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Abstract: The agricultural sector is amidst an industrial revolution driven by the integration of 

sensing, communication, and artificial intelligence (AI). Within this context, the internet of things 

(IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist, 

particularly in effective field communication, adequate coverage, and long-range data transmission. 

This study focuses on employing LoRa communication for livestock monitoring in mountainous 

pastures in the north-western Alps in Italy. The empirical assessment tackles the complexity of 

predicting LoRa path loss attributed to diverse land-cover types, highlighting the subtle difficulty 

of gateway deployment to ensure reliable coverage in real-world scenarios. Moreover, the high 

expense of densely deploying end devices makes it difficult to fully analyze LoRa link behavior, 

hindering a complete understanding of networking coverage in mountainous environments. This 

study aims to elucidate the stability of Lora link performance in spatial dimensions and ascertain 

theextent of reliable communication coverage achievable by gateways in mountainous 

environments. Additionally, an innovative deep learning approach was proposed to accurately 

estimate path loss across challenging terrains. Remote sensing contributes to land-cover recognition, 

while Bidirectional Long Short-Term Memory (Bi-LSTM) enhances the path loss model’s precision. 

Through rigorous implementation and comprehensive evaluation using collected experimental 

data, this deep learning approach significantly curtails estimation errors, outperforming established 

models. Our results demonstrate that our prediction model outperforms established models with a 

reduction in estimation error to less than 5dB, marking a 2X improvement over state-of-the-art 

models. Overall, this study signifies a substantial advancement in IoT-driven livestock monitoring, 

presenting robust communication and precise path loss prediction in rugged landscapes. 

Keywords: Internet of Things; propagation loss; smart agriculture; LPWAN; LoRa; remote sensing; 

link quality 

 

1a. Introduction 

The pervasive integration of the Internet of Things (IoT) across various domains has facilitated 

the proliferation of interconnected devices, revolutionizing numerous industries, notably Agriculture 

[1,2]. Amidst the sphere of smart agriculture, characterized by the dominance of IoT technology, a 

particularly notable segment pertains to livestock farming [3,4]. In this domain, managing animal 

positioning for their welfare becomes challenging due to inadequate supervision, necessitating the 

monitoring of livestock positioning andbehavior in rugged terrains through IoT devices. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2024                   doi:10.20944/preprints202403.0589.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.



 2 

 

In the realm of livestock farming applications, pivotal technological requirements encompass 

low power consumption, cost-effectiveness, extended coverage, and positioning accuracy. 

Addressing these needs, Low-PowerWide Area Networks (LPWANs) have gained traction, boasting 

attributes like prolonged lifespan, cost-efficient chip integration, and expansive coverage. Prominent 

LPWAN technologies like Sigfox [5], Long-Range (LoRa) [6], and Narrowband-IoT (NB-IoT) [7] offer 

diverse capabilities, augmenting connectivity while maintaining energy efficiency. Amidst various 

technological options, Lo-RaWAN emerges as a widely embraced LPWAN technology, garnering 

significant attention across both academic research and industrial sectors. Our particular focus is 

directedtowards LoRa and LoRaWAN technologies due to the prevalent absence of 

telecommunication coverage in rural and mountainous regions, compounded by challenges related 

to troubleshooting and maintenance. The cost-effective and energy-efficient nature of LoRa renders 

it highly suitable for connectivity purposes, especially in the realm of monitoring and control 

operations. LoRaWAN, distinguished by its low-power, long-range communication protocol, adeptly 

fulfills connectivity needs across expansive grazing territorieswhile upholding robustness through 

low energy consumption. This contrasts with cellular-based alternatives such as 3G, 4G, and 5G, 

which offer wider coverage but necessitate highpower consumption. 

Optimizing the effective deployment of LoRaWAN entails radio planning activities, particularly 

crucial in challenging environments such as mountainous pastures. These activities are vital due to 

formidable radio propagation dynamics influenced by physical barriers shaping electromagnetic 

wave behavior. Although LoRaWAN enables long-distance connections, real-world implementations 

can exhibit significant variations in communication range. The power attenuation of the link, known 

as path loss (pl), varies when an end device is deployed in different positions from a gateway due to 

several factors, encompassing terrain features and the diverse array of land-cover types such as trees, 

grasslands, buildings along the transmission path.  

Developing a precise path loss model is paramount for LoRaWAN applications as it directly 

impacts the likelihood of successful packet transmission [8]. Thus, accurate prediction of path loss 

associated with a LoRa gateway prior to deployment holds the potential to enhance LoRaWAN 

coverage by strategically choosing gateway locations that minimize such loss.  

This study proposes a deep learning framework tailored to precisely estimate pathloss in long-

range LoRa links. By harnessing publicly available remote sensing images, the framework adeptly 

identifies detailed land-cover distribution along the link, a critical factor significantly impacting path 

loss. Our study generates precise land cover maps by leveraging the distinct spectral responses of 

various land-cover categories and employing supervised classification techniques. In our approach, 

we utilize pixel-based support vector machines (SVM). The selection of land cover classes is 

influenced by factors such as thetarget area’s presence, its relevance in characterizing LoRa links, and 

the potential for separation in multispectral images. The initial stage of our path loss estimation 

involves land-cover classification, offering detailed insights into the land-cover characteristics 

encountered by the LoRa link, as illustrated in Section 4.2.1. 

Given the complexity of land cover effects on path loss, the utilization of deep learning 

methodologies [9] becomes imperative for modeling the impact of a specific land-cover distribution 

on path loss accurately. Rather than treating a LoRa link environment as a whole, we propose viewing 

it as an ordered sequence of short, uniform links identifying detailed land cover specifics for each 

LoRa link via remote sensing images. Following land-cover classification, we extract the land cover 

sequence for the desired link region and utilize it as input for a deep neural network (DNN). 

