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Abstract: This study presents the interaction with human host metabolism of SARS-CoV-2 ORF7b 

protein (43 aa), using a Protein-Protein-Interaction Networks analysis. After pruning, we selected 

from BioGRID the 51 most significant proteins among 2,753 proven interactions and 1,708 

interactors, specific to ORF7b. We used these proteins as functional seeds and we got a significant 

network of 551 nodes via STRING. We performed topological analysis and calculated topological 

distributions by Cytoscape. Seven high ranked proteins as hub and seven as bottleneck following a 

hub-and-spoke network-architectural-model were found. Through this interaction model, we 

identified significant GO-processes (5,057 terms in 15 categories) induced in human metabolism by 

ORF7b. High statistical significance processes of dysregulated molecular cell mechanisms by the 

action of ORF7b were discovered. We detected disease-related human proteins and their 

involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional 

systems, in particular intra- and inter-cellular signaling systems and the molecular mechanisms that 

supervise to programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. 

A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap 

in a Giant-Connected-Components core of 206 total nodes. These two clusters contain most of the 

high-rank nodes. ORF7b mainly acts through these two clusters, inducing most of the metabolic 

dysregulation. We conducted a co-regulation, transcriptional analysis by hub and bottleneck 

proteins. This analysis allowed us to define the transcription factors and miRNAs that control the 

high-ranking proteins and the dysregulated processes, within the limits of the poor knowledge that 

these sectors still impose. 

Keywords: SARS-CoV-2-ORF7b; COVID-19; interactomics; topological analysis; cluster analysis; co-

regulation network; transcription factors; microRNA; SARS-CoV-2 inter-tissue diffusion; 

programmed death 

 

1. Introduction 

This study aims to show the effects of the ORF7b viral protein of SARS-CoV-2 on humans, using 

significant experimental virus-host molecular interactions from BioGRID. Studying protein-protein 

interactions that contain information and metabolic strategies used by both the virus and its host 

allows us to understand functional relationships. We performed the analysis after functional 

enrichment to amplify less represented biological functions. SARS-CoV-2 encodes its genetic 

information in a single-stranded RNA, and ribosomes translate it into thirty-one different proteins. 

Viral action occurs through interactions with single human proteins or with protein complexes. To 

implement an effective action, the total number of viral proteins must be adequate for that of humans. 

About 5,000 viral particles are present in a single human cell during the peak time of infection (the 

first 3-4 days), along with a concentration of about 150,000 proteins/cell necessary for effective action, 
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as estimated by reliable sources [1,2]. Other estimates [3,4] suggest that in the human cell, there are 

on average between two and four billion proteins, represented by a few thousand different types [3–

5], and the average lifespan of each molecule is often measurable in a few dozen minutes. All this 

implies that each viral protein should interact with a target that has a rather limited time window, 

but viral proteins also have the same problem because of their turnover rate. Therefore, only a perfect 

knowledge of human metabolism, deriving from a co-evolution of coronaviruses with humans 

and/or mammals, can generate proteins that are effective. ORF7b is one of the smallest proteins of 

the virus [7], an accessory protein of only 43 amino acids with a central alpha helical segment, but its 

function is still unknown [6,191]. In recent years, various laboratories dedicated their activities to the 

research, purification, and characterization of the physical complexes between ORF7b2 and human 

proteome proteins with different methods and technologies. BioGRID [8] has collected and cured 

these experimental results within the “BioGRID COVID-19 Coronavirus Curation Project”. BioGRID 

curates proven protein interactions between virus and humans and curators have classified the 

proteins according to criteria of statistical reliability. They have identified 2,753 physical interactions 

and 1708 interactors for ORF7b (accessed in July 2023). Thus, BioGRID presents an interactome of 

considerable interpretative complexity for this protein [9].  

2. Materials and Methods 

2.1. BioGRID  

It is the source of experimental interactions of SARS-CoV-2-ORF7b (as of July 2023). 

(https://thebiogrid.org/4383871/summary/severe-acute-respiratory-syndrome-coronavirus-

2/orf7b.html).  

The quantitative SAINT analysis was used to identify SARS-CoV-2 viral-host proximity 

interactions in human or model system cells [11–17] and those with a Bayesian FDR =< 0.01 were high 

confidence. Scores are the sum of peptide counts from four mass spec runs with a higher score 

indicating a higher degree of connectivity between proteins. 

STRING [152,153] (https://string-db.org/) is a database of known and predicted PPIs. The 

curated interactions are direct (physical) and indirect (functional) associations. The interactions came 

from different sources (genomic context, high-throughput experiments, co-expression, previous 

knowledge, etc.) which are channeled into seven independent channels. In this paper, we established 

the PPI network according to the Version: 11.5 of the STRING database. We constructed PPI networks 

by mapping proteins to the STRING database with a confidence score of >0.9 (highest confidence) 

with the information from all seven sources.  

Protein enrichment is to some extent based on prior knowledge, and the statistical enrichment 

of the annotated features may not be an intrinsic property of the input. We have used a selected set 

of protein by BioGRID as functional seeds. Using Cytoscape software, we visualized and analyzed 

PPI networks, which offer diverse plugins for multiple analyses. Cytoscape represents PPI networks 

as graphs with nodes illustrating proteins and edges depicting associated interactions. 

2.2. CYTOSCAPE and Network Topology Analysis 

Cytoscape [154,155] through Network Analyzer was used to analyze the topological parameters 

of networks. We examined network architecture for topological parameters such as clustering 

coefficient, centralization, density, network diameter, and so on. Our analysis included undirected 

edges for every network. We termed the number of connected neighbors of a node in a network as 

the degree of a node. P(k) is used to describe the distribution of node degrees, which counts the 

number of nodes with degree k where k=0, 1, 2, … We calculated the power law of distribution of 

node degrees, which is one of the most crucial network topological characteristics. The coefficient R-

Squared value (R2), also known as the coefficient of determination, gives the proportion of variability 

in the dataset. We also examined other network parameters, including the distribution of various 

topological features. We did calculation of Hub and Bottleneck nodes based on relevant topological 

parameters. By examining the PPI network, we found the top 7 hub nodes. These nodes had 
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significantly higher degree values than the others and were primarily in two central modules that 

were closely connected and compact. 

CentiScaPe - Centralities for undirected, directed and weighted networks. Centiscape [156] 

computes specific centrality parameters describing the network topology. These parameters facilitate 

users in locating the most important nodes within a complex network. The computation of the plugin 

produces both numerical and graphical results, facilitating the identification of key nodes even in 

extensive networks. Integrating network topological quantification with other numerical node 

attributes can cause relevant node identification and functional classification, as well as the 

topological location of proteins in their specific cellular compartments. 

2.3. Evaluation of the HUB-and-Spoke Model 

Many properties of a scale-free network depend on the value of the degree exponent of the 

power-law, γ [157]. Therefore, it is interesting to establish how the network properties vary with γ. 

The estimation of the expected maximum degree (also known as the natural cut-off) for a scale-free 

network, which represents the expected size of the largest hub, is based on the following formula 

[158]:  

(Eq. 1 

Where Kmax and Kmin are the expected maximum and minimum degree of a node, respectively. N 

is the system size, in terms of the number of nodes. Based on Eq. 1, when γ<2 (as in our case) the link 

acquisition rate of the largest hub is faster than the growth of the network in terms of the number of 

nodes it contains. In this scenario, the high-degree nodes are attractive. Here the dynamic is of the 

“winner takes all” type. This leads to a hub-and-spoke network of topology, where all nodes are 

within a short distance of each other. Our interactome has a gamma value of 1.81, which favors at 

least one large topological module (metabolic module). A topological module represents an area of 

the network densely packed with nodes and links wherever nodes have a larger tendency to be 

connected to the nodes of the same area instead of the nodes placed outside the zone itself.  

2.4. Cluster Analysis 

For the cluster analysis, we have used the K-Means Clustering method [159]. K-Means 

Clustering is an Unsupervised Learning algorithm (centroid-based clustering algorithm) used by 

STRING to group the protein dataset into different functional clusters. Centroid-based algorithms 

are efficient, effective, simple and sensitive to initial conditions and outliers. This makes it useful in 

handling networks. Here, for K, which defines the number of pre-defined clusters, we have used the 

value of 10 after various manual attempts to search the most reliable clusters in terms of compactness, 

metabolic functionality, and p-value. 

2.5. GO and KEGG Pathway Analyses 

To better research and show the biological function of proteins, we performed GO analysis, 

which included biological process (BP), cellular component (CC) and molecular function (MF). When 

the P value was below 0.05, we considered the results had statistical significance. 

2.6. Network Analyst -- Comprehensive Gene Expression Profiling via Network Visual Analytics: TFs and 

miRNAs 

The Network Analyst [160,161] interprets gene lists in a network. It enables the analysis of results 

present in the network via a powerful online network visualization framework. In protein-protein 

network analyses, the system also involves the existing relationships between genes, proteins, 

miRNAs, and human transcription factors, creating a co-regulatory network that is very useful for 

understanding the mutual relationships between these biological actors. 

Databases: Gene-miRNA interactions - miRTarBase v8.0 Comprehensive experimentally 

validated miRNA-gene interaction data collected from miRTarBase. 
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TF-gene-interactions - ENCODE Transcription factor and gene target data derived from the 

ENCODE ChIP-seq data. The BETA Minus algorithm is used to selecting only peak intensity signals 

<500 and predicted regulatory potential scores <1 from the ENCODE ChIP-seq data for TF-gene-

interactions. 

Signaling - SIGNOR 2.0. The data is based on data from the SIGnaling Network Open Resource.  

RegNetwork: Regulatory Network Repository of Transcription Factor and microRNA Mediated 

Gene Regulations. RegNetwork is a data repository of five-type transcriptional and 

posttranscriptional regulatory relationships for human and mouse: 

1. tF    →   TF 

2. TF    →   gene 

3. tF   →   miRNA 

4. miRNA   →  TF 

5. miRNA   →  gene  

This repository integrates curated regulations and the potential regulations inferred based on 

the transcription factor binding sites. Transcription factor (TF) and microRNA (miRNA) function at 

the transcriptional and posttranscriptional levels. It will be valuable for studying gene regulatory 

systems by integrating the prior knowledge of the transcriptional regulations between TF and target 

genes, and the posttranscriptional regulations between miRNA and targets. The conservation 

knowledge of the transcription factor binding site (TFBS) can also be implemented to couple the 

potential regulatory relationships between regulators and their targets. From RegNetwork, we can 

query and identify the combinatorial and synergic regulatory relationships among TFs, miRNAs, and 

genes [162]. 

2.7. Protein Intrinsic Disorder and Secondary Structure Prediction 

We have used two servers on line, Jpred 4 and IUPred2A. Jpred is a web server that takes protein 

sequences, and from these predicts the location of secondary structures using a neural network called 

Jnet. They show the prediction as a graph. IUPred2A [163,164] is a combined web interface that allows 

to identify disordered protein regions using IUPred2 and disordered binding regions using 

ANCHOR2. IUPred2A can identify disordered protein regions by analyzing their sequence, 

regardless of whether they are stable. Upon visually inspecting the graphic outputs of both predictive 

systems, we quickly identified disordered segments in most of the examined proteins, whether viral 

or human. These results were not displayed because they required a large space. 

2.8. SARS2-HUMAN Proteome Interaction Database (SHPID) 

We have collected in a single database all the files made available online by BioGRID, containing 

all the curated physical interactions of the 31 SARS-CoV-2 proteins gained through experiments in 

human cellular systems with viral baits, followed by purification and characterization with mass 

spectrometry. These Data are available as a zip file containing multiple zip-files (32 zip-files) each 

comprising Interactions and Post-Translational Modifications for each single SARS-CoV-2 protein for 

33,823 interactions (as June 2023). The database therefore contains the set of all possible real 

interactions existing between the SARS-CoV-2 proteome with all the proteins of the human proteome. 

We highlight that not all interactions are real, but some could derive from artifacts of the method, 

such as non-biological interactions, only because of the random encounter between proteins in the 

system used. An encounter that would never have happened in the reality of an infection. However, 

the interactions derive from BioGRID where all, even those with the lowest score, have a significant 

statistic with an F.D.R. =< 0.01. This allows us to identify as many significant comparisons as possible 

while maintaining a low false positive rate, i.e., the probability of a false positive is less than 1%, so 

only 338 interactions among all are truly null. This database is the comprehensive repository of all 

interactions acknowledged biologically possible between the virus and its human host. The database 

also contains interactions between individual viral proteins, where known. As part of database search 

actions, you can ask who interacts with whom, with queries that use single human or viral proteins. 

The search can include multiple sets of proteins. 
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2.9. Highlighting the Nodes of a STRING Network Involved in the Same Biological Process (GO) 

STRING makes visible all the nodes involved in the same biological process evidenced through 

its mapped databases onto the proteins (GO, KEGG, REACTOME, and so on) by activating the 

process itself with a click of the cursor on the process line. Activation means that all nodes involved 

in the same metabolic process stain similarly. Nodes involved in multiple processes are colored 

multiple times. This tool is very useful when one wants to analyze the involvement of multiple nodes 

in many metabolic processes visually, distinguishing the effect of different processes between nodes 

and identifying which nodes represent the crossing points. If individual nodes do not show any 

coloration under the effect of clicking, this identifies certain components of a path, or group, that a 

specific activated process does not influence. The relationships that determine the coloring of the 

nodes depend on the knowledge base that STRING organizes for a specific network by extracting 

data and information from the scientific literature in PubMed. 

