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Featured Application: This study introduces an innovative approach for optimizing sensor placement in 
modal testing through application of machine learning with enhanced efficiency and precision. 

Abstract: Modal testing is a common step in aerostructure design, serving to validate the predicted natural 
frequencies and mode shapes obtained through computational methods. The strategic placement of sensors 
during testing is crucial to accurately measuring the intended natural frequencies. However, conventional 
methodologies for sensor placement are often time-consuming and involve iterative processes. This study 
explores the potential of machine learning techniques to enhance sensor selection methodologies. Three 
machine learning-based approaches are introduced and assessed, comparing their efficiency with established 
techniques. The evaluation of these methodologies is conducted using a numerical model of a beam to simulate 
real-world scenarios. The results offer insights into the efficacy of machine learning in optimizing sensor 
placement, presenting an innovative perspective on enhancing the efficiency and precision of modal testing 
procedures in aerostructure design. 

Keywords: modal testing; sensor placement; machine learning; finite element method; beam 
analysis 
 

1. Introduction 

Mechanical structures are subject to vibrations either internal, such as engine vibration, external, 
such as turbulence, or a combination of both. Characterizing the behavior of a system under vibration 
or other dynamic forces is therefore crucial to good engineering design, and it is pivotal to the 
aerospace and automotive industry [1,2].  

While the accessibility and speed of modern computers and FEA solvers may seem to obviate 
the need for physical modal testing, the results are only as accurate as the model being tested [3]. The 
results of modal testing can be compared to those of the theoretical model and used to establish if the 
model accurately describes the structure being analyzed [1]. Additional uses of modal testing include 
creating mathematical models of structures for integration into other analyses or developing models 
for structural health monitoring [1]. 

Modal analysis can be conducted on data acquired in laboratory conditions or from data 
acquired while the structure is in regular use [4–6]. In modal testing, sensors placed on the structure 
being tested—typically accelerometers and/or strain gauges—are measured to record their response 
to an excitation. The input can be provided by a modal shaker—a device which takes a signal as an 
input and applies that signal to the structure under test— or a modal hammer, where an impact is 
made against the structure to represent an instantaneous excitation [4]. In more complex tests or for 
large structures, multiple modal shakers may be used to induce a measurable excitation in the 
structure [1]. The outputs of the sensors are then post processed, with the exact methodology 
dependent on the excitation signal. These data may then be analyzed with a frequency response 
function in order to derive the natural frequencies and mode shapes of the structure under test.  
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Placing the sensors on the structure must be done with care, as it can substantially influence the 
results of a modal test. Large numbers of sensors increase the cost of testing in both equipment and 
labor required to set up the test. As modal testing is principally concerned with structural dynamics, 
an ideal sensor selection would result in the least number of sensors where each sensor’s individual 
contribution to the analysis is greatest [7]. The goal of optimizing sensor placement is to determine 
the most information about the structure’s behavior while minimizing the required number of 
sensors [7].  

In early modal testing, sensor placement relied on engineering judgement and institutional 
knowledge derived from fundamentals of vibration [8]. While this may still be used in certain 
situations, such as with a well understood structure or for simple geometries, novel structures present 
difficulties for this approach. Additionally, tight timelines due to budget constraints or limited access 
to testing facilities reduce the time available to refine sensor placement during testing [3]. As such, 
determining efficient methodology for sensor placement has real implications for increasing 
efficiency. As a result, several methodologies have been developed to assist engineers in determining 
appropriate sensor placement for modal testing and structural health monitoring. 

In general, methods for optimal sensor placement can generally be divided into two broad 
categories, model-based methods and data-driven methods. Model-based methodologies define the 
placement of sensors based on information derived from a numerical model, such as a finite element 
model or a multibody model. Specifically in modal testing, existing model-based methodologies used 
for sensor placement include the Effective Independence Method (EIM) and Iterative Residual Kinetic 
Energy approach (IRKE) [9]. Other techniques, such as those using information entropy, have also 
been developed [4]. A brief overview of these techniques is provided in section 2.  

Data-driven sensor placement strategies have also been recently proposed to extract the 
oscillatory characteristic directly from experimental measurements without requiring the need of a 
numerical model [10–13]. Zhang at el. [10] proposed a sensor placement approach that relies on a 
repetition of in-situ trial measurements on bridges with different sensor positioning in order to avoid 
the need to rely on finite element data. The measured in-situ data is used to train a Recurrent 
Gaussian Process Regression until a sufficient number of sensors is identified. However, this 
approach requires multiple experimental trials of sensor configurations, a costly approach for 
complex and large systems such as aerospace structures. Similarly, Suryanarayana et al. [12] employs 
a data-driven approach for optimal sensor placement of a multi-zone building. This method requires 
that experiments with a large number of sensors are initially completed to collect the data necessary 
to apply the sensor placement approach. These data-driven methods often rely on operational modal 
analysis to extract the modes of the system during operations. Sashittal et al. [13] applies data-driven 
sensor placement to the observation of fluid flows. To the authors’ knowledge, no data-driven 
methodologies have been proposed for modal analysis. 

