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Abstract: The agricultural sector is amidst an industrial revolution driven by the integration of
sensing, communication, and artificial intelligence (AI). Within this context, the internet of things
(IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist,
particularly in effective field communication, adequate coverage, and long-range data transmission.
This study focuses on employing LoRa communication for livestock monitoring in mountainous
pastures in the north-western Alps in Italy. The empirical assessment tackles the complexity of
predicting LoRa path loss attributed to diverse land-cover types, highlighting the subtle difficulty
of gateway deployment to ensure reliable coverage in real-world scenarios. Moreover, the high
expense of densely deploying end devices makes it difficult to fully analyze LoRa link behavior,
hindering a complete understanding of networking coverage in mountainous environments. This
study aims to elucidate the stability of Lora link performance in spatial dimensions and ascertain
theextent of reliable communication coverage achievable by gateways in mountainous
environments. Additionally, an innovative deep learning approach was proposed to accurately
estimate path loss across challenging terrains. Remote sensing contributes to land-cover recognition,
while Bidirectional Long Short-Term Memory (Bi-LSTM) enhances the path loss model’s precision.
Through rigorous implementation and comprehensive evaluation using collected experimental
data, this deep learning approach significantly curtails estimation errors, outperforming established
models. Our results demonstrate that our prediction model outperforms established models with a
reduction in estimation error to less than 5dB, marking a 2X improvement over state-of-the-art
models. Overall, this study signifies a substantial advancement in IoT-driven livestock monitoring,
presenting robust communication and precise path loss prediction in rugged landscapes.

Keywords: Internet of Things; propagation loss; smart agriculture; LPWAN; LoRa; remote sensing;
link quality

1a. Introduction

The pervasive integration of the Internet of Things (IoT) across various domains has facilitated
the proliferation of interconnected devices, revolutionizing numerous industries, notably Agriculture
[1,2]. Amidst the sphere of smart agriculture, characterized by the dominance of IoT technology, a
particularly notable segment pertains to livestock farming [3,4]. In this domain, managing animal
positioning for their welfare becomes challenging due to inadequate supervision, necessitating the
monitoring of livestock positioning andbehavior in rugged terrains through IoT devices.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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In the realm of livestock farming applications, pivotal technological requirements encompass
low power consumption, cost-effectiveness, extended coverage, and positioning accuracy.
Addressing these needs, Low-PowerWide Area Networks (LPWANSs) have gained traction, boasting
attributes like prolonged lifespan, cost-efficient chip integration, and expansive coverage. Prominent
LPWAN technologies like Sigfox [5], Long-Range (LoRa) [6], and Narrowband-IoT (NB-IoT) [7] offer
diverse capabilities, augmenting connectivity while maintaining energy efficiency. Amidst various
technological options, Lo-RaWAN emerges as a widely embraced LPWAN technology, garnering
significant attention across both academic research and industrial sectors. Our particular focus is
directedtowards LoRa and LoRaWAN technologies due to the prevalent absence of
telecommunication coverage in rural and mountainous regions, compounded by challenges related
to troubleshooting and maintenance. The cost-effective and energy-efficient nature of LoRa renders
it highly suitable for connectivity purposes, especially in the realm of monitoring and control
operations. LoRaWAN, distinguished by its low-power, long-range communication protocol, adeptly
fulfills connectivity needs across expansive grazing territorieswhile upholding robustness through
low energy consumption. This contrasts with cellular-based alternatives such as 3G, 4G, and 5G,
which offer wider coverage but necessitate highpower consumption.

Optimizing the effective deployment of LoRaWAN entails radio planning activities, particularly
crucial in challenging environments such as mountainous pastures. These activities are vital due to
formidable radio propagation dynamics influenced by physical barriers shaping electromagnetic
wave behavior. Although LoRaWAN enables long-distance connections, real-world implementations
can exhibit significant variations in communication range. The power attenuation of the link, known
as path loss (pl), varies when an end device is deployed in different positions from a gateway due to
several factors, encompassing terrain features and the diverse array of land-cover types such as trees,
grasslands, buildings along the transmission path.

Developing a precise path loss model is paramount for LoRaWAN applications as it directly
impacts the likelihood of successful packet transmission [8]. Thus, accurate prediction of path loss
associated with a LoRa gateway prior to deployment holds the potential to enhance LoRaWAN
coverage by strategically choosing gateway locations that minimize such loss.

This study proposes a deep learning framework tailored to precisely estimate pathloss in long-
range LoRa links. By harnessing publicly available remote sensing images, the framework adeptly
identifies detailed land-cover distribution along the link, a critical factor significantly impacting path
loss. Our study generates precise land cover maps by leveraging the distinct spectral responses of
various land-cover categories and employing supervised classification techniques. In our approach,
we utilize pixel-based support vector machines (SVM). The selection of land cover classes is
influenced by factors such as thetarget area’s presence, its relevance in characterizing LoRa links, and
the potential for separation in multispectral images. The initial stage of our path loss estimation
involves land-cover classification, offering detailed insights into the land-cover characteristics
encountered by the LoRa link, as illustrated in Section 4.2.1.