2.10. Comparison between GO Pairs in Enriched Networks 

In modeled networks, STRING uses two parameters to analytically define the enriched 

biological terms. Strength is the measure of how large an enrichment is, expressed as Log10 [Log10 

(observed/expected)], while False Discovery Rate (fdr) is the measure of the statistical significance of 

an enrichment given as a p-value after the Beniamini-procedure Hochberq. The higher the Strength 

value, the greater the biological effect due to genetic enrichment, indirectly indicating increased gene 

expression, while the smaller the p value, the greater the certainty that event will occur. Since STRING 

characterizes biological functions as pairs in which strength and fdr often show very different 

numerical values from each other, we use the product P [P = strength x -log10 p-value] to get a 

quantitative evaluation. This product will be greater when “Strength” has a very high value and p 

has a slight value [the most favorable situation for evaluating an effect positively is that represented 

by the extremes of their numerical values, very high and slight, respectively]. This facilitates 

comparisons and evaluation of pairs. Two pairs, one characterized by S = 0.35 and fdr = 1.0e-11, and 

another characterized by S = 1.9 and fdr = 1.0e-6, could lead one to think that the first is statistically 

more significant. If we analyze the P value, we have 3.85 and 11.4, respectively. This tells us that the 

increase in gene expression in the second case is functionally prevalent. The higher the value of the 

product, the more reliable the result of one pair will be over another. We consider that strength = 1 

means a 10-fold genetic enrichment. However, it is important to remember that all fdr values reported 

by STRING in its biological functionality characterizations (GO, KEGG, etc.) are always significant 

and never greater than 0.05. 

3. Results 

3.1. Source of the Data 

Fundamental experimental data supporting the role of SARS-CoV-2 in human infection are 

accumulating. BioGRID, one of the most important biomedical interaction repository, compiled 

comprehensive datasets of all physical interactions between the proteins of SARS-CoV-2 and the 

human proteome through the BioGRID COVID-19 Coronavirus Curation Project [8,10]. Curators 

selected interaction data caming from purification processes where researchers used physical 

methods such as Affinity Capture-MS and Proximity Label-MS. Interactions and their molecular 

interactors were classified into various levels of significance. With the protein ORF7b (P0DTD8 - 

NS7B_SARS2, UniProt), BioGRID classified 1,708 unique curated physical interactors [11–17], 

involved in 2,753 interactions (accessed in July 2023). They are unique in being non-redundant and 

having high confidence interactions at high throughput, associated with high score values of 

statistical filtering, as determined by using SAINT (Significance Analysis of INTeractome) express 

version 3.6.0 [11–17].  
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3.2. The Representation of ORF7b Data Using Interactomes 

Figure 1 shows the circular network of human ORF7b-interacting proteins calculated by 

BioGRID. Since not all physical interactions flow into a real biological function, the concentric 

representation of the nodes shows different levels of reliability. Therefore, we used the densest layers 

as functional seeds. The nodes selected in this study have proven physical interaction through at least 

two different physical methods. The interaction should be non-redundant and high-throughput with 

optimal statistical significance between BioGRID levels 6 and 4. These options allowed us to select 

nodes with curated unique interactions.  

 

Figure 1. – Circular network of SARS-CoV-2-ORF7b and human host PPI (from BioGRID). Circles 

within circles representation show the layers closest to the center as more highly connected. BioGRID 

also suggests the likelihood of direct/indirect interaction of ORF7b (in dark red) with other viral 

proteins (ORF3a and M, in blue). The proteins used in the present analysis are among those of the 

most densely represented central area. 

In Figure 1S (Supplements), we show an ARBOR representation of the network calculated by 

BioGRID with a minimum evidence value of 4, which illustrates the level/association relationships 

very well. An interactome shows the one-to-one mapping of all interactions, which turns the 

interactome into an information system [18]. The goal is to decode the functional information of this 

biological map, the macroscopic properties of which are unpredictable and emergent properties of 

the system [19,20]. Its inherent complexity makes it difficult, if not impossible, to decode individual 

hidden molecular information. The datasets curated by BioGRID for each SARS-CoV-2 protein 

represent a suitable starting material. The list of 75 ORF7b interactors with significant levels ranging 

from 6 to 4 is available in Table S1. Through the STRING platform [21] we calculated the 

corresponding interactome (figure 2S in Supplements) with a score of 0.9 and with all 7 data source 

channels active, to gain as much information as possible. But the graph shows 54 proteins (72%) 

unconnected. So, we added 500 first order proteins to enrich the interactome and increase the 

functional relationships (figure 3S in Supplements). In this new graph, we also had to eliminate some 

parental proteins that were still disconnected, leaving 51 final parental proteins that were the basis 

of our enriched interactome. Network pruning helps eliminate artifacts due to noisy information [22] 

while enrichment helps amplify those biological processes that are difficult to define because of their 

poor representation. Figure 2 shows the interactome got after pruning and enrichment. The 

interactome now appears compact, with all nodes connected. 
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Typically, proteins that share similar functional information should appear as a compact set of 

nodes and edges (sub-graphs) performing one or more macroscopic functions. Subgraphs contain 

molecular partners that have relational links and perform similar functional activities. Analyzes of 

metabolic processes with Gene Ontology or KEGG allow us to evaluate the increase in functional 

annotations. 

Many and rather compact peripheral modules with a large and very compact central module 

characterise this interactome. The peripheral modules suggest functional protein complexes. For 

example, the module at the top of the figure is very rich in ribosomal subunits and, very close to it, 

many proteins belonging to the translocon complex can be identified. While the complex on the right 

is rich in ATPase subunits characteristic of the proton-transporting vacuolar protein pump (V)-

ATPase, required for acidification of secretory vesicles. These complexes represent the set of 

metabolic machinery necessary for normal cellular life. Surprisingly, the large central component 

shows nodes intra-connected, representing a significant fraction (37%) of the network's nodes. 

Components with these characteristics are called Giant Connected Components (GCC) [23]. This type 

of component is often present in scale-free networks of which it is an important substructure. GCCs 

control the topological growth of the network, and so its evolution [24]. Its capacity to aggregate new 

nodes and functions makes it a very compact system with a notable increase in the interaction 

turnover rate of new proteins [24]. 

 

Figure 2. Interactome of 51 human proteins functionally involved with ORF7b2, enriched with 500 

first order proteins. An overall look reveals the involvement of peripheral compact groups of nodes 

that can represent specific functional modules or even particular protein complexes. Network 

calculated by STRING and the score is 0.9. The number of edges we have is greater than the number 

of nodes in a similar random network we can calculate (PPI enrichment p-value < 1.06e-16). We show 

the topological parameters in Table 1. 
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We can find a demonstration of this compactness in Table S2 and Figure 4S (in Supplements). 

The figure shows the distribution graph of the mean shortest paths as a function of the degree of the 

single nodes. The 30 nodes with the highest ranks, i.e., with the greatest connectivity in the network, 

are those with the lowest average shortest path-length. These nodes are all concentrated in the GCC. 

Thus, this network has a "giant component", where almost every node is easily reachable from almost 

every other node in GCC, through a dense net of interactions. New nodes will massively join the 

GCC in a non-linear and unpredictable way to create biological functions, as GCC is a set of 

functionally very attractive metabolic nodes. This helps create the set of functions of this metabolic 

module [24]. Typically, as the network grows, the giant component will continue to incorporate a 

significant fraction of incoming nodes. This means that we should find the main and crucial 

functional activities integrated into this subgraph. 

3.3. Principal Characteristics of the Interactome 

We transferred the interactome to Cytoscape [25] and analyzed it with the help of CentiScaPe 

(v2.2), Analyze Network [26], and STRING-app [27,28], which generated a Table of Nodes containing 

various columns with the quantitative values of many topological and functional parameters. This 

allowed the evaluation of characteristic topological and functional features for each node of the 

interactome. 

The value of parameters in Table 1 tells us we are considering a network made up of many 

independent and compact peripheral modules, which exchange relationships with fewer connections 

between them, albeit essential. The large diameter, network heterogeneity, and low-density support 

this view [29]. The diameter also suggests components quite distant from the central module. While 

the shortest average path length, which gives the distance between two connected nodes, is a 

metabolic advantage because small average lengths minimize transition rates between metabolic 

states in response to external stress. The clustering coefficient also supports this topology. It is a basic 

index for local density in a network and is a measure of the degree to which nodes in a graph group 

together. It takes values 0 ≤ C ≤ 1, thus a value of 0.549 shows a tendency to form clusters, where each 

node shows an average of 16.817 neighbors. This coefficient of aggregation, according to Barabasi 

[30], decreases with the increase in nodes.  

Table 1. 

Summary Statistics of network* Notes 

Number of nodes 551  
Number of edges 4648 ** 
Avg. Number of neighbors 16,871 Average connectivity of the 

nodes 
Network diameter 9  
Characteristic path length 3.666  
Clustering coefficient 0.549 0 ≤ C ≤ 1 
Network density 0.031  
Network heterogeneity 1.057 Tendency to contain hub nodes 
Network centralization 0.259 The extent to which certain 

nodes are far more central than 
others 

Connected Component 1 *** 

*) Calculated by Cytoscape Network Analyzer, which computes a comprehensive set of topological 

parameters [25, 26]. **) Most nodes (77%) with a score of 0.9 have a very large component of the 

scientific information necessary to calculate the interactions that derive from the Text Mining channel 

with only a partial presence of data coming from the Experiments channel. While, only 15.7% of the 

edges show a full score of 0.9, deriving from the "Experiments" channel alone, proving that their 

interactions are experimental. ***) This value is "1" to show that all nodes in the network are connected 

to each other. The presence of unconnected components (CC >1) alters the calculations of the 

topological parameters, making them unreliable. This is the fundamental reason for pruning. A single 

component accounts for strong network connectivity. Calculation by Cytoscape. 
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The Figure 3 shows the characteristic power distribution of nodes of a scale-free network, where 

the vast majority of nodes have very few connections, and only few (HUBs) have a very large number 

of connections [31]. This distribution is a defining characteristic of the biological network regardless 

of the experimental approach [32] and is important in understanding the system's behavior. The 

power law exponent highlights a configuration for scale-free networks that minimize the number of 

nodes needed to control the entire system [33,34]. In the figure, we highlight the seven HUB nodes 

(EGFR, SRC, PIK3R1, PIK3CA, GRB2, and HRAS), which have superior ranks compared to all others, 

also remembering that the GCC includes the top 30 nodes with the highest ranks. Hub nodes model 

the architecture of metabolic modules and EGFR, which serves multiple critical functional roles in 

the cell, is the highest degree interactomic hub node also because of its exceptional capacity for PTMs 

(see figures 5S). 

 

Figure 3. Node Distribution. The distribution follows a free scale distribution based on the power 

law. In the inset, we present the same nodes on a log-log scale, with the best fit of data shown in red. 

The function used for the fit is f(x) = a*xb, where the values of a, b, and R2 are 0.29, -1.89, and 0.62, 

respectively. A significant p-value of 1.0exp-16 of the interactome analysis and a good correlation 

index underscore a strong expectation of preferential relations or associations among nodes following 

their enrichment.  

We need alternative tests to prove the accuracy of our observations and hypotheses and to 

decode the information due to the actual functional activities in which ORF7b2 is involved. The 

following tables will show the most significant contents of some important functional categories. To 

evaluate the importance of each functional property, we will use the p-value as the evaluation 

criterion [5] for the main significant processes. STRING calculated the tables with the methods and 

techniques of GO analysis.  

3.4. Quantitative Evaluation of the Biological Functionalities in the Interactome 

Table 2 shows the overall picture of the many functional activities performed by the entire 

network. Over 10,000 significant PubMed publications were used to provide coherent information 

on the 5,057 functional terms. STRING calculated the entire interactome using this knowledge base. 

This assures us that the functional relationships taken into consideration are very robust and that the 

pruning operation reflected real knowledge gaps in the considered node properties. The spectrum of 
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biological activities induced by ORF7b2 appears remarkably broad in 15 categories and, therefore, 

both difficult to define and to study thoroughly. We have evaluated and selected the functional 

activities from time to time, as each of the 5,057 terms reported in Table 2 has a statistical value (p-

value) that is always less than 0.05, ensuring their significance. In this study, we will try to give a 

comprehensive view of the metabolic and molecular activity induced by ORF7b. Future studies will 

try to go into more detail.  

Table 2. 

