-means clustering algorithm!'4l. Zhang et al. further improved
the efficacy and speed of maize male cob detection by optimizing the feature extraction network and
introducing a multi-head attention mechanism!'l. Later, Li et al. released an enhanced YOLOVS5,
which included downsampling to improve the detection of small targets and introduced a CBAM
attention mechanism to eliminate gradient vanishingl'sl. Finally, a wheat head detection model was
proposed by Zhang et al. based on a one-level network structure, which improves accuracy and
generalizability by incorporating an attention module, a feature fusion module, and an optimized
loss functionl'7l.

While previous studies have achieved impressive accuracy by focusing on algorithm
optimization, there has been little exploration of how external considerations may impact
performance. In this study, we investigate the influence of key factors such as planting density,
growth stage, and flight altitude to comprehensively evaluate the performance of deep learning
models used for maize seedling target detection. Future field trials will conducted to further validate
these results and confirm practicality in an active farming operation.

2. Materials and Methods

2.1. Field Experiments

Field experiments were conducted during 2021 and 2023 in Tongliao City (43°42' N, 122°25' E)
and Liaohe Town (43°43'N, 122°10'E) in Inner Mongolia. This region features a semi-arid continental
monsoon climate with 2,500-2,800 h of annual sunshine, an average daily temperature of 21.0°C, a
cumulative 210°C temperature of 3,000-3,300°C-d, a frost-free period of 150-169 d, and an average
annual precipitation of 280-390 mm during the maize growing season (May-Eleventh). Both fields
consisted of sandy loam soil and had previously been used for maize cultivation. A wide-narrow
planting pattern was implemented, with alternating rows spaced at 80 cm and 40 cm. Irrigation was
supplied through shallow buried drip lines at a rate of 300 m3/ha. Base fertilizer with an N, P, K ratio
of 13:22:15 was applied at a rate of 525 kg/ha through water-fertilizer integration methods.
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The maize variety Xianyu 335 was selected for the density experiment conducted in Qianxiaili
Village. Trials were planted on May, 10, 2021 at densities of 30,000, 45,000, 60,000, 75,000, 90,000,
105,000, 120,000, and 135,000 plants/ha. Data was collected on May 29t (2 leaves unfolded), June 1st
(3 leaves unfolded), June 5% (4 leaves unfolded), and June 16t (6 leaves unfolded).
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Figure 1. Experimental area.

The maize variety Dika 159 was selected for the flight altitude experiment conducted in
Dongsheng Village. Trials were planted on May, 8, 2023 at a density of 90,000 plants/ha. Data was
collected on May 27t (2 leaves unfolded), May 31 (3 leaves unfolded), June 4" (4 leaves unfolded),
June 7t (5 leaves unfolded), and June 11t (6 leaves unfolded).

In 2021 and 2023, we carried out validation trials on the agricultural lands of local farmers. These
trials included three distinct types of cultivation areas: High Yielding Fields in 2021, Agricultural
Cooperative plots in 2023, and Peasant Household farmland in 2021. Maize varieties Jingke 968,
Tianyu 108, and Dika 159 were planted in each plot at densities of 100,000, 80,000, and 65,000
plants/ha. UAV visible light images were collected at noon during the 3-leaf stage from 8 sample areas
(5 m x 2.4 m) within each field. Additional images were collected from 20 randomly selected sample
areas (11.66 m?) in each field, which were monitored at noon on June 1st, 2021 (3 leaves unfolded) and
May 31¢t, 2023 (3 leaves unfolded).

2.2. UAV Image Collection

High-resolution images of maize seedlings were captured with a UAV-based RGB camera
mounted perpendicular to the ground onto a DJI M600 drone with a Ronin-MX gimbal. GPS and
barometer were used to control horizontal position and altitude within approximately 2 m and 0.5
m, respectively. Drone images were collected every 3 days between 10 a.m. and 2 p.m. for the duration
of the experiment. Detailed image collection information is listed in Table 1.

Table 1. UAV image collection parameters.

