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Abstract: The main sources of intrinsic noise in excitable cells at the microcircuit and network levels are the 
stochastic characteristics of ion channel gating and activation of the synaptic conductance. Studies using in 
vivo, in vitro, and in silico methods to examine the effects of synaptic background activity were not adequately 
investigated in non-neuronal excitatory cells, where neurotransmitter-based innervation also occurs. We 
created a mathematical model to replicate the background synaptic noise dynamics in a non-neuronal cell. We 
utilized the stochastic Ornstein-Uhlenbeck process to represent excitatory synaptic conductance, which was 
incorporated into a whole-cell model to produce spontaneous and evoked cellular electrical activities. The 
single-cell model includes many biophysically detailed ion channels represented by a set of ordinary 
differential equations in Hodgkin-Huxley and Markov formalisms. This paradigm effectively induced 
irregular spontaneous depolarizations (SDs) and spontaneous action potential (sAP) resembling in vitro-like 
electrical activity in the cells. The input resistance decreased by multiple factors, and the spontaneous action 
potential firing rate elevated. The potential to reach the action potential threshold is altered. Background 
synaptic activity can alter the input/output characteristics of non-neuronal excitatory cells. Suppressing these 
baseline activities would facilitate the discovery of new pharmaceutical targets for different clinical diseases. 

Keywords: excitable cells; synaptic conductance; background synaptic noise dynamics; 
mathematical modeling; action potential 

 

1. Introduction 

Electrically excitable cells generate membrane depolarization and action potential (AP) to 
initiate various physiological functions and information exchange between cells [1]. Action potential 
or spike initiation in excitable cells adheres to the all-or-none principle: a characteristic action 
potential is generated and sent when the cell is adequately stimulated, and no spike is triggered if the 
potential is below the threshold [2]. Specific ion channels are activated at a particular threshold 
potential, which is the crucial factor responsible for generating spikes [3]. The membrane is 
depolarized till the threshold potential by several mechanisms, which are illustrated in Figure 1. The 
elevation of transient membrane depolarization is denoted by ΔV.  
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Figure 1. Schematic diagram of cellular mechanisms for membrane depolarization. 

The membrane can depolarize when positive ions accumulate in the intracellular space as a 
result of the opening of particular ion channels: nonspecific cation channels (NSCC), voltage-
dependent calcium channels (VDCC), and voltage-gated sodium channels (Nav) [4]. The voltage-
gated potassium channel (Kv) repolarizes the membrane by moving positive ions out of the cell [5–
7]. Additionally, the transmission of electrical potential from one cell to another (from cell 2 to cell 1) 
through a gap junction can cause membrane depolarization [8]. Furthermore, certain cells are 
myogenic, meaning they contain Interstitial Cells of Cajal (ICC) pacemaking cells that can depolarize 
the membrane through self-activation [9]. In another neurogenic process mechanism, the release of 
several neurotransmitters with excitatory synaptic conductance can depolarize the membrane either 
triggered or spontaneously [10].  

The nervous system innervates most excitable cells, making this process crucial in various 
pathophysiological conditions. Neurotransmitter release from the synapse is orchestrated by the 
nervous system. Electrical activities involving stochastic neurotransmitter release occur as 
background events in intracellular recordings of excitable cells [11]. The main causes of inherent 
variability in excitable cells at the microcircuit and network levels are the stochastic characteristics of 
ion channel gating and synaptic conductance activation [12–15]. Studies were conducted using in 
vivo, in vitro, and in silico methods to examine the effects of synaptic background activity on 
neuronal cells. Nevertheless, this research was not adequately explored in non-neuronal excitatory 
cells such as cardiac and smooth muscle cells, where neurotransmitter-based innervation also occurs.  