Specifically, we employ Bidirectional Long-Short-Term-Memory (Bi-LSTM) units, enabling the 

network to analyze the sequence and build a path loss model from assessments in the area of interest. 

This deep learning model inherently captures the relationship between land cover types, their 

sequence, and resultant path loss. Post-training, the model can be seamlessly applied to regions 

exhibiting similar land cover compositions, requiring minimal data collection and model fine-tuning 

The deep learning framework utilized in this study originates from data acquired through 

experimental measurements conducted in mountainous environments. Our deployed LoRaWAN 

system comprises a single gateway and 8 mobile LoRa end devices affixed to sheep traversing an 
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4km × 4km area within the mountainous region. These nodes periodically transmit data packets 

containing location information as the sheep moves. Despite leveraging the mobility of these LoRa 

end devices, efficient recording of thousands of LoRa links across diverse locations poses challenges 

due to the non-uniform distribution of collected data within the areas of interest. The dataset 

encompasses over 35,876 packets logged by a gateway sent by 8 mobile LoRa end devices. We aimed 

to delve into the stability of Lora link performance in spatial dimensions, evaluating the extent of 

reliable communication coverage achievable by gateways in mountainous environments. 

Additionally, the experiment explores path loss estimation, revealing a mean error of 4.97dBm, which 

is twice as smaller than the state-of-the-art models. 

Key contributions of this study encompass:  

• Description of the hardware design utilized for experimental evaluation.  

• Empirical analysis investigating the impact of land-cover sequences on path loss within a real 

LoRaWAN system. This includes introducing a deep learning approach employing adaptive Bi-

LSTM to explore the correlation between path loss and various land-cover types and their 

ordered sequence.  

• Measurement of spatial link dynamics and calculation of coverage areas using sparsely received 

LoRa packets.  

• Implementation and performance assessment of a deep learning path loss prediction modwithin 

an actual LoRaWAN deployment, showcasing experimental results with a mean error twice as 

small as that of existing state-of-the-art models 

The subsequent sections of this paper are organized as follows. Section 2 delves into related 

works, followed by Section 3, which focuses on the background and motivation of our study.  

Section 4 introduces the system design of the path loss prediction model. The hardware use for 

the LoRaWAN system is also presented in this section. Section 5 presents the results and discussion. 

Lastly, Section 6 concludes the paper with some final remarks. 

2. Related Works  

Within this section, we provide a concise overview of pertinent research of LoRaWAN field 

studies. Subsequently, we delve into the exploration of related studies concerning land cover and 

propagation models.  

2.1. LoRaWAN Studies in the Field  

In recent years, various studies [10–15] have delved into assessing the performance of 

LoRaWAN in real-world settings. The authors in [10] focused on understanding the scalability 

bounds of a typical LoRa cell. The researchers achieved this by creating a LoRa tracker module 

embedded in a bike, testing it extensively across a large area within Palermo city. Notably, they 

achieved a maximum coverage distance of 7.3km. Yang et al. [11] conducted a comprehensive 

analysis of LPWAN link dynamics, examining both macro and micro aspects. They performed 

extensive measurements in a deployment spanning a 2.2 × 1.5km2 area for one month. Their network 

consisted of 50 nodes with 3 gateways, and they proposed a method to tackle link degradation issues. 

Another study in [12] provided subtle details regarding the design, development, and evaluation of 

a wildlife monitoring application using LoRa for IoT animal repelling devices. Their assessment 

involved testing LoRa transmission technology in forested areas operating within the 433 MHz and 

868 MHz bands, highlighting its performance. Chall et al. [13] investigated the LoRaWAN radio 

channel specifically in the 868MHz band. They conducted broadmeasurement studies in both indoor 

and outdoor environments, spanning urban and rural locations in Lebanon. Xu et al. [14] studied the 

behavior of LoRa links and energy profiles through the deployment of 10 stationary and 2 mobile 

LoRa end nodes. These empirical studies revealed diverse conclusions about LoRa coverage, 

indicating that path loss tends to increase with communication distance at varying rates across 

different environments. Consequently, modeling the environmental impact on path loss has become 

a central focus in the design of path loss models. 
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2.2. Land Cover and Propagation Models  

Extensive field measurements have taken place in diverse indoor and outdoor environments, 

exploring cellular and wireless sensor networks’ path loss characteristics. Path loss is influenced by 

multiple variables including distance, frequency bands, average antenna elevations, and 

geographical features such as terrain, obstacles, buildings, hills, mountains, and human presence. 

The International Telecommunications Union (ITU) [16], Okumura-Hata [17], Cost-Hata [18], and 

other research institutions and standard bodies have produced a number of path loss models tailored 

for outdoor settings within the [800˘1800] MHz and [2.5˘5] GHz frequency bands. Empirical models 

like Okumura-Hata offer ready-to-use formulas adaptable to different settings. However, these 

models may yield inaccurate predictions when applied directly to new environments with distinct 

path loss patterns. A distinctive approach by Bor et al. [19] employs on-site measurements to calculate 

absolute path loss via path loss exponent, deviating from the free-space path loss concept.  