Given the complexity of land cover effects on path loss, the utilization of deep learning
methodologies [9] becomes imperative for modeling the impact of a specific land-cover distribution
on path loss accurately. Rather than treating a LoRa link environment as a whole, we propose viewing
it as an ordered sequence of short, uniform links identifying detailed land cover specifics for each
LoRa link via remote sensing images. Following land-cover classification, we extract the land cover
sequence for the desired link region and utilize it as input for a deep neural network (DNN).
Specifically, we employ Bidirectional Long-Short-Term-Memory (Bi-LSTM) units, enabling the
network to analyze the sequence and build a path loss model from assessments in the area of interest.
This deep learning model inherently captures the relationship between land cover types, their
sequence, and resultant path loss. Post-training, the model can be seamlessly applied to regions
exhibiting similar land cover compositions, requiring minimal data collection and model fine-tuning
The deep learning framework utilized in this study originates from data acquired through
experimental measurements conducted in mountainous environments. Our deployed LoRaWAN
system comprises a single gateway and 8 mobile LoRa end devices affixed to sheep traversing an
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4km x 4km area within the mountainous region. These nodes periodically transmit data packets
containing location information as the sheep moves. Despite leveraging the mobility of these LoRa
end devices, efficient recording of thousands of LoRa links across diverse locations poses challenges
due to the non-uniform distribution of collected data within the areas of interest. The dataset
encompasses over 35,876 packets logged by a gateway sent by 8 mobile LoRa end devices. We aimed
to delve into the stability of Lora link performance in spatial dimensions, evaluating the extent of
reliable communication coverage achievable by gateways in mountainous environments.

Additionally, the experiment explores path loss estimation, revealing a mean error of 4.97dBm, which

is twice as smaller than the state-of-the-art models.
Key contributions of this study encompass:

e  Description of the hardware design utilized for experimental evaluation.

e  Empirical analysis investigating the impact of land-cover sequences on path loss within a real
LoRaWAN system. This includes introducing a deep learning approach employing adaptive Bi-
LSTM to explore the correlation between path loss and various land-cover types and their
ordered sequence.

e  Measurement of spatial link dynamics and calculation of coverage areas using sparsely received
LoRa packets.

e Implementation and performance assessment of a deep learning path loss prediction modwithin
an actual LoRaWAN deployment, showcasing experimental results with a mean error twice as
small as that of existing state-of-the-art models

The subsequent sections of this paper are organized as follows. Section 2 delves into related
works, followed by Section 3, which focuses on the background and motivation of our study.

Section 4 introduces the system design of the path loss prediction model. The hardware use for
the LoRaWAN system is also presented in this section. Section 5 presents the results and discussion.
Lastly, Section 6 concludes the paper with some final remarks.

2. Related Works

Within this section, we provide a concise overview of pertinent research of LoRaWAN field
studies. Subsequently, we delve into the exploration of related studies concerning land cover and
propagation models.

2.1. LoORaWAN Studies in the Field

In recent years, various studies [10-15] have delved into assessing the performance of
LoRaWAN in real-world settings. The authors in [10] focused on understanding the scalability
bounds of a typical LoRa cell. The researchers achieved this by creating a LoRa tracker module
embedded in a bike, testing it extensively across a large area within Palermo city. Notably, they
achieved a maximum coverage distance of 7.3km. Yang et al. [11] conducted a comprehensive
analysis of LPWAN link dynamics, examining both macro and micro aspects. They performed
extensive measurements in a deployment spanning a 2.2 x 1.5km? area for one month. Their network
consisted of 50 nodes with 3 gateways, and they proposed a method to tackle link degradation issues.
Another study in [12] provided subtle details regarding the design, development, and evaluation of
a wildlife monitoring application using LoRa for IoT animal repelling devices. Their assessment
involved testing LoRa transmission technology in forested areas operating within the 433 MHz and
868 MHz bands, highlighting its performance. Chall et al. [13] investigated the LoRaWAN radio
channel specifically in the 868MHz band. They conducted broadmeasurement studies in both indoor
and outdoor environments, spanning urban and rural locations in Lebanon. Xu et al. [14] studied the
behavior of LoRa links and energy profiles through the deployment of 10 stationary and 2 mobile
LoRa end nodes. These empirical studies revealed diverse conclusions about LoRa coverage,
indicating that path loss tends to increase with communication distance at varying rates across
different environments. Consequently, modeling the environmental impact on path loss has become
a central focus in the design of path loss models.
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2.2. Land Cover and Propagation Models

Extensive field measurements have taken place in diverse indoor and outdoor environments,
exploring cellular and wireless sensor networks’ path loss characteristics. Path loss is influenced by
multiple variables including distance, frequency bands, average antenna elevations, and
geographical features such as terrain, obstacles, buildings, hills, mountains, and human presence.
The International Telecommunications Union (ITU) [16], Okumura-Hata [17], Cost-Hata [18], and
other research institutions and standard bodies have produced a number of path loss models tailored
for outdoor settings within the [800"1800] MHz and [2.5°5] GHz frequency bands. Empirical models
like Okumura-Hata offer ready-to-use formulas adaptable to different settings. However, these
models may yield inaccurate predictions when applied directly to new environments with distinct
path loss patterns. A distinctive approach by Bor et al. [19] employs on-site measurements to calculate
absolute path loss via path loss exponent, deviating from the free-space path loss concept.

While widely used, these path loss models are unsuited for LoRaWAN networks operating in
the 868 MHz band. Limited studies have evaluated radio propagation models’ performance in
diverse regions like Lebanon [13] and Finland [20], but these models often rely on regional
environment information for predictions. Such approaches, assuming uniformity in deployment
areas, fail to account for anisotropic land-cover compositions along LoRa links. The authors in [21]
and SateLoc [22] utilize remote sensing to quantitatively analyze land-cover compositions along LoRa
links. However, Demetri et al. [21] choose an Okumura-Hata formula based on dominant land-cover,
without directly incorporating land-cover effects into predictions. SateLoc [22] divides links into
segments characterized by distinct land-covers, applying the Bor model along with associated path
loss exponents. However, reordering these segments within a link yields consistent results, limiting
the model’s adaptability. These existing models fall short in harnessing fine-grained environmental
data and struggle to transition effectively to new contexts due to their fixed environmental modeling.

