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Abstract: The main sources of intrinsic noise in excitable cells at the microcircuit and network levels are the
stochastic characteristics of ion channel gating and activation of the synaptic conductance. Studies using in
vivo, in vitro, and in silico methods to examine the effects of synaptic background activity were not adequately
investigated in non-neuronal excitatory cells, where neurotransmitter-based innervation also occurs. We
created a mathematical model to replicate the background synaptic noise dynamics in a non-neuronal cell. We
utilized the stochastic Ornstein-Uhlenbeck process to represent excitatory synaptic conductance, which was
incorporated into a whole-cell model to produce spontaneous and evoked cellular electrical activities. The
single-cell model includes many biophysically detailed ion channels represented by a set of ordinary
differential equations in Hodgkin-Huxley and Markov formalisms. This paradigm effectively induced
irregular spontaneous depolarizations (SDs) and spontaneous action potential (SAP) resembling in vitro-like
electrical activity in the cells. The input resistance decreased by multiple factors, and the spontaneous action
potential firing rate elevated. The potential to reach the action potential threshold is altered. Background
synaptic activity can alter the input/output characteristics of non-neuronal excitatory cells. Suppressing these
baseline activities would facilitate the discovery of new pharmaceutical targets for different clinical diseases.

Keywords: excitable cells; synaptic conductance; background synaptic noise dynamics;
mathematical modeling; action potential

1. Introduction

Electrically excitable cells generate membrane depolarization and action potential (AP) to
initiate various physiological functions and information exchange between cells [1]. Action potential
or spike initiation in excitable cells adheres to the all-or-none principle: a characteristic action
potential is generated and sent when the cell is adequately stimulated, and no spike is triggered if the
potential is below the threshold [2]. Specific ion channels are activated at a particular threshold
potential, which is the crucial factor responsible for generating spikes [3]. The membrane is
depolarized till the threshold potential by several mechanisms, which are illustrated in Figure 1. The
elevation of transient membrane depolarization is denoted by AV.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Schematic diagram of cellular mechanisms for membrane depolarization.

The membrane can depolarize when positive ions accumulate in the intracellular space as a
result of the opening of particular ion channels: nonspecific cation channels (NSCC), voltage-
dependent calcium channels (VDCC), and voltage-gated sodium channels (Nav) [4]. The voltage-
gated potassium channel (Kv) repolarizes the membrane by moving positive ions out of the cell [5-
7]. Additionally, the transmission of electrical potential from one cell to another (from cell 2 to cell 1)
through a gap junction can cause membrane depolarization [8]. Furthermore, certain cells are
myogenic, meaning they contain Interstitial Cells of Cajal (ICC) pacemaking cells that can depolarize
the membrane through self-activation [9]. In another neurogenic process mechanism, the release of
several neurotransmitters with excitatory synaptic conductance can depolarize the membrane either
triggered or spontaneously [10].

The nervous system innervates most excitable cells, making this process crucial in various
pathophysiological conditions. Neurotransmitter release from the synapse is orchestrated by the
nervous system. Electrical activities involving stochastic neurotransmitter release occur as
background events in intracellular recordings of excitable cells [11]. The main causes of inherent
variability in excitable cells at the microcircuit and network levels are the stochastic characteristics of
ion channel gating and synaptic conductance activation [12-15]. Studies were conducted using in
vivo, in vitro, and in silico methods to examine the effects of synaptic background activity on
neuronal cells. Nevertheless, this research was not adequately explored in non-neuronal excitatory
cells such as cardiac and smooth muscle cells, where neurotransmitter-based innervation also occurs.