This paper proposes a non-iterative model-based approach for optimal sensor placement in 
modal testing. Finite element models are generally available for large aerospace structures and can 
therefore be used to identify the number and positioning of sensors in the structure. The approach is 
based on machine learning techniques to avoid the need for iteration. 

Machine learning (ML) techniques are a promising approach for determining sensor placement 
in modal analysis. In supervised machine learning, an input dataset is provided consisting of both 
the input data and the output. In this case, the input would be data derived from a finite element 
model and the output would be the mode shapes and natural frequencies. Based on this information, 
the model is then trained to be able to predict outputs based on new input data. As many of the 
previously discussed methods for sensor placement are iterative approaches, the problem of solving 
for sensor placement seems to be one to which machine learning is well suited [14–16].  

This paper presents a novel methodology for sensor placement in modal analysis using random 
forest techniques. An initial application of the proposed approach is discussed in Kelmar et al. [17]. 
The paper is organized as follows: initially, a review of traditional methodologies currently used for 
sensor placement in modal analysis is presented. Then, the proposed machine learning approach is 
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presented and validated for a vibrating beam. Results of the proposed approach are then compared 
to the results obtained using one of the traditional methodologies. 

2. A Review of Traditional Sensor Placement Techniques for Modal Testing  

Several methodologies have been developed to assist engineers in determining appropriate 
sensor placement for modal testing and structural health monitoring based on a finite element model. 
Some of the current existing methodologies include the Effective Independence Method (EIM), the 
Mass Weighted Effective Independence Method (MEIM) and the Residual Kinetic Energy approach 
(RKE) [16,18].  

2.1. Effective Independence Method (EIM) 

The Effective Independence Method, also known as the effective independence algorithm, is one 
of the most popular sensor placement techniques, and it bases its analysis on the sum of the diagonal 
terms of the Fisher information matrix. The Fisher information matrix is constructed using the modal 
characteristics extracted by a finite element model. It is an iterative method that evaluates the 
contribution of all possible sensor locations (i.e. the nodes of the finite element method) to the linear 
independence of the mode shapes. Sensors with small contributions to the linear independence are 
progressively eliminated until the desired number of sensors remains. This final set of sensors 
maximizes the sum of the diagonal and the condition number of the Fisher Information matrix.  

The method begins with a set of target mode shapes that encompass the set of candidate sensor 
locations generally derived from an FE model of the structure under analysis [19,20]. The algorithm 
attempts to predict the independence of each node based on the expected measured mode shape, 
with higher values indicating increased independence [19]. In this method, it is required to know 
both the expected mode shape as well as the location of candidate sensors, and it is therefore well 
suited to be used when a finite element model is available. These candidate locations are then ranked 
according to the algorithm, removing the lowest ranking sensor and recalculating. As potential 
locations are eliminated, the relative independence of the remaining solutions increases, and the 
process is repeated until the required number of sensor locations is reached.  

One of the challenges of EIM is that the optimal number of sensors must be defined a priori and 
potential locations of the sensors must be available [21]. A very fine grid of the finite element model 
allows the user to analyze all the possible locations of sensors but the method then becomes very 
time-consuming due to the iterative nature of EIM. Some research also suggests that more optimal 
results may be produced compared to kinetic energy methods, although at the cost of less ability to 
measure unexpected modes [19,22]. Additionally, the EIM approach does not account for unknown 
modes that may occur in the real world but do not appear in FEA. At the same time, if there are 
specific modes in the FEA results that are of more interest, EIM can provide targeted sensor selection 
for those modes which may require less sensors than needed to capture the full behavior of the 
structure.  

The EIM is derived by Kammer et al [22] and is based on the concept that each sensor output 
can be represented as a linear combination of the mode shapes of the system. An effective 
independence score is calculated for each possible sensor location using the modal content of the 
numerical model. The higher the effective independence score of a candidate sensor location, the 
more important that location is for calculating the independence of the mode shapes. Therefore, 
sensor locations with the lowest value are eliminated, and the effective independence score is then 
recalculated from the subset of candidate locations. The process is complete when the desired number 
of sensors is reached or when all remaining sensor locations have similar effective independence 
values [19].  