While widely used, these path loss models are unsuited for LoRaWAN networks operating in 

the 868 MHz band. Limited studies have evaluated radio propagation models’ performance in 

diverse regions like Lebanon [13] and Finland [20], but these models often rely on regional 

environment information for predictions. Such approaches, assuming uniformity in deployment 

areas, fail to account for anisotropic land-cover compositions along LoRa links. The authors in [21] 

and SateLoc [22] utilize remote sensing to quantitatively analyze land-cover compositions along LoRa 

links. However, Demetri et al. [21] choose an Okumura-Hata formula based on dominant land-cover, 

without directly incorporating land-cover effects into predictions. SateLoc [22] divides links into 

segments characterized by distinct land-covers, applying the Bor model along with associated path 

loss exponents. However, reordering these segments within a link yields consistent results, limiting 

the model’s adaptability. These existing models fall short in harnessing fine-grained environmental 

data and struggle to transition effectively to new contexts due to their fixed environmental modeling.  

In contrast, our approach adopts a model based on a Recurrent Neural Network (RNN) to 

capture the intricate interplay between path loss, land-cover types, and their sequence along the path. 

This choice promises enhanced path loss estimation accuracy, while the use of raw environment data 

and extremely general RNN models enhances model transferability, overcoming the limitations of 

the conventional physical path loss models.  

Additionally, we conducted an analysis of the spatial attributes of LoRa links and offered a more 

comprehensive study of coverage areas compared to previous research endeavors.  

3. Background and Motivation  

To calculate path loss, the received signal strength (PRX) is estimated, considering both the 

signal-to-noise ratio (SNR) and the received signal strength indicator (RSSI). When SNR > 0, PRX 

equals RSSI; otherwise, PRX is derived by adding SNR to RSSI. The path loss calculation is as follows:  

PL = PTX − PRX + GTX + GRX − LTX − LRX (1) 

Here, PTX represents the transmit power in dBm, while GTX and GRX denote the antennagains 

of the transmitter and receiver, respectively. LTX and LRX signify negligible losses attributable to 

cables, as postulated within this context. Shadowing is described by a zero-mean Gaussian variable 

characterized by a standard deviation, σ, quantifying thedivergence between observed and 

anticipated path losses.  

Upon receiving a LoRa packet, the gateway provides essential metrics such as RSSI and SNR. 

While RSSI is a prevalent signal attenuation indicator in wireless sensor networks [23,24], its accuracy 

in LoRaWAN can be compromised due to the superimposition of LoRa signals and various noise 

sources, particularly below the noise floor. To address this, 1we employ Expected Signal Power (ESP), 

outlined in [21] as a more reliable metric. ESP delineates the actual received signal power over long-

distance transmissions, calculated by the following equation.  

ESP = RSSI + SNR − 10 log10(1 + 100.1SNR) (2) 

Here, SNR is measured in dB, while the other terms are expressed in dBm. One prevalent model 

used to estimate signal path loss is Free-Space Path Loss (FSPL).  
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This model describes path loss in an ideal scenario without obstacles or multipath effects, as 

given by the formula:  

FSPL = 20 log(d) + 20 log( f ) − 27.55 (3) 

Here, d represents distance in meters and f stands for frequency in MHz.  

The fundamental free-space model establishes a foundational reference point for path loss 

measurement, considering unobstructed line-of-sight (LOS) conditions between transmitting and 

receiving points. Meanwhile, the logarithmic-distance path loss model, extensively used in outdoor 

scenarios, proposes an exponential path loss variation linked to the distance between points. In 

contrast, the ITM Longley-Rice path loss model adopts a comprehensive approach, accounting for 

several factors such as terrain, obstacles, frequency, and weather conditions. An empirical approach, 

the Okumura-Hata model, draws insights from extensive measurements across the 200 MHz to 2 

GHz frequency range, primarily suited for rural regions. It assumes minimal dominant obstacles 

between the base station and mobile unit, as well as gradual changes in terrain profile. It is essential 

to acknowledge that these models were originally formulated within the context of cellular and 

wireless sensor networks, incorporating specific limitations concerning antenna heights and terrain 

configurations. In practical scenarios, achieving true free space conditions is challenging, and the free 

space path loss serves as a basic estimate for path loss in real world LoRa deployments. However, it 

is important to note that the actual path loss of LoRa connections in real-world settings is greatly 

affected by environmental attenuation. Models that take environmental factors into account require 

access to environmental data. For example, the traditional physical models such as the Okumura-

Hata and Bor models typically rely on two methods: (1) empirical estimations drawn from experience 

or (2) on-site measurements. These approaches are often resource-intensive, particularly for long-

distance situations, and primarily offer generalized environmental insights to certain regions. Even 

if two LoRa connections exist within the same deployment area but traverse distinct types of terrain, 

they might still be treated as if they experience the same environment by utilizing identical formulas 

or path loss exponents. Specific terrain types are outlined in Table 1, and these distinct terrains lead 

to varying path loss effects, underscoring the heterogeneous nature of LoRa connections. 

Consequently, accurately estimating LoRa path loss necessitates comprehensive per-link 

environmental information.  

To address this, we conducted an empirical study leveraging measurements from our 

LoRaWAN system deployed in mountainous pastures in northern Italy. The study aims to establish 

patterns governing how different land covers influence path loss. Remote sensing techniques can be 

used to identify different types of land cover from multispectral images of large geographical areas. 

This can be done by extracting distinctive features from the images and using machine learning 

models, such as SVM and random forests (RF). The integration of remote sensing into physical 

models can help to enhance the accuracy of path loss estimation by shifting from a regional 

environmental approximation to individual link-based models. This is because remote sensing can 

be used to obtain detailed information about the environment along the path of the signal, such as 

the types of land cover and the presence of obstacles. However, some studies have neglected the 

impact of specific land cover types or the sequence in which they appear along the path. For example, 

the authors in [21] used the Table 1.  

Table 1. Types of Land-Covers. 