In contrast, our approach adopts a model based on a Recurrent Neural Network (RNN) to
capture the intricate interplay between path loss, land-cover types, and their sequence along the path.
This choice promises enhanced path loss estimation accuracy, while the use of raw environment data
and extremely general RNN models enhances model transferability, overcoming the limitations of
the conventional physical path loss models.

Additionally, we conducted an analysis of the spatial attributes of LoRa links and offered a more
comprehensive study of coverage areas compared to previous research endeavors.

3. Background and Motivation

To calculate path loss, the received signal strength (PRX) is estimated, considering both the
signal-to-noise ratio (SNR) and the received signal strength indicator (RSSI). When SNR > 0, Prx
equals RSSI; otherwise, PRX is derived by adding SNR to RSSI. The path loss calculation is as follows:

PL=PTX -PRX+GTX+GRX-LTX - LRX (1)

Here, PTX represents the transmit power in dBm, while GTX and GRX denote the antennagains
of the transmitter and receiver, respectively. LTX and LRX signify negligible losses attributable to
cables, as postulated within this context. Shadowing is described by a zero-mean Gaussian variable
characterized by a standard deviation, o, quantifying thedivergence between observed and
anticipated path losses.

Upon receiving a LoRa packet, the gateway provides essential metrics such as RSSI and SNR.
While RSS! is a prevalent signal attenuation indicator in wireless sensor networks [23,24], its accuracy
in LoRaWAN can be compromised due to the superimposition of LoRa signals and various noise
sources, particularly below the noise floor. To address this, iwe employ Expected Signal Power (ESP),
outlined in [21] as a more reliable metric. ESP delineates the actual received signal power over long-
distance transmissions, calculated by the following equation.

ESP = RSSI + SNR - 10 logio(1 + 10015NR) (2)

Here, SNR is measured in dB, while the other terms are expressed in dBm.One prevalent model

used to estimate signal path loss is Free-Space Path Loss (FSPL).
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This model describes path loss in an ideal scenario without obstacles or multipath effects, as
given by the formula:

FSPL =20 log(d) + 20 log( f) - 27.55 (3)

Here, d represents distance in meters and f stands for frequency in MHz.

The fundamental free-space model establishes a foundational reference point for path loss
measurement, considering unobstructed line-of-sight (LOS) conditions between transmitting and
receiving points. Meanwhile, the logarithmic-distance path loss model, extensively used in outdoor
scenarios, proposes an exponential path loss variation linked to the distance between points. In
contrast, the ITM Longley-Rice path loss model adopts a comprehensive approach, accounting for
several factors such as terrain, obstacles, frequency, and weather conditions. An empirical approach,
the Okumura-Hata model, draws insights from extensive measurements across the 200 MHz to 2
GHz frequency range, primarily suited for rural regions. It assumes minimal dominant obstacles
between the base station and mobile unit, as well as gradual changes in terrain profile. It is essential
to acknowledge that these models were originally formulated within the context of cellular and
wireless sensor networks, incorporating specific limitations concerning antenna heights and terrain
configurations. In practical scenarios, achieving true free space conditions is challenging, and the free
space path loss serves as a basic estimate for path loss in real world LoRa deployments. However, it
is important to note that the actual path loss of LoRa connections in real-world settings is greatly
affected by environmental attenuation. Models that take environmental factors into account require
access to environmental data. For example, the traditional physical models such as the Okumura-
Hata and Bor models typically rely on two methods: (1) empirical estimations drawn from experience
or (2) on-site measurements. These approaches are often resource-intensive, particularly for long-
distance situations, and primarily offer generalized environmental insights to certain regions. Even
if two LoRa connections exist within the same deployment area but traverse distinct types of terrain,
they might still be treated as if they experience the same environment by utilizing identical formulas
or path loss exponents. Specific terrain types are outlined in Table 1, and these distinct terrains lead
to varying path loss effects, underscoring the heterogeneous nature of LoRa connections.
Consequently, accurately estimating LoRa path loss necessitates comprehensive per-link
environmental information.

To address this, we conducted an empirical study leveraging measurements from our
LoRaWAN system deployed in mountainous pastures in northern Italy. The study aims to establish
patterns governing how different land covers influence path loss. Remote sensing techniques can be
used to identify different types of land cover from multispectral images of large geographical areas.
This can be done by extracting distinctive features from the images and using machine learning
models, such as SVM and random forests (RF). The integration of remote sensing into physical
models can help to enhance the accuracy of path loss estimation by shifting from a regional
environmental approximation to individual link-based models. This is because remote sensing can
be used to obtain detailed information about the environment along the path of the signal, such as
the types of land cover and the presence of obstacles. However, some studies have neglected the
impact of specific land cover types or the sequence in which they appear along the path. For example,
the authors in [21] used the Table 1.

Table 1. Types of Land-Covers.