2.2. Mass Weighted Effective Independence (MEIM) 

A drawback to EIM is that it selects sensors only considering the contribution to the linear 
independence of the mode shapes and neglects their orthogonality constraints [23]. When a mass-
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weighted approach is used, such as the Mass Weighted Effective Independence (MEIM), modes 
shapes that contribute the least to self-orthogonality are removed in each iteration as opposed to 
purely focusing on linear independence when selecting features. Cross-orthogonality checks are used 
to determine how analytical and empirical modal testing results correlate.  

One of the drawbacks, however, is that the Mass Weighted Effective Independence requires the 
decomposition of the mass matrix. The use of the Guyan reduced mass matrix appears to result in 
the best performance computationally as well as producing the most optimized output with respect 
to other mass weighting techniques [23].  

2.3. Residual Kinetic Energy Method (RKE)  

The RKE method is a technique that provides information on the sensor location that exhibit the 
maximum response for each mode shape. It is commonly used by NASA to determine sensor 
placement for modal testing based on detailed FEA models [24]. It ensures that the residual kinetic 
energy is minimized in all degrees of freedom and modes under consideration. When this is 
computed, DOFs with high residual kinetic energy indicate that additional refinement is needed in 
order to measure the corresponding degree of freedom in a given mode. After another sensor is added 
to cover that degree of freedom, the residual kinetic energy is recomputed. This process is repeated 
until the solution is suitably orthogonal [25].  

The RKE method ensures all recorded modes are fully orthogonal and therefore independent 
from each other [16]. An RKE matrix is defined in which each column represents the contribution of 
each degree of freedom to a specific mode. The sum of the contribution of each degree of freedom is 
1. Sensors should be placed at the location of the nodes with higher RKE values. The RKE matrix 
column will add to much less than 1 if that mode is already appropriately instrumented [16]. By 
iterating through this matrix, you can determine the location where sensors should be placed as well 
as the minimum number of sensor locations.  

This methodology works well when applied to existing analysis points to identify additional 
degrees of freedom that are undermeasured by the initial sensor placement, and has been adopted 
by NASA and others to meet NASA and Department of Defense standards for modal testing.  

3. Machine Learning Approach for Sensor      Selection 

Machine learning (ML) techniques are a promising approach for determining sensor placement 
in modal analysis. Machine learning techniques are able to determine a non-deterministic 
relationship between an output quantity and a large number of input quantities—called “features”—
on which the output depends, through an initial process called “training”. A large number of features 
are usually defined in a machine learning database, resulting in high computational costs. In an effort 
to reduce the computational costs of the training procedures, and to identify the most important 
factors that contribute to the desired output, several approaches have been defined to identify the 
most important features of the database. Examples of such approaches are the SelectKBest algorithm  
[26,27], the Random Forest feature importance approach  [28,29], and the Principal Component 
Analysis [30,31]. This paper focuses on the use of the Random Forest feature importance approach, 
as discussed in the following section. 

3.1. Random Forest Feature Selection Approach for Sensor Placement 

The random forest (RF) feature selection approach was selected for sensor placement based on 
its promising performance in existing sensor selection applications [32]. The RF is a learning method 
for classification and regression that belongs to the CART family (CART: Classification and 
Regression Trees).  It is considered an averaging ensemble method because it combines the results 
from multiple estimators and averages the predicted results to reduce variance.  

During the training process, the random forest algorithm constructs a multitude of decision trees 
with a predicted estimation of the output variables; then, the outputs of all trees are aggregated and 
the algorithm returns the average prediction of the individual decision trees. This aggregation 
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process is called bagging method, and highly reduces the variance and the prediction bias—either 
underestimation or overestimation—of the output target, reducing overfitting [28]. In addition to the 
randomness introduced by varying the input data for each DT, random perturbations in the DTs are 
also introduced. Each decision tree constructed by the algorithm is composed by internal nodes and 
leaves; in each internal node, all the features are used to make decision on how to binary split the 
data set further based on a defined criterion, such as the Gini impurity or variance reduction 
parameters. This criterion measures how each feature decreases the impurity of the split at each node. 
For each feature, it is then possible to determine how on average it decreases the impurity of all trees 
in the forest, which becomes a measure of the feature importance [33]. In this paper, the Gini index 
will be used to determine the feature importance. Once the algorithm calculates the feature 
importance for each input variable, a bar graph can be obtained to determine the most important 
features. Additionally, the R squared value (R2) and mean squared error (MSE) can be used to 
evaluate performance of the approach. 

Initially, a Random Forest model is constructed using all the features available in the dataset. 
The Random Forest algorithm computes the feature importance of each input variable as it maps to 
the output variable. The regressor attributes a feature importance value that ranges between 0 and 1 
to each input variable in the model. This value represents how much variance in the output is 
represented by each input variable. The sum of all feature importance of the model is 1. By selecting 
the inputs with the largest values of feature importance we can determine which inputs are most 
valuable in representing the output. A number of inputs should be selected such that a sufficient 
percentage of the variance of the data is represented.  