The primary physiological function of the urinary bladder, a component of the urinary system,
is to facilitate the process of micturition, which involves storing and releasing urine. The
parasympathetic innervation pathway is activated by the brain and spinal cord to facilitate the
micturition process by causing the contraction of detrusor smooth muscle (DSM) cells. The DSM is
highly innervated, linking around 16000 afferent and efferent axons from ganglion neurons across
different species [16-18]. Research conducted over the past 50 years has established that DSM cells
exhibit spontaneous phasic contraction activities through spontaneously evoked depolarizations
(SDs) and action potentials (sAPs) [16], [18], [19,20]. Intracellular recordings from mouse DSM cells
also show characteristics of SDs and sAPs [18], [21-23]. The neurogenic hypothesis suggests that the
increase in resting membrane potential (RMP) caused by the spontaneous release of
neurotransmitters and the interaction of intrinsic ion channels in the DSM cell membrane are
important factors in triggering sAPs and SDs [18], [24-27]. Young et al. 2008 [18] found that ATP, a
purinergic neurotransmitter, is released randomly into the DSM cells from the parasympathetic nerve
terminals. Varicosities at parasympathetic nerve terminals produce ATP, which then activates P2X
receptors on the DSM cell membrane, allowing the entry of cation X+ through the metabotropic
process. At times, the increase in X+ leads to enough membrane depolarization to trigger the voltage-
dependent calcium channels on the membrane.
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Mathematical modeling methods are essential for quantitatively studying complicated
biological processes [28]. Modeling intracellular electrophysiological processes creates a virtual
physiological system to study the impact of different pharmaceutical targets on excitable cells [29].
Many mathematical models have been used to study the cellular excitability qualities of neuronal
cells influenced by synaptic background noise [30]. These models are restricted to non-neuronal cells
such as heart cells and smooth muscle cells. The current study seeks to replicate the spontaneous
intracellular electrical behaviors in DSM cells by introducing continuous fluctuating conductance in
the cell membrane. It is known that excitable cells with dense innervation can exhibit significant
synaptic conductances as a result of neurotransmitter leaking [31]. The DSM tissue also fits into this
category according to Gabella, G. 1999 [17]. Fellous et al. 2003 [32] presented a new model of
background activity to imitate continuous synaptic conductance activities in neocortical neurons. We
have modified their model and included specific adjustments to replicate SDs and sAPs in the DSM
cell model [33-37].

2. Materials and METHODS

A point-conductance model was built to simulate the neurotransmitter-based background
activity in DSM cells. The neurotransmitter current In in equation 1, was considered as an
independent excitatory conductance in the model:

Lt = gex(V — Eey) )
where ge(t) is the excitatory conductance as a function of time, and Ee is the excitatory
neurotransmitter reversal potential.

The excitatory conductance gex(t) in equation 2 is described by a one-variable stochastic process:

dGgex 1
gdt(t) = I [Gex () — Gexo] + \/D_exll ) @

where gex is the average conductances, 7ex is the time constants, Dex is the diffusion coefficients to
generate noise, Ai(t) is the Gaussian white noise. The numerical integration procedure to compute the
differential equations is adapted from Fellous et al., 2003 [32].

The point-conductance is incorporated into a single DSM cell model based on a single cylindrical
compartment [33-37]. All active ion channels are modeled according to the Hodgkin-Huxley
formulation [38]. The DSM cell membrane is interpreted as a conductance-based model consisting of
multiple variable ion channel conductances and a membrane capacitance Cm. Figure 2. (a) presents
the schematic overview of ion channel mechanisms in single DSM cells and (b) shows the schematic
overview of the parallel conductance model for ionic current.

A B
| Ca2* Ca? x* Extracellular Space
caT l | lea
it IK\I Bion
| K* lca Cm
leak
| X* Eit:m
I lion lon Channel
PMCA ¢j2+ I, Intracellular Space

Figure 2. (a) Schematic overview of ion channel mechanisms in single DSM cells; (b) .