Year 2021 2023
Qianxiaili ~ High Yielding Peasant Dongsheng Agricultural

Station
Village Gield Household Village Cooperative
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Image acquisition 2, 3.4, 6 3 3 2-6 3
Stage (leaves)

Flight speed (m/s) 2.1 23 2.0 2.0 2.5
photo interval (s) 1 2 2 2 2
Height above ground (m) 20 20 20 20, 40. 60 20
Overlap rate along tracks(%) 75 73 75 80 75
Overlap rate across tracks(%) 85 75 80 80 75

Images were collected with a Sony a7 Il camera with a 35 mm sensor and a maximum resolution
of 6000x4000 pixels. Shutter speed was prioritized and the ISO was set to automatically adjust (1600
maximum value). RGB images were captured at a frequency of 1Hz with an intervalometer-
controlled camera.

2.3. Data Construction and Preprocessing

2.3.1. Image Preprocessing

After RGB images were exported from the UAV, Agisoft Metashape Professional software was
used for image stitching. Feature points in each image were initially automatically calculated and
then matched in the image sequence through multiple iterations. Next, dense point clouds were
generated before the final images were produced (Figure 2a).

(a) (b) (©)

Figure 2. (a) Orthophoto of test area, (b) experimental plot layout, and (c) plot cropping.

Experimental fields were cropped and divided into multiple plots (Figure 2b). Original high-
quality maize seedling images were cropped to 1000x1000 pixels by a sliding step[18]. Poor-quality
images including those with large shooting angles, obvious occlusions, and uneven illumination were
removed. Final images (900 total) were categorized by quantity of spreading leaves and quantity of
straw.
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® ® ® (b
Figure 3. Maize seedlings at (a) V2, (b) V3, (c) V4, (d) V5, (e) and V6 stages. (f) Low, (g) moderate,
and (h) high quantities of stover.

The location and size of each seedling are labeled in each image[18] (Figure 4).

Figure 4. Example of annotated image. Green boxes represent labeled maize seedlings.

2.3.2. Data Enhancements

Images were adjusted during the data augmentation process, including horizontal and vertical
flipping, random contrast and hue adjustments, and resolution alterations. These modifications were
used to simulate the effects of varying lighting and environmental factors during different times of
day and flight altitudes. Training and testing datasets were created from the resulting 14,815 images.
The dataset was then divided, with 90% of images used for model training and 10% for validating
model performance.
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Figure 5. (a) Random contrast, (b) random hue adjustment, (c) horizontal flip, and (d) vertical flip.
Images were modified to resolutions of (e) 800x800, (f) 500x500, and (g) 300x300.

2.4. YOLOwv8 Model Framework

YOLO (You Only Look Once) is a highly popular single-stage object detection framework, which
exhibits enhanced processing speeds, performance, efficiency, and flexibility when compared with
two-stage algorithms. YOLOVS is comprised of a Backbone, Neck, and Head (Figure 6).
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Figure 6. YOLOVS framework.

2.4.1. Backbone and Neck

The YOLOvVS8 Backbone employs the Darknet-53 network structure. Through effective feature
learning and residual connections, the model avoids the gradient vanishing typical of deep neural
networks, enabling it to capture high-level semantic features[19]. This module primarily functions to
extract and fuse these higher-level features through multiple iterations of maximum pooling[20].

The C3 module in YOLOV8n is replaced with the more gradient-rich C2f module, which adjusts
the number of channels based on the intended model scale to minimize weight[21]. This change
enhances efficiency and efficacy when processing images of various sizes and complexities.
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2.4.2. Head

The YOLOv8n Head structure exhibits two major improvements when compared to YOLOV5.
Firstly, the newer model has separate classification and detection heads (Decoupled-Head), a
structure type that has been increasing in popularity. Secondly, the model transitions away from the
Anchor-Based approach to an Anchor-Free approach.