Action Enriched terms 

Biological Process (Gene Ontology): 
Molecular Function (Gene Ontology): 
Cellular Component (Gene Ontology): 
Reference publications (PubMed): 
Local network cluster (STRING): 
KEGG Pathways: 
Reactome Pathways: 
WikiPathways: 
Disease-gene associations (DISEASES): 
Tissue expression (TISSUES): 
Subcellular localization (compartments):  
Human Phenotype (Monarch): 
Annotated Keywords (UniProt): 
Protein Domains (Pfam): 
Protein Domains and Features (InterPro): 
Protein Domains (SMART): 
All enriched terms (without PubMed): 

1690 GO-terms  
166 GO-terms  
267 GO-terms  
>10,000 publications  
137 clusters  
195 pathways  
494 pathways  
259 pathways  
112 diseases  
186 tissues  
249 compartments significantly  
1002 phenotypes  
99 keywords  
63 domains  
118 domains  
20 domains  
5,057 enriched terms in 15 categories 

Table 3 shows the most significant biological functions (GO-Biological Processes) among the 

1,690 related to the human proteome following the action of ORF7b. The principal activities involve 

the control of intracellular transport, also by vesicles, and the control of their localization in the cell. 

The set of cellular processes includes the transportation, binding, and holding of a protein complex 

or organelle in a specific position. A transporter or group of transporters facilitates the directed 

movement of molecules or cellular complexes into or out of a cell, or between cells, to effect 

transmembrane, microtubule-based, or vesicle-mediated transport. A significant value ranging from 

a p-value of 1.0e-77 down to 0.05 marks all 1,690 activities. Enzymes and signaling pathway receptors 

also appear to be possible prime targets, also considering the large number of human proteins 

involved. In particular, the series of molecular signals started with an extracellular ligand binding to 

a receptor with tyrosine kinase activity on the surface of the target cell and ending with regulating a 

downstream cellular process. The statistical significance of these biological actions is very high, as is 

the number of proteins involved. However, the table shows a comprehensive picture of 1,650 

functional activities that belong to both the virus and the cell in performing their respective strategies 

of attack or defense. A part of these activities also refers to the basal metabolic activities for the 

maintenance of normal vital functions (housekeeping functions). As we will see later, it will be 

possible to extract the specific activities of the virus. 

Table 3. Biological Functions. 

GO Term ID Term description Number of 
involved 
proteins 

p-value 

GO:0051179 Localization 378 2.01e-77 
GO:0006810 Transport 320 3.04e-67 

GO:0007169 
Transmembrane receptor protein tyrosine 
kinase signaling pathway 124 1.23e-66 

GO:0051234 Establishment of localization 322 7.72e-66 
GO:0015833 Peptide transport 187 1.09e-62 
GO:0051649 Establishment of localization in cell 230 3.37e-62 
GO:0051641 Cellular localization 254 1.29e-60 
GO:0015031 Protein transport 181 7.86e-60 
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GO:0007167 
Enzyme linked receptor protein signaling 
pathway 131 7.95e-59 

GO:0008104 Protein localization 213 1.46e-58 
GO:0045184 Establishment of protein localization 183 2.85e-58 
GO:0016192 Vesicle-mediated transport 189 1.18e-53 
GO:0032879 Regulation of localization 229 2.95e-51 
GO:0009987 Cellular process 546 4.49e-51 
GO:0046907 Intracellular transport 168 1.19e-49 

The Table 4 depicts the location in the cell where the most statistically significant functional 

activities (as presented in Table 3) occur. Many cell membranes, cytoplasm, as well as protein 

complexes, are metabolically involved. Of particular interest is the significant activity performed by 

the SNARE complex, specifically involved in driving vesicles and endosomes towards the correct 

cellular target, also providing for the correct docking. SNARE proteins (SNAp REceptor, i.e., 

Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins) are a family of cytosolic proteins 

involved in vesicular fusion with the target membrane during intracellular transport and exocytosis 

[35]. SNAPs interact with proteins of the SNARE complex during the recycling of the fusion complex 

components [36]. We know that interference with the function of SNAP proteins is associated with 

many pathological processes, such as colorectal cancer [37], epilepsy [38] or Huntington's disease 

[39]. However, it is the post-translational process by which a PTM protein (a proteoform) trans-

locates from the ER to its final destination, which drives function. This process also includes tethering 

and docking steps that prepare vesicles for fusion. 

Table 4. CELLULAR LOCALIZATION OF BIOLOGICAL FUNCTIONS. 

 
Table 5 (Reactome) shows the most statistically significant molecular mechanisms in which 

ORF7b might involve the human proteome. It contains biomolecules that perform precise metabolic 

and signaling activities and their relationships organized into biological pathways. Beyond the 

various interferences on important metabolic pathways, it is interesting to note the metabolic 

functions shown, such as, Nervous system development, Immune System, Infectious disease, 

Hemostasis, Innate Immune System, Platelet activation, Insulin receptor Signaling, Viral mRNA 

Translation and Cell-Cell communications. Although they are normal vital metabolic functions with 

 
GO Term ID 

 
COMPARTMENT 

Number 
of 

involved 
proteins 

 
p-value 

GOCC:0016020 Membrane 399 2.58e-92 
GOCC:0012505 Endomembrane system 302 1.36e-91 
GOCC:0031090 Organelle membrane 243 2.07e-77 
GOCC:0098796 Membrane protein complex 189 7.35e-74 
GOCC:0005737 Cytoplasm 437 1.41e-73 
GOCC:0031982 Vesicle 213 5.13e-62 
GOCC:0098588 Bounding membrane of organelle 174 3.17e-58 
GOCC:0005783 Endoplasmic reticulum 133 6.29e-55 
GOCC:0098805 Whole membrane 156 1.76e-53 
GOCC:0110165 Cellular anatomical entity 531 2.59e-51 
GOCC:0005789 Endoplasmic reticulum membrane 105 4.93e-51 
GOCC:0042175 Nuclear outer membrane-ER membrane network 106 1.79e-50 
GOCC:0031410 Cytoplasmic vesicle 177 1.29e-49 
GOCC:0032991 Protein-containing complex 306 4.76e-44 
GOCC:0043226 Organelle 437 1.20e-41 
GOCC:0043227 Membrane-bounded organelle 406 5.80e-41 
GOCC:0005622 Intracellular 462 8.33e-38 
GOCC:0043229 Intracellular organelle 407 4.82e-34 
GOCC:0005829 Cytosol 201 2.18e-32 
GOCC:0005886 Plasma membrane 220 3.75e-30 
GOCC:0031201 SNARE complex 34 3.79e-30 
GOCC:0043231 Intracellular membrane-bounded organelle 349 6.22e-30 
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high statistical significance, the parallelism with the known clinical effects of COVID-19 on the 

human organism [40,41] should not be overlooked, which is surprising.  

Table 5. REACTOME. 

Term ID Molecular Mechanism Number of 

involved 

proteins 

p-value 

HSA-9006934 Signaling by Receptor Tyrosine Kinases 140 4.44e-84 
HSA-1643685 Disease 189 2.66e-63 
HSA-422475 Axon guidance 101 6.79e-45 
HSA-9675108 Nervous system development 103 6.79e-45 
HSA-168256 Immune System 176 6.06e-41 
HSA-5663205 Infectious disease 115 6.30e-41 
HSA-162582 Signal Transduction 204 2.84e-37 
HSA-5653656 Vesicle-mediated transport 95 2.70e-34 
HSA-199991 Membrane Trafficking 92 5.34e-34 
HSA-392499 Metabolism of proteins 163 3.25e-33 

HSA-109582 Hemostasis 89 1.02e-32 

HSA-1799339 SRP-dependent cotranslational protein 
targeting to membrane 

45 2.19e-31 

HSA-168249 Innate Immune System 111 1.33e-30 
HSA-1227986 Signaling by ERBB2 35 2.43e-30 
HSA-74752 Signaling by Insulin receptor 38 5.77e-29 
HSA-177929 Signaling by EGFR 33 5.40e-28 
HSA-4420097 VEGFA-VEGFR2 Pathway 39 5.35e-27 
HSA-202733 Cell surface interactions at the vascular wall 42 3.19e-25 
HSA-76002 Platelet activation, signaling and aggregation 52 4.89e-24 

HSA-6811558 
PI5P, PP2A and IER3 Regulate PI3K/AKT 
Signaling 37 5.16e-24 

HSA-5683057 MAPK family signaling cascades 52 1.19e-20 
HSA-5684996 MAPK1/MAPK3 signaling 49 1.37e-20 
HSA-77387 Insulin receptor recycling 21 1.07e-19 
HSA-192823 Viral mRNA Translation 27 1.54e-16 
HSA-1500931 Cell-Cell communication 30 1.91e-15 

The spectrum of possible viral interference also might involve intracellular transport 

mechanisms and cell-cell communications. Many of these "actions" have a deep impact on human 

biology and inter-organ signaling, according to recent research on the effects of COVID-19 on the 

human organism [42,43]. In particular, we relate the most significant one to signaling by receptor 

tyrosine kinases (RTKs), a family of proteins that act as cell surface receptors for various factors, such 

as cytokines and hormones. These receptors control many cellular processes but have also a crucial 

role in the development and progression of many types of cancer [44,45]. It is also interesting to 

highlight the high significance in this interactome of some activities, such as "Cell surface interactions 

on the vascular wall", "Platelet activation”, “Insulin receptor recycling", "Viral mRNA translation", 

"Cell-cell communication".  

By using proteins directly involved with ORF7b, we extracted relevant activities in this 

interactome selectively from the human proteome. The symptoms in COVID patients, including 

thrombophilic alterations [46], hyperglycemia [47], and systemic spread of infected cells [48], may 

not be independent, as their underlying mechanisms, as found in Reactome, all appear to have the 

involvement of ORF7b, which may be the underlying cause.  

The number of human tissues and organs that are potential targets of ORF7b is also staggering. 

Table 6 shows these tissues/organs, which are important constituent of human body through many 

cell types.  
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Table 6. HUMAN TISSUES INVOLVED WITH ORF7b. 

 

TERM ID 

 

HUMAN TISSUES INVOLVED WITH 

ORF7b  

Number of 

involved 

proteins 

 

p-value 

BTO:0000345 Digestive gland 233 4.73e-56 
BTO:0001491 Viscus 322 1.59e-54 
BTO:0001489 Whole body 504 2.18e-45 
BTO:0000522 Gland 356 2.76e-45 
BTO:0000759 Liver 178 2.17e-44 
BTO:0001488 Endocrine gland 323 1.15e-37 
BTO:0003091 Urogenital system 341 3.03e-36 
BTO:0000227 Central nervous system 303 1.41e-35 
BTO:0001484 Nervous system 307 3.23e-35 
BTO:0000449 Fetus 125 1.68e-32 
BTO:0001078 Placenta 119 1.40e-30 
BTO:0000081 Reproductive system 308 5.01e-30 
BTO:0003099 Internal female genital organ 183 5.01e-30 
BTO:0000174 Embryonic structure 159 7.75e-28 
BTO:0000203 Respiratory system 127 9.81e-28 
BTO:0000083 Female reproductive system 292 1.71e-27 
BTO:0000089 Blood 136 1.39e-26 
BTO:0000570 Hematopoietic system 172 6.39e-26 
BTO:0000763 Lung 105 3.59e-23 
BTO:0000988 Pancreas 72 6.06e-23 
BTO:0000431 Excretory gland 106 8.44e-21 
BTO:0003092 Urinary system 97 3.43e-19 
BTO:0001244 Urinary tract 97 4.17e-19 
BTO:0000671 Kidney 86 5.49e-19 
BTO:0001129 Prostate gland 58 8.08e-19 
BTO:0000132 Blood platelet 50 2.81e-18 
BTO:0000511 Gastrointestinal tract 116 4.50e-17 
BTO:0000131 Blood plasma 51 1.46e-16 
BTO:0000574 Hematopoietic cell 77 1.21e-14 
BTO:0000082 Male reproductive system 148 3.21e-14 
BTO:0000751 Leukocyte 72 3.31e-14 
BTO:0000080 Male reproductive gland 138 6.39e-13 
BTO:0000254 Female reproductive gland 145 7.61e-12 
BTO:0005810 Immune system 96 3.68e-11 
BTO:0003096 Internal male genital organ 122 4.92e-11 
BTO:0000088 Cardiovascular system 70 4.40e-10 
BTO:0000421 Connective tissue 63 1.19e-09 
BTO:0000439 Eye 59 1.33e-09 
BTO:0000706 Large intestine 54 1.57e-09 
BTO:0000202 Sense organ 69 1.98e-09 
BTO:0000855 Lymph 25 4.56e-09 
BTO:0001085 Vascular system 38 9.90e-09 
BTO:0001424 Uterus 67 1.11e-08 
BTO:0000269 Colon 46 3.05e-08 
BTO:0001363 Testis 85 2.48e-05 

These tissues/organs share many of the previously described metabolic activities to varying 

degrees. Therefore, even if not all, they are potential targets of the virus where it finds the optimal 

metabolic conditions for its replication [49]. The need to expand the list of terms in this table arises 

from the need to show the many target tissues of the virus with a significant potential. It is amazing 

how a tiny protein like ORF7b could induce so wide effect. This also means that the protein appears 

to be an authoritative candidate for altering the molecular mechanisms that keep cells in contact with 

each other [50–52]. Dysregulating these mechanisms might free the cells to spread without a 

programmed death [53,54]. 