Schematic overview of parallel conductance model for ionic current

The length and diameter magnitudes of the single cylindrical compartment are 200 pim and 6pum
respectively. In addition to morphological values, the membrane capacitance (Cm), membrane
resistance (Rm), and axial resistance values are taken as 1uF/cm? 138MQ-cm?, and 181Q-cm [39] to
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simulate the passive electrical properties. In the single DSM cell model, PMCA, Icat, Icar, Ikca, Ikv, ILeak
and I represent the Ca? pump, T-type Ca?* channel, L-type Ca?* channel, Ca?* dependent K* channel,
voltage-dependent K* channel, leakage channel, and hyperpolarization-activated cation current
respectively.

The time-dependence characteristics of membrane potential (Vm) are represented in equation
one.

de(t) — _ [Iion ) + Istim ®

dt [ ®)

Applying Kirchhoff’s current law after injecting stimulus current ILsim, we get the following
differential equation describing changes in transmembrane potential Viu:
v, 1

dt B _a (ICa + IK + Ih + Ileak + Istim) (4)

All membrane currents except large conductance (BK) Ca*-dependent activation K* channel
were modeled using the Hodgkin-Huxley formalism:

[ =g[m(Vy,t, [C32+]i)]xh[(vm' t, [Caz+]i)]y(vm — Erev ) ©)

where g is maximum ionic conductance, Erv is the ion’s reversal potential, the dimensionless gating
variable ‘m’ describes the time/voltage/Ca?-dependent activation, and ‘h’ is the time/voltage/Ca?-
dependent inactivation of the channel conductance. The ‘x” and ‘y’ are power to the functions.

The variation of each gating variable (m or h) can be expressed by first-order differential

equation (6,7)
AV, ) M (Vi) = MV )
dt h Tm ©
dh(Vip, ©)  he (Vin) = h(Vin, ) @)

dt Th

where m- and h- are the steady-state values, Tm and T the time constants, all being functions of
voltage and/or intracellular Ca?" ionic concentrations.

Here the state parameter dependence on vm for ion channels is described by the Boltzman
equation

el D= Th 4 exp (W +V, 0)/50) ®)

holVin 0= U1 4 exp (U +V,2)/50) ©)

where Viis the half activation potential and S is the slope factor.

BK channels kinetics have been described by a multiple-state Markov model (MM), in which the channel’s Ca2+-
dependence is modelled at a finer grain, thus affording greater accuracy. In this model there are five closed
“horizontal” conformation states, namely CO, C1, C2, C3 and C4 and five open-oriented “horizontal” conformation
states 00, 01, 02, 03 and 04, each corresponding to the appropriate closed state. The open conformation state 04
permits the flow of K* ions through the BK channels under the instantaneous electrochemical driving force (EDF).
The BK current, Ik is calculated by the following equation

Igx = gpx * 0 x (V — Eg) (10)

where ggx is the maximum conductance and O is summation of O1, O2, O3 and O4.

Common rate equations:

Kon=345,Kcofi=25,Koot=25,0=01+02+03+0O4 (11)

Rate equations for voltage dependent transitions:
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Kcooo =0.02162 *a, Kcior =0.000869 * a, Koz =0.0000281 * a, Kcsos= 0.000781
*a, Kca04=0.044324 * a, Kooco=318.1084 * b, Koic1=144. 1736 * b, Koz = 32.6594 (12)
*b, Koscs= 0.095312 *b,Koscs=0.000106*b*cai

State equations for calcium dependent transitions:
Kcoci=4 * Kon * cai, Kcico= 3* Kon * cai, Kcacs= 2 *
Kon * cai, Kcaca= Kon * cali
Kcacs= 4 * Keott * cal, Kcaca= 3 * Koottt * cal, Kcac1=
2 * Keoff * cai, Kcico= Keoff * cai (13)
Kooo1=4 * Kon * cai, Koio2= 3 * Kon* cai, Ko2o3= 2
*Kon * cai, Kozos= Kon * cali

*

Kosos= 4 * Koot * cai, Kosoo=3 * Koot * cai, Ko2o1=2 * Koot * cai, Koioo= Koott * cai

The Calcium dependent intermediate potassium current in (Ix) in [33] has been modified with
following equations.

