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Abstract: Effective agricultural management in maize production operations starts with the early quantification 

of seedlings. Accurately determining plant presence allows growers to optimize planting density, allocate 

resources, and detect potential growth issues early on. This study presents an in-depth analysis of multiple 

object detection models used by drones to count maize seedlings, while concurrently investigating the 

influence of planting density, flight altitude, and plant growth stage. The findings of this study demonstrate 

that one-stage models are able to more accurately detect maize seedlings than two-stage models. In particular, 

YOLOv8n exhibits outstanding performance, achieving an F1-score of over 0.92 under various density 

conditions and maintaining a stable performance, especially under densities below 105,000 plants/ha. 

Additionally, planting density and growth stage were observed to significantly affect detection accuracy, with 

performance declining as density and growth stage increased. Image resolution and detection were impacted 

by flight altitude, with lower flights producing higher-quality results. Ultimately, YOLOv8n displays optimal 

performance under various conditions, providing crucial data to support intelligent decision-making. This 

research offers valuable insights into the application of object detection technology and provides a basis for the 

future development of precision agriculture. 

Keywords: maize seedling detection; counting; unmanned aerial vehicle 

 

1. Introduction 

Maize is among the world’s most widely cultivated and traded crops, serving various purposes 

including human consumption, animal feed, and production of adhesives[1]. Maize yield is 

significantly influenced by factors like emergence rate and planting density, necessitating growers to 

carefully observe their crops[2]. Inspections during the early phases of maize cultivation allow 

growers to identify and reseed areas with no germination. Therefore, the rapid detection and 

quantification of maize seedlings are key prerequisites for ensuring a maximal yield. Current 

traditional methods of seedling detection rely on manual visual assessments of selected plots. As 

global maize production shifts towards large-scale operations, manual surveys are increasingly time-

intensive. This method is also prone to human error, resulting in insufficient or inaccurate planting 

information[3]. Alternatively, advancements in drone technology have enabled the rapid and 

accurate collection of data in large-scale plantations. This information provides support for intelligent 

decision-making regarding field management strategies. Additionally, precision agriculture 

significantly increases efficiency while reducing time and labor costs. 
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Unmanned Aerial Vehicles (UAV) are revered for their affordability, portability, and flexibility. 

They can be equipped with a diverse array of sensors such as RGB[4], multispectral[5], 

hyperspectral[6], and LiDAR[7] to ensure robust data capture. Initially, images captured by UAVs 

required traditional processing techniques such as skeletonization algorithms and multiple 

despeckling processes to extrapolate pertinent information, including seedling count[8]. While these 

approaches were effective, they necessitated intricate processing workflows and high-quality images. 

As the technology has evolved, the integration of computer vision algorithms into UAV image 

analysis has significantly improved the efficiency and precision of crop counting. Peak detection 

algorithms have especially improved the localization and enumeration of crop rows and seedlings in 

high-resolution images[9]. Moreover, corner detection techniques have enabled the effective counting 

of overlapping leaves which tend to complicate data, especially as plants mature[10]. 

UAV data extrapolation still relies on traditional image processing techniques which face many 

challenges such as complex target feature design, poor portability, slow operation speed, and 

cumbersome manual design[11]. The ongoing development of deep learning is continuously 

broadening the scope of agricultural applications. Currently, object detection technology presents 

one of the most practical methods of identifying plants in various background environments. A 

variety of deep learning models have recently been developed to enhance the accuracy and efficiency 

of crop detection. For instance, the Faster R-CNN model has been incorporated into field robot 

platforms, enabling them to accurately identify corn seedlings at different growth stages and 

distinguish them from weeds[12]. Additionally, the model is able to automatically recognize and 

record different developmental stages of rice panicles, a previously labor-intensive manual process[13]. 