Trees  trees 

Grassland  grazing lands 

Farmland  crop fields 

Water  rivers and lakes 

Road  roads, paths 

Building  buildings, huts 

Shrubland  shrubland 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 March 2024                   doi:10.20944/preprints202403.0589.v1



 6 

 

Okumura-Hata model to estimate path loss, but they only considered the dominant land cover 

type. This approach can lead to inaccurate results, as the path loss can be significantly affected by the 

presence of obstacles, even if they are not the dominant land cover type, with the Okumura-Hata 

model acting as a bottleneck. Similarly, SateLoc [22] divided the path into segments and aggregated 

the path loss for each segment independently. This approach does not take into account the order 

dependence of the segments, which can also lead to inaccurate results. Even when the segment order 

is altered, the outcome remains unchanged. It has been shown in the literature that the order of land 

covers along a connection can have a significant impact on path loss, even if the types of land covers 

themselves do not change. This is because obstacles closer to the end device are more likely to 

obstruct the signal. For example, a tree that is located directly between the end device and the 

gateway will have a much greater impact on the path loss than a tree that is located further away. 

The path loss of a LoRa connection can be conceptualized as a result of traversing a sequence of 

short links, the order of the short links sequence implicitly influence the path loss. This inherent 

influence cannot be captured by conventional physical path loss models. To address this challenge, 

we resort to RNN, a prevalent architecture within deep neural networks (DNNs), which are well-

suited for this task as they can handle sequence data and capture the order dependence. 

4. System Overview 

In this section, we describe the hardware for the LoRaWAN measurements. We also detail the 

system design of the path loss prediction model.  

4.1. Considered Hardware 

The End Device (ED) is built around an STM32L designed by STMicroelectronics [25], featuring 

a 32 − bit ARM Cortex M3-based architecture optimized for applications requiring low power 

consumption. The ED comprises of several key components including a microcontroller, a global 

positioning system (GPS) modem, a UART to USB interface, and a LiPo battery among others as 

demonstrated in Figure 1. Specifically, the microcontroller employed is the microcontroller’s capacity 

for low-power run mode, specified with μA consumption, renders it an ideal choice for battery-

powered scenarios. Additionally, it features multiple UART channels, two distinct serial peripheral 

interface (SPI) ports, and two inter-integrated circuit (I2C) interfaces. For debugging and 

programming purposes, the microcontroller supports a USB 2.0 compliant interface via a CP2102 

UART to USB circuit provided by Silicon Labs [26]. This interface functions as a communication port 

“COM” for computer applications and draws power from the USB bus at 5V, which is available 

through the micro-USB connector. Power is supplied by a 3700 mAh lithium polymer (LiPo) battery, 

with its voltage readings attainable through the microcontroller’s analog-to-digital converter (ADC). 

The ED additionally integrates an SX1276 module [27] from Semtech, designed as a long-range 

transceiver leveraging Semtech’s proprietary spread spectrum communication technology, facilitated 

through LoRaWAN. The connection between the LoRa module and the microcontroller is established 

via SPI, operating at a 3.3V. Remarkably, the SX1276 exhibits exceptional sensitivity level exceeding 

−148 dBm, facilitated by an inexpensive crystal, thereby making it cost-effective and readily accessible 

in the market. The ED is also equipped with a 9-axis accelerometer, encompassing a 3-axis gyroscope, 

3-axis accelerometer, and 3-axis magnetometer. These components collectively offer comprehensive 

data on accelerations across all three axes as well as rotations around each axis. Additionally, the 

embedded GPS component from Ublox, operating at 3.3V, is integrated into the ED architecture for 

the purpose of ascertaining the ED’s geographical coordinates. This GPS is powered through a TI 

TPS27082 [28] load switch from Texas Instruments, which manages the power supply. 

Communication between the GPS and the microcontroller occurs via UART. For communication 

purposes, we employed a Laird outdoor gateway due to its low cost and reliability. It is an 8-channel 

gateway built on the Semtech industry standard and can offer a secure, scalable LoRaWAN solution 

for complete management over a private LoRaWAN network. The LoRaWAN gateway is 

interconnected with an ADSL router, facilitating internet connectivity, and subsequently connecting 

to the amazon web services (AWS). This gateway, capable of receiving LoRa frames across a range of 
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signal strengths was linked to the AWS-provided network server “AWS IoT Core for LoRaWAN”. 

Both the gateway and the EDs utilized an omni-directional dipole antenna, boasting a 2 dBi gain. 

Upon receiving each data frame, the gateway yielded crucial parameters such as RSSI, SNR, and the 

payload message. These parameters were logged on to the AWS server for subsequent analysis and 

processing, utilizing InfluxDB to store the data. Given the considerable variation in LoRa 

performance depending on selected transmission parameters, as established in [29], the following 

parameter configuration was chosen:  

• Bandwidth (BW): The transmission frequency range is defined by the BW parameter, which, 

ranges from 7.8 kHz to 500 kHz. Widening the bandwidth decreases receiver sensitivity but 

enhances data rate due to reduced Time-on-Air (ToA). Our experiment employed a BW setting 

of 125 kHz.  

• Transmitted Power (PTX): For LoRa end devices operating in the 433 MHz and 868 309 MHz 

bands, the maximum effective isotropic radiated power (EIRP) in the default setting is 12.15 dBm 

and 16 dBm, respectively. Our experiment adhered to the highest permissible PTX within the 

EU 868 MHz band, aligned with the LoRa device’s approved duty cycle of 1%. This led to a 

selection of PTX = 14 dBm.  

• Carrier Frequency (CF): A number of factors led to the adoption of the 868 MHz frequency. 