Trees trees

Grassland grazing lands
Farmland crop fields
Water rivers and lakes
Road roads, paths
Building buildings, huts
Shrubland shrubland
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Okumura-Hata model to estimate path loss, but they only considered the dominant land cover
type. This approach can lead to inaccurate results, as the path loss can be significantly affected by the
presence of obstacles, even if they are not the dominant land cover type, with the Okumura-Hata
model acting as a bottleneck. Similarly, SateLoc [22] divided the path into segments and aggregated
the path loss for each segment independently. This approach does not take into account the order
dependence of the segments, which can also lead to inaccurate results. Even when the segment order
is altered, the outcome remains unchanged. It has been shown in the literature that the order of land
covers along a connection can have a significant impact on path loss, even if the types of land covers
themselves do not change. This is because obstacles closer to the end device are more likely to
obstruct the signal. For example, a tree that is located directly between the end device and the
gateway will have a much greater impact on the path loss than a tree that is located further away.

The path loss of a LoRa connection can be conceptualized as a result of traversing a sequence of
short links, the order of the short links sequence implicitly influence the path loss. This inherent
influence cannot be captured by conventional physical path loss models. To address this challenge,
we resort to RNN, a prevalent architecture within deep neural networks (DNNs), which are well-
suited for this task as they can handle sequence data and capture the order dependence.

4. System Overview

In this section, we describe the hardware for the LoRaWAN measurements. We also detail the
system design of the path loss prediction model.

4.1. Considered Hardware

The End Device (ED) is built around an STM32L designed by STMicroelectronics [25], featuring
a 32 — bit ARM Cortex M3-based architecture optimized for applications requiring low power
consumption. The ED comprises of several key components including a microcontroller, a global
positioning system (GPS) modem, a UART to USB interface, and a LiPo battery among others as
demonstrated in Figure 1. Specifically, the microcontroller employed is the microcontroller’s capacity
for low-power run mode, specified with pA consumption, renders it an ideal choice for battery-
powered scenarios. Additionally, it features multiple UART channels, two distinct serial peripheral
interface (SPI) ports, and two inter-integrated circuit (I2C) interfaces. For debugging and
programming purposes, the microcontroller supports a USB 2.0 compliant interface via a CP2102
UART to USB circuit provided by Silicon Labs [26]. This interface functions as a communication port
“COM” for computer applications and draws power from the USB bus at 5V, which is available
through the micro-USB connector. Power is supplied by a 3700 mAh lithium polymer (LiPo) battery,
with its voltage readings attainable through the microcontroller’s analog-to-digital converter (ADC).
The ED additionally integrates an SX1276 module [27] from Semtech, designed as a long-range
transceiver leveraging Semtech’s proprietary spread spectrum communication technology, facilitated
through LoRaWAN. The connection between the LoRa module and the microcontroller is established
via SPI, operating at a 3.3V. Remarkably, the SX1276 exhibits exceptional sensitivity level exceeding
—148 dBm, facilitated by an inexpensive crystal, thereby making it cost-effective and readily accessible
in the market. The ED is also equipped with a 9-axis accelerometer, encompassing a 3-axis gyroscope,
3-axis accelerometer, and 3-axis magnetometer. These components collectively offer comprehensive
data on accelerations across all three axes as well as rotations around each axis. Additionally, the
embedded GPS component from Ublox, operating at 3.3V, is integrated into the ED architecture for
the purpose of ascertaining the ED’s geographical coordinates. This GPS is powered through a TI
TPS27082 [28] load switch from Texas Instruments, which manages the power supply.
Communication between the GPS and the microcontroller occurs via UART. For communication
purposes, we employed a Laird outdoor gateway due to its low cost and reliability. It is an 8-channel
gateway built on the Semtech industry standard and can offer a secure, scalable LoRaWAN solution
for complete management over a private LoRaWAN network. The LoRaWAN gateway is
interconnected with an ADSL router, facilitating internet connectivity, and subsequently connecting
to the amazon web services (AWS). This gateway, capable of receiving LoRa frames across a range of
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signal strengths was linked to the AWS-provided network server “AWS IoT Core for LoORaWAN".
Both the gateway and the EDs utilized an omni-directional dipole antenna, boasting a 2 dBi gain.
Upon receiving each data frame, the gateway yielded crucial parameters such as RSSI, SNR, and the
payload message. These parameters were logged on to the AWS server for subsequent analysis and
processing, utilizing InfluxDB to store the data. Given the considerable variation in LoRa
performance depending on selected transmission parameters, as established in [29], the following
parameter configuration was chosen:

e Bandwidth (BW): The transmission frequency range is defined by the BW parameter, which,
ranges from 7.8 kHz to 500 kHz. Widening the bandwidth decreases receiver sensitivity but
enhances data rate due to reduced Time-on-Air (ToA). Our experiment employed a BW setting
of 125 kHz.

e  Transmitted Power (Prx): For LoRa end devices operating in the 433 MHz and 868 309 MHz
bands, the maximum effective isotropic radiated power (EIRP) in the default setting is 12.15 dBm
and 16 dBm, respectively. Our experiment adhered to the highest permissible PTX within the
EU 868 MHz band, aligned with the LoRa device’s approved duty cycle of 1%. This led to a
selection of Prx = 14 dBm.

e  Carrier Frequency (CF): A number of factors led to the adoption of the 868 MHz frequency.
While path loss is lower in the 433 MHz band compared to 868 MHz, the 433 MHz band enforces
a maximum transmitting power of 10 dBm. Furthermore, at 433 MHz, antenna dimensions are
larger for a given radiation efficiency. Lastly, due to its narrower bandwidth, the 433 MHz band
accommodates fewer communication channels [30]. 319

e  Spreading Factor (SF): This factor indicates the number of bits sent in each LoRa symbol. SF
varies from 7 to 12, resulting in distinct ToA and receiver sensitivity values. Higher SF, such as
SF = 12, corresponds to reduced receiver sensitivity [31], enhancing the link budget. The
tranmission rate is halved when SF is increased by one-unit, which doubles the channel usage,
energy consumption and transmission time (sleep time). The relationship between LoRa
transmission ToA and the employed LoRa parameters is expressed as ToA = 25F/BW.

e Coding Rate (CR): CR equals 4/(4 + n), with n € {1, 2, 3, 4}. To minimize ToA, CR = 4/5 was
selected.
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Figure 1. IoT device block scheme.