This TABLE shows a long list of the various organs in the abdominal cavity, which are potential 

targets of the action of this protein, and validates the clinical observations that covid is a systemic 

disease. The high statistical values suggest the enormous potential of the strategy implemented by 
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SARS-CoV-2 in hitting the human body. Some objectives are of particular interest. Nervous system 

(central and peripheral), human reproductive system (male and female), placenta and fetus, blood 

and hematopoietic system should alert us to the consequences encountered in the long-covid. Long-

covid is showing symptoms that suggest the involvement of these specific organs and tissues as well.  

An important index is also the high total number of proteins involved in each of the multiple 

functional activities represented in the tables previously reported. Considering the finite number of 

proteins in the interactome and the large number of them involved in many and different metabolic 

activities, this suggests that there is a high probability that single proteins may be involved in 

numerous functions. But all this also suggests that, in the event of a viral infection, a single human 

protein can perform many functional activities, some for the benefit of the cell and others for the 

benefit of the virus. KEGG pathways can infer higher-level functions and metabolic utilities of the 

human system from genomic and proteomic data. It groups genes and/or proteins into "pathways" 

as lists of genes/proteins taking part in the same metabolic process. Thus, KEGG is very useful for 

computational analyzes, including metabolic modeling and simulation according to systems biology, 

and translational research in disease development. KEGG's results show a wide range of activity. The 

breadth and diversity of the responses (195 pathways) and their statistical significance would require 

more space to highlight many of them. However, we have included the most probable in Table 7. 

These pathways reflect precise connections with the functions reported in the previous tables, 

identifying and endorsing their metabolic role. We can only identify the most significantly 

represented functions, but we cannot at this stage establish a direct correlation to viral activity. 

Table 7. 

Pathway Description Number of 
involved proteins 

p-value 

hsa04012 ErbB signaling pathway 50 3.02e-41 
hsa04510 Focal adhesion 64 2.27e-40 
hsa01521 EGFR tyrosine kinase inhibitor resistance 46 4.29e-38 
hsa04151 PI3K-Akt signaling pathway 74 1.16e-36 
hsa04141 Protein processing in ER 55 1.44e-35 
hsa04015 Rap1 signaling pathway 51 3.72e-28 
hsa04014 Ras signaling pathway 52 3.76e-27 
hsa05206 MicroRNAs in cancer 45 1.48e-26 
hsa04935 Growth hormone synthesis, secretion action 40 3.80e-26 
hsa04130 SNARE interactions in vesicular transport 27 1.38e-25 
hsa04062 Chemokine signaling pathway 45 2.35e-24 
hsa04145 Phagosome 40 9.33e-24 
hsa04360 Axon guidance 43 2.15e-23 
hsa04072 Phospholipase D signaling pathway 39 2.11e-22 
hsa04917 Prolactin signaling pathway 30 2.84e-22 
hsa04150 mTOR signaling pathway 39 4.38e-22 
hsa04810 Regulation of actin cytoskeleton 42 3.07e-20 
hsa01522 Endocrine resistance 31 4.10e-20 
hsa04915 Estrogen signaling pathway 35 4.10e-20 
hsa04722 Neurotrophin signaling pathway 33 4.29e-20 
hsa04919 Thyroid hormone signaling pathway 32 9.72e-19 
hsa04664 Fc epsilon RI signaling pathway 26 1.16e-18 
hsa04010 MAPK signaling pathway 45 5.16e-18 
hsa04721 Synaptic vesicle cycle 26 1.05e-17 
hsa04660 T cell receptor signaling pathway 29 1.05e-17 
hsa04662 B cell receptor signaling pathway 26 2.90e-17 
hsa04650 Natural killer cell mediated cytotoxicity 30 7.46e-17 

So far, we have examined the spectrum of functional/molecular activities present in an infected 

cell and, in particular, those involved by ORF7b. Once we have defined the principal functions, we 

need to highlight which single proteins favor the virus by "playing a double game". 
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3.5. Exploring the Physical Basis of Cytoskeletal Alterations Caused by ORF7b 

The propagation of a virus to uninfected cells makes up a crucial phase in its life cycle, achieved 

through the liberation of novel viral particles from the infected cell. The ability of ORF7b to induce 

changes in the cytoskeleton that could promote the spread of infected cells is not coincidental. As we 

have previously discussed, these changes seem to derive from dysregulations induced at the 

cytoskeleton level. These results, however, suggest different biological events from those already 

known, not only a spread of viral particles after cell rupture but also a spread of entire infected cells 

to distant tissues, exactly like tumor metastases. Therefore, this aspect needs a greater attention. The 

key processes for modifications of the cell membrane, or that of cellular compartments, should pass 

through direct deformations caused by specific proteins that interact with the membrane [165], or 

even through indirect deformation by the cytoskeletal structures [166]. Therefore, the cytoskeleton is 

one of the key driving forces, with a close association to these events [167].  

Unfortunately, understanding the influence of these molecular processes on the physical 

structure of the membrane is still an unsolved challenge, despite a slight improvement in our 

understanding of the underlying physical basis. Until now, it has been difficult to quantify the forces 

present in living cells within these processes. However, we now have a first, albeit crude, quantitative 

understanding of force production and distribution at the molecular level using clathrin-mediated 

endocytosis as a model [165,166]. During endocytosis, the actin cytoskeleton generates forces that are 

transmitted to the plasma membrane through a multi-protein coat, leading to membrane 

deformation. Although the exact extent of these forces remains uncertain, we can highlight a 

phenomenon of accumulation and redistribution of force within the endocytic mechanism. This has 

led to the widespread belief that the EPNs and Hip1R proteins transmit the force generated by the 

assembly of the actin to the plasma membrane [168,169]. As both protein types also attach to clathrin 

and other coat proteins, it is plausible that the transmission of forces to the membrane might occur 

through multiple pathways [170,171]. 

However, we know which eukaryotic genes/proteins actively engage in these processes, serving 

as either components or regulators of the cytoskeleton, while an intricate interplay between lipids 

and proteins controls the membrane remodeling during intracellular trafficking [172]. Noteworthy 

examples include MTOR, CTNNA1 (alpha 1 catenin), CTTN (cortactin), ITGBs (integrins), CDH1, 

CDH2 (cadherins), ACTB (actin B), and EPNs (Epsin family). A check of the interactome in Figure 2 

identifies all eight proteins and various members of their families (please also refer to the 

accompanying excel file for the comprehensive list and node degrees). This observation drew our 

attention to the intriguing possibility regarding the potential involvement of specific human proteins, 

in particular those associated with cytoskeletal modifications and negative regulation processes, in 

the mechanism of SARS-CoV-2 spread to non-infected cells and tissues. We used these proteins as 

seeds to tease out their functional relationships within the human proteome. Figure 4 illustrates the 

specific and close relationships between them during their involvement in the processes that impact 

the organization of the cytoskeleton. Using a specific feature of STRING, the proteins involved in the 

same biological process were highlighted and colored (see Methods). 

The network comprises all the human proteins involved in cytoskeleton dynamics. Since they 

are all reported in BioGRID as actively interacting, this suggests direct physical and/or functional 

associations. Among those of high rank, some, such as ACTB, are involved in a single dysregulated 

process (one color), others, such as MTOR, are involved in the management of multiple dysregulated 

processes (various colors). However, these interactions imply that SARS-CoV-2 exploits the host cell's 

proteins involved in processes regulated by CDH1, CDH2, EPN1, EPN2, CTNNA1, ITGB1, MTOR, 

ACTB, CTNNA1, and CTTN. This certainly affects cellular functions related to cell adhesion, 

signaling pathways, cytoskeletal organization, and programmed death through a Viral Hijacking of 

Cellular Machinery. But, these specific interactions also suggest potential roles for these cellular 

proteins in stages of the viral life cycle. In fact, their presence shows that these host proteins contribute 

to SARS-CoV-2 infection dynamics and pathogenesis, thus becoming appropriate therapeutic targets. 

However, further observations are important. Structural models of protein interfaces and the 

potential impact of post-translational modifications are crucial to understanding molecular 
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mechanisms based on interactions because alteration of these characteristics might change protein-

protein interactions and related biological functions. Many of the cytoskeletal proteins possess 

disordered structural domains and many phosphorylation sites. MTOR, serine/threonine protein 

kinase, in presence of RPTOR (Regulatory-associated protein of mTOR) and RICTOR (RICTR, 

Rapamycin-insensitive companion of mTOR) and through mTORC1 and 2 complexes, directly or 

indirectly controls the phosphorylation of at least 800 proteins and actin cytoskeleton is specifically 

MTOR sensitive [173–175]. DEPTOR (DEP Domain Containing MTOR Interacting Protein) is a 

negative regulator of TOR signaling and of mTORC1 and 2 pathways, inhibiting activity of both 

complexes [176,177]. This leads to negative regulation of cell size, and negative regulation of protein 

kinase activity. MTOR, DEPTOR, RICTOR, and RPTOR are all part of the interactome and 

communicate extensively. Thus, the relationships between them validate the various dysregulations 

in Figure 4 and Table 8. A last consideration is that another viral protein also interacts with the 

cytoskeleton, it is the N protein, which plays various roles in the life cycle of the coronavirus [178]. 

Here we want to underline that the N protein physically interacts with ACTB [179], reconfiguring 

and manipulating the cytoskeleton as also happens for other viruses. This protein, as we will see in 

Table 10, also physically interacts with ORF7b. The N protein was mentioned because it is the SARS-

CoV-2 protein that is involved in the formation of liquid droplets (see in "Discussion" for more 

details), a little discussed issue in the infection of this virus.  

 

Figure 4. – Relationships among cytoskeleton related proteins. Network (top left side) - Score 0.7 

(high confidence); all seven source channels are active; enrichment of the 8 basic proteins as functional 

seeds with 100 first-order proteins. Enrichment up to 100 proteins was necessary to achieve 

integration of all eight proteins into the network without expanding the number of functions too 

much. Topological data: number of nodes, 108; number of edges, 872; average node degree, 16.1; avg. 

local clustering coefficient, 0.697; enrichment p-value <1.0e-16. 

Table (right side) - the table shows the nodes with the highest degree. In the table there are also 

reported CDH2, CTNNA1, and EPN1 just to show all seeds. The number of colored segments of each 

protein node shows in which of the dysregulated processes shown in Table 8 it is involved. 
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Table 8. 

 

The table shows the dysregulated processes in which these proteins are involved. Strength is in logs 

and for P (see Methods). The colors are reflected in the metabolic characteristics expressed by the 

various nodes in Figure 4. 

We can conclude that interaction of SARS-CoV-2 ORF7b protein with host cell proteins, 

especially those involved in cytoskeletal modifications, plays a role in the virus's ability to propagate 

infect cell to target distant tissues. Structural disarrangements or metabolic dysregulations induced 

at the cytoskeleton level impact the cell's ability to counteract viral infection, aiding in viral spread, 

or facilitating intracellular transport of viral components, so contributing to its long-distance 

diffusion.  

3.6. Topological Analysis 

When a virus infects a cell, viral proteins represent the attackers and seek vulnerabilities in the 

network. Vulnerabilities introduce uncertainties into the network as a loss of original metabolic 

performance, even by changing information flows. Examining the network topology allows us to 

study both vulnerability and functional uncertainty, and to seek any architectural or functional 

changes. Crossing pathways between metabolic pathways or between signaling pathways are among 

the most vulnerable topologies, while hub-and-spoke topologies have the least uncertainty of 

destabilization. Therefore, topological data analysis is a powerful biological network analytic method 

[55]. To extract meaningful information from interactomic data, it is essential to understand the 

correlation between topological parameters and the mechanisms of biological functions [56]. 

Centrality metrics measure the importance of nodes by trying to quantify the idea that some nodes 

are more "important" than others. 

We can roughly divide topology scoring metrics into two groups, the local one to evaluate 

individual nodes and the global one to evaluate the network. Global metrics include Betweenness, 

Bottleneck, Eccentricity, Closeness, Radiality, Stress and more. It is a useful methodological approach 

to increase the efficiency in selecting, characterizing and classifying crucial proteins as both hub 

and/or bottleneck proteins. In particular, bottlenecks are key link proteins, almost always not HUBs, 

but hard-to-discover essential proteins which control and regulate metabolic cross-overs. In fact, in 

regulatory networks, being intermediate (i.e., "bottleneck") is an indicator of functional essentiality, 

which is often much more significant than degree (i.e., of being a hub) for understanding the direction 

of an information flow. 

Eigenvector Centrality measures the transitive influence of nodes. Relationships originating 

from high-scoring nodes contribute more to a node's score than connections from low-scoring nodes. 

If a node has a high eigenvector score, it means that it is connected to multiple nodes that have high 

scores as well. Figure 5 (top) shows the distribution analysis of the eigenvectors. The graph shows 
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that the eight highest values have their degree value exactly matching that of the eight hub nodes 

previously selected, showing that all hub proteins also have the highest eigenvector scores. Stress is 

an index of node centrality. It represents the number of the shortest paths passing through a node. A 

high-stress node is a node traversed by a very large number of the shortest paths. In an interactomic 

network, it shows the relevance of a protein in keeping functionally communicating nodes together. 