D led head
Coupled head ecoupled hea

Conv Conv conv2d
— W
conv2d [ k=3,5=1,p=1 k=3,5=1,p=1 H k=1,5=1,p=0 Cls_loss
—*| k=1,5=1,p=0
c=(5+ncljx3

Obj_loss
Conv Conv conv2d Bbox loss
k=3,5=1,p=1 k=3,5=1,p=1 k=1,5=1,p=0 -

Figure 8. Coupled-Head and Decoupled-Head modules.

2.4.3. Loss Calculation

Loss calculation in the YOLOv8n model is simplified by removing the objectness branch and
only considering the classification and regression branches. The classification branch continues to
utilize Binary Cross-Entropy (BCE) Loss. YOLOv8n abandons the traditional IOU matching and
unilateral proportion allocation methods in favor of the Task-Aligned Assigner for positive and
negative sample matching. Additionally, the model introduces Distribution Focal Loss (DFL)[22] to
improve the precision and reliability of object detection tasks. Loss calculations are conducted
according to the following formulas:

DFL(S;, Sis1) = —(ie1 — ¥ 10g(S) + (v — ¥) 10g(Six1)) ¢y

In two consecutive distributions, S; and S;;,, the values y;i and y;;; represent the
corresponding probability density values at specific points or for the distributions as a whole. The
weighting of the loss function is adjusted based on y, to reflect changes or differences in these
probability densities.

Classification loss is typically calculated using cross-entropy loss, which measures the difference
between the predicted class probabilities and the ground truth class labels:

c
1 . .
Lcls = _N Z Z YC(l) log(yc(l)) (2)

ieposUNeg c=1
In these formulas, i represents the sample index and i € posUNeg denotes the set of positive
and negative samples. ¢ represents the category index and C denotes the total number of
categories. The real label of the it sample for category c is denoted by v, which indicates whether
the sample actually belongs to category c (typically 1 for yes, O for no). The model's predicted
probability that the it sample belongs to category c is represented by 9.
L = AocLioc + AcisLes (3)
L represents the total loss function. A, and 4, are hyperparameters controlling the relative
importance of localization and classification loss.
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2.5. Assessment of Indicators

The maize seedling detection and quantification abilities of each model were evaluated by
calculating the Precision (Eq.4), Recall (Eq.5), F1-Score (Eq.6), AP(Eq.7) and rRMSE (Root Mean
Square Error) (Eq.8) values according to the following formulas:

TP
P ision = ———— X 1009 4
recision T,IEP+ 7P % 4
- 0,
Recall TP T FN X 100% (5)
Fl—s _ 2 X Recall X Precision )
core = Relcall + Precision
AP = f P(R)dR (7)
0
1 —~
~ Xn=1(Vi — 3)?
rRMSE = _ x 100% (8)
i=1Yi

True Positive (TP) and False Positive (FP) represent the number of correctly and incorrectly
detected maize seedlings, respectively, while False Negative (FN) indicates the number of those
missed. F1 represents the harmonic mean of Precision and Recall, Average Precision (AP) measures
the average precision of the classification model at all recall levels, and n denotes the number of
samples. y; represents the actual value of each sample point, $; denotes the predicted value of each
sample point according to the regression model, and y is the mean of the actual observed values of
the dependent variable.

2.6. Test Parameter Setting and Training Process Analysis

The computer specifications and software environments used are described in Table 3. The
training parameters were tailored to the characteristics of the task dataset. The training settings were
tested with a batch size of 8, an image size of 640, a confidence threshold (conf_thres) of 0.3, and an
intersection over union threshold (iou_thres) of 0.2.

Table 2. Model training specifications.

Experimental environment

Processor 12th Gen Intel(R) Core(TM) i5-12600KF3.69 GHz
Operating system Windows 10

Ram 64GB

Graphics card NVIDIA GeForce RTX 3060

Programming language | Python 3.8

Model YOLOv8n YOLOvV5, 3 Other
Deep learning libraries CUDA11.7 CUDA11.1 CUDA 10.2
Software Ultralytics=8.0.105 | Opencv=4.1.2 Mmcv=2.0.0