4.2. Path Loss Prediction Model

In this subsection, we outline the proposed design of our deep learning-based system, devised
to yield precise path loss estimates by leveraging land-cover classification and their sequence along
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propagation paths. Our methodology entails fusing land-cover recognition with path loss modeling.
A comprehensive depiction of our path loss prediction model, hinging on deep learning, is presented
in Figure 2. Our system architecture is compartmentalized into three distinct blocks: Land Cover Map
Classification, Link Segment and Embedding, and the DNN based path loss Model.

Lk Path Loss Model
Segm::dtatm” —> based on Deep = Visualization
Neural Network
Embedding sl

Figure 2. System Design Overview.

Multispectral

Land-cover
classification model

Remote sensing

4.2.1. Extracting Land Cover Maps from Multispectral Images

Our methodology involves the automatic extraction of land-cover classes from multispectral
images acquired from the US Geological Survey (USGS) Landsat series of Earth Observation
satellites, which are accessible through the Google Earth Engine (GEE) platform. To derive precise
land-cover maps, we leverage the distinctive spectral responses exhibited by various land-cover
classes, employing supervised classification techniques rooted in machine learning. Specifically, we
focus on kernel-based methodologies, particularly pixel-based SVM [32,33] chosen for their
advantageous attributes, including robust generalization capabilities, excellent classification
accuracy, and a comparatively streamlined design with minimal control parameters. We delineate
the land-cover classes as seen in Table 1 through the following criteria, considering their presence in
the target area, their relevance in characterizing LoRa links and the potential to discriminate them in
the multispectral images. Our initial step involves generating a land-cover map classification, a
crucial process for comprehensively interpreting the land-cover information embedded within the
LoRa link. Employing an automated system, we assign each 10 °e 10m?2 pixel in the images to the most
suitable land-cover class according to predefined standards relying on spectral features, including
raw pixel spectral values, the Normalized Difference Vegetation Index (NDVI), and the Normalized
Difference Water Index (NDWI) for individual pixels. We use non-linear approaches to solve this
problem, which is complicated by several non-linearly separable classes. In particular, we use the
SVM'’s Radial Basis Function (RBF) kernel [34], which takes the feature vector to predict whether an
area pertains to a specific land cover type. Similar to the approach described by Demetri et al. [21],
the workflow necessitates a training set of manually labeled reference pixels linked to land-cover
classes via image interpretation. During the classifier’s learning phase, this dataset plays a dual role
in the model selection and SVM training. The SVM is used to automatically create the land-cover map
after it has been trained across all images that are taken into consideration.

To ensure accuracy, each image undergoes independent classification. This involves collecting
image-specific datasets containing 200 samples for training and 100 samples for testing. for each land
cover class. The test samples are used to assess the classification accuracy for each image. By using a
grid-search model selection based on 5-fold cross-validation, the critical model selection phase finds
application-specific optimal SVM tuning parameters, such as the regularization parameter and the
RBF kernel width. The goal is to accurately discriminate classes and minimize expected
generalization errors within predetermined ranges for the values of the regularization parameter and
the RBF kernel width. Using conventional tools and methodologies, the optimal regularization
parameter and RBF kernel width values are found through cross-validated classification accuracy
and used in future SVM training and classification processes.

4.2.2. Link Segment and Embedding

The subsequent phase, Link Segment and Embedding, revolves around capitalizing on the
comprehensive environmental insights garnered from the land cover classification. We formalize a



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints202403.0589.v1

deep learning path loss model that is built upon this detailed environmental information. Instead of
considering a mere “line,” we opt for a more encompassing approach. Specifically, we choose a
rectangular region from the land-cover classification map that links the gateway and the end device.
In this study, making a line is hard to determine due to the path from the gateway to the end device
is usually a non-LOS path. The choice of choosing a rectangular mitigates the impact of potential
misclassifications on the accuracy of the sequence. In addition, the rectangular area indicating the
land cover map shown in Figure 3 offers fault tolerance by capturing a broader land-cover
representation. The width of this rectangular is carefully chosen based on empirical data and
experimental findings. The link segment of length d and width w is divided into smaller shortlinks
of length do from the end device to the gateway as shown in Figure 4. The granularity and length of
the resulting sequence, determined by do directly influence the estimation accuracy. For each short-
link region, we count the proportion of pixels belonging to each of the land-cover types.

RelLU

»(/]»

Sigmoid
Function

Output

Convolution +
Max Pooling
A 4
Fully
Connected

Land-cover map

Link segment
and embedding

BI-LSTM

Figure 3. Path loss prediction model using deep learning with Bi-LSTM architecture.
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Figure 4. Link segment and embedding.

For instance, in a short-link region, ski, 0 <i<n which contains ck, 0 < k <5 pixels for each land
cover type lx, Then, each short-link region is embedded into a 1 x 6 vector v by counting the
proportion of 6 land-cover types as follows:

a.1.2 .3 4 5} (4)

v; = [v;,05,05, 07, 0f, 0;

5
U{F:Ck/ZC;‘ (5)
j=0



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints202403.0589.v1

10

By concatenating these vectors for all short-links, we obtain an ordered sequence s =[vo, vi, - - -
vn-1] representing the land cover composition along the link. This sequence is subsequently served as
input for the DNN specifically a Bi-LSTM unit for further analysis.