We can consider such a protein as a "bottleneck" protein [57–59]. The higher its value in the network, 

the more relevant the protein is in linking regulatory proteins of different pathways. However, 

because of the parametric significance of this index, it is sometimes possible that stress shows only a 

molecule involved in many cellular processes but not relevant for maintaining communication 

between other proteins [60]. The Figure 5 (middle) shows the stress distribution analysis where 

SEC13, EGFR, MTOR, HSPA5, VAMP2, and SRC are the major stress proteins. Betweenness [56] is 

also an index of node centrality, similar to stress, but with more information. It is a measure to rank 

the relative importance of vertices or edges. It represents the total number of non-redundant shortest 

paths connecting a pair of nodes, a1 and a2, crossing the node a. The betweenness value of a node 

increases if it lies on a non-redundant shortest path between nodes a1 and a2. Therefore, a high 

Betweenness score characterizes a key node in maintaining connections and this type of nodes 

becomes the critical point that controls the communication between other distant nodes in the 

network. In biological terms, it characterizes the interactivity of a protein in an interactome, showing 

the protein's ability to link distant proteins. Thus, betweenness is a measure of how important the 

node is to the flow of information through a network. This feature of the node in a protein signaling 

network may also show the relevance of the protein to act as a bottleneck. It acts as a junction 

connecting metabolic pathways that can hold the communicating proteins of different pathways 

together. The higher the value, the greater is the relevance of the protein as a bottleneck molecule. 

The interdependence of a protein effectively shows the ability of this protein to link distant proteins. 

In reporting modules, intermediate relationships are crucial to maintain the functionality and 

consistency of the reporting mechanisms.  
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Figure 5. Eigenvector distribution (top); Stress distribution (middle); Betweenness Centrality 

distribution (bottom). We calculated distributions using Cytoscape with Analyzer and Centiscape. 

Cross-referencing parametric values have completed the selection of the best proteins in the 

Cytoscape Node Table for each protein. 

The analysis in Figure 5 (bottom) confirms EGFR, SEC13, MTOR, HSPA5 as "bottleneck" 

proteins, also showing a new protein, SEC61A1. In the stress distribution, the SEC61A1 value was 

very close to that of VAMP2, while now is the VAMP2 value close to that of SEC61A1. Therefore, we 

can consider both proteins as bottlenecks. 

Eigenvector, Stress, and Betweenness Centrality distributions were used in a multi-parametric 

approach to validate the 8 hub proteins and define the role of some proteins as bottlenecks. Among 

proteins selected as the most ranked bottlenecks (EGFR, HSPA5, MTOR, SEC13, SEC61A1, SRC, and 
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VAMP2), EGFR and SRC show a dual role, both as a hub and as a bottleneck. Putting it all together, 

we have EGFR and SRC which are mixed (HUB/Bottleneck) proteins, HSPA5, MTOR, SEC13, 

SEC61A1, and VAMP2 which are pure bottleneck proteins, and PIK3R1, PIK3CA, GRB2, and HRAS 

which are pure hub proteins. These differences allow these proteins to be defined in three classes of 

molecular markers. In an eukaryotic protein interaction network, a node rarely represents the lone 

native protein because of alternative splicing [61] and proteoforms [62]. This may be a problem 

because in all databases (including STRING) it is customary to collapse all the dofferent functions of 

its isoforms and proteoforms onto the native protein, attributing to it a greater load of functions that 

it does not possess. In the interactome calculation, this anomaly produces biased nodes with higher 

and unreal connectivity.  

Researchers have identified three different types of hubs in tissue-specific protein-protein 

interaction networks: few tissue-specific hubs, many tissue-preferred hubs that are formed by highly 

connected proteins, and housekeeping hubs that are involved in normal metabolic management [63]. 

When we connect these features to their specific functional roles within different tissues, they exhibit 

distinct functional differences that are influenced by the structure/function relationships. 

Disordered regions significantly enrich pure hub and hub/bottleneck proteins among the three 

previous classes, and as a result, these proteins harbor a significant number of predicted binding sites 

[64]. They are also rich in splice variants, have longer peptide chains, and host a significant number 

of domains. This successful structural versatility drives their high propensity for interactions [62]. 

Because they are involved in essential functions such as phosphorylation and mRNA slicing 

processes, they get tangled in multiple intracellular functional pathways. Pure bottleneck proteins 

are typically extracellular proteins that are connected to pathological conditions, such as cancer, and 

play a role in cell-to-cell signaling pathways. Defining the actual functional role of a node is 

challenging because of the convergence of multiple functions with varying spatio-temporal 

characteristics. Many researchers still use static and deterministic approaches to select their 

experimental design, which leads to these limitations. 

The topological role of network hubs depends also on the exponent value of the power law [65]. 

A value of <2 for the degree exponent b (see Figure 3), however, very close to 2, suggests a hub-and-

spoke architectural model. The hub-hub network of the entire interactome fits a hub-and-spoke 

model, as Perera [66] and Barabasi [67,68] suggest. The largest hub (EGFR, 159 nodes) acts as a central 

coordinator and connects to a significant portion of nodes, which is shown in Figures 3 and 5. These 

structures act as a backbone connecting different metabolic modules. In this topological context, we 

should also identify the top-hubs as significant centers of control over the entire network. This view 

is also in agreement with the topological parameters calculated by the Cytoscape Network Analyzer.  

The Figure 6 also shows the relationships and the particular topology involving both HUBs and 

bottlenecks nodes [69]. Figure 6S (in the Supplements) shows how EGFR organizes in a topologically 

similar manner, even under normal conditions. Relationships between the HUB nodes are strong, 

while those with the bottleneck nodes are less intense, as the figure shows. All these significant nodes 

play a collective role in maintaining the stability of the hub-spoke system, albeit with varying 

functions and methods [70]. Each of them controls many and different biological processes [71]. The 

question remains: which node, regardless of its degree, is involved in the greatest number of 

functional processes? The question is not far-fetched. Because of the many metabolic crossroads, 

greater connectivity may not correspond to greater functional involvement [72]. When designing a 

drug, it is important to have this information.  
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Figure 6. Hub-and-spoke organization of major HUBs in the ORF7b-induced human interactome. By 

removing all unnecessary nodes from the network in Figure 2, we extracted this graph. Edge intensity 

is proportional to the interaction intensity between nodes (calculated by STRING). 

Table 9, while surprising for the very high number of functional involvements, shows how a 

HUB node is not always the main controller of the metabolic landscape. MTOR (degree = 24) and 

HSPA5 (degree = 19), although with lower connectivity, are involved in a very significant number of 

processes. The distribution of nodes and biological functions on the hub-and-spoke system, coupled 

with the ORF7b-induced interactome's complexity, handles this outcome. How functionally 

significant are the processes they regulate, would be the next inquiry. The answer would require a 

large analysis not covered by this study. Certainly, these same nodes, depending on their level of 

genomic expression, can both up-regulate and down-regulate a biological process [73–75]. Down-

regulated processes, or "negative biological processes" according to GO, are important to highlight 

because of their higher probability of resulting from viral strategy [76]. Here, as we will see below, 

statistical significance is no longer the only parameter to follow. 

Table 9. Involvement of HUBs and Bottlenecks in the control of Biological Processes (GO). 

HUB protein Number of GO 
Processes 

Bottleneck protein Number of GO 
Processes 

EGFR 408 EGFR 408 
PIK3R1 328 HSPA5 234 

EGF 646 MTOR 413 
HRAS 245 SEC13 83 
GRB2 233 SEC61A1 63 
SRC 508 SRC 508 

PIK3CA 271 VAMP2 143 

Note – EGFR and SRC are on both lists because of their dual activity. STRING extracted from the 

genes paired to each term the biological processes for each individual protein under the Biological 

Processes (GO) section. 

3.7. The Functional Effects Depend Not Only on ORF7b but Also on the Integrated Action of Several Viral 

Proteins 

The virus shows extraordinary strategic potential. Our previous results indirectly showed the 

specific impact of its proteins on crucial metabolic processes. About 200 symptoms of patients [77] 

generated various hypotheses based on clinical impression found to be associated with long-covid. 

All this shows how broad and diversified the systemic action of the virus is. Thus, part of the broad 

spectrum of metabolic activities found in this interactome might be associated with the multitude of 

clinically observed symptoms. However, we should not think that the ORF7b protein alone is capable 

of so much. The proteome yields biological functions via target proteins, which result from specific 

one-to-one interactions between viral and human proteins. Other viral proteins could target human 
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proteins present in metabolic modules where ORF7b also operates. The ORF7b circular interactome 

(Figure 1) displays other viral proteins, ORF3a, and M, which may show their ability to target human 

proteins in the same metabolic modules as ORF7b. As of July 2023, we have organized a database 

called SHPID, which contains BioGRID interactions. In this database, we have collected 33,823 

interactions between SARS-CoV-2 and human proteins. We analyzed the hub proteins highlighted in 

Figure 3. The proteins EGFR, SRC, and PIK3R1 are the major HUB nodes of the ORF7b interactome 

with 159, 123 and 90 links, respectively. Although these proteins are involved in the ORF7b 

interactome, Table 10 reveals that they also interact with other viral proteins. 

Table 10.  

Viral Protein Human target Viral protein features** 

nsp4* EGFR 

Is involved in the assembly of virally 
induced cytoplasmic double- 
membrane vesicles necessary for 
viral replication. 

M* EGFR Component of the viral envelope. 

ORF3a* EGFR 

Homotetrameric potassium sensitive 
ion channels (viroporin) and may 
modulate virus release 

ORF7b* EGFR This paper 

S EGFR Spike or Surface glycoprotein 

  
 

nsp4* SRC See above 

nsp5* SRC 
Is a cysteine protease, essential for the 
viral life cycle. 

nsp6* SRC 

Plays a role in the initial induction of 
auto-phagosomes from host 
reticulum endoplasmic 

nsp13* SRC 
Multi-functional helicase with a zinc-
binding domain in N-terminus 

nsp14* SRC 3'-5' deoxyribonuclease 

E* SRC 
Plays a central role in virus 
morphogenesis and assembly 

M* SRC See above 

ORF3a* SRC See above 

ORF3b SRC 
Could be involved in immune evasion 
as interferon agonist (78)  

ORF6* SRC 
Could be a determinant of virus 
virulence 

ORF7a* SRC 

Non-structural protein, which is 
dispensable for virus replication in 
cell culture 

ORF7b* SRC See above 

ORF8 SRC 
Is a viral cytokine regulating immune 
responses 

S SRC See above 

  
 

M* PIK3R1 See above 

ORF7b* PIK3R1 See above 

ORF3b PIK3R2 See above 

M* PIK3R3 See above 

S PIK3R3 See above 
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N* ORF7b 
Responsible for wrapping viral RNA 

into a symmetric helical structure 

Notes *) With few exceptions (ORF3b, ORF8, and S) all the remaining viral proteins, although 

apparently compact, have intrinsically disordered regions (IDR), often in the tails, which make 

possible interactions with numerous partners. This could be the structural cause of their multiple 

action. **) Viral protein information from National Center for Biotechnology Information – National 

Library of Medicine – USA. 

The Table 10 depicts how these high-degree human proteins are a common target for many viral 

proteins. Our analysis of the interactions between the thirty-one viral proteins and the human 

proteome, as reported by BioGRID, yielded this result. Even though viral proteins have co-evolved 

with their human host or other species, they seldom possess structurally detailed molecular interfaces 

for accurate and stable interaction. Only a few viral proteins exhibit strong interactions, akin to those 

observed in complexes. Most of the interactions have weak bonds, also because of the anisotropy of 

the contact areas [79]. Viral proteins attempt to establish competition with normal binding proteins 

by mimicking interaction interfaces to the greatest extent possible, binding to target proteins with 

interaction constant values that typify weak processes. The interfaces mimicked by viral proteins 

compete through multiple and transient cellular interactions. They interact with hubs and bottlenecks 

in the human PPI network to control vital proteins in complexes and pathways. Proteins can 

overcome a structural difficulty by introducing an intrinsically disordered region (IDR) in the 

sequence, which can enhance the mimicry of contact surfaces. IDPs have IDR stretches that may be 

part of low affinity inter-molecular interactions [80]. With the emergence of IDPs in eukaryotic 

proteomes [81], the disorder becomes a crucial information for PPI evaluation.  

Many of the interacting viral proteins in the Table 10 show IDR (data not shown), thus, the 

probability of multi-targeting is high and this could explain the phenomenon (see Methods for 

details). After all, even the three human proteins analyzed have inherently disordered and highly 

mobile segments (data not shown). They are lipid-anchored proteins with the central body in the 

cytoplasm or outside the cell. Two long disordered and mobile tails are present in EGFR, which is 

found on several internal membranes (endosomes, ER, Golgi, nucleus) and on the surface. SRC also 

has long disordered and mobile tails and some mobile central segments and has multiple 

localizations, both on the surface and on intracellular organelles (endosomes, mitochondria, etc.). 

Finally, PIK3R1 too shows a long-disordered C term with many mobile intermediate segments and 

is on the cell surface. To this we should add that the disordered/mobile parts often show PTM sites. 

The presence of PTM sites expands the number of proteoforms for any single protein, increasing the 

probability of interacting with new molecular partners, establishing new functions.  