Conceptually, if a model has 4 input variables called a, b, c, d, the RF regressor attributes a feature 
importance value to each input. In Figure 1, input b has a feature importance of 0.6, input d has a 
feature importance of 0.2, input a has a feature importance of 0.15, and input c has a feature 
importance of 0.05. Input b therefore is the most important feature and represents 60% of the variance 
in the data. Input d is the second most important feature and represents 20% of the variance in the 
data. Inputs b and d therefore together represent 80% of the variance in the data and could be used 
as a reduced model of the system.  

 

Figure 1. Conceptual representation of Random Forest feature selection approach. 

This concept can be applied to sensor placement and selection by defining as input variables all 
the possible locations and types of sensors in the system [34]. The optimal number, location and type 
of sensors is determined based on the most important features selected by the random forest 
regressor. 

3.2. Approach 

The flow diagram of the approach can be seen in Figure 2.  
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Figure 2. Flow diagram of the proposed approach. 

First, a finite element (FE) model of the system is created and a broadband time-domain 
simulation in the frequency domain of interest is performed. The results of the simulation are 
exported for each node and/or potential sensor locations. These locations must correspond to all the 
possible/viable locations for the sensors in the modal tests. All quantities corresponding to the desired 
sensors should be considered, such as strains, accelerations, etc. For each of these n locations and 
quantities, the frequency response function (FRF) is evaluated. FRF is defined as the ratio of response 
(i.e. acceleration, velocity, or displacement) with respect to the excitation force which is the reference. 
These quantities will be the input of the machine learning model.  

Then, a scalar parameter that represents the global behavior of the system should be identified 
for each frequency at which the input FRFs are evaluated. This parameter will be used as output of 
the Random Forest feature importance approach.  

Three different options for output parameter are evaluated in this paper: the raw Operational 
Deflection Shape (ODS), the normalized ODS, and the average FRF.  
1. Global parameter (a): raw ODS. 

The sum of the squares of the ODS at each possible sensor location is evaluated according to:  
Output a =  𝑂𝐷𝑆ఠ

்𝑂𝐷𝑆ఠ 
This expression results in a distinct scalar value for each ODS at each frequency.  
Output a, however, depends on the load condition of the beam and will change depending on 

the magnitude of the load applied to the beam; 
2. Global parameter (b): normalized ODS. 

To decrease the sensitivity of the output to the load conditions, a normalized form of output a is 
calculated: 

Output b =  
𝑂𝐷𝑆ఠ

் 𝑂𝐷𝑆ఠ

|𝑂𝐷𝑆|ଶ
 

Dividing the ODS product by the magnitude of the ODS at that frequency reduces the effect of 
the external load on the output used by the Random Forest feature importance approach, and 
therefore on the sensor placement;  
3. Global parameter (c): average FRF. 

The last output chosen was the average FRF at a given frequency, where n is the number of 
nodes and the sum of the FRF at a given frequency is taken across all nodes n. 

Output c =  
∑ 𝐹𝑅𝐹(𝑓)

𝑛
 

After all local and global quantities are evaluated, the database can be created according to Table 
1. The first column contains the frequency, columns 2 to (n+1) contain the FRF at each desired location 
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and represent the input variable, the last column (n+2) contains the global parameter and will be the 
output quantity for the random forest regressor. The random forest method can be run to obtain the 
ranking of the most important features, which can then be selected as the location and type of sensor 
needed for modal testing.  

Table 1. Structure of Random Forest feature importance dataset. 

Freq (Hz) Node 1 Node 2 
… 

Node n Output 
f Node 1 FRF(f) Node 2 FRF(f) Node n FRF(f) Output (f) 

3.3. Dataset Creation 

The dataset for the random forest regression model is extracted from a finite element model of 
the desired system and reformatted as specified in Table 1. Each row in the dataset corresponds to a 
frequency for which the FRF of each node is calculated. Each row in this case represents the 
operational deflection shape (ODS) for a given frequency for every node in the numerical modal 
model. The frequency is used primarily for tracking and is not input into the RF. The output column 
in this table represents the value the model should attempt to represent.  

The model will output a table of all the input features (nodes) and their corresponding 
importance for predicting the output value. Therefore, choosing a parameter for the output is crucial 
to producing results that reflect an optimal sensor placement.  All three global parameters will be 
considered as possible output parameter and the resulting sensor placement will be presented in the 
next section.  

4. Application of Random Forest Sensor Selection Approach to a One-Dimensional Structure 

The proposed method is applied to the analysis of a cantilever aluminum beam, whose 
properties are listed in Table 2.  