Thus, we obtain a structured representation by splitting LoRa links into several equidistant
short-links and embedding each short-link into the sequence according to the land-cover map.

4.2.3. DNN Based Path Loss Model 401

In accordance with the schematic overview presented in Figure 2 of the system design, the
sequence comprised of feature vectors is fed into the Bi-LSTM unit to disentangle order
dependencies. The architectural layout of the path loss model based on DNNs is depicted in Figure
3. Capitalizing on the temporal dimension, which aligns with the distance parameter in our case,
allows for the flow of information from the sequence’s start to its end. This characteristic is
particularly advantageous in estimating the path loss at the gateway, situated at the sequence’s last
frame, accounting for attenuation throughout the sequence. To tackle the limitation of RNNs in
learning long-term dependencies, we embrace the Bi-LSTM units [35,36]. Figure 5 depicts the
construction of a Bi-LSTM. This bidirectional approach ensures that land-cover information from
both the sequence’s commencement and conclusion is effectively captured. The output from the Bi-
LSTM unit is then channeled through convolution layers, enabling the extraction of local features and
context dependencies. Introducing non- linearity via Rectified Linear Unit (ReLU) layers enhances
the model’s expressive power. Subsequent max pooling down samples output features, effectively
reducing dimensionality. These features are then linearly mapped to path loss within the fully
connected layer. This extensibility equips our network to accommodate various LoRa link attributes,
such as weather conditions, temperature, and more, facilitating quantitative analysis of additional
influencing factors. It is vital to consider that path loss possesses constraints; it cannot fall below zero
and must adhere to the maximum link budget imposed by the highest transmitting power and end
device sensitivity. Therefore, we apply a sigmoid function to curve our final estimation, ensuring
path loss values are confined within a range of 0 to 1, enhancing training convenience. This approach
facilitates scaling of the estimation with the upper boundary limit to yield expected path loss, with
values exceeding the boundary indicating packet delivery failure.

Outputs i

Activation
Layer

Backward .... T
Layer

Forward
fogor  e—

Inputs Xt

Figure 5. Bi-LSTM Architecture.

Given the upper boundary of 160 dBm, our system can be tailored to the specific constraints of
different countries/regions. Our system design facilitates effective adaptation to new environments
by employing the following strategies:
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e  We refrain from manual feature selection and instead utilize a sequence restructured from
genuine land-cover maps along with additional variables as inputs. As a result, our model is
able to obtain a mapping that is quite similar to the principles of signal propagation.

e During the training process, we make a deliberate effort to incorporate training data
encompassing diverse link distances and variations in land-cover compositions. This approach
ensures that our training dataset effectively covers a wide spectrum of the feature space.

e  Our path loss model adopts a Bi-LSTM based DNN architecture. Neural networks trained on
comprehensive historical datasets can be fine-tuned using a smaller dataset containing new data,
enabling the model’s weights to be adjusted to new observations. As a result, fine-tuning the
model with a limited amount of data from a new environment can yield superior accuracy
compared to the original model. This stands as an advantage over a lot of other machine
learning-based models that necessitate retraining from scratch using fixed data and do not
guarantee improved outcomes.

5. Results and Discussion
5.1. Experimental Environment and Collected Dataset Overview
5.1.1. Experimental Environment

Our study took place within the mountainous pastures in the north-western Alps (Ormea, CN,
Italy), situated at an elevation of 1340 meters above sea level. This locale serves as a crucial source of
seasonal forage for livestock. Characterized by modest hills with an elevation difference ranging from
80 to 100 meters, the area is encompassed by forest, grassland, and farmland, and diminutive hills
with a lack of buildings and other barriers.

In this dynamic landscape, the EDs traverse varying locations within the designated area. In
other words, throughout the measurements, the gateway’s position remained stationary, while the
EDs were relocated following the sheep movement within the mountainous pasture. The dataset
gathered from this experimental deployment and evaluation in the northern pastures is crucial for
training the path loss deep learning model and assessing its performance.

5.1.2. Collected Dataset

We present here an overview of our collected dataset, covering a period from July 15 to October
17. The transmission of packets is obtained in a periodic manner, and the payload from the Lora EDs
includes crucial information such as GPS coordinates, timestamps, sequence numbers. In addition,
the gateway records the associated SNR and RSSI values. These logged data records, which make up
a final dataset of over 35,876 records, can be extracted from the network server after packet reception.
Moreover, we can compute essential metrics like the link distance d and the height difference h
between the end device and gateway pair by decoding the GPS data embedded within the payloads.
This process enables us to derive additional contextual information regarding the spatial relationship
and positioning between the EDs and its respective gateway.