Opencv=4.7.0.72 Numpy=1.18.5 Mmdet=3.0.0
Mmengine=0.9.1

3. Results

3.1. Model Comparison

To further validate the performance of YOLOv8n, multiple one-stage and two-stage object
detection models were trained and evaluated based on metrics such as APso, APso9s5, params, and
FLOPs (Table 4, Figure 11).
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Table 3. Comparison of object detection model performances.
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Category Model Backbone Image size ~ APs0  APs09s Params FLOPs
One-stage YOLOv8n New CSP- 640x640 0.979  0.647 3.20M 8.7G
Darknet53
YOLOV5n CSP-Darknet53 640x640 0.955 0.511 1.90M 4.5G
SSD VGG16 416x416 0.946 0.530 23.75M 137.1G
FCOS Resnet50 640x640 0.925 0.495 31.84M 78.6G
YOLOvV3-tiny Tiny-Darknet 640x640 0922 0.453 8.44M 13.3G
RetinaNet Resnet50 300=300 0.863 0.412 36.10M 81.7G
Two-stage Defomermable Resnet50 640x640 0941 0.474 36.10M 27.4G
DETR
Cascade R-CNN Resnet50 640x640 0.888 0.569 68.94M 80.1G
Faster R-CNN Resnet50 640x640 0.887 0.530 41.12M 78.1G
A _.wmn Defomermable DETR f i oloten
i ’ﬁ]‘“. FOCS = 06 Cascade R-CNN
E os Cascade R-CNN = L b
= volov3-tiny faste-RCNN Zos yolov faste-RCNN'
n:ngas 5 FOCS
< i < 04 | volovs ')mamublc DETR
08 yolov3-tiny
0 20 40 EDFLOP:;G) 100 120 140 0 20 40 BDFLOP:(UG) 100 120 140

Figure 9. Performance comparison of different models. (a) Relationship between APso, Params, and
FLOPs. (b) Relationship between APso9s, Params, and FLOPs.

The performances of YOLOv8n and YOLOv5n stand out among the single-stage models,
achieving APso values of 0.979 and 0.955, respectively, at an input image size of 640x640. Although
SSD and FCOS also performed highly, their increased number of parameters and computational
requirements under the same conditions render them less suitable for resource-constrained scenarios.
YOLOV3-tiny and RetinaNet demonstrated slightly reduced performances and are better suited to
environments with limited resources.

Deformable DETR showed the highest performance out of the two-stage models, achieving an
APso value of 0.941 at an input image size of 640x640. Moreover, the model has a reduced number of
parameters and computational requirements, exhibiting an optimal balance between performance
and efficiency. Comparatively, Faster R-CNN and Cascade R-CNN perform similarly at the same size
but have more requirements, making them less ideal for resource-limited situations.

3.2. Impact of Planting Density and Growth Stage on Seedling Detection

Planting density and growth stage were found to significantly affect the estimation accuracy of
maize seedling detection models. In this study, YOLOv8n, YOLOv3-tiny, Deformable DETR, and
Faster R-CNN were analyzed for key metrics such as accuracy rate, miss rate, false detection rate, and
rRMSE. Experimental validations were conducted across four growth stages in 8 different planting
densities (30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, and 135,000 plants/ha). For each
density, 20 images were selected, resulting in a total of 640 images for inference.
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Figure 10. Performances of YOLOv8n, YOLOv3-tiny, Deformable-DETR, and Faster R-CNN in terms
of F1-score, Recall, Precision, and rRMSE across various planting densities and growth stages.

Our findings demonstrate that as density increases, overall detection accuracy measured by the
F1-score, rIRMSE, Recall, and Precision declines (Figure 10). Moreover, our analysis of V2-V6 growth
stages revealed a trend of increasing and then decreasing detection performance. Performance
seemed to improve up until the V3 stage but declined as time progressed to the V6 stage.