While path loss is lower in the 433 MHz band compared to 868 MHz, the 433 MHz band enforces 

a maximum transmitting power of 10 dBm. Furthermore, at 433 MHz, antenna dimensions are 

larger for a given radiation efficiency. Lastly, due to its narrower bandwidth, the 433 MHz band 

accommodates fewer communication channels [30]. 319 

• Spreading Factor (SF): This factor indicates the number of bits sent in each LoRa symbol. SF 

varies from 7 to 12, resulting in distinct ToA and receiver sensitivity values. Higher SF, such as 

SF = 12, corresponds to reduced receiver sensitivity [31], enhancing the link budget. The 

tranmission rate is halved when SF is increased by one-unit, which doubles the channel usage, 

energy consumption and transmission time (sleep time). The relationship between LoRa 

transmission ToA and the employed LoRa parameters is expressed as ToA = 2SF/BW. 

• Coding Rate (CR): CR equals 4/(4 + n), with n ∈ {1, 2, 3, 4}. To minimize ToA, CR = 4/5 was 

selected. 

 

Figure 1. IoT device block scheme. 

4.2. Path Loss Prediction Model  

In this subsection, we outline the proposed design of our deep learning-based system, devised 

to yield precise path loss estimates by leveraging land-cover classification and their sequence along 
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propagation paths. Our methodology entails fusing land-cover recognition with path loss modeling. 

A comprehensive depiction of our path loss prediction model, hinging on deep learning, is presented 

in Figure 2. Our system architecture is compartmentalized into three distinct blocks: Land Cover Map 

Classification, Link Segment and Embedding, and the DNN based path loss Model. 

 

Figure 2. System Design Overview. 

4.2.1. Extracting Land Cover Maps from Multispectral Images 

Our methodology involves the automatic extraction of land-cover classes from multispectral 

images acquired from the US Geological Survey (USGS) Landsat series of Earth Observation 

satellites, which are accessible through the Google Earth Engine (GEE) platform. To derive precise 

land-cover maps, we leverage the distinctive spectral responses exhibited by various land-cover 

classes, employing supervised classification techniques rooted in machine learning. Specifically, we 

focus on kernel-based methodologies, particularly pixel-based SVM [32,33] chosen for their 

advantageous attributes, including robust generalization capabilities, excellent classification 

accuracy, and a comparatively streamlined design with minimal control parameters. We delineate 

the land-cover classes as seen in Table 1 through the following criteria, considering their presence in 

the target area, their relevance in characterizing LoRa links and the potential to discriminate them in 

the multispectral images. Our initial step involves generating a land-cover map classification, a 

crucial process for comprehensively interpreting the land-cover information embedded within the 

LoRa link. Employing an automated system, we assign each 10 °ø 10m2 pixel in the images to the most 

suitable land-cover class according to predefined standards relying on spectral features, including 

raw pixel spectral values, the Normalized Difference Vegetation Index (NDVI), and the Normalized 

Difference Water Index (NDWI) for individual pixels. We use non-linear approaches to solve this 

problem, which is complicated by several non-linearly separable classes. In particular, we use the 

SVM’s Radial Basis Function (RBF) kernel [34], which takes the feature vector to predict whether an 

area pertains to a specific land cover type. Similar to the approach described by Demetri et al. [21], 

the workflow necessitates a training set of manually labeled reference pixels linked to land-cover 

classes via image interpretation. During the classifier’s learning phase, this dataset plays a dual role 

in the model selection and SVM training. The SVM is used to automatically create the land-cover map 

after it has been trained across all images that are taken into consideration.  

To ensure accuracy, each image undergoes independent classification. This involves collecting 

image-specific datasets containing 200 samples for training and 100 samples for testing. for each land 

cover class. The test samples are used to assess the classification accuracy for each image. By using a 

grid-search model selection based on 5-fold cross-validation, the critical model selection phase finds 

application-specific optimal SVM tuning parameters, such as the regularization parameter and the 

RBF kernel width. The goal is to accurately discriminate classes and minimize expected 

generalization errors within predetermined ranges for the values of the regularization parameter and 

the RBF kernel width. Using conventional tools and methodologies, the optimal regularization 

parameter and RBF kernel width values are found through cross-validated classification accuracy 

and used in future SVM training and classification processes. 

4.2.2. Link Segment and Embedding  

The subsequent phase, Link Segment and Embedding, revolves around capitalizing on the 

comprehensive environmental insights garnered from the land cover classification. We formalize a 
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deep learning path loss model that is built upon this detailed environmental information. Instead of 

considering a mere “line,” we opt for a more encompassing approach. Specifically, we choose a 

rectangular region from the land-cover classification map that links the gateway and the end device. 

In this study, making a line is hard to determine due to the path from the gateway to the end device 

is usually a non-LOS path. The choice of choosing a rectangular mitigates the impact of potential 

misclassifications on the accuracy of the sequence. In addition, the rectangular area indicating the 

land cover map shown in Figure 3 offers fault tolerance by capturing a broader land-cover 

representation. The width of this rectangular is carefully chosen based on empirical data and 

experimental findings. The link segment of length d and width w is divided into smaller shortlinks 

of length d0 from the end device to the gateway as shown in Figure 4. The granularity and length of 

the resulting sequence, determined by d0 directly influence the estimation accuracy. For each short-

link region, we count the proportion of pixels belonging to each of the land-cover types. 

 

Figure 3. Path loss prediction model using deep learning with Bi-LSTM architecture. 

 

Figure 4. Link segment and embedding. 