The multiple required complex processing stages render  R-CNN models relatively slow, limiting 

their application potential in large-scale operations. Based on the improvements of YOLOv4, Gao et 

al. proposed a lightweight model for seedling detection with an enhanced feature extraction network, 

a novel attention mechanism, and a k-means clustering algorithm[14]. Zhang et al. further improved 

the efficacy and speed of maize male cob detection by optimizing the feature extraction network and 

introducing a multi-head attention mechanism[15]. Later, Li et al. released an enhanced YOLOv5, 

which included downsampling to improve the detection of small targets and introduced a CBAM 

attention mechanism to eliminate gradient vanishing[16]. Finally, a wheat head detection model was 

proposed by Zhang et al. based on a one-level network structure, which improves accuracy and 

generalizability by incorporating an attention module, a feature fusion module, and an optimized 

loss function[17]. 

While previous studies have achieved impressive accuracy by focusing on algorithm 

optimization, there has been little exploration of how external considerations may impact 

performance. In this study, we investigate the influence of key factors such as planting density, 

growth stage, and flight altitude to comprehensively evaluate the performance of deep learning 

models used for maize seedling target detection. Future field trials will conducted to further validate 

these results and confirm practicality in an active farming operation. 

2. Materials and Methods 

2.1. Field Experiments 

Field experiments were conducted during 2021 and 2023 in Tongliao City (43°42′ N, 122°25′ E) 

and Liaohe Town (43°43′N, 122°10′E) in Inner Mongolia. This region features a semi-arid continental 

monsoon climate with 2,500-2,800 h of annual sunshine, an average daily temperature of 21.0°C, a 

cumulative ≥10°C temperature of 3,000-3,300°C·d, a frost-free period of 150-169 d, and an average 

annual precipitation of 280-390 mm during the maize growing season (May-Eleventh). Both fields 

consisted of sandy loam soil and had previously been used for maize cultivation. A wide-narrow 

planting pattern was implemented, with alternating rows spaced at 80 cm and 40 cm. Irrigation was 

supplied through shallow buried drip lines at a rate of 300 m3/ha. Base fertilizer with an N, P, K ratio 

of 13:22:15 was applied at a rate of 525 kg/ha through water-fertilizer integration methods. 
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The maize variety Xianyu 335 was selected for the density experiment conducted in Qianxiaili 

Village. Trials were planted on May, 10, 2021 at densities of 30,000, 45,000, 60,000, 75,000, 90,000, 

105,000, 120,000, and 135,000 plants/ha. Data was collected on May 29th (2 leaves unfolded), June 1st 

(3 leaves unfolded), June 5th (4 leaves unfolded), and June 16th (6 leaves unfolded). 

 

Figure 1. Experimental area. 

The maize variety Dika 159 was selected for the flight altitude experiment conducted in 

Dongsheng Village. Trials were planted on May, 8, 2023 at a density of 90,000 plants/ha. Data was 

collected on May 27th (2 leaves unfolded), May 31st (3 leaves unfolded), June 4th (4 leaves unfolded), 

June 7th (5 leaves unfolded), and June 11th (6 leaves unfolded). 

In 2021 and 2023, we carried out validation trials on the agricultural lands of local farmers. These 

trials included three distinct types of cultivation areas: High Yielding Fields in 2021, Agricultural 

Cooperative plots in 2023, and Peasant Household farmland in 2021. Maize varieties Jingke 968, 

Tianyu 108, and Dika 159 were planted in each plot at densities of 100,000, 80,000, and 65,000 

plants/ha. UAV visible light images were collected at noon during the 3-leaf stage from 8 sample areas 

(5 m × 2.4 m) within each field. Additional images were collected from 20 randomly selected sample 

areas (11.66 m²) in each field, which were monitored at noon on June 1st, 2021 (3 leaves unfolded) and 

May 31st, 2023 (3 leaves unfolded).  

2.2. UAV Image Collection 

High-resolution images of maize seedlings were captured with a UAV-based RGB camera 

mounted perpendicular to the ground onto a DJI M600 drone with a Ronin-MX gimbal. GPS and 

barometer were used to control horizontal position and altitude within approximately 2 m and 0.5 

m, respectively. Drone images were collected every 3 days between 10 a.m. and 2 p.m. for the duration 

of the experiment. Detailed image collection information is listed in Table 1. 

Table 1. UAV image collection parameters. 