The primary physiological function of the urinary bladder, a component of the urinary system, 
is to facilitate the process of micturition, which involves storing and releasing urine. The 
parasympathetic innervation pathway is activated by the brain and spinal cord to facilitate the 
micturition process by causing the contraction of detrusor smooth muscle (DSM) cells. The DSM is 
highly innervated, linking around 16000 afferent and efferent axons from ganglion neurons across 
different species [16–18]. Research conducted over the past 50 years has established that DSM cells 
exhibit spontaneous phasic contraction activities through spontaneously evoked depolarizations 
(SDs) and action potentials (sAPs) [16], [18], [19,20]. Intracellular recordings from mouse DSM cells 
also show characteristics of SDs and sAPs [18], [21–23]. The neurogenic hypothesis suggests that the 
increase in resting membrane potential (RMP) caused by the spontaneous release of 
neurotransmitters and the interaction of intrinsic ion channels in the DSM cell membrane are 
important factors in triggering sAPs and SDs [18], [24–27]. Young et al. 2008 [18] found that ATP, a 
purinergic neurotransmitter, is released randomly into the DSM cells from the parasympathetic nerve 
terminals. Varicosities at parasympathetic nerve terminals produce ATP, which then activates P2X 
receptors on the DSM cell membrane, allowing the entry of cation X+ through the metabotropic 
process. At times, the increase in X+ leads to enough membrane depolarization to trigger the voltage-
dependent calcium channels on the membrane.  
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Mathematical modeling methods are essential for quantitatively studying complicated 
biological processes [28]. Modeling intracellular electrophysiological processes creates a virtual 
physiological system to study the impact of different pharmaceutical targets on excitable cells [29]. 
Many mathematical models have been used to study the cellular excitability qualities of neuronal 
cells influenced by synaptic background noise [30]. These models are restricted to non-neuronal cells 
such as heart cells and smooth muscle cells. The current study seeks to replicate the spontaneous 
intracellular electrical behaviors in DSM cells by introducing continuous fluctuating conductance in 
the cell membrane. It is known that excitable cells with dense innervation can exhibit significant 
synaptic conductances as a result of neurotransmitter leaking [31]. The DSM tissue also fits into this 
category according to Gabella, G. 1999 [17]. Fellous et al. 2003 [32] presented a new model of 
background activity to imitate continuous synaptic conductance activities in neocortical neurons. We 
have modified their model and included specific adjustments to replicate SDs and sAPs in the DSM 
cell model [33–37]. 

2. Materials and METHODS 

A point-conductance model was built to simulate the neurotransmitter-based background 
activity in DSM cells. The neurotransmitter current Int in equation 1, was considered as an 
independent excitatory conductance in the model:  

𝐼𝐼𝑛𝑛𝑛𝑛 =  𝑔𝑔𝑒𝑒𝑒𝑒(𝑉𝑉 −  𝐸𝐸𝑒𝑒𝑒𝑒) (1) 

where gex(t) is the excitatory conductance as a function of time, and Eex is the excitatory 
neurotransmitter reversal potential.   

The excitatory conductance gex(t) in equation 2 is described by a one-variable stochastic process: 

𝑑𝑑𝑔𝑔𝑒𝑒𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  −
1
𝜏𝜏𝑒𝑒𝑒𝑒

[𝑔𝑔𝑒𝑒𝑒𝑒(𝑡𝑡) − 𝑔𝑔𝑒𝑒𝑒𝑒0] + �𝐷𝐷𝑒𝑒𝑒𝑒𝜆𝜆1(𝑡𝑡)] (2) 

where gex0 is the average conductances, τex is the time constants, Dex is the diffusion coefficients to 
generate noise, λ1(t) is the Gaussian white noise. The numerical integration procedure to compute the 
differential equations is adapted from Fellous et al., 2003 [32]. 

The point-conductance is incorporated into a single DSM cell model based on a single cylindrical 
compartment [33–37]. All active ion channels are modeled according to the Hodgkin-Huxley 
formulation [38]. The DSM cell membrane is interpreted as a conductance-based model consisting of 
multiple variable ion channel conductances and a membrane capacitance Cm. Figure 2. (a) presents 
the schematic overview of ion channel mechanisms in single DSM cells and (b) shows the schematic 
overview of the parallel conductance model for ionic current.  

 

Figure 2. (a) Schematic overview of ion channel mechanisms in single DSM cells; (b) . 

Schematic overview of parallel conductance model for ionic current 
The length and diameter magnitudes of the single cylindrical compartment are 200 μm and 6μm 

respectively. In addition to morphological values, the membrane capacitance (Cm), membrane 
resistance (Rm), and axial resistance values are taken as 1μF/cm2, 138MΩ–cm2, and 181Ω-cm [39] to 
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simulate the passive electrical properties. In the single DSM cell model, PMCA, ICaT, ICaL, IKCa, IKv, ILeak 

and Ih represent the Ca2+ pump, T-type Ca2+ channel, L-type Ca2+ channel, Ca2+ dependent K+ channel, 
voltage-dependent K+ channel, leakage channel, and hyperpolarization-activated cation current 
respectively.  