For instance, in a short-link region, ski, 0 ≤ i < n which contains ck, 0 ≤ k ≤ 5 pixels for each land 

cover type lk, Then, each short-link region is embedded into a 1 × 6 vector vi by counting the 

proportion of 6 land-cover types as follows: 
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By concatenating these vectors for all short-links, we obtain an ordered sequence s =[v0, v1, · · · 

vn−1] representing the land cover composition along the link. This sequence is subsequently served as 

input for the DNN specifically a Bi-LSTM unit for further analysis.  

Thus, we obtain a structured representation by splitting LoRa links into several equidistant 

short-links and embedding each short-link into the sequence according to the land-cover map.  

4.2.3. DNN Based Path Loss Model 401 

In accordance with the schematic overview presented in Figure 2 of the system design, the 

sequence comprised of feature vectors is fed into the Bi-LSTM unit to disentangle order 

dependencies. The architectural layout of the path loss model based on DNNs is depicted in Figure 

3. Capitalizing on the temporal dimension, which aligns with the distance parameter in our case, 

allows for the flow of information from the sequence’s start to its end. This characteristic is 

particularly advantageous in estimating the path loss at the gateway, situated at the sequence’s last 

frame, accounting for attenuation throughout the sequence. To tackle the limitation of RNNs in 

learning long-term dependencies, we embrace the Bi-LSTM units [35,36]. Figure 5 depicts the 

construction of a Bi-LSTM. This bidirectional approach ensures that land-cover information from 

both the sequence’s commencement and conclusion is effectively captured. The output from the Bi-

LSTM unit is then channeled through convolution layers, enabling the extraction of local features and 

context dependencies. Introducing non- linearity via Rectified Linear Unit (ReLU) layers enhances 

the model’s expressive power. Subsequent max pooling down samples output features, effectively 

reducing dimensionality. These features are then linearly mapped to path loss within the fully 

connected layer. This extensibility equips our network to accommodate various LoRa link attributes, 

such as weather conditions, temperature, and more, facilitating quantitative analysis of additional 

influencing factors. It is vital to consider that path loss possesses constraints; it cannot fall below zero 

and must adhere to the maximum link budget imposed by the highest transmitting power and end 

device sensitivity. Therefore, we apply a sigmoid function to curve our final estimation, ensuring 

path loss values are confined within a range of 0 to 1, enhancing training convenience. This approach 

facilitates scaling of the estimation with the upper boundary limit to yield expected path loss, with 

values exceeding the boundary indicating packet delivery failure. 

 

Figure 5. Bi-LSTM Architecture. 

Given the upper boundary of 160 dBm, our system can be tailored to the specific constraints of 

different countries/regions. Our system design facilitates effective adaptation to new environments 

by employing the following strategies:  
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• We refrain from manual feature selection and instead utilize a sequence restructured from 

genuine land-cover maps along with additional variables as inputs. As a result, our model is 

able to obtain a mapping that is quite similar to the principles of signal propagation.  

• During the training process, we make a deliberate effort to incorporate training data 

encompassing diverse link distances and variations in land-cover compositions. This approach 

ensures that our training dataset effectively covers a wide spectrum of the feature space. 

• Our path loss model adopts a Bi-LSTM based DNN architecture. Neural networks trained on 

comprehensive historical datasets can be fine-tuned using a smaller dataset containing new data, 

enabling the model’s weights to be adjusted to new observations. As a result, fine-tuning the 

model with a limited amount of data from a new environment can yield superior accuracy 

compared to the original model. This stands as an advantage over a lot of other machine 

learning-based models that necessitate retraining from scratch using fixed data and do not 

guarantee improved outcomes. 

5. Results and Discussion 

5.1. Experimental Environment and Collected Dataset Overview  

5.1.1. Experimental Environment  

Our study took place within the mountainous pastures in the north-western Alps (Ormea, CN, 

Italy), situated at an elevation of 1340 meters above sea level. This locale serves as a crucial source of 

seasonal forage for livestock. Characterized by modest hills with an elevation difference ranging from 

80 to 100 meters, the area is encompassed by forest, grassland, and farmland, and diminutive hills 

with a lack of buildings and other barriers.  

In this dynamic landscape, the EDs traverse varying locations within the designated area. In 

other words, throughout the measurements, the gateway’s position remained stationary, while the 

EDs were relocated following the sheep movement within the mountainous pasture. The dataset 

gathered from this experimental deployment and evaluation in the northern pastures is crucial for 

training the path loss deep learning model and assessing its performance. 

5.1.2. Collected Dataset 

We present here an overview of our collected dataset, covering a period from July 15 to October 

17. The transmission of packets is obtained in a periodic manner, and the payload from the Lora EDs 

includes crucial information such as GPS coordinates, timestamps, sequence numbers. In addition, 

the gateway records the associated SNR and RSSI values. These logged data records, which make up 

a final dataset of over 35,876 records, can be extracted from the network server after packet reception. 

Moreover, we can compute essential metrics like the link distance d and the height difference h 

between the end device and gateway pair by decoding the GPS data embedded within the payloads. 

This process enables us to derive additional contextual information regarding the spatial relationship 

and positioning between the EDs and its respective gateway. 