Year 2021 2023 

Station 
Qianxiaili  

Village 

High Yielding 

Gield 

Peasant 

Household 

Dongsheng 

Village 

Agricultural 

Cooperative 
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Image acquisition 

Stage（leaves） 

2、3、4、6 3 3 2-6 3 

Flight speed (m/s) 2.1 2.3 2.0 2.0 2.5 

photo interval (s) 1 2 2 2 2 

Height above ground (m) 20 20 20 20、40、60 20 

Overlap rate along tracks(%) 75 73 75 80 75 

Overlap rate across tracks(%) 85 75 80 80 75 

Images were collected with a Sony α7 II camera with a 35 mm sensor and a maximum resolution 

of 6000×4000 pixels. Shutter speed was prioritized and the ISO was set to automatically adjust (1600 

maximum value). RGB images were captured at a frequency of 1Hz with an intervalometer-

controlled camera. 

2.3. Data Construction and Preprocessing 

2.3.1. Image Preprocessing 

After RGB images were exported from the UAV, Agisoft Metashape Professional software was 

used for image stitching. Feature points in each image were initially automatically calculated and 

then matched in the image sequence through multiple iterations. Next, dense point clouds were 

generated before the final images were produced (Figure 2a). 

 

Figure 2. (a) Orthophoto of test area, (b) experimental plot layout, and (c) plot cropping. 

Experimental fields were cropped and divided into multiple plots (Figure 2b). Original high-

quality maize seedling images were cropped to 1000×1000 pixels by a sliding step[18]. Poor-quality 

images including those with large shooting angles, obvious occlusions, and uneven illumination were 

removed. Final images (900 total) were categorized by quantity of spreading leaves and quantity of 

straw. 
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Figure 3. Maize seedlings at (a) V2, (b) V3, (c) V4, (d) V5, (e) and V6 stages. (f) Low, (g) moderate, 

and (h) high quantities of stover. 

The location and size of each seedling are labeled in each image[18] (Figure 4). 

 

Figure 4. Example of annotated image. Green boxes represent labeled maize seedlings. 

2.3.2. Data Enhancements 

Images were adjusted during the data augmentation process, including horizontal and vertical 

flipping, random contrast and hue adjustments, and resolution alterations. These modifications were 

used to simulate the effects of varying lighting and environmental factors during different times of 

day and flight altitudes. Training and testing datasets were created from the resulting 14,815 images. 

The dataset was then divided, with 90% of images used for model training and 10% for validating 

model performance. 
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Figure 5. (a) Random contrast, (b) random hue adjustment, (c) horizontal flip, and (d) vertical flip. 

Images were modified to resolutions of (e) 800×800, (f) 500×500, and (g) 300×300. 

2.4. YOLOv8 Model Framework 

YOLO (You Only Look Once) is a highly popular single-stage object detection framework, which 

exhibits enhanced processing speeds, performance, efficiency, and flexibility when compared with 

two-stage algorithms. YOLOv8 is comprised of a Backbone, Neck, and Head (Figure 6).  

 

Figure 6. YOLOv8 framework. 

2.4.1. Backbone and Neck 

The YOLOv8 Backbone employs the Darknet-53 network structure. Through effective feature 

learning and residual connections, the model avoids the gradient vanishing typical of deep neural 

networks, enabling it to capture high-level semantic features[19]. This module primarily functions to 

extract and fuse these higher-level features through multiple iterations of maximum pooling[20].  

The C3 module in YOLOv8n is replaced with the more gradient-rich C2f module, which adjusts 

the number of channels based on the intended model scale to minimize weight[21]. This change 

enhances efficiency and efficacy when processing images of various sizes and complexities. 
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Figure 7. C3 and C2f modules. 

2.4.2. Head 

The YOLOv8n Head structure exhibits two major improvements when compared to YOLOv5. 

Firstly, the newer model has separate classification and detection heads (Decoupled-Head), a 

structure type that has been increasing in popularity. Secondly, the model transitions away from the 

Anchor-Based approach to an Anchor-Free approach.  

 

Figure 8. Coupled-Head and Decoupled-Head modules. 