Table 2. Cantilever beam properties. 

Propert
y 

Value 

Length 0.242 m 
Width 0.032 m 
Thickne
ss 

0.00305 m 

E 70 GPa 
ν 0.33 
ρ 2700 

kg/m3 

The transverse behavior of the beam is modeled with 1D Euler-Bernoulli beam elements. The 
beam is clamped on one side, corresponding to Node 1; a transverse time-varying load is applied at 
the free-end of the beam, corresponding to Node n of the beam, Figure 3. 
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Figure 3. Schematic of beam model. 

The first seven natural frequencies of the beam are listed in Table 3. 

Table 3. Natural frequencies of cantilever beam. 

Mode 
Numbe
r 

FEA Natural 
Frequency 
(Hz) 

1 42.83 
2 268.26 
3 750.45 
4 1468.6 
5 2423.4 
6 3612.5 
7 5033.1 

In the first case, a fine mesh is considered (100 elements) for the RF analysis. A second case is 
presented in which the number of elements composing the mesh of the beam is reduced to 20 
elements. The comparison of these two cases will determine whether the method is sensitive to the 
mesh of the model. In the third case, the time history of the applied load is changed to determine the 
sensitivity of the approach to the loading condition.  

4.1. Densely Meshed Cantilever Beam (Case 1) 

For this first case, a finite element model of the cantilever beam was created using 100 linear 
beam elements, corresponding to an element size and distance between nodes of 2.4mm. The beam 
was subjected to a transverse broadband gaussian white noise excitation from 0 Hz to 50 kHz, as 
shown in Figure 4, applied at the free-end of the beam.  
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Figure 4. Applied load for case 1. 

The database used by the RF feature importance approach was created from the transverse 
acceleration at each node. Transverse acceleration was chosen as the input parameter due to the wide 
availability of linear accelerometers for modal testing.  

In this first example, all three definitions of the global parameter are explored. For each output 
option, an RF model is trained with the data available. To understand the capability of the RF to 
represent the output, the R2 and MSE are shown in Table 4. The MSE and R2 values in Table 4 appear 
excellent, giving confidence that the RF model is a good representation of the system and that the 
feature importance algorithm is reliable. 

Table 4. R2 and MSE of RFR for case 1. 

 (a) 
ODS 

(b) 
Normalized 

ODS 

(c) 
Avg. FRF 

R2 0.900 0.940 0.940 
MSE 7.0E-

15 
4.4E-9 2.8E-11 

The ten most important features from each global parameter selection are listed in Table 5. These 
features represent the first ten candidate sensor locations identified by the RF algorithm. The nodal 
numbering starts with “node 1” at the root of beam and ends with node 101 at the tip of the beam.  

The contribution of each feature/sensor to the variance of the data is depicted in Figure 5. The 
first ten features of the ODS RF account for 31% of the variance (global parameter a) while the first 
ten features of the normalized ODS account for 34% of the variance (global parameter b) The first 10 
features of the average FRF account for 29% of the variance (global parameter c). The position of the 
first ten sensors identified by the RF approach for the three outputs are depicted in Figure 6; some of 
the sensors are overlapping or very close to each other (e.g. 2.4mm between sensor location 43 and 
44 for output a), which is not physically possible in a real testing environment.  

Table 5. Most important sensor locations (nodes) for case 1 based on different selections of the global 
parameter. 

Feature 
Importan
ce Rank 

(a)   
ODS 

(b)  
Normalize

d ODS 

(c) Avg. 
FRF 

1 86 66 61 
2 69 100 47 
3 44 68 94 
4 12 92 42 
5 43 73 41 
6 70 34 48 
7 53 82 5 
8 101 20 82 
9 96 88 101 
10 87 83 57 
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Figure 5. Variance as a function of number of features for case 1. 

 
Figure 6. Sensor locations along the beam for case 1. 

For all three choices of output, approximately 20 features are needed before at least 50% of the 
variance is accounted for; however, output (a) exhibits slightly higher individual variance in the first 
three features.  

To estimate the mode shapes that the selected sensors will predict, the value of the actual (FEA) 
mode shape was taken at each candidate sensor location. To obtain the mode shapes in the figures, 
the numerical mode shapes were evaluated at the selected sensors’ locations to verify that minimum 
aliasing is present with the proposed choice. The mode shapes are depicted in Figure 7 (Modes 1 – 4) 
and Figure 8 (Modes 4-6). Each column of the charts represents a mode, and the rows display the 
different global parameter choices (a: raw ODS, b: normalized ODS, c: average FRF). Sensor locations 
do not vary between modes but are plotted on top of the different mode shapes to visually evaluate 
the ability of the sensors to measure a given mode shape.  
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Figure 7. Modes 1-4 as predicted with first 10 features, case 1 (a: raw ODS, b: normalized ODS, c: 
average FRF). 