Iie =gix *1? xk* (V= Ey) (14)
L 0.37
© (li —v) (15)
1+ exp (T)
li = —180 + (38 * exp(ci*®) ) + (86 = exp(~27*D) (16)
1 30
u=17x( W 1 2052))) (17)
1+exp|—a—"
36
. 0.36
I+ exp ((67 9+ v)) (18)
=55 (1 !
Te =55+ (1= (v + 13.9629) —(v +9.49866)) (19)

(”eXp( 453782 ))*(”e"p 33945 )

Action potentials in our DSM cell model were triggered by providing either an external stimulus
current (Ist) or a current derived from synaptic input (Isyn). An external stimulus current was applied
either as a short rectangular pulse for a single action potential or with longer rectangular pulses for
a series of action potentials. The simulations were performed with a fixed time step of 0.04 ms using
the Euler Method on a PC equipped with an Intel (R) Core (TM) i7 CPU running at 3.80 GHz with a
dual-core processor. The model utilizes the NEURON [40] simulation environment, known for its
widespread usage in realistic modelling of excitable cells. The Euler method is a basic numerical
approach used to solve ordinary differential equations (ODEs). The method is a first-order approach
that involves discretizing the time domain and utilizing the derivative at the present point to
approximate the function's value at the next point.

3. Results

In our simulation part of the result section, , we reproduced all types of electrical activities in the
DSM cell with and without noise conductance. We investigated the properties of mebrane excitibility
as a result of spontaneous purinergic neurotransmitter release in the DSM cells [Young et al., 2008].
Before we reproduced any AP and mebrane depolarization, we tesated the robustness and fklexibilty
of our mathematical model. Aftewr incoorprating all ion channel models, we tried to maintain the
physiological value of RMP at — 52 mV. Our model is validated its robustness by maintaining the
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RMP at —52 mV for 1000 ms (Figure 1). However, at 0 ms, the model needs few ms to settle down as
the all ion channels are not stable. It creates some fluctuation for few ms. The Figure 3 time scale in X
axis is start from 500 ms to cross these fluctuations.

KC3C4

KCDCL . KClCZ . KCZCB . .
| 1 | 2 | 3 c4
_ ‘-——

Keico Keaer ) Ko ) Keacs Y
Keoon| | Koo Kaor| |Kor  Kaoo| |Koaa  Koos| [Kosa  Keaod|  [Koscs

Kooor | Ko102 Koz03 Kosos .
00 " 02 : 03 |, 04

KOIOO I(02(}1 K0302 K(MIIB

Figure 3. Schematic diagram of 10 state marcov model for BK channel.

495 Time (ms)
500 1000 1500 2000

Membrane Potential (mV)
&
[N

-52.5

Figure 4. Model maintains the RMP at —52 mV.

We injected current stimulus of various amplitude for 10 ms duration to investigate the current
evoked depolarization, AP, and threshold prediction. Till the stimulus of 0.55 mA, there were no
spike and with 0.55 mA, the AP was generated. From the AP (red solid line in Figure 5) and

depolarization (black solid line in Figure 5) , the threshold to trigger the AP is predicted at — 38.36
mV.
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Figure 5. Model shows the AP (red line) and depolarization (black line) with current stimulus.

We then introduced synaptic input of various amplitude to investigate the evoked
depolarization, AP, and threshold prediction. With the stimulus of 0.0076 pS, there were no spike
and with 0.0077 uS, the AP was generated. From the AP (red solid line in Figure 6) and depolarization
(black solid line in Figure 6) , the threshold to trigger the AP is predicted at — 38.42 mV.

Membrane Potential (mV)

20
10

0

-10
-20
-30
-40
-50
-60

-70

Time (ms)

400 450 500 550 600 650 700

Figure 6. Model shows the AP (red line) and depolarization (black line) with synaptic input

stimulus.