2.4.3. Loss Calculation 

Loss calculation in the YOLOv8n model is simplified by removing the objectness branch and 

only considering the classification and regression branches. The classification branch continues to 

utilize Binary Cross-Entropy (BCE) Loss. YOLOv8n abandons the traditional IOU matching and 

unilateral proportion allocation methods in favor of the Task-Aligned Assigner for positive and 

negative sample matching. Additionally, the model introduces Distribution Focal Loss (DFL)[22] to 

improve the precision and reliability of object detection tasks. Loss calculations are conducted 

according to the following formulas: 

𝐷𝐹𝐿(𝑆𝑖 , 𝑆𝑖+1) = −((𝑦𝑖+1 − 𝑦) log(𝑆𝑖) + (𝑦 − 𝑦𝑖) log(𝑆𝑖+1)) (1) 

In two consecutive distributions, 𝑆𝑖  and 𝑆𝑖+1, the values 𝑦𝑖 i and  𝑦𝑖+1  represent the 

corresponding probability density values at specific points or for the distributions as a whole. The 

weighting of the loss function is adjusted based on 𝑦 , to reflect changes or differences in these 

probability densities. 

Classification loss is typically calculated using cross-entropy loss, which measures the difference 

between the predicted class probabilities and the ground truth class labels: 

𝐿𝑐𝑙𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑐

(𝑖)
log(𝑦̂𝑐

(𝑖)
)

𝑐

𝑐=1𝑖∈𝑝𝑜𝑠⋃𝑁𝑒𝑔

(2) 

In these formulas, 𝑖 represents the sample index and 𝑖 ∈ 𝑝𝑜𝑠⋃𝑁𝑒𝑔 denotes the set of positive 

and negative samples. 𝑐  represents the category index and 𝐶  denotes the total number of 

categories. The real label of the 𝑖th sample for category 𝑐 is denoted by 𝑦𝑐
(𝑖)

, which indicates whether 

the sample actually belongs to category 𝑐  (typically 1 for yes, 0 for no). The model's predicted 

probability that the 𝑖th sample belongs to category 𝑐 is represented by 𝑦̂𝑐
(𝑖)

. 

𝐿 = 𝜆𝑙𝑜𝑐𝐿𝑙𝑜𝑐 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠 (3) 
𝐿 represents the total loss function. 𝜆𝑐𝑙𝑠 and 𝜆𝑙𝑜𝑐 are hyperparameters controlling the relative 

importance of localization and classification loss. 
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2.5. Assessment of Indicators 

The maize seedling detection and quantification abilities of each model were evaluated by 

calculating the Precision (Eq.4), Recall (Eq.5), F1-Score (Eq.6), AP(Eq.7) and rRMSE (Root Mean 

Square Error) (Eq.8) values according to the following formulas: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(6) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0

(7) 

𝑟𝑅𝑀𝑆𝐸 =
√1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑛=1

∑ 𝑦𝑖
𝑛
𝑖=1

× 100% (8)
 

True Positive (TP) and False Positive (FP) represent the number of correctly and incorrectly 

detected maize seedlings, respectively, while False Negative (FN) indicates the number of those 

missed. F1 represents the harmonic mean of Precision and Recall, Average Precision (AP) measures 

the average precision of the classification model at all recall levels, and 𝑛 denotes the number of 

samples. 𝑦𝑖 represents the actual value of each sample point, 𝑦̂𝑖 denotes the predicted value of each 

sample point according to the regression model, and 𝑦̅ is the mean of the actual observed values of 

the dependent variable. 

2.6. Test Parameter Setting and Training Process Analysis 

The computer specifications and software environments used are described in Table 3. The 

training parameters were tailored to the characteristics of the task dataset. The training settings were 

tested with a batch size of 8, an image size of 640, a confidence threshold (conf_thres) of 0.3, and an 

intersection over union threshold (iou_thres) of 0.2. 

Table 2. Model training specifications. 