5.2. Link Behavior Study  

Two key metrics, namely the Packet Delivery Ratio (PDR) and ESP, serve as indicators for signal 

path loss across a physical channel to ensure reliable coverage within an area. Through a detailed 

examination of their distribution, we have devised a predictive model for PDR. This model correlates 

the computed ESP value of a position with the estimated PDR, enabling the determination of our 

LoRa system’s coverage for end devices at each position. Considering the mobility of the end devices, 

particularly in scenarios such as the movement of sheep, data packets are dispersed along diverse 

trajectories. Our main approach is to compute the PDR of a specific position by using all trajectories 

that pass the position according to their coordinates. This methodology allows us to comprehensively 

calculate the PDR concerning the various paths traversed by the data packets due to the movement 

of the end devices.  
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5.2.1. Overall PDR and ESP Distribution  

We present the estimated PDR and ESP for various positions in relation to the gateway. Figure 

6 portrays the Cumulative Distribution Function (CDF) of PDR, indicating that 60% of the links 

exhibit high reliability with a PDR exceeding 90% for the gateway. The remaining 40% of LoRa links 

exhibit variable behaviors, denoting intermediate link performance. Figure 6b displays the CDF of 

ESP derived from all recorded data packets. Notably, the minimum ESP registers at −140 dBm across 

all packets, aligning consistently with the reported sensitivity of SX1276 at −148 dBm [27]. 

Furthermore, approximately 80% of the gateway’s ESP values are from −140 dBm to −120dBm, while 

the maximum ESP reaches −55dBm. This observation underscores the deployment environment’s 

characteristics, indicating an unobstructed antenna path for the gateway. Figure 6 illustrates a notable 

disparity in distribution between PDR and ESP. This discrepancy highlights the distinct behavior 

wherein the robust noise tolerance characteristic of LoRa technology allows for a convergence in PDR 

distribution despite varying ESP levels. For instance, even with a low ESP, such as a median value of 

−125dBm, there is an observable similarity in PDR distribution comparable to instances with higher 

ESP, like the median value of −89dBm.  

 

Figure 6. CDF of PDR and ESP observed at the LoRa Gateway. 

5.2.2. Spatial PDR Distribution  

Our study involves analyzing the spatial distribution of PDR as it relates to the link distance. We 

divide the area into “positions” (i.e., 100m × 100m block). For each position, we calculate the distance 

between its center and a gateway location. Then, we leverage the GPS coordinates of each transmitted 

packet to compute the distance it traveled to reach the gateway. Figure 7 illustrates the spatial 

distribution of PDR. Upon analysis of Figure 7, we note that lower PDR values are dispersed across 

intermediate links at various distance levels. 

 

Figure 7. The spatial distribution for PDR and distance. 
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5.2.3. ESP based PDR Prediction  

We developed a PDR prediction model with ESP as the input variable, based on the data we had 

previously made on the PDR and ESP distributions. First, we calculated the average ESP for every 

data record that corresponds to a specific sheep position in the mountainous pasture region. This 

facilitated the creation of diverse PDR-ESP pairs based on measured PDR values for the covered 

areas. Next, we employed Gaussian process regression (GPR) [37] to predict PDR for uncovered areas 

solely based on their ESP values. To achieve optimal regression accuracy, we opted for an exponential 

kernel function and conducted a rigorous fitting process, depicted in Figure 8. The statistical 

evaluation of our model achieved impressive performance, boasting a coefficient of determination 

(R2) of 0.78 and a root mean-square error (RMSE) of 0.129. Analyzing raw data pairs (represented by 

blue dots), we observed that for gateway ESP values below −131 dBm, the measured PDR plummeted 

to near 0. Conversely, when ESP exceeded −120 dBm, PDR reached high levels but rarely attained 

100%. This can be attributed to the large temporal variance inherent in PDR and ESP measurements. 

Importantly, the predicted data points (illustrated by red diamonds) for uncovered areas aligned well 

with ground truth values. However, the model’s inability to accurately capture the dynamic nature 

of PDR in our LoRaWAN mobility system highlights limitations. Nevertheless, our findings 

demonstrate the potential of ESP as a reliable indicator for PDR prediction in such challenging 

environments.  

 

Figure 8. PDR against ESP at our gateway. 

5.3. Land Cover Classification 

The land-cover classification analysis yielded an exceptional overall accuracy rate of 98% across 

diverse land-cover types. This high accuracy lends credibility to the resulting land-cover map as a 

reliable representation of the actual environmental conditions. Figure 9 provides a visual 

representation of the categorized land-cover. Distinct color coding differentiates various cover types. 

Predominantly, the area comprises trees, grassland, farmland and shrubland encompassing a 

significant portion. Conversely, buildings and roads feature sporadically in select areas within the 

region. Water is not taken into the account as indicated in Table 1, because it is not present within the 

area of interest. 
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Figure 9. Map depicting the land cover classification of a 4 × 4 km2 area of interest. 

5.4. Path Loss Estimation  

With the use of PyTorch framework [38], our approach for the path loss model utilizes a DNN. 

This model is trained on data collected during our LoRa experiment. To ensure the model’s 

effectiveness, we enforced the condition that identical inputs must yield identical outputs during the 

training phase, mitigating potential confusion within the model. This required careful data cleaning 

before training commenced. Since sheep movement generates continuous data, device locations 

obtained by the u-blox chip are plotted continuously on the map. Given the 10-meter resolution of 

the multispectral images employed, each 10m × 10m area on the ground is represented by a single 

pixel. This common practice in remote sensing and cartography facilitates managing large areas and 

maintaining consistent map detail. However, transforming GPS coordinates to map pixels can lead 

to multiple locations within the same pixel having different ground truth path loss values. In order 

to eliminate this duplication and create a distinct ground truth for every input, we compute the 

average path loss for measurements made within of each pixel. We split the dataset into 80% training 

and 20% testing sets in order to train and analyze our path loss model. We train and evaluate our 

path loss model by dividing the dataset into 80% training and 20% testing sets. Considering that 

sequence length significantly impacts path loss due to the model’s sequence processing principle, we 

segmented the data into bins based on sequence lengths prior to the split. This methodology ensured 