The time-dependence characteristics of membrane potential (Vm) are represented in equation 
one. 

  𝑑𝑑𝑉𝑉𝑚𝑚(𝑡𝑡)

𝑑𝑑𝑑𝑑
= −�

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 (𝑡𝑡) + 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡)

𝐶𝐶𝑚𝑚
� (3) 

Applying Kirchhoff’s current law after injecting stimulus current Istim, we get the following 
differential equation describing changes in transmembrane potential Vm: 

   dVm
dt

= −
1

Cm
 (ICa + IK + Ih + Ileak + Istim) (4) 

All membrane currents except large conductance (BK) Ca2+-dependent activation K+ channel 
were modeled using the Hodgkin-Huxley formalism: 

I = g�[m(Vm, t, [Ca2+]i)]xh[(Vm, t, [Ca2+]i)]y(Vm − Erev  ) (5) 

where 𝑔̅𝑔 is maximum ionic conductance, Erev is the ion’s reversal potential, the dimensionless gating 
variable ‘m’ describes the time/voltage/Ca2+-dependent activation, and ‘h’ is the time/voltage/Ca2+-
dependent inactivation of the channel conductance. The ‘x’ and ‘y’ are power to the functions. 

The variation of each gating variable (m or h) can be expressed by first-order differential 
equation (6,7) 

  dm(Vm, t)
dt

=
m∞ (Vm) − m(Vm, t)

τm
 (6) 

  dh(Vm, t)
dt

=
h∞ (Vm) − h(Vm, t)

τh
 (7) 

where m∞ and h∞ are the steady-state values, τm and τh the time constants, all being functions of 
voltage and/or intracellular Ca2+ ionic concentrations. 

Here the state parameter dependence on vm for ion channels is described by the Boltzman 
equation 

 𝑚𝑚∞(𝑉𝑉𝑚𝑚, 𝑡𝑡) =  1
1 + exp ((𝑉𝑉𝑚𝑚 + 𝑉𝑉

𝑚𝑚1 
2

)/𝑆𝑆𝑚𝑚)�  (8) 

     ℎ∞(𝑉𝑉𝑚𝑚, 𝑡𝑡) =  1
1 + exp ((𝑉𝑉𝑚𝑚 + 𝑉𝑉

ℎ1 
2

)/𝑆𝑆ℎ) �  (9) 

where V1/2 is the half activation potential and S is the slope factor. 
BK channels kinetics have been described by a multiple-state Markov model (MM), in which the channel’s Ca2+-

dependence is modelled at a finer grain, thus affording greater accuracy. In this model there are five closed 
“horizontal” conformation states, namely C0, C1, C2, C3 and C4 and five open-oriented “horizontal” conformation 
states O0, O1, O2, O3 and O4, each corresponding to the appropriate closed state. The open conformation state O4 
permits the flow of K+ ions through the BK channels under the instantaneous electrochemical driving force (EDF). 
The BK current, IBK is calculated by the following equation 

𝐼𝐼𝐵𝐵𝐵𝐵 = 𝑔𝑔𝐵𝐵𝐵𝐵  ∗ 𝑂𝑂 ∗ (𝑉𝑉 − 𝐸𝐸𝐾𝐾)  (10) 

where 𝑔𝑔𝐵𝐵𝐵𝐵  is the maximum conductance and O is summation of O1, O2, O3 and O4.                        

Common rate equations: 

Kon=345,Kcoff=25,Kooff=25,O=O1+O2+O3+O4 (11) 

Rate equations for voltage dependent transitions: 
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KC0O0  = 0.02162 * a,  KC1O1  = 0.000869 * a, KC2O2  = 0.0000281 * a, KC3O3 = 0.000781 
* a, KC4O4 = 0.044324 * a,  KO0C0 = 318.1084 * b, KO1C1 = 144. 1736 * b, KO2C2 = 32.6594 

* b, KO3C3= 0.095312 *b,KO4C4=0.000106*b*cai  
(12) 