5.2. Link Behavior Study

Two key metrics, namely the Packet Delivery Ratio (PDR) and ESP, serve as indicators for signal
path loss across a physical channel to ensure reliable coverage within an area. Through a detailed
examination of their distribution, we have devised a predictive model for PDR. This model correlates
the computed ESP value of a position with the estimated PDR, enabling the determination of our
LoRa system’s coverage for end devices at each position. Considering the mobility of the end devices,
particularly in scenarios such as the movement of sheep, data packets are dispersed along diverse
trajectories. Our main approach is to compute the PDR of a specific position by using all trajectories
that pass the position according to their coordinates. This methodology allows us to comprehensively
calculate the PDR concerning the various paths traversed by the data packets due to the movement
of the end devices.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 March 2024 d0i:10.20944/preprints202403.0589.v1

12

5.2.1. Overall PDR and ESP Distribution

We present the estimated PDR and ESP for various positions in relation to the gateway. Figure
6 portrays the Cumulative Distribution Function (CDF) of PDR, indicating that 60% of the links
exhibit high reliability with a PDR exceeding 90% for the gateway. The remaining 40% of LoRa links
exhibit variable behaviors, denoting intermediate link performance. Figure 6b displays the CDF of
ESP derived from all recorded data packets. Notably, the minimum ESP registers at -140 dBm across
all packets, aligning consistently with the reported sensitivity of 5X1276 at -148 dBm [27].
Furthermore, approximately 80% of the gateway’s ESP values are from —140 dBm to —120dBm, while
the maximum ESP reaches -55dBm. This observation underscores the deployment environment’s
characteristics, indicating an unobstructed antenna path for the gateway. Figure 6 illustrates a notable
disparity in distribution between PDR and ESP. This discrepancy highlights the distinct behavior
wherein the robust noise tolerance characteristic of LoRa technology allows for a convergence in PDR
distribution despite varying ESP levels. For instance, even with a low ESP, such as a median value of
—-125dBm, there is an observable similarity in PDR distribution comparable to instances with higher
ESP, like the median value of -89dBm.
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Figure 6. CDF of PDR and ESP observed at the LoRa Gateway.

5.2.2. Spatial PDR Distribution

Our study involves analyzing the spatial distribution of PDR as it relates to the link distance. We
divide the area into “positions” (i.e., 100m x 100m block). For each position, we calculate the distance
between its center and a gateway location. Then, we leverage the GPS coordinates of each transmitted
packet to compute the distance it traveled to reach the gateway. Figure 7 illustrates the spatial
distribution of PDR. Upon analysis of Figure 7, we note that lower PDR values are dispersed across
intermediate links at various distance levels.
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Figure 7. The spatial distribution for PDR and distance.
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5.2.3. ESP based PDR Prediction

We developed a PDR prediction model with ESP as the input variable, based on the data we had
previously made on the PDR and ESP distributions. First, we calculated the average ESP for every
data record that corresponds to a specific sheep position in the mountainous pasture region. This
facilitated the creation of diverse PDR-ESP pairs based on measured PDR values for the covered
areas. Next, we employed Gaussian process regression (GPR) [37] to predict PDR for uncovered areas
solely based on their ESP values. To achieve optimal regression accuracy, we opted for an exponential
kernel function and conducted a rigorous fitting process, depicted in Figure 8. The statistical
evaluation of our model achieved impressive performance, boasting a coefficient of determination
(R2) of 0.78 and a root mean-square error (RMSE) of 0.129. Analyzing raw data pairs (represented by
blue dots), we observed that for gateway ESP values below -131 dBm, the measured PDR plummeted
to near 0. Conversely, when ESP exceeded —120 dBm, PDR reached high levels but rarely attained
100%. This can be attributed to the large temporal variance inherent in PDR and ESP measurements.
Importantly, the predicted data points (illustrated by red diamonds) for uncovered areas aligned well
with ground truth values. However, the model’s inability to accurately capture the dynamic nature
of PDR in our LoRaWAN mobility system highlights limitations. Nevertheless, our findings
demonstrate the potential of ESP as a reliable indicator for PDR prediction in such challenging
environments.
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Figure 8. PDR against ESP at our gateway.

5.3. Land Cover Classification

The land-cover classification analysis yielded an exceptional overall accuracy rate of 98% across
diverse land-cover types. This high accuracy lends credibility to the resulting land-cover map as a
reliable representation of the actual environmental conditions. Figure 9 provides a visual
representation of the categorized land-cover. Distinct color coding differentiates various cover types.
Predominantly, the area comprises trees, grassland, farmland and shrubland encompassing a
significant portion. Conversely, buildings and roads feature sporadically in select areas within the
region. Water is not taken into the account as indicated in Table 1, because it is not present within the
area of interest.
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Figure 9. Map depicting the land cover classification of a 4 x 4 km2 area of interest.