Experimental environment 

Processor 12th Gen Intel(R) Core(TM) i5-12600KF3.69 GHz 

Operating system Windows 10 

Ram 64GB 

Graphics card NVIDIA GeForce RTX 3060 

Programming language Python 3.8 

Model YOLOv8n YOLOv5、3 Other 

Deep learning libraries CUDA11.7 CUDA11.1 CUDA 10.2 

Software Ultralytics=8.0.105 

Opencv=4.7.0.72 

Opencv=4.1.2 

Numpy=1.18.5 

Mmcv=2.0.0 

Mmdet=3.0.0 

Mmengine=0.9.1 

3. Results 

3.1. Model Comparison 

To further validate the performance of YOLOv8n, multiple one-stage and two-stage object 

detection models were trained and evaluated based on metrics such as AP50, AP50:95, params, and 

FLOPs (Table 4, Figure 11).  
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Table 3. Comparison of object detection model performances. 

Category Model Backbone Image size AP50 AP50:95 Params FLOPs 

One-stage YOLOv8n New CSP-

Darknet53 

640×640 0.979 0.647 3.20M 8.7G 

YOLOv5n CSP-Darknet53 640×640 0.955 0.511 1.90M 4.5G 

SSD VGG16 416×416 0.946 0.530 23.75M 137.1G 

FCOS Resnet50 640×640 0.925 0.495 31.84M 78.6G 

YOLOv3-tiny Tiny-Darknet 640×640 0.922 0.453 8.44M 13.3G 

RetinaNet Resnet50 300×300 0.863 0.412 36.10M 81.7G 

Two-stage Defomermable 

DETR 

Resnet50 640×640 0.941 0.474 36.10M 27.4G 

Cascade R-CNN Resnet50 640×640 0.888 0.569 68.94M 80.1G 

Faster R-CNN Resnet50 640×640 0.887 0.530 41.12M 78.1G 

 

Figure 9. Performance comparison of different models. (a) Relationship between AP50, Params, and 

FLOPs. (b) Relationship between AP50:95, Params, and FLOPs. 

The performances of YOLOv8n and YOLOv5n stand out among the single-stage models, 

achieving AP50 values of 0.979 and 0.955, respectively, at an input image size of 640×640. Although 

SSD and FCOS also performed highly, their increased number of parameters and computational 

requirements under the same conditions render them less suitable for resource-constrained scenarios. 

YOLOv3-tiny and RetinaNet demonstrated slightly reduced performances and are better suited to 

environments with limited resources. 

Deformable DETR showed the highest performance out of the two-stage models, achieving an 

AP50 value of 0.941 at an input image size of 640×640. Moreover, the model has a reduced number of 

parameters and computational requirements, exhibiting an optimal balance between performance 

and efficiency. Comparatively, Faster R-CNN and Cascade R-CNN perform similarly at the same size 

but have more requirements, making them less ideal for resource-limited situations. 

3.2. Impact of Planting Density and Growth Stage on Seedling Detection 

Planting density and growth stage were found to significantly affect the estimation accuracy of 

maize seedling detection models. In this study, YOLOv8n, YOLOv3-tiny, Deformable DETR, and 

Faster R-CNN were analyzed for key metrics such as accuracy rate, miss rate, false detection rate, and 

rRMSE. Experimental validations were conducted across four growth stages in 8 different planting 

densities (30,000, 45,000, 60,000, 75,000, 90,000, 105,000, 120,000, and 135,000 plants/ha). For each 

density, 20 images were selected, resulting in a total of 640 images for inference. 
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Figure 10. Performances of YOLOv8n, YOLOv3-tiny, Deformable-DETR, and Faster R-CNN in terms 

of F1-score, Recall, Precision, and rRMSE across various planting densities and growth stages. 

Our findings demonstrate that as density increases, overall detection accuracy measured by the 

F1-score, rRMSE, Recall, and Precision declines (Figure 10). Moreover, our analysis of V2-V6 growth 

stages revealed a trend of increasing and then decreasing detection performance. Performance 

seemed to improve up until the V3 stage but declined as time progressed to the V6 stage. 

Our study showed that as planting density increases, YOLOv8n exhibits a relatively stable 

rRMSE performance compared to YOLOv3-tiny, especially at higher densities (105,000 to 135,000). 