We then repeated our model to generate Figure 4, 5 and 6 with the addition of stochastic synaptic
background conductance noise. The value of ge(t) in equation 1 was varied to investigate the
fluctation of RMP with the synaptic background conductance noise. Figure 7 shows the membrane
potential with value of 0.012 mho. The RMP is flactuated between —51.43 mV and —60.26 mV.
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Figure 7. Model shows the RMP with synaptic background conductance noise.

We injected current stimulus of various amplitude for 10 ms duration to investigate the current
evoked depolarization, AP, and threshold prediction with stochastic synaptic background
conductance noise . Till the stimulus of 1.9 mA, there were no spike and with 2 mA, the AP was
generated. From the AP (red solid line in Figure 8) and depolarization (black solid line in Figure 8),
the threshold to trigger the AP is predicted at — 34.68 mV.

20
10
0
-10
-20
-30
-40
-50

-60

Membrane Potential (mV)

Time (ms)
-70

200 250 300 350 400 450 500

Figure 8. Model shows the AP (red line) and depolarization (black line) with current stimulus and
synaptic background conductance noise.

We then introduced synaptic input of various amplitude to investigate the evoked
depolarization, AP, and threshold prediction with stochastic synaptic background conductance
noise. Figure 9 shows that with the stimulus of 0.05 pS (black solid line), 0.09 uS (blue solid line), and
0.5 uS (red solid line) there were no spikes. There were no ways to predict the threshold potential
due to lack of AP. The input resistance is altered by multiple fold times and model was not generating
any AP. The active components of the biophysical system were disabled and system only generated
the passive properties.
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Figure 9. Model shows the eveoked response for synaptic inputs with syaptic background
conductance noise.

When we increased value of gex(t) in equation 1 to more positive values, the model started to
generate spontaneous depolarizations and sponatneous APs (red solid lines in Figure 10) without
any current or synaptic stimulus. To investigate the active propereties of all ion channels, we made
the conductances of both L- type and T- type calcium channels to zero. As expected, the active part
of the mebrane potential was diminished (black solid lines in Figure 10).

20
10

.

Membrane Potential (mV)

0 200 400 600 800 1000
Time (ms)

Figure 10. Model shows the spontaneous AP generation with higher noise and application of L and T
type Calcium channel blockers.

4. Discussion

Electrically excitable cells experience membrane depolarization, which leads to the generation
of action potentials (APs) that start many physiological processes and aid in intercellular
communication. Neurotransmitters are released, both in response to stimuli and spontaneously,
causing an increase in excitatory synaptic conductance, which leads to membrane depolarization.
The nervous system extensively innervates excitable cells, and these mechanisms are critical in
numerous pathological settings. Neurotransmitters are released randomly, causing electrical activity
that can be seen as background events in recordings of excitable cells. Studies have explored synaptic
background activity utilizing in vivo, in vitro, and in silico methods, however non-neuronal
excitatory cells such as cardiac and smooth muscle cells, which also receive neurotransmitter-based
innervation, have not been thoroughly researched.
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Mathematical modeling approaches are crucial for quantitatively assessing intricate biological
systems, allowing for the simulation of intracellular electrophysiological activity. We introduced a
mathematical model that includes stochastic synaptic background noise dynamics in a whole-cell
DSM cell model. This model replicates the spontaneous depolarization and action potential
generation seen in experimental recordings by focusing on the electrophysiological traits of urinary
bladder smooth muscle cells. The simulation shows that random depolarization triggers T-type Ca2+
channels first, then L-type Ca2+ channels, resulting in the production of action potentials. Multiple
potassium channels are then triggered to restore the resting membrane potential after an action
potential. The model also mimics the impacts of T-type and L-type Ca2+ channel blockers and
generates membrane voltage variations of around few mV.

This model is a basic prototype used to understand the electrophysiological characteristics of
non-neuronal excitatory cells, without utilizing intricate mathematical formulae for detailed analysis.
Suppressing these baseline activities would facilitate the discovery of new pharmaceutical targets for
different clinical diseases.
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