5.4. Path Loss Estimation

With the use of PyTorch framework [38], our approach for the path loss model utilizes a DNN.
This model is trained on data collected during our LoRa experiment. To ensure the model’s
effectiveness, we enforced the condition that identical inputs must yield identical outputs during the
training phase, mitigating potential confusion within the model. This required careful data cleaning
before training commenced. Since sheep movement generates continuous data, device locations
obtained by the u-blox chip are plotted continuously on the map. Given the 10-meter resolution of
the multispectral images employed, each 10m x 10m area on the ground is represented by a single
pixel. This common practice in remote sensing and cartography facilitates managing large areas and
maintaining consistent map detail. However, transforming GPS coordinates to map pixels can lead
to multiple locations within the same pixel having different ground truth path loss values. In order
to eliminate this duplication and create a distinct ground truth for every input, we compute the
average path loss for measurements made within of each pixel. We split the dataset into 80% training
and 20% testing sets in order to train and analyze our path loss model. We train and evaluate our
path loss model by dividing the dataset into 80% training and 20% testing sets. Considering that
sequence length significantly impacts path loss due to the model’s sequence processing principle, we
segmented the data into bins based on sequence lengths prior to the split. This methodology ensured
diversity in sequence lengths within the training set, mirroring the distribution in the testing set for
a more robust and generalizable model. Based on empirical performance in subsequent experiments,
we select d = 3 and w = 7 for link segmentation and embedding, representing 30m and 70m
respectively. The model is trained with a learning rate of 0.0001 and a batch size of 16, and its
performance is evaluated every 5 epochs. We analyze our path loss prediction model’s performance
across different environments and compare it to state-of-the-art methods. To gauge accuracy, we
conducted an evaluation comparing our model with benchmarks including the free space model, Bor
model, Demetri model, and SateLoc model, as detailed in the related work section. All models were
evaluated on the same test set by computing the absolute difference between their path loss
estimations and the ground truth values. Table 2 summarizes the results. Remarkably, our path loss
prediction model demonstrated exceptional accuracy, achieving an error rate of 4.97dB. This
performance surpassed existing models by at least 50%. Additionally, with a standard deviation of
4.13dB, our model demonstrates consistent and stable estimation performance. Notably, while the
Bor model exhibited slightly superior performance compared to other models, this was attributed to
its path loss model being derived from fitting equations using our training data. Conversely, SateLoc
relied on provided path loss exponents, while on provided path loss exponents, while Demetri model
employs Okumura-Hata formulations based on Tokyo data. The divergence among datasets from
distinct environments contributed to increased estimation errors. Despite this, our prediction model
consistently outperformed results reported in the original papers. Figure 10 presents a box plot
visualizing the raw estimation errors of various models (excluding the free space model due to its
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disproportionately large error) across the full testing set. Our prediction model’s errors center around
0 dB, indicating no bias towards underestimating or overestimating of the path loss. In contrast, other
models demonstrate significant offsets from 0. SateLoc exhibits the most significant deviation, further
highlighting a considerable gap between the utilized path loss exponents and the actual rate of path
loss increase with distance. Additionally, our model boasts a significantly narrower error distribution
compared to others. The magnitude of its largest error remains below 10 dB, while 50% of errors fall
below 5dB. These findings underscore the superior accuracy and reduced variance of our path loss
prediction model compared to existing methodologies.

Table 2. Estimation errors of absolute path loss across various models.

Average (dB) Standard Deviation (dB)

Our Model 497 4.13

Demetri [PATH] 19.23 8.71

Demetri [INTERSECTION] 18.71 8.85

Bor 12.53 9.69

Sateloc 15.94 10.83

Free-Space 42.92 8.76

OurModel}» Er=qme Dj----l
Demetri ‘ ' ' ] i ] ]
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Figure 10. Distribution of the estimation errors on the test se.

5.5. LoRa Coverage Measurements

This section delves into the coverage analysis of our deployed gateway within the challenging
mountainous environment. We define the coverage area as the region where the PDR exceeds 70%.
To assess this, we split the area into 100m x 100m grids (“positions”).

For each position in the covered areas, we directly calculate the corresponding PDR based on
our collected data. For the uncovered areas, we applied our path loss prediction model to estimate
the average ESP for each position. Subsequently, we utilize the derived PDR-ESP regression model
to predict the associated PDR based on the estimated ESP values. The correlation between SNR and
ESP, demonstrated in Equation (2), holds significance in augmenting SNR gain for gateway coverage,
a factor underscored in numerous studies. To quantify the ESP gains’ impact on coverage within our
system, we manually introduce ESP gains per position and recompute the corresponding PDR under
this enhanced ESP. Randomly selecting ESP gains from 2dB to 10dB ensures fairness, generating the
CDF of predicted PDR illustrated in Figure 11. As the additional ESP gains increase, a corresponding
rise in PDR is observed, validating the efficacy of the SNR enhancement method.
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Figure 11. CDF of predicted PDR with different ESP gains.

Furthermore, Table 3 illustrates the utilization of enhanced PDR for calculating the coverage
area, revealing consistent enhancement trends in our gateway’s coverage area with escalating ESP
gains. For instance, with a 2 dB ESP gain, a notable 32.6% increase in coverage area is achievable.
These outcomes suggest that due to the dynamic nature of link behaviors, a gateway’s coverage area
tends to be irregular. Consequently, beyond deploying new gateways, optimizing gateway coverage
by harnessing additional SNR gains from LoRa signals proves more effective in expanding coverage
areas.

Table 3. Coverage area under different ESP gains.

ESP Gains (dB) 0 2 5 10
Gateway Coverage Area (km2) | 12.5 | 16.9 | 26.9 | 38

6. Conclusions

We conducted an extensive examination deploying a LoORaWAN system within mountainous
terrains, employing a gateway and multiple nodes, specifically focusing on 8 LoRa end devices
attached to sheep. Over a three-month period, we diligently collected data packets within an 4km x
4km mountainous area, revealing key insights into the dynamic behavior of LoRa link performance
influenced by diverse land cover types. Our findings unveiled the dynamic nature of LoRa link
behavior in spatial dimensions, strongly influenced by diverse land cover types. In addition,
efficiently acquiring SNR gains from LoRa signals significantly expands network coverage.
Moreover, our study introduced a predictive path loss model tailored for LoRa links in mountainous
pastures, deriving empirical insights into the relationship between link path loss and the specific land
covers traversed. Leveraging freely accessible multispectral satellite images, we developed a remote
sensing workflow facilitating quantitative analysis of land cover compositions along the path of a
LoRa link between the end device and gateway. Employing a recurrent neural network, specifically
the “Bi-LSTM”, we captured the intricate interplay between path loss, land cover types, and their
sequence along the path. Comparative analysis against state-of-the-art models demonstrated the
superior performance of our prediction path loss model, showcasing enhanced accuracy and
granularity in path loss estimation while requiring minimal transferring training overheads. These
results underscore the efficacy and advancement of our model in characterizing and predicting path
loss in challenging terrains, offering notable advancements in LoRaWAN system performance
analysis.
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