The Deformable-DETR model exhibited a relatively steady performance across different densities, 

with only minor fluctuations. In contrast, Faster R-CNN performed poorly at high densities with a 

significantly increased rRMSE. Taken together, these results demonstrate the superior performance 

and stability of YOLOv8n across all densities. Additionally, model performance was significantly 

impacted by the plant growth stage (V2-V6). YOLOv8n and Faster R-CNN achieved their highest 

performances at the V4 stage, while YOLOv3-tiny and Deformable-DETR \ peaked at the V3 stage. 

While the optimal growth stage differed between the models, all displayed a similar trend of 

declining performance with increasing density in terms of Recall and Precision. These findings 

highlight the performance variations between different models across various planting densities and 

growth stages, providing a foundation for model selection based on growth operation requirements. 

3.3. Impact of Flight Altitude and Growth Stage on Detection 

In this study, plant detection was conducted through UAV flights at various growth stages and 

altitudes (20 m, 40 m, and 60 m). Metrics such as accuracy rate, miss rate, false detection rate, and 

rRMSE were calculated to explore potential impacts. Twenty images per altitude across five growth 

stages were collected, resulting in a total of 300 images for inference. Overall, changes in altitude were 

found to affect image resolution and coverage area. 
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Figure 11. Performance of YOLOv8n, YOLOv3-tiny, Deformable-DETR, and Faster R-CNN in terms 

of F1-score, Recall, Precision, and rRMSE at different flight altitudes and growth stages. 

The F1-scores of all four models decreased across all growth stages (V2-V6) as flight altitude 

increased. Performances were relatively high at 20 m but declined significantly at 60 m. The Recall 

and Precision metrics display a similar but less severe trend. Overall, these models demonstrated 

greater efficacy at lower altitudes. 

3.4. Validation of YOLOv8n Seedling Counting Algorithm  

To validate the applicability and accuracy of YOLOv8n, the model's performance was 

comprehensively evaluated under various planting conditions in active growing operations across 

different years and locations (six total repetitions). The model exhibited outstanding performance 

across all planting methods, with notably significant results in high-yield fields characterized by 

high-density planting conditions. 
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Figure 12. YOLOv8n model validation across different farms presented by linear fitting curves of 

actual values versus predicted values. 

Our analysis illustrates that predicted values are closely aligned with the actual values, 

maintaining a highly consistent, near 1:1 line (Figure 12). Exceptional performance was observed in 

high-yield fields 1 and 2, with rRMSE values of roughly 1.64% and 1.33%, respectively. The Recall, 

Precision, and F1 scores all exceeded 99%. Stellar performance was also observed under cooperative 

and individual farmer planting conditions. Together, these results affirm the model's stability and 

accuracy. The consistency between the algorithm's predicted planting density and the actual planting 

density further validates the model’s reliability and precision. 

4. Discussion 

Our model comparison experiments indicate that one-stage models generally outperform two-

stage ones. This is potentially due to the direct collection of target location and category information 

in an end-to-end manner, eliminating the need for candidate box generation. This direct transmission 

of position, scale, and category information between targets through the supervision signal, also 

allows for a more simple and rapid way of determining relationships between targets, thereby 

achieving better detection results[23]. YOLOv8n showed the highest detection performance, followed 

closely by YOLOv5n, then YOLOv3-tiny. The two-stage Deformable DETR model also exhibits a high 

performance, which may be attributed to the introduction of a modified transformer with local and 

sparse efficient attention mechanisms[24]. The YOLO deep learning series was found to be highly 

accurate, with fast detection speeds, and small sizes. YOLOv8n contains a Decoupled-Head instead 

of the coupled one employed by YOLOv5, potentially contributing to its increased accuracy. 

Attempting to perform classification and localization on the same feature map may lead to a 

"misalignment" problem and poor results[25]. Instead, the Decoupled-Head uses distinct branches 

for computation, thus improving performance[26]. Contrary to expectations, Faster R-CNN was less 

accurate in detecting small objects. This is likely due to the low resolution of the feature maps 

generated by the Backbone network causing the minute features to blur or lose during processing. 

Additionally, the RoI generation method may not be accurate enough for small object localization. In 

addition to small object sizes, background noise may also affect detection accuracy. Moreover, Faster 

R-CNN may lack the ability to adapt to large-scale target changes when processing small objects, 

making it difficult for the model to capture and recognize object size variations or changes[27]. 