All three sensor sets obtained with the different choices of output parameters can predict the 
first four modes with relative accuracy. Starting at mode 4, mode peak clipping can be noted with all 
global parameter options. 

As mode number increases (Figure 8) the predictions made using the machine learning modeling 
fail to capture the behavior of the first third of the beam as all methods weight the free end of the 
beam more heavily. The method is able to capture the number of nodes for each mode, and do not 
exhibit large aliasing errors in the mode shape representation. At mode 7 and above, aliasing of the 
modes along the length of the beam starts becomes apparent, which is expected with only ten sensor 
placements on the structure. 

 
Figure 8. Modes 6-7 as predicted with first 10 features, case 1. 

4.2. Effect of Mesh Density on Sensor Selection Using Random Forest Regressor (Case 2) 

The previous subsection defined optimal sensor locations for modal analysis with a mesh of 100 
elements. This mesh results in an element size of 2.42mm. Since the method allows for the placement 
of a sensor at any given node, it can select adjacent nodes for sensor placement (Figure 6 and Table 
5). This distance between nodes (element size) is impractical for physical sensors. This subsection 
discusses the sensitivity of the approach to the mesh size.  
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For the second case, the mesh is reduced to 20 elements, resulting in minimum sensor distances 
of 12.1mm, which is more reasonable. The rest of the parameters for the finite element and random 
forest analyses are the same as in case 1, including the applied excitation and the physical properties 
of the beam.  

Table 6 lists the first eight positions selected as the best sensor locations by the RF feature 
importance applied to a coarser mesh. A nodal location of 1 corresponds to the root of the cantilever 
beam and 21 corresponds to the tip of the beam.  

The first eight features of the ODS RF (global parameter a) account for 55% of the variance, which 
represents a considerable improvement with respect to case 1. Similar changes pertain to the other 
two choices of global parameter: the first ten features of the normalized ODS RF (global parameter b) 
account for 56% of the variance, while the first eight features of the Avg. FRF RF (global parameter c) 
account for 52% of the variance. This improvement is expected as the eight most important features 
in case 2 account for 40% of the total nodes, whereas in case 1 the ten most important features account 
for only 10% of the total nodes. 

Table 6. Most important sensor locations for case 2, ranked by feature importance. 

Feature 
Importance 

Rank 

(a) 
ODS 

(b) 
Normalized 

ODS 

(c) 
Avg. 
FRF 

1 12 20 14 
2 11 21 13 
3 20 14 19 
4 8 19 7 
5 19 12 12 
6 21 7 17 
7 14 6 18 
8 6 10 3 

The position of the first eight sensors identified by the RF approach for the three outputs are 
depicted in Figure 9; it is clear that the overlapping problems identified in case 1 have been 
eliminated. 

 
Figure 9. Sensor positioning for Case 2. 
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A visualization of the sensors ability to identify the modes of the beam are depicted in Figure 10 
and Figure 11. The plots were created with the same methodology as Figure 7 and Figure 8. 
Examining the plots, the ODS sensor selector (global parameter a) appears to perform worse, with 
almost all the sensors placed at inflection points for the 7th natural frequency.  

 
Figure 10. Modes 1-4 as predicted with first 10 features, case 2. 

 

Figure 11. Modes 5-7 as predicted with first 10 features, case 2. 

It is noticeable comparing the figures of the modes of case 1 (Figure 6) and 2 (Figure 9) that the 
selected sensor locations are similar for both cases, suggesting the robustness of the method with 
mesh size. 

The ability of the method to properly select sensor locations for modal testing is further verified 
by extracting natural frequencies from the selected FRF using a modal analysis procedure. The 
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natural frequencies extracted by these signals using the gaussian white noise excitation are presented 
in Table 7. All choices for global output yield results that closely match the natural frequencies 
derived by the modal analysis of the finite element model; however, all sensor configurations are 
poor predictors of the first natural frequency, with the normalized ODS parameter performing better 
with an error of 27% (Table 7). In the mid-range frequencies, all three methods perform quite well, 
with errors below 6% from the numerical frequency.  

Table 7. Extracted natural frequencies, case 2. 