State equations for calcium dependent transitions: 
KC0C1= 4 * Kon  * cai, KC1C2= 3* Kon  * cai, KC2C3= 2 * 
Kon  * cai, KC3C4= Kon  * cai 
KC4C3= 4 * Kcoff  * cai, KC3C2= 3 * Kcoff  * cai, KC2C1= 
2 * Kcoff  * cai, KC1C0= Kcoff  * cai 
KO0O1= 4 * Kon  * cai,  KO1O2= 3 * Kon * cai, KO2O3= 2 
* Kon  * cai, KO3O4= Kon  * cai 

 KO4O3= 4 * Kooff  * cai, KO3O2= 3 * Kooff  * cai, KO2O1= 2 * Kooff  * cai, KO1O0 = Kooff  * cai 

(13) 

The Calcium dependent intermediate potassium current in (IIK ) in [33] has been modified with 
following equations.  

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑔𝑔𝐼𝐼𝐼𝐼  ∗ 𝑙𝑙2 ∗ 𝑘𝑘 ∗ (𝑉𝑉 − 𝐸𝐸𝐾𝐾) (14) 

𝑙𝑙∞ =  
0.37

1 + exp �(𝑙𝑙𝑙𝑙 − 𝑣𝑣)
16 �

 (15) 

𝑙𝑙𝑙𝑙 = −180 + (38 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐𝑐𝑐∗60) ) + (86 ∗  𝑒𝑒𝑒𝑒𝑒𝑒(−27∗𝑐𝑐𝑐𝑐)) (16) 

𝜏𝜏𝑙𝑙 = 17 ∗  ((
30

1 + exp �(𝑉𝑉 + 20.52)
36 �

)) (17) 

𝑘𝑘∞ =  
0.36

1 + exp �(67 + 𝑣𝑣)
9 �

 (18) 

𝜏𝜏𝑘𝑘 = 55 ∗ (1 −
1

(1 + exp �(𝑣𝑣 + 13.9629)
45.3782 �) ∗ (1 + exp−(𝑣𝑣 + 9.49866)

3.3945 )
) (19) 

Action potentials in our DSM cell model were triggered by providing either an external stimulus 
current (Ist) or a current derived from synaptic input (Isyn). An external stimulus current was applied 
either as a short rectangular pulse for a single action potential or with longer rectangular pulses for 
a series of action potentials. The simulations were performed with a fixed time step of 0.04 ms using 
the Euler Method on a PC equipped with an Intel (R) Core (TM) i7 CPU running at 3.80 GHz with a 
dual-core processor. The model utilizes the NEURON [40] simulation environment, known for its 
widespread usage in realistic modelling of excitable cells. The Euler method is a basic numerical 
approach used to solve ordinary differential equations (ODEs). The method is a first-order approach 
that involves discretizing the time domain and utilizing the derivative at the present point to 
approximate the function's value at the next point. 

3. Results 

In our simulation part of the result section, , we reproduced all types of electrical activities in the 
DSM cell with and without noise conductance. We investigated the properties of mebrane excitibility 
as a result of spontaneous purinergic neurotransmitter release in the DSM cells [Young et al., 2008]. 
Before we reproduced any AP and mebrane depolarization, we tesated the robustness and fklexibilty 
of our mathematical model. Aftewr incoorprating all ion channel models, we tried to maintain the 
physiological value of RMP at ─ 52 mV. Our model is validated its robustness by maintaining the 
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RMP at ─ 52 mV for 1000 ms (Figure 1). However, at 0 ms, the model needs few ms to settle down as 
the all ion channels are not stable. It creates some fluctuation for few ms. The Figure 3 time scale in X 
axis is start from 500 ms to cross these fluctuations.  

 

Figure 3. Schematic diagram of 10 state marcov model for BK channel. 

 

Figure 4. Model maintains the RMP at – 52 mV. 

We injected current stimulus of various amplitude for 10 ms duration to investigate the current 
evoked depolarization, AP, and threshold prediction. Till the stimulus of 0.55 mA, there were no 
spike and with 0.55 mA, the AP was generated. From the AP (red solid line in Figure 5) and 
depolarization (black solid line in Figure 5) , the threshold to trigger the AP is predicted at ─ 38.36 
mV. 
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Figure 5. Model shows the AP (red line) and depolarization (black line) with current stimulus. 

We then introduced synaptic input of various amplitude to investigate the evoked 
depolarization, AP, and threshold prediction. With the stimulus of 0.0076 µS, there were no spike 
and with 0.0077 µS, the AP was generated. From the AP (red solid line in Figure 6) and depolarization 
(black solid line in Figure 6) , the threshold to trigger the AP is predicted at ─ 38.42 mV. 