A particular observation is that our database shows that ORF7b itself interacts with the viral N 

protein (see Table 10). Among the various functional peculiarities of this protein, we find it is 

involved in the formation of liquid droplets [178]. The liquid-liquid phase separation is considered 

the key mechanism for organizing macromolecules, such as proteins and nucleic acids, into 

membrane-free organelles [184], and N protein can self-bind into spherical aggregates which can 

freely diffuse in the condensed phase with liquid-like behavior [185,186].  

Although we had also examined other relevant human HUB nodes of the ORF7b interactome, 

such as PIK3CA, EGF, and HRAS, we did not find other direct targeting of viral proteins. Therefore, 

these seem nodes extracted specifically from the ORF7b functional enrichment and functionally 

connected with the other HUBs of this network. Thus, their presence in this interactome seems due 

to a specific functional requirement of ORF7b. After all, the human metabolic system responds 

intricately to the ORF7b protein, consistent with the multiple metabolic responses of multicellular 

eukaryotic systems. In particular cases, viral action may require the synergistic action of different 

viral proteins. Thus, to achieve its biological effect, the virus can also use complex and sequential 

interaction modes on a single protein. This analysis is in excellent agreement with the previous 

classification of hub and bottleneck proteins. Unfortunately, we currently do not know where, how, 

and when these interactions occur. Hence, our vision of a dynamic phenomenon is only static and 

somewhat unclear, which may also be spatio-temporally inappropriate or distorted in our 
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reconstruction of it [82]. Anyway, SARS-CoV-2 employs a known strategy of targeting the same 

human protein with multiple viral proteins [83]. 

3.8. The Peculiar Case of GRB2, a Protein in the Service of ORF7b 

GRB2 (Growth Factor Receptor Bound Protein 2 – UniProt: P62993) is a protein that according 

to BioGRID binds ORF7b, although with the low level 1. While, our observation within the BioGRID 

dataset reveals that this protein exclusively interacts with ORF7b. We excluded it from the seed 

proteins owing to its low significance, but found it recluted in the interactome. The enrichment 

suggests that this ORF7b interactor is essential for virus infection. It assumes the role of HUB with 84 

connections and controls 233 biological processes (see Table 9). GRB2 is an important protein that 

provides a critical link between the phosphorylated cell surface growth factor receptors (EGFR) and 

the PI3K-Akt signaling pathway. Both KEGG and Reactome Pathways reported its significant 

involvement in several signaling mechanisms (hsa04151, PI3K-Akt signaling pathway; HSA-1963640, 

GRB2 events in ERBB2 signaling; HSA-179812, GRB2 events in EGFR signaling; HSA-354194, 

GRB2:SOS linkage to MAPK signaling). Later on, we come to know that it often involves in various 

dysregulation processes that assist viral activity. Table 9's proteins and GRB2's case show the 

sophisticated and diverse molecular strategy of SARS-CoV-2. The hubs listed in this table are proteins 

obtained through functional enrichment, but are not direct molecular interactors of ORF7b. 

3.9. The Role of ORF7b 

The diverse and sometimes contrasting metabolic properties of some of the interactome nodes 

are surprising. Among the 1,691 Biological Processes (GO) induced by ORF7b, there are 117 peculiar 

metabolic activities mentioned as negative activities (approximately 7%). Most of the HUB and 

bottlenecks proteins are also involved. According to AmiGO-2, the official web-based set of tools for 

searching and browsing the Gene Ontology database, negative activity means "any process that stops, 

prevents or reduces the frequency, rate or extent of metabolic functions". To identify which terms are 

most significant for these purposes, p-values alone cannot guide us. STRING measures the size of the 

enrichment effect using also the "Strength" score. The sole use of the p-value can produce an 

overrepresentation of the GO term, while the value of P (see methods) is useful for amplifying those 

underrepresented biological processes preferentially connected with a specific context [85] through 

their expression. A limitation of this approach is that, in a complex interactome, many proteins are 

not specific to a single metabolic pathway, but are sometimes even part of multiple pathways. Here, 

the massive study of some of these pathways favors the assignment of the protein to the more studied 

GO pathways. In fact, the databases favor assigning the protein to the more studied GO pathways 

and obscure the emerging relationships towards different biological pathways that are not studied 

or poorly represented [86]. Therefore, the analysis should select only the most reliable terms. 

In addition, Hong et al., [86] demonstrated that functionally linked gene pairs, even in different 

functional pathway types, as defined in KEGG pathways, show positively correlated expression 

levels. Therefore, these two genes (or their proteins), even in a functional pathway altered by a 

disease, are similarly up-regulated or down-regulated. This is because of their reciprocal and close 

functional relationships [87]. So, when a disease affects a metabolic pathway, all the genes in the 

pathway will regulate their expression positively. Therefore, an over-representation of a GO process 

suggests an over-expression of the genes and their decoded products that make up the metabolic 

pathway, since they have close functional relationships with each other in regulating the expression 

[86,87].  

We selected 17 terms with the highest possible strength value, paired with a very significant p 

value and listed according the value of P (see Methods). Table 11 reports these terms according to 

the previously expressed rule. In the table, among the proteins involved in these negative functional 

activities, we can note (in bold) many of the proteins previously highlighted as HUB nodes, or as 

"bottlenecks" or involved in other important signaling pathways. Although all Biological Processes 

show positive values of enrichment (high strength), very many have minimal or negligible 

enrichments. It is necessary to exceed the value of 0.5 to have an enrichment of 3 times. We found 
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that 32.28% of the processes have enrichments lower than 3 times and only 14.7% have enrichments 

greater than 10 times. The remaining 53.02% has intermediate enrichment values, between 3 and 10. 

This means that the most enriched fractions are very few and we can think the average enrichment 

of most biological processes as suitable for the normal metabolic function to be performed. The 17 

selected terms therefore make up a very limited set, less than 1%, but the only one that can boast a 

statistically significant and even conspicuous enrichment. However, the negative term means over-

enrichment and, therefore, suggests a gene over-expression. Some sets of proteins, enriching 

themselves, change their functional state, inducing changes in the pathways they control. Since the 

meaning of the negative term is loss of control, down-regulation, this means that by weakening their 

functions, they favor the activation, or deactivation, of the functional pathways they control. This is 

not new. We find a dysfunctional expression of genes with overexpression and deleterious functions 

during disease or even aging, in particular, of genes involved in pathways related to stress responses, 

antioxidant defenses, and DNA repair [88–90]. 

Table 11. Common altered pathways. 

Function Strength* p-value P Human Proteins involved in the process 

Negative regulation of 
ERBB signaling pathway 

 
 

1.22 

1.38e-18 22.13 

HBEGF, EREG, PTPN12, TSG101, CBL, CBLB, 
EGF, ERBB2, CBLC, EGFR, TGFA, SOCS5, 
PTPN2, HGS, EPS15, ERRFI1, SNX5, SH3GL2, 
GRB2, BTC, AREG, SH3KBP1, CDC42, EPN1, 
EPGN 

Negative regulation of 
EGFR signaling pathway 

 
 
 

1.23 3.24e-17 21.53 

HBEGF, EREG, TSG101, CBL, CBLB, EGF, 
CBLC, EGFR, TGFA, SOCS5, PTPN2, HGS, 
EPS15, ERRFI1, SNX5, SH3GL2, GRB2, BTC, 
AREG, SH3KBP1, CDC42, EPN1, EPGN 

Negative regulation of 
anoikis 

 
 

1.14 5.72e-05 6.56 

PIK3CA, ITGA5, BCL2L1, CAV1, PTK2, 
SRC, ITGB1 

Negative regulation of 
extrinsic apoptotic 
signaling pathway 

 
 

0.76 9.26e-07 6.05 

GCLC, LGALS3, BCL2L1, IGF1, CTNNA1, 
UNC5B, FYN, FAS, CASP8, LMNA, GCLM, 
SRC, AR, CTTN, NRG1, ITGA6, AKT1 

Negative regulation of 
protein tyrosine kinase 
activity 

 
 

0.99 9.13e-05 5.90 

TSG101, CBL, CBLB, CBLC, SOCS5, PTPN2, 
CAV1, ERRFI1 

Negative regulation of 
epidermal growth factor-
activated receptor activity 

 
 

1.18  1.7e-04 4.99 

TSG101, CBL, CBLB, CBLC, SOCS5, ERRFI1 

Negative regulation of 
interleukin-6 production 

 
0.81 5.0e-05 4.61 

CSK, SOCS5, GAS6, TLR9, VIMP, PTPN6, 
ARRB1, ENSP00000417517 

Negative regulation of 
peptidyl-tyrosine 
phosphorylation 

 
 

0.88 1.50e-05 4.55 

TSG101, CBL, CBLB, CBLC, SPINK1, SOCS5, 
PTPN2, CAV1, ERRFI1, PRKCD, PTPN6 

Negative regulation of 
PERK-mediated unfolded 
protein response 

 
 

1.33 9.2e-03 4.12 

NCK2, PTPN1, NCK1 

Negative regulation of 
endoplasmic reticulum 
unfolded protein response 

 
 

1.04 8.9e-03 4.11 

NCK2, HSPA5, PTPN1, NCK1 

Negative regulation of 
blood-brain barrier 
permeability 

 
 

1.55 3.13e-02 3.88 

SH3GL2, VEGFA 

Negative regulation of 
response to oxidative 
stress 

 
0.81 

4.1e-04 3.74 

SLC7A11, MET, GGT7, CTNNB1, FYN, 
NFE2L2, INS, HIF1A, AKT1 

Negative regulation of 
protein tyrosine 
phosphatase activity 

 
 

1.39 4.67e-02 3.71 

LGALS3, GNAI2 

Negative regulation of 
mesenchymal to epithelial 
transition  

 
 

1.38 4.77e-02 3.69 

CTNNB1, STAT1 

Negative regulation of 
blood coagulation 

 
0.83 

2.8e-04 3.69 

PROC, PDGFRA, F2, PLAUR, PLAU, EDN1, 
CD9, PROS1, PRKCD 
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Negative regulation of 
primary miRNA 
processing 

 
 

1.38 4.67e-02 3.68 

STAT3, IL6 

Negative regulation of 
lipid transport 

 
0.79 1.74e-02 1.77 

EGF, PTPN11, SREBF2, AKT1, ITGB3 

Note: *) For comparisons, a strength of 1.39 = 24.5 times enrichment, and 0.76 = 5.8 times. In red bold, 

the proteins highlighted in the text as HUB nodes, or as "bottlenecks" or involved in other important 

signaling pathways. 

Our examination of Table 10 enables us to confidently affirm that many pathways show 

statistically significant dysregulation, and we may have successfully identified pivotal genes 

associated with these pathways. At present, accurately describing what occurs is challenging because 

of the lack of data to pinpoint causes, determine the opportune moment for the process, and establish 

the sequence of events, all because of the absence of space-time information. The strategy of ORF7b, 

in collaboration with other viral proteins, aims to create a viral microenvironment that helps infected 

cells minimize cell matrix rigidity and adhesion, increase intracellular oxidative stress, generate pro-

survival signals, to trigger the epithelial-mesenchymal transition process, to inhibit intracellular 

transport and ER activity, starting widespread cellular metabolic deregulation. We should emphasize 

that the process of metastasis, characterized by the epithelial-mesenchymal transition (EMT) and its 

inverse, the mesenchymal-epithelial transition (MET), plays a crucial role in the metastatic spread of 

carcinomas [91]. Likewise, these events appear to be among the primary targets in preventing 

programmed cell death mechanisms of infected cells, allowing survival after separation and systemic 

spread.  

In particular, we can see the dysregulation of all protein tyrosine kinase receptor activities. This 

reduces the processes of internalization of external signals and the activities of receptors activated by 

growth factors. Integrin-mediated alterations of the intercellular matrix and loss of control over cell-

extracellular matrix adhesion processes are also favored by integrated dysregulation of oxidative 

stress, unfolded protein response of the ER and lysosomal action [92,93]. The intention behind all 

these activities is to dysregulate programmed death processes such as apoptosis and anoikis, 

promoting the spread of infected cells in the body. 

The systemic spread of infected cells explains well why the tissues and organs showed as 

infectible in Table 6 are so numerous and all significant. In the presence of infected cellular material 

widespread in the body, the virus has also the potential ability to cause inflammatory processes in 

the brain, so it is important to pay particular attention to the dysregulation of blood-brain barrier 

permeability. Through altering endocytosis, endosomal trafficking, lysosomal degradation, blocking 

anabolic processes and lipid transport, this creates mitochondrial dysfunction, resulting in a heavy 

dependence on glucose for energy production. Numerous miRNAs work within the cell and could 

interfere with these procedures. However, distinguishing them individually through this type of 

analysis is not yet possible. 

In a nutshell, this tiny protein is involved in controlling the intercellular communication of the 

virus. By suppressing intracellular signaling, it created a metabolic microenvironment that caused 

generalized metabolic dysregulation and blocked intracellular transport of cargos. Prevention of local 

programmed death mechanisms leads to viral shedding. Various viruses show comparable infection 

strategies [95], such as extending particular stages of the cell cycle, managing programmed cell death, 

and using the nuclear membrane to transmit viral genetic material to and from the nucleus. These 

findings help to understand how SARS-CoV-2 can spread via cell-to-cell transmission [95], where 

ACE2 is not required. Our assessment shows that viral mutations shared by different variants are 

unsuitable for evaluating disease mechanisms. This is due to the high metabolic interference capacity 

of the remaining information package of the virus. Attention to mutations in the Spike protein has 

distracted from the evaluation of the molecular mechanisms underlying the metabolic dysregulations 

induced by the virus. 