Our study showed that as planting density increases, YOLOv8n exhibits a relatively stable
rRMSE performance compared to YOLOvV3-tiny, especially at higher densities (105,000 to 135,000).
The Deformable-DETR model exhibited a relatively steady performance across different densities,
with only minor fluctuations. In contrast, Faster R-CNN performed poorly at high densities with a
significantly increased rRMSE. Taken together, these results demonstrate the superior performance
and stability of YOLOvV8n across all densities. Additionally, model performance was significantly
impacted by the plant growth stage (V2-V6). YOLOv8n and Faster R-CNN achieved their highest
performances at the V4 stage, while YOLOv3-tiny and Deformable-DETR \ peaked at the V3 stage.
While the optimal growth stage differed between the models, all displayed a similar trend of
declining performance with increasing density in terms of Recall and Precision. These findings
highlight the performance variations between different models across various planting densities and
growth stages, providing a foundation for model selection based on growth operation requirements.

3.3. Impact of Flight Altitude and Growth Stage on Detection

In this study, plant detection was conducted through UAV flights at various growth stages and
altitudes (20 m, 40 m, and 60 m). Metrics such as accuracy rate, miss rate, false detection rate, and
rRMSE were calculated to explore potential impacts. Twenty images per altitude across five growth
stages were collected, resulting in a total of 300 images for inference. Overall, changes in altitude were
found to affect image resolution and coverage area.
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Figure 11. Performance of YOLOv8n, YOLOv3-tiny, Deformable-DETR, and Faster R-CNN in terms
of F1-score, Recall, Precision, and rRMSE at different flight altitudes and growth stages.

The F1-scores of all four models decreased across all growth stages (V2-V6) as flight altitude
increased. Performances were relatively high at 20 m but declined significantly at 60 m. The Recall
and Precision metrics display a similar but less severe trend. Overall, these models demonstrated
greater efficacy at lower altitudes.

3.4. Validation of YOLOv8n Seedling Counting Algorithm

To validate the applicability and accuracy of YOLOvS8n, the model's performance was
comprehensively evaluated under various planting conditions in active growing operations across
different years and locations (six total repetitions). The model exhibited outstanding performance
across all planting methods, with notably significant results in high-yield fields characterized by
high-density planting conditions.
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Figure 12. YOLOv8n model validation across different farms presented by linear fitting curves of
actual values versus predicted values.

Our analysis illustrates that predicted values are closely aligned with the actual values,
maintaining a highly consistent, near 1:1 line (Figure 12). Exceptional performance was observed in
high-yield fields 1 and 2, with rRMSE values of roughly 1.64% and 1.33%, respectively. The Recall,
Precision, and F1 scores all exceeded 99%. Stellar performance was also observed under cooperative
and individual farmer planting conditions. Together, these results affirm the model's stability and
accuracy. The consistency between the algorithm's predicted planting density and the actual planting
density further validates the model’s reliability and precision.

4. Discussion

Our model comparison experiments indicate that one-stage models generally outperform two-
stage ones. This is potentially due to the direct collection of target location and category information
in an end-to-end manner, eliminating the need for candidate box generation. This direct transmission
of position, scale, and category information between targets through the supervision signal, also
allows for a more simple and rapid way of determining relationships between targets, thereby
achieving better detection results[23]. YOLOv8n showed the highest detection performance, followed
closely by YOLOv5n, then YOLOv3-tiny. The two-stage Deformable DETR model also exhibits a high
performance, which may be attributed to the introduction of a modified transformer with local and
sparse efficient attention mechanisms[24]. The YOLO deep learning series was found to be highly
accurate, with fast detection speeds, and small sizes. YOLOv8n contains a Decoupled-Head instead
of the coupled one employed by YOLOV5, potentially contributing to its increased accuracy.
Attempting to perform classification and localization on the same feature map may lead to a
"misalignment” problem and poor results[25]. Instead, the Decoupled-Head uses distinct branches
for computation, thus improving performance[26]. Contrary to expectations, Faster R-CNN was less
accurate in detecting small objects. This is likely due to the low resolution of the feature maps
generated by the Backbone network causing the minute features to blur or lose during processing.
Additionally, the Rol generation method may not be accurate enough for small object localization. In
addition to small object sizes, background noise may also affect detection accuracy. Moreover, Faster
R-CNN may lack the ability to adapt to large-scale target changes when processing small objects,
making it difficult for the model to capture and recognize object size variations or changes[27].