Plant density was found to have the most significant influence on the accuracy of maize seedling 

quantification. Our results indicate that increased overlapping between leaves is responsible for 
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much of the declining accuracy[28]. However, YOLOv8n was less affected by planting density 

compared to the other models and its detection capability only destabilizes when density surpasses 

105,000 plants/ha. Increased density is a persistent challenge to the efficacy of various plant detection 

methods[29], representing an important direction for future research. Dense planting techniques 

have been increasingly favored due to their higher crop yields, especially regarding maize 

cultivation. For instance, the average maize planting density in regions like Xinjiang, China, has 

already passed 105,000 plants/ha. This represents a major hurdle in the application of this technology 

in an agricultural setting. This study explores the limits of model detection at high densities, 

providing a basis for future research and development. Our results reveal variations in detection 

performance characteristics between different models, highlighting the need to match the model to 

the growing operation. 

Detection accuracy varies greatly between maize growth stages, spotlighting the importance of 

timing drone image-capturing operations. If images are captured too early, the seedlings may be too 

small for detection, but if captured too late, there is increased leaf presence and overlapping, which 

can lead to a decline in detection performance[30]. Significant overlapping was documented during 

the V6 stage in this study, causing notable difficulties in plant detection[9]. Plants often fail to 

germinate or grow in a production setting, necessitating additional plantings to fill in gaps and 

maximize crop yield. The optimal replanting period is during the 2-3 leaf stage—missing this short 

window may negatively impact crop growth and yield. YOLOv8n and Deformable-DETR were found 

to be more effective than other models in detecting small targets, with rRMSE and F1-scores at the V2 

stage of 2.19% and 5.52%, and 99.34% and 97.32%, respectively. 

Image ground resolution is mainly determined by the UAV sensor and the flight altitude. We 

tested flight altitudes of 20, 40, and 60 m to comprehensively evaluate their effects on detection 

accuracy. Increases in flight altitude were correlated with decreases in seedling detection. This 

phenomenon is not only caused by the decrease in image ground resolution but also the reduction of 

details in the acquired images[31]. Such loss of detail may blur the features of the seedlings, directly 

affecting the model's ability to recognize them. Changes in flight altitude can affect the visibility of 

maize features in collected images, putting a higher demand on dataset construction.  

During this study, we worked directly with farmers to explore the practical applications of this 

technology in agriculture. Previous studies have validated the field use of this technology by 

exploring efficacy in various soil types, meteorological conditions, and growing operations. The 

existing models could be utilized in future studies to construct a maize emergence quality assessment 

model, which currently lacks an assessment index. UAVs have been increasingly used for precisely 

assessing maize seedling emergence and quality. These assessments can provide growers with 

information crucial for making intelligent management decisions. These decisions can have dramatic 

impacts on crop growth, yield, and quality. 

5. Conclusions 

This study analyzed the performances of various target detection models used in maize 

production. Additionally, we explored the impacts of planting density, flight height, and plant 

growth stages on model accuracy. Our results indicate that the one-stage models generally 

outperform two-stage models in maize seedling quantification. The one-stage models YOLOv8n and 

YOLOv5n demonstrated stable and excellent performances, especially at lower planting densities. 

The two-stage model, Deformable DETR, was relatively stable and outperformed Faster R-CNN, 

which showed significant performance degradation under highly dense planting conditions. 

Plant density and growth stage significantly impacted the seedling detection accuracy of all 

models. Increased in either factor complicated obtained imaged and decreased accuracy. The V6 

growth stage was especially difficult to quantify, as the increase of leaf overlap leads to detection 

difficulties. The optimal detection period was identified as the V2-V3 stages. YOLOv8n was the most 

stable model, only losing detection abilities at planting densities of more than 105,000 plants/ha. 

Additionally, flight altitude was negatively correlated with image resolution and detection 

results, causing decreased detection at higher altitudes. Taken together, these results provide the 
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framework for the application of UAV image collection models in an agricultural setting and 

highlight potential areas of future research. Lower flight altitude was favorable to maintain good 

detection results, and the performance of the model gradually decreased with increasing altitude. 
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