3.10. Cluster Analysis 
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Cluster analysis allows us to extract protein interaction sub-networks that interact with each 

other in functional complexes and pathways to produce reliable hypotheses that can explain the 

various dysregulations of human metabolism induced by ORF7b. This also increases the likelihood 

of identifying candidate genes/proteins that can help us understand the rationale for viral action and 

the metabolic pathways involved. 

Cluster analysis is a data analysis that explores the groups present within a dataset, known as 

clusters. We used Cluster K-means analysis, which does not need to group data points into 

predefined groups and is an unsupervised learning [96] method. In unsupervised learning, insights 

come from data without predefined labels or classes. K-means is also an iterative partition algorithm 

and is a good clustering algorithm that ensures high similarity within cluster and low similarity 

between clusters. The clusters representing our entire population of interacting molecules in the 

ORF7b interactome derive from a base of significant experimental data and rigorous procedures for 

implementing the network. This should produce high-quality clusters, which means non-redundant 

and low-noise results, as they can reduce the quality and interpretability of the clusters. The value to 

be attributed to K is one of the major drawbacks of this algorithm. In our analysis, K is equals 10 

(Figure 7).  

 

Figure 7. Clustering. The analysis shows ten clusters, all clearly identifiable except for the two central 

ones. All 10 clusters are statistically significant with p-values < 1.0e-16. In brackets, next to each key 

hub, there is its degree. We have not highlighted the links between the clusters to make them clearly 

visible. The Giant Connected Component (GCC) is made by two overlapping central clusters which 

add up to 206 total nodes, approximately 37% of the entire interactome. Except for clusters 1 and 9, 

which have distinctive features and require separate treatment, the most crucial parametric 

information is next to each cluster. 

This result, got after many attempts with lower K values, has to be considered as the best 

compromise. We used this K-value because it gave us the most compact clusters and statistically 

significant p-values (all p-values are always <1.0e-16). The ten metabolic modules are all functionally 

consistent, and in the figure 7S and 8S, we also show the links existing between the clusters. The 

many metabolic relationships existing between the clusters, as shown in the figure, mostly represent 

the normal metabolic machineries necessary for cellular life. Only the GCC shows an overlay of two 

modules, but, as we shall see, they resolve into two independent sub-graphs. The greatest interest is 

precisely in these two sub-graphs because they contain most of the HUBs and bottlenecks nodes 

previously found and control crucial metabolic pathways. While the other sub-graphs seem to 
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regulate typical metabolic activities, understanding the specific functions of these central modules 

and where their constituent proteins operate within the cell is essential. This is a core-periphery 

organization. Core-periphery is a characteristic we can find at group-level relationships in biological 

networks, but not only [97]. The situation involves meso-scale dominance events [98]. It describes a 

scenario where a group of core nodes captures an excessive number of contacts in the network. On 

the contrary, the nodes on the periphery possess fewer interconnections with one another, albeit they 

are connected to the core nodes. In networking, the mesoscale describes sub-cellular events on length 

scales ranging from that of a single cell, up to the size of molecular complexes, where groups of 

molecules self-organize relationally to form large, functional core structures [99]. While individual 

nodes perform only local operations, their organization into clusters generates a richer and more 

diverse functional repertoire. 

3.11. Analysis of GCC Core 

The cluster analysis extracted from the compact GCC area two clusters (1 and 9), both 

statistically significant and compact. Figure 8 shows the cluster No.1. In the caption, there are the 

major topological parameters. This cluster is very compact. Its major role is to regulate the EGFR 

family signaling pathway (EGFR, ERBB, ERBB2) where the receptors' protein tyrosine kinases 

signaling show a p <6.85e-48. It is involved in regulation of the Jak-Stat pathway, ERBB and ERBB2 

signaling (p <2.55e-40), and regulation of peptidyl-tyrosine (p <2.99e-27). We can find the key details 

in the following GO terms: GO:0007169, GO:0038127, and GO:1901184. But in the cluster No1 we find 

also ITGB1, CAV1, EGF, EGFR, PIK3CA, INS, GRB2, PRKCA, HRAS, MTOR, just to mention the 

major nodes. Thus, the role of this cluster is also to control cell migration, cell motility, immune 

response, phosphorylation, cell death, apoptotic cell process, cell adhesion, cell migration, stress, 

insulin path, phagocytosis, lymphocyte activation, blood coagulation, Cytokine-mediated signaling 

pathway with very high statistical significance, as it appears from the list calculated by STRING in 

the Biological Process (GO) category. 
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Figure 8. Cluster No.1 – 140 nodes, 1110 edges, p-value <1.0e-16. Average node degree 15.4, avg. Local 

clustering coefficient 0.622 (expected No of edges in a similar random network, 202), network 

diameter 3, network radius 2, Characteristic path length 1.91, network density 0.108. Main HUB node, 

EGFR (degree = 123). In red, HUBs previously found in the whole net; in yellow, a bottleneck node. 

Proteins operate in their specific environments, therefore knowledge of where proteins are 

located is crucial to understanding the metabolic processes of which they are a part. We can perform 

this analysis with the help of Cytoscape. After transferring the cluster 1 to Cytoscape, we have with 

the help of STRING app and Nodes Table (Compartment analysis) selected the protein nodes with 

the highest statistical value (5.0) that operate in the various cellular compartments. Level 5 collects 

the most important proteins in defining the biological processes of which they are part. 

In the Table 11 we can see in which cellular compartment the cluster No 1 proteins operate, but 

we also see that there are various proteins already defined as dysregulated, so we can know where 

they operate. Nucleus and plasma membrane, as well as the cytoskeleton, are among the richest 

compartments of functional activities and proteins crucial for the progression of these activities. In 

the Table 11 we find many of these proteins, for which symbolic notations have been used to 

distinguish them (see note to the Table). The table summarizes two important proteomic 

characteristics: a) there are numerous proteins that operate in a multipolar way, i.e., in several 

compartments (e.g., EGFR); b) there are many dysregulated proteins, in particular those involved in 

the fundamental processes of signaling and in favoring cell diffusion. Various proteins localize in 
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multiple compartments, showing a shared protein pool even if apparently unrelated. However, each 

protein has its own level of expression and its own compartmental distribution.  

Viewing all together, we could read this as indicative of functional progressions starting at the 

membrane and proceeding towards the nucleus. The limit is the absence of temporal information that 

statistically flattens the metabolic dynamics and makes it very difficult to have reliable sequential 

explanations. But this is not the only intricacy. Figure 7S and 8S demonstrate how single nodes can 

take on multiple roles to engage in various functional processes. Even a single functional activity can 

have its nodes distributed in numerous modules. This is a straightforward demonstration of how 

difficult it is to describe the actual behavior of concurrent functional processes without a temporal 

chronology, but the entire network, i.e., the operational context, can help. 

Not only the regulation of space and time but also the compartmentalization characterizes the 

cellular proteomes. The presence of similar proteins in different compartments suggests different 

local proteomes [100], each performing its local metabolic activities, so it is difficult to identify any 

distortion. Nucleus and cytoplasm are among the most populated compartments. The proteomes of 

these compartments show a multipolar protein distribution, which makes them functionally very 

ductile. Therefore, attributing static and specific roles to the metabolism and to the proteins that 

operate within is a vision that does not correspond to reality. We cannot attribute a protein's 

metabolic function solely to its presence or absence. The function is also determined by the reactions 

happening at different omic levels and compartments [101]. Reactions that are always the result of 

protein-protein interactions. Thus, interactomic level reflects what happens at the genomic or 

transcriptomic level, generating a network that differs from the underlying ones because displays a 

portion of the total functional mechanisms. The event in question has recently gained prominence 

[102]. Some melanoma cells show a dependence on external sources of methionine for their growth. 

The authors describe the methylome, transcriptome and proteome of these cells. Only the multilevel 

contemporary study allowed the authors to understand the real metabolic behavior of methionine 

addiction because the study of the methylome alone led to trivial conclusions. 

In short, we have the spatial distribution of proteins of the ORF7b interactome, but the temporal 

distribution is missing. Multi-localization of a protein increases the probability of interactions, 

generating possible new functional characteristics specific to the context. This expands the functional 

capabilities of the cell but makes any modeling that does not include all the parameters involved 

difficult. 

Due to functionally important proteins, cluster No 9 has the potential to perform multiple 

functions (Figure 9). This cluster controls the process that modulates the cell transport to, or 

maintained in, a specific location (GO:0032879 p = 2.30e-34); extent of addition of phosphate groups 

to a molecule (GO:0042327, p = 1.89e-29); cell migration (GO:0030334, p = 3.11e-29); regulation of cell 

migration (GO:0030334, p = 3.11e-29); The transmembrane receptor protein tyrosine kinase signaling 

pathway (GO:0007169, p = 1.78e-28). It is also associated with the negative regulation of cell death 

(GO:0060548, Strength = 0.92, p = 1.75e-17) and programmed cell death (GO:0043069, Str.= 0.90, p = 

3.96e-16). 0.98, p = 2.26e-16) or in the Negative regulation of production of miRNAs involved in gene 

silencing (GO:1903799, Str. 1.78, p = 4.6e-4). Similar considerations also apply to cluster No 9.  
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Figure 9. Cluster No.9 – 62 nodes, 437 edges, p-value <1.0e-16. Average node degree 14.097, avg. Local 

clustering coefficient 0.682 (expected No of edges in a similar random network, 83), network diameter 

3, network radius 2, Characteristic path length 1.798, network density 0.231. Main HUB node, SRC 

(degree = 56). In red, some of the principal nodes of this cluster. 

Dysregulated proteins, such as CTNNB1, SRC, PTK2, ITCB3, or PRKCD, found in Cluster No 9 

(see Table 12), are present in many cellular compartments, including those that are distant from each 

other or different from a chemical-physical point of view, such as cytosol and plasma membranes. 

This means that they regulate temporally their expression and that they require post-translational 

modifications that depend on the context. Because most analysis platforms collapse this information 

into the native protein, nodes end up having more functional links than the context. This induces 

errors on the degree value and on the related topological evaluations, which can lead to alterations 

in the network. 

An instance of this is the activation of the Human SRC (P12931, Proto-oncogene tyrosine-protein 

kinase Src), a Non-receptor protein tyrosine kinase that is triggered upon binding to various cellular 

receptors, including integrins and other adhesion receptors, regulating a wide range of biological 

processes. It belongs to the Src kinase family and is functionally redundant, making it challenging to 

identify its specific role in each compartment and determine which member is involved without the 

knowledge of its spatio-temporal characteristics in that specific context. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 March 2024                   doi:10.20944/preprints202403.0473.v1



 32 

 

Table 12. Operational cellular compartments of cluster No1 proteins. 

COMPARTMENT PROTEINS* Protein 
number 

EXTRACELLULAR AREG, BTC, CD81, CD9, EGF, EGFR, ERBB3, EREG, HBEGF, 
HSPA8, INS, LAMA1, LAMB1, MUC1, NRG1, NRG3, PLAU, 
SFN, TGFA, TSG101 

20 

CYTOSKELETON CTNNA1, CTNNB1, GNAI1, GNAI3, LMNA, MAPK1, 
PPP2R1A, PTPN3 

8 

PLASMA 
MEMBRANE 

ADAM17, ARF4, BTC, CAV1, CAV2, CD44, CD81, CD82, 
CDH1, CTNNA1, CTNNB1, EDNRA, EGFR, EPS15, ERBB2, 
ERBB2IP, ERBB3, ERBB4, EREG, GAB2, GNAI1, GNAI3, 
HBEGF, HCK, HRAS, ITGA3, ITGB1, ITGB4, JUP, KRAS, 
LAPTM4B, LPAR1, LPAR3, LYN, MUC1, NRG1, NRG3, 
PDGFRA, PIK3C2B, PLCG1, PLCG2, PPP2R1A, PRKCA, 
PRKCB, PTPN2, PTPN3, PTPRK, PTRF, SHC1, SLC9A1, 
SLC9A3R1, TGFA, TSG101, USP8 

54 

CYTOSOL PIK3C2B, GRB7, ARF4, PPP2R1A, PLCG1, HCK, USP8, 
PRKCA, MAPK1, RAB5A, FOS, HSPA8, CTNNB1, HIF1A, 
GAPDH 

15 

MITOCHONDRION PPP2R1A, MAPK1, HSP90AA1, LGALS3, ERBB4, PTRF, MT-
CO2 

7 

GOLGI CAV2, CBL, CDH1, HRAS, LYN, MAPK1 5 
ER FOS, NCK1, PTPN2 3 

PEROXISOME No level 5 protein - 
ENDOSOME CDH1, EGFR, CAV1, ERBB2, PTPN1, RAB5A, MAPK1, 

TSG101, GRB2, HGS, USP8, LPAR1, LAPTM4B, GRAP2 
14 

LYSOSOME LAPTM4B, HSPA8, MTOR, HCK 4 
NUCLEUS CAV2, CTNNB1, EGFR, ERBB2, ERBB2IP, ERBB4, FOS, 

GRAP2, GRB2, HIF1A, HRAS, HSPA8, IGFBP3, JAK2, 
LGALS3, LMNA, LYN, MAPK1, MUC1, NCK1, NCL, NRG1, 
PLCG1, PPP2R1A, PRKCB, PRKDC, PTPN11, PTPN2, 
PTPN6, PTRF, STAT1, STAT3, STAT5B, TFAP2C 

34 

Note: *) Only proteins with the highest statistical significance value of 5 according to Cytoscape 

(values range from 0 to 5). We calculated protein node compartmentalization and values in Cytoscape 

using the STRING app. Highlighting all the proteins in Table IX would have rendered this table 

unreadable. 1) In bold black, the proteins which are present in more than one compartment. 2) We 

have identified and underlined the proteins responsible for the dysregulation of ERBB signaling, 

EGFR, protein tyrosine kinase activity, and regulation of peptidyl-tyrosine phosphorylation, as 

shown in TABLE IX. 3) Proteins also involved in deregulating apoptosis and anoikis to allow diffusion 

are also in red italics. Proteins in bold black and underlined or red italics and bold are common to 

two groups. 