 FEA (a) ODS (b) norm ODS (c) Avg. FRF 
Mode 

# 
f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err 

1 42.8 – 100% 54.3 27% – 100% 
2 268.3 277.5 3% 281.6 5% 278.0 4% 
3 750.5 755.7 1% 757.5 1% 751.7 0% 
4 1468.7 1471.0 0% 1462.8 0% 1462.6 0% 
5 2424.1 2397.1 1% 2395.1 1% 2398.2 1% 
6 3614.8 3526.0 2% 3531.6 2% 3499.3 3% 
7 5039.1 4834.3 4% 4747.1 6% – – 

4.3. Effect of Excitation Signals on Sensor Selection Using Random Forest Regressor (Case 3) 

To study the effect that the choice of excitation signal has on sensor selection using the proposed 
methodology, two different excitation signals were chosen for comparison. Although traditional 
methods should select sensors for modal testing independently of the excitation signal, the random 
forest method is sensitive to the chosen excitation frequency due to how the input database is 
constructed. The first excitation consists of the gaussian white noise input signal used in the previous 
sections (cases 1 and 2), while the second excitation signal is a linear chirp as described below (case 
3). The comparison will be based on a mesh size of 20 elements identical to case 2.  

The beam was excited with a linear chirp signal, whose single-sided amplitude is depicted in 
Figure 12 as a function of frequency.  

 
Figure 12. Single-sided amplitude of linear chirp from 20 Hz to 20 kHz, case 3. 

The same three global parameters were considered for this case. The sensors selected by the 
approach for this different excitation signal are listed in Table 8.  
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Table 8. Most important sensor locations for Case 3, ranked by feature importance. 

Feature 
Importance 

Rank 

(a) 
ODS 

(b) 
Normalized 

ODS 

(c) 
Avg. 
FRF 

1 10 19 20 
2 19 13 9 
3 4 8 19 
4 14 16 21 
5 8 12 14 
6 3 10 13 
7 16 11 5 
8 18 17 8 

The position of the first eight sensors identified by the RF approach for the three outputs are 
depicted in Figure 13. 

 

Figure 13. Sensor locations for case 3. 

To better visualize the locations of the sensors and the potential for the sensors to capture the 
desired mode shapes, each selected sensor location is also plotted on the finite element derived mode 
shape for the first seven modes (Figure 14 and Figure 15).  
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Figure 14. Sensor locations from chirp excitation for mode 1 through 4, case 3. 

All global parameter options appear to track the first two mode shapes adequately; however, 
the normalized ODS (global parameter b) and FRF based (global parameter c) methodologies miss 
more peaks than the ODS (global parameter a) method especially at higher frequencies. Both the 
normalized ODS and FRF based methods exhibit peak clipping starting at mode 4 and place sensors 
at inflection points and so will not be able to capture those frequencies.   

 
Figure 15. Sensor locations from chirp excitation for mode 5 through 7, case 3. 

As a validation of the approach, the first seven natural frequencies are extracted using modal 
analysis of the first eight selected locations. The calculated natural frequencies are listed in Table 9. 

 

Global 

parameter 

(a) 

(b) 

(c) 
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All three approaches are able to identify the first three natural frequencies, as the chirp excitation is 
better able to excite this frequency and mode. The error on the first natural frequency is however still 
large, ranging from 16% to 21% with respect to the first natural frequency calculated from the 
eigenvalues of the numerical system. The errors on the 2nd-7th natural frequencies are in line with 
case 2, suggesting that the method is reliable independently on the choice of excitation signal. 

Table 9. Extracted natural frequencies, case 3. 

FEA 
(a) 

ODS 
(b) 

norm ODS 
(c) 

Avg FRF 
f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err 
42.8 49.5 16% 52.0 21% 51.1 19% 
268.3 279.7 4% 291.8 9% 280.1 4% 
750.5 767.4 2% 765.8 2% 767.3 2% 
1468.7 1463.0 0% 1463.3 0% 1463.5 0% 
2424.1 2401.0 1% 2400.7 1% 2399.8 1% 
3614.8 3539.1 2% 3537.1 2% 3525.5 2% 
5039.1 4832.8 4% – – – – 

5. Comparison of Proposed Methodology with Traditional Approaches and Discussion 

This section compares the proposed methodology with results from a traditional sensor 
placement methodology for modal analysis, specifically the Effective Independence Method (EIM) 
[22,35]. In the case of the EIM, the sensors are chosen based on the numerical modes of the beam, and 
therefore do not depend on the applied excitation. EIM is applied to a mesh with 100 elements, 
similarly to case 1. 

The first ten nodes identified by the EIM as best sensor locations for the analysis of the beam are 
listed in Table 10, and the location is plot in Figure 16. 

Table 10. Optimal sensor location identified by traditional approach (EIM). 

Effective 
Independen
ce Method 

9 
16 
25 
32 
39 
48 
63 
70 
78 
94 
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Figure 16. Optimal sensor locations defined by Effective Independence Method. 

A comparison between the natural frequencies identified with the optimal sensors’ locations 
selected by the EIM and the random forest feature selection approach is provided in Table 11Table 
12. 