Plant density was found to have the most significant influence on the accuracy of maize seedling
quantification. Our results indicate that increased overlapping between leaves is responsible for
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much of the declining accuracy[28]. However, YOLOv8n was less affected by planting density
compared to the other models and its detection capability only destabilizes when density surpasses
105,000 plants/ha. Increased density is a persistent challenge to the efficacy of various plant detection
methods[29], representing an important direction for future research. Dense planting techniques
have been increasingly favored due to their higher crop yields, especially regarding maize
cultivation. For instance, the average maize planting density in regions like Xinjiang, China, has
already passed 105,000 plants/ha. This represents a major hurdle in the application of this technology
in an agricultural setting. This study explores the limits of model detection at high densities,
providing a basis for future research and development. Our results reveal variations in detection
performance characteristics between different models, highlighting the need to match the model to
the growing operation.

Detection accuracy varies greatly between maize growth stages, spotlighting the importance of
timing drone image-capturing operations. If images are captured too early, the seedlings may be too
small for detection, but if captured too late, there is increased leaf presence and overlapping, which
can lead to a decline in detection performance[30]. Significant overlapping was documented during
the V6 stage in this study, causing notable difficulties in plant detection[9]. Plants often fail to
germinate or grow in a production setting, necessitating additional plantings to fill in gaps and
maximize crop yield. The optimal replanting period is during the 2-3 leaf stage —missing this short
window may negatively impact crop growth and yield. YOLOv8n and Deformable-DETR were found
to be more effective than other models in detecting small targets, with rRMSE and F1-scores at the V2
stage of 2.19% and 5.52%, and 99.34% and 97.32%, respectively.

Image ground resolution is mainly determined by the UAV sensor and the flight altitude. We
tested flight altitudes of 20, 40, and 60 m to comprehensively evaluate their effects on detection
accuracy. Increases in flight altitude were correlated with decreases in seedling detection. This
phenomenon is not only caused by the decrease in image ground resolution but also the reduction of
details in the acquired images[31]. Such loss of detail may blur the features of the seedlings, directly
affecting the model's ability to recognize them. Changes in flight altitude can affect the visibility of
maize features in collected images, putting a higher demand on dataset construction.

During this study, we worked directly with farmers to explore the practical applications of this
technology in agriculture. Previous studies have validated the field use of this technology by
exploring efficacy in various soil types, meteorological conditions, and growing operations. The
existing models could be utilized in future studies to construct a maize emergence quality assessment
model, which currently lacks an assessment index. UAVs have been increasingly used for precisely
assessing maize seedling emergence and quality. These assessments can provide growers with
information crucial for making intelligent management decisions. These decisions can have dramatic
impacts on crop growth, yield, and quality.

5. Conclusions

This study analyzed the performances of various target detection models used in maize
production. Additionally, we explored the impacts of planting density, flight height, and plant
growth stages on model accuracy. Our results indicate that the one-stage models generally
outperform two-stage models in maize seedling quantification. The one-stage models YOLOv8n and
YOLOV5n demonstrated stable and excellent performances, especially at lower planting densities.
The two-stage model, Deformable DETR, was relatively stable and outperformed Faster R-CNN,
which showed significant performance degradation under highly dense planting conditions.

Plant density and growth stage significantly impacted the seedling detection accuracy of all
models. Increased in either factor complicated obtained imaged and decreased accuracy. The V6
growth stage was especially difficult to quantify, as the increase of leaf overlap leads to detection
difficulties. The optimal detection period was identified as the V2-V3 stages. YOLOv8n was the most
stable model, only losing detection abilities at planting densities of more than 105,000 plants/ha.

Additionally, flight altitude was negatively correlated with image resolution and detection
results, causing decreased detection at higher altitudes. Taken together, these results provide the
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framework for the application of UAV image collection models in an agricultural setting and
highlight potential areas of future research. Lower flight altitude was favorable to maintain good
detection results, and the performance of the model gradually decreased with increasing altitude.
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