 
Figure 6. Model shows the AP (red line) and depolarization (black line) with synaptic input 

stimulus. 

We then repeated our model to generate Figure 4, 5 and 6 with the addition of stochastic synaptic 
background conductance noise. The value of gex(t) in equation 1 was varied to investigate the 
fluctation of RMP with the synaptic background conductance noise. Figure 7 shows the membrane 
potential with value of 0.012 mho. The RMP is flactuated between  ─ 51.43 mV and ─ 60.26 mV. 
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Figure 7. Model shows the RMP with synaptic background conductance noise. 

We injected current stimulus of various amplitude for 10 ms duration to investigate the current 
evoked depolarization, AP, and threshold prediction with stochastic synaptic background 
conductance noise . Till the stimulus of 1.9 mA, there were no spike and with 2 mA, the AP was 
generated. From the AP (red solid line in Figure 8) and depolarization (black solid line in Figure 8) , 
the threshold to trigger the AP is predicted at ─ 34.68 mV. 

 

Figure 8. Model shows the AP (red line) and depolarization (black line) with current stimulus and 
synaptic background conductance noise. 

We then introduced synaptic input of various amplitude to investigate the evoked 
depolarization, AP, and threshold prediction with stochastic synaptic background conductance 
noise. Figure 9 shows that with the stimulus of 0.05 µS (black solid line), 0.09 µS (blue solid line), and 
0.5 µS (red solid line) there were no spikes. There were no ways to predict the threshold potential 
due to lack of AP. The input resistance is altered by multiple fold times and model was not generating 
any AP. The active components of the biophysical system were disabled and system only generated 
the passive properties.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 March 2024                   doi:10.20944/preprints202403.0581.v1



 9 

 

 

Figure 9. Model shows the eveoked response for synaptic inputs with syaptic background 
conductance noise. 

When we increased value of gex(t) in equation 1 to more positive values, the model started to 
generate spontaneous depolarizations and sponatneous APs (red solid lines in Figure 10) without 
any current or synaptic stimulus. To investigate the active propereties of all ion channels, we made 
the conductances of both L- type and T- type calcium channels to zero. As expected, the active part 
of the mebrane potential was diminished (black solid lines in Figure 10).  

 

Figure 10. Model shows the spontaneous AP generation with higher noise and application of L and T 
type Calcium channel blockers. 

4. Discussion 

Electrically excitable cells experience membrane depolarization, which leads to the generation 
of action potentials (APs) that start many physiological processes and aid in intercellular 
communication. Neurotransmitters are released, both in response to stimuli and spontaneously, 
causing an increase in excitatory synaptic conductance, which leads to membrane depolarization. 
The nervous system extensively innervates excitable cells, and these mechanisms are critical in 
numerous pathological settings. Neurotransmitters are released randomly, causing electrical activity 
that can be seen as background events in recordings of excitable cells. Studies have explored synaptic 
background activity utilizing in vivo, in vitro, and in silico methods, however non-neuronal 
excitatory cells such as cardiac and smooth muscle cells, which also receive neurotransmitter-based 
innervation, have not been thoroughly researched.  
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Mathematical modeling approaches are crucial for quantitatively assessing intricate biological 
systems, allowing for the simulation of intracellular electrophysiological activity. We introduced a 
mathematical model that includes stochastic synaptic background noise dynamics in a whole-cell 
DSM cell model. This model replicates the spontaneous depolarization and action potential 
generation seen in experimental recordings by focusing on the electrophysiological traits of urinary 
bladder smooth muscle cells. The simulation shows that random depolarization triggers T-type Ca2+ 
channels first, then L-type Ca2+ channels, resulting in the production of action potentials. Multiple 
potassium channels are then triggered to restore the resting membrane potential after an action 
potential. The model also mimics the impacts of T-type and L-type Ca2+ channel blockers and 
generates membrane voltage variations of around few mV.  

This model is a basic prototype used to understand the electrophysiological characteristics of 
non-neuronal excitatory cells, without utilizing intricate mathematical formulae for detailed analysis. 
Suppressing these baseline activities would facilitate the discovery of new pharmaceutical targets for 
different clinical diseases.  
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