Table 11. Comparison between natural frequencies identified with the optimal sensors’ locations 
selected by the EIM and the random forest feature selection approach for case 2. 

FEA EIM (a) 
ODS 

(b) 
norm ODS 

(c) 
Avg FRF 

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err 
42.8 – 100% – 100% 54.3 27% – 100% 
268.3 278.9 4% 277.5 3% 281.6 5% 278.0 4% 
750.5 755.6 1% 755.7 1% 757.5 1% 751.7 0% 
1468.7 1482.5 1% 1471.0 0% 1462.8 0% 1462.6 0% 
2424.1 2396.0 1% 2397.1 1% 2395.1 1% 2398.2 1% 
3614.8 3523.6 3% 3526.0 2% 3531.6 2% 3499.3 3% 
5039.1 4837.4 4% 4834.3 4% 4747.1 6% – – 

Table 12. Comparison between natural frequencies identified with the optimal sensors’ locations 
selected by the EIM and the random forest feature selection approach for case 3. 

FEA EIM (a) 
ODS 

(b) 
norm ODS 

(c) 
Avg FRF 

f (Hz) f (Hz) % Err f (Hz) % Err f (Hz) % Err f (Hz) % Err 
42.8 49.4 15% 49.5 16% 52.0 21% 51.1 19% 
268.3 279.7 4% 279.7 4% 291.8 9% 280.1 4% 
750.5 767.3 2% 767.4 2% 765.8 2% 767.3 2% 
1468.7 1463.0 0% 1463.0 0% 1463.3 0% 1463.5 0% 
2424.1 2401.0 1% 2401.0 1% 2400.7 1% 2399.8 1% 
3614.8 3539.1 2% 3539.1 2% 3537.1 2% 3525.5 2% 
5039.1 4833.1 4% 4832.8 4% – – – – 
6696.0 6317.7 6% 6317.1 6% 6306.8 6% 6459.3 4% 

Both the proposed method and the traditional EIM method appear to perform similarly in the 
beam problem, yielding similar natural frequencies to each other in both loading conditions (Table 
11Table 12). The natural frequencies resulting from the choice of output a (ODS) are generally 
characterized by a lower percent error than the use of output b (normalized ODS) and c (average 
FRF). The proposed method is therefore considered a feasible approach with traditional 
methodologies.  

The choice of global output a seems to be more reliable than global outputs b and c in its ability 
to identify a set of sensors that maximizes the larger number of natural frequencies that can be 
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extracted through modal analysis. The approach is also robust with respect to the applied excitation; 
although the optimal sensor location slightly changes when different excitations are used to generate 
the database for input to the RF method, the identified natural frequencies do not show large 
differences. Additionally, an excitation needs to be applied to perform modal testing, and we could 
therefore argue that the use of the expected excitation during testing to create the database will result 
in optimal sensor positioning for a given excitation.  

The application of the proposed method also has the advantage of not requiring an iterative 
approach, and can be quickly applied to preexisting finite elements results. It does however require 
the solution of transient vibration simulations, which can however be time consuming. 

6. Conclusions 

Machine learning represents an appealing solution to the issue of sensor selection for modal 
testing. Current algorithms used for sensor selection are iterative when implemented and, for large 
geometries and complex models, the computational time can be substantial. The method presented 
here exploits the ability of the random forest approach to select the most important feature of a 
database for modal analysis sensor selection based on finite element models of the system. A database 
is created in the frequency domain; the responses of interest at every nodal location of the model are 
considered as possible sensor locations. The output of the random forest feature selection approach 
is defined based on a global output that characterizes the system. Three options are evaluated in the 
paper: the ODS of the system, a normalized ODS, and the average FRF at the specific frequency. The 
approach is applied to a one-dimensional model of a vibrating cantilever beam. The optimal sensors’ 
locations identified by the proposed approach is compared to the sensors selected by the Effective 
Independence Method and appears to yield similar results to the proposed approach. Within the 
proposed approach, the choice of the operational deformed shape (ODS) as global parameter appears 
to be more robust than the other proposed options. The approach is evaluated for sensitivity with 
respect to mesh size and type of excitation signal, and is robust to any changes in these parameters. 

Author Contributions: “Conceptualization, M.C and T.K.; methodology, M.C and T.K.; software, M.C and T.K; 
validation, M.C and T.K.; formal analysis, T.K.; investigation, M.C and T.K; resources, M.C. and F.D..; data 
curation, T.K.; writing—original draft preparation, M.C and T.K.; writing—review and editing, M.C, T.K. and 
F.D.; visualization, M.C and T.K; supervision, M.C and F.D.; project administration, M.C.; funding acquisition, 
M.C. and F.D.. All authors have read and agreed to the published version of the manuscript.”  
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