diversity in sequence lengths within the training set, mirroring the distribution in the testing set for 

a more robust and generalizable model. Based on empirical performance in subsequent experiments, 

we select d = 3 and w = 7 for link segmentation and embedding, representing 30m and 70m 

respectively. The model is trained with a learning rate of 0.0001 and a batch size of 16, and its 

performance is evaluated every 5 epochs. We analyze our path loss prediction model’s performance 

across different environments and compare it to state-of-the-art methods. To gauge accuracy, we 

conducted an evaluation comparing our model with benchmarks including the free space model, Bor 

model, Demetri model, and SateLoc model, as detailed in the related work section. All models were 

evaluated on the same test set by computing the absolute difference between their path loss 

estimations and the ground truth values. Table 2 summarizes the results. Remarkably, our path loss 

prediction model demonstrated exceptional accuracy, achieving an error rate of 4.97dB. This 

performance surpassed existing models by at least 50%. Additionally, with a standard deviation of 

4.13dB, our model demonstrates consistent and stable estimation performance. Notably, while the 

Bor model exhibited slightly superior performance compared to other models, this was attributed to 

its path loss model being derived from fitting equations using our training data. Conversely, SateLoc 

relied on provided path loss exponents, while on provided path loss exponents, while Demetri model 

employs Okumura-Hata formulations based on Tokyo data. The divergence among datasets from 

distinct environments contributed to increased estimation errors. Despite this, our prediction model 

consistently outperformed results reported in the original papers. Figure 10 presents a box plot 

visualizing the raw estimation errors of various models (excluding the free space model due to its 
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disproportionately large error) across the full testing set. Our prediction model’s errors center around 

0 dB, indicating no bias towards underestimating or overestimating of the path loss. In contrast, other 

models demonstrate significant offsets from 0. SateLoc exhibits the most significant deviation, further 

highlighting a considerable gap between the utilized path loss exponents and the actual rate of path 

loss increase with distance. Additionally, our model boasts a significantly narrower error distribution 

compared to others. The magnitude of its largest error remains below 10 dB, while 50% of errors fall 

below 5dB. These findings underscore the superior accuracy and reduced variance of our path loss 

prediction model compared to existing methodologies. 

Table 2. Estimation errors of absolute path loss across various models. 

 

Figure 10. Distribution of the estimation errors on the test se. 

5.5. LoRa Coverage Measurements 

This section delves into the coverage analysis of our deployed gateway within the challenging 

mountainous environment. We define the coverage area as the region where the PDR exceeds 70%. 

To assess this, we split the area into 100m × 100m grids (“positions”). 

For each position in the covered areas, we directly calculate the corresponding PDR based on 

our collected data. For the uncovered areas, we applied our path loss prediction model to estimate 

the average ESP for each position. Subsequently, we utilize the derived PDR-ESP regression model 

to predict the associated PDR based on the estimated ESP values. The correlation between SNR and 

ESP, demonstrated in Equation (2), holds significance in augmenting SNR gain for gateway coverage, 

a factor underscored in numerous studies. To quantify the ESP gains’ impact on coverage within our 

system, we manually introduce ESP gains per position and recompute the corresponding PDR under 

this enhanced ESP. Randomly selecting ESP gains from 2dB to 10dB ensures fairness, generating the 

CDF of predicted PDR illustrated in Figure 11. As the additional ESP gains increase, a corresponding 

rise in PDR is observed, validating the efficacy of the SNR enhancement method. 
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Figure 11. CDF of predicted PDR with different ESP gains. 

Furthermore, Table 3 illustrates the utilization of enhanced PDR for calculating the coverage 

area, revealing consistent enhancement trends in our gateway’s coverage area with escalating ESP 

gains. For instance, with a 2 dB ESP gain, a notable 32.6% increase in coverage area is achievable. 

These outcomes suggest that due to the dynamic nature of link behaviors, a gateway’s coverage area 

tends to be irregular. Consequently, beyond deploying new gateways, optimizing gateway coverage 

by harnessing additional SNR gains from LoRa signals proves more effective in expanding coverage 

areas. 

Table 3. Coverage area under different ESP gains. 

 

6. Conclusions 

We conducted an extensive examination deploying a LoRaWAN system within mountainous 

terrains, employing a gateway and multiple nodes, specifically focusing on 8 LoRa end devices 

attached to sheep. Over a three-month period, we diligently collected data packets within an 4km × 

4km mountainous area, revealing key insights into the dynamic behavior of LoRa link performance 

influenced by diverse land cover types. Our findings unveiled the dynamic nature of LoRa link 

behavior in spatial dimensions, strongly influenced by diverse land cover types. In addition, 

efficiently acquiring SNR gains from LoRa signals significantly expands network coverage. 

Moreover, our study introduced a predictive path loss model tailored for LoRa links in mountainous 

pastures, deriving empirical insights into the relationship between link path loss and the specific land 

covers traversed. Leveraging freely accessible multispectral satellite images, we developed a remote 

sensing workflow facilitating quantitative analysis of land cover compositions along the path of a 

LoRa link between the end device and gateway. Employing a recurrent neural network, specifically 

the “Bi-LSTM”, we captured the intricate interplay between path loss, land cover types, and their 

sequence along the path. Comparative analysis against state-of-the-art models demonstrated the 

superior performance of our prediction path loss model, showcasing enhanced accuracy and 

granularity in path loss estimation while requiring minimal transferring training overheads. These 

results underscore the efficacy and advancement of our model in characterizing and predicting path 

loss in challenging terrains, offering notable advancements in LoRaWAN system performance 

analysis. 
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