Table 13. Operational cellular compartments of cluster No9 proteins. 

COMPARTMENT PROTEINS* Protein 
number 

EXTRACELLULAR EDN1, F2, FAS, HSP90AB1, LAMA5, LAMC1, MET, 
NTN1, VEGFA 

9 

CYTOSKELETON CDC42, CTNNB1, CTTN, LMNA, MAPK3, PTK2, PXN, 
YES1 

8 

PLASMA MEMBRANE AKT1, ARF6, , CASP8, CAV1, CDC42, CDH1, CDH2, 
CTNNB1, CTNND1, EFNA5, EFNB2, EPHA1, EPHA2, 
ESR1, FAS, HRAS, IGF1R, ITGB3, MET, NEDD4, 
PDGFRB, PECAM1, PRKCD, PTK2, PTK2B, PXN, 
RAC1, RHOA, SRC, TIAM1, TJP1, YES1 

32 

CYTOSOL AKT1, ARF6, CASP8, CTNNB1, MAPK3, PRKCD, 
PTK2, RHOA, SRC, YES1, 

10 

MITOCHONDRION GJA1, HSP90AA1, MAP2K1, MAPK3, SRC 5 
GOLGI CBL, CDH1, ESR1, HRAS, MAP2K1, MAPK3, NEDD4, 

RAC1, YES1 
9 

ER PRKCD, MAP2K1 2 
PEROXISOME No level 5 protein - - 
ENDOSOME ARF6, CAV1, CDH1, MAP2K1, MAPK3, PRKCD, 

RAC1, SRC 
8 

LYSOSOME PDGFRB, PRKCD, SRC 3 
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NUCLEUS AKT1, AR, ARRB1, CTNNB1, ESR1, GJA1, HRAS, 
HSP90AB1, ITGB3, LMNA, MAP2K1, MAPK8, NEDD4, 
PGR, PRKCD, PTK2, PTK2B, RAC1, STAT3 

19 

Note: *) Only proteins with a statistical significance value of 5, according to Cytoscape analysis. These 

values range from 0 to 5. We calculated protein node compartmentalization and values in Cytoscape 

using the STRING app. In bold, the proteins in common with Table 9. 

3.12. Co-Regulation between Hub and Bottleneck Proteins, Transcription Factors and miRNAs 

Our findings thus far, have revealed a metabolic depiction that outlines the involvement of a 

specific group of significant high-ranking proteins in a series of dysregulated metabolic processes 

aimed at promoting the dissemination and spread of virus-infected cells throughout the body, 

because of the influence of the accessory viral protein, ORF7b. However, we still have limited vision 

because we can only glimpse the purposes, know some of the involved actors, but we still cannot 

understand who planned and performed the entire process. 

Understanding the intracellular mechanism of complex biological processes driven by ORF7b 

also depends on deciphering its complicated co-regulatory network. The identification of Hub and 

Bottleneck proteins in protein groups dysregulated by viral infection prompts investigation to 

understand their co-regulation. Within the co-regulatory network, there are both post-transcriptional 

and transcriptional regulators that can regulate themselves and each other.  

A limitation that should give pause for thought is the evidence that hub and bottleneck proteins 

control and regulate an enormous number of functional processes. Finding them involved in a 

particular process, even experimentally, does not mean that process is actual and existing in fact. 

Precise rules govern the occurrence of a functional process, primarily depending on the context of 

the events and the chemical-physical characteristics of the compartmentalized microenvironment 

where the event should occur. To ensure a functional event, the cell must program when, where, and 

how it should occur. The metabolic network is not solely dependent on proteins. To synchronize basic 

functional activities according to the circadian cycle or unexpected events, we need several other 

actors to accelerate or slow down an intricate and dynamic system. The comprehension of co-

regulatory mechanisms that are fundamental to cellular identity and function requires the 

involvement of transcription factors (TFs) and microRNAs (miRNAs). TFs and miRNAs work 

together to regulate transcription and post-transcriptional processes, respectively [102,103]. 

Combining computational and experimental interaction data in network models can highlight 

functional mechanisms in TF- and miRNA-mediated gene regulation. These models can provide 

insight into the mechanisms that control gene expression at the system level, rather than at the 

individual gene level. Typically, TFs act as activators or repressors, increasing or decreasing 

transcription, while miRNAs are mostly repressors. We can visualize the distinct activities by using 

two separate networks: transcriptional networks and post-transcriptional networks. It is noteworthy 

that both networks are bipartite and direct. In each network, there are two distinct types of nodes 

interconnected by unidirectional edges. One network contains interactions between genes and 

transcription factors, which is known as a transcriptional regulatory network. The other network 

contains interactions between genes and miRNAs, which is known as a post-transcriptional 

regulatory network. We assume that, in post-transcriptional regulations, the regulatory actions of 

miRNAs towards targets are negative. However, it is possible to get integrated gene regulatory 

networks that include genes, TFs, and miRNAs, provided that the components are statistically more 

significant. The databases on TFs and miRNAs are quite recent and the data collected are both 

experimental and predictive because this area of research is still very young. Selective filtering is 

required to get statistically significant nodes. As explained in the Methods section, the reference 

databases of transcriptional and post-transcriptional networks comprise experimental data, whereas 

the integrated co-regulatory database comprises mixed data. This means that the comparison of the 

integrated co-regulatory network with the transcriptional networks may yield diverse interactions, 

which depend on the respective node rank in the two distinct systems. 
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3.13. Transcriptional and Post-Transcriptional Regulatory Networks 

As a result, in transcriptional regulatory networks, FTs possess two types of action since it is the 

TF that binds to its target gene, rather than the reverse. The information comprises an in-degree, 

which signifies the number of transcription factors binding a gene, and an out-degree, which signifies 

the number of genes bound by a transcription factor. All this reflects the functional and biological 

aspects underlying these interactions. High-grade TFs (i.e., hub TFs interacting on many genes) have 

a high key character of biological functionality, while target genes bound by many TFs do not have a 

tendency to be functionally essential. Therefore, analyzing this type of network provides insights into 

biological systems that are not obtainable through single gene studies. 

Both the networks containing TFs and miRNAs are represented in Figure 10, illustrating the 

transcriptional and post-transcriptional networks of gene interactions, which include hubs and 

bottlenecks. The transcriptional network reveals that EGFR, the top-ranking hub node within the PPI 

network, possesses an in-degree value of 1 in relation to its interaction with ZNF263, whereas ZNF263 

exhibits an out-degree value of 3. Therefore, within this network, ZNF263 holds greater biological 

significance in relation to EGFR. Its role in this transcriptional network involves functioning as a 

DNA-binding transcriptional repressor that specifically targets RNA polymerase II, resulting in the 

repression of EGFR, PIK3R1, and VAMP2. The TFs and miRNAs represented in the two networks are 

those of higher rank with a higher probability of interaction. 

 

Figure 10. Transcriptional network (left) and post-transcriptional network (right) of interactions 

between genes (Hub and bottlenecks) and TFs and miRNAs, respectively. Red circles, genes; azure 

diamonds, TFs; blue rectangles, miRNAs. Rank of nodes in the networks is high as they undergo 

filtering based on degree and betweenness values. This is only a schematic view of the most significant 

molecules and their targets and where the size of the node is proportional to its rank. 
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3.14. Co-Regulatory Network 

Getting a co-regulated network requires integration of HUBs and bottlenecks with FTs and 

miRNAs. To determine the transcriptional regulatory relationships that these nodes may hold, we 

employed hub and bottleneck as enrichment seeds. This co-regulated network allowed us to pinpoint 

the 14 most reliable TFs and 2 miRNAs that were significantly associated with the expression of HUB 

and bottleneck genes. 

The network (Figure 11) shows that among bottlenecks SEC13 is one of the most regulated genes. 

The protein encoded by this gene belongs to the SEC13 family of WD-repeat proteins and is a 

component of several important complexes. It is a component of the nuclear pore complex (NPC), 

which regulates transport between the nucleus and cytoplasm and has a direct role in regulating gene 

expression [104]. It is also a component of the COPII Coat Complex, where it plays a role in the 

formation of coated vesicles [105]. Four of the transcription factors that regulate SEC13 also regulate 

PIK3R1, the gene responsible for encoding Human_P85A, a protein that modulates glucose uptake 

in insulin-sensitive tissues by binding to activated Tyr kinases on the cellular membrane. Due to its 

inhibitory action, it appears to be a significant factor contributing to the hyperglycemia observed in 

covid patients. EGFR is also controlled by several TFs. The governance of each of these genes is 

multifaceted and bolstered by two miRNAs, specifically hsa-miR-576-5p and hsa-miR-1. The role of 

miRNA expression levels in disease processes and physiological development is significant, as 

changes in microRNA copy number or expression are closely associated with the onset of various 

human diseases [106]. miRNAs are present in a substantial number in humans [107]. 

 

Figure 11. Integrated gene regulatory network associated with the dysregulated bottleneck and hub 

genes. Nodes: red orange circles, hubs; black circles, bottlenecks; green diamonds, TFs; blue 

rectangles, miRNAs. The figure shows the distribution of the potential gene–TF interactions (center 

and right side) and gene–miRNA interactions (center and left side). This is only a schematic view of 

the most significant molecules and their targets. We filtered the interacting network of miRNAs and 

TFs with betweenness centrality ≥ 100 and 45, respectively. Figure 9S displays the log-log graph, 

which confirms a scale-free distribution and shows some topological parameters. 
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The correlation between miRNAs and human genes during SARS-CoV-2 infection is still an 

expanding research field with initial studies. Some preliminary evidence shows potential associations 

between miRNAs and genes that participate in the reaction to infection. It is essential to highlight 

that the analysis of this subject is still in progress. Despite this, miRNAs may be related to genes 

during SARS-CoV-2 infection to control inflammation. miRNA-155 [108] links the regulation of genes 

involved in inflammation, such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). 

According to previous research on COVID-19, miRNA-146a may be involved in regulating the innate 

immune response [109], and its upregulation may contribute to the dysregulation of inflammatory 

pathways. miRNAs might exert direct control over the replication of SARS2, as well as its capacity to 

infect host cells [110]. This could involve both the regulation of viral proteins and genes/proteins 

involved in human metabolism. Observations in cell lines and cancer patients led researchers to 

predict that miR-576-5p could down-regulate both PIK3CA and its mRNA [111]. Meanwhile, their 

target mRNAs were up-regulated. Hsa-miR-1 is believed to be linked to regulating human genes, 

especially in cancer patients [112]. Additionally, it has been noted that this specific miRNA also plays 

a role in the disturbance of glycemia for individuals with type 2 diabetes [113]. 

The co-regulatory network provides a better picture of metabolic events that the simple 

identification of a gene or protein in a metabolic pathway cannot give, even more so when we study 

the molecular mechanisms involved in a pathology. Merely asserting the involvement of a protein or 

gene in a pathological state without comprehending the coordinated activity of genes, miRNAs, TFs, 

mRNAs, and proteins may not always culminate in accurate inferences. Co-regulatory networks offer 

more decisive direction by elucidating the general coordination of the aforementioned actors, besides 

the appraisal of the pathological consequences of ORF7b. 

3.15. Comparative Analysis of Negative Regulations According to the GO 

Figure 12 shows the set of negative regulations vital for cellular diffusion represented by three 

transcriptional networks, which, upon comparison, exhibit remarkable similarities. In all three 

networks, EGFR, HRAS, HSPA5, PIK3CA, PIK3R1, and SRC are the genes involved in the negative 

control of programmed death. Their transcription at the individual gene level is negatively controlled 

through DNA-dependent transcription. 

 

Figure 12. Comparison of three transcriptional networks related to negative metabolic controls 

because of ORF7b interference. GO analysis (genes in blue, bottlenecks in red). Left side - Negative 

regulation of transcription, DNA_dependent (p <1,56e-4) (EGFR, HRAS, HSPA5, PIK3CA, PIK3R1, 

SRC, and ZNF263, ZNF423, SMAD4, MXD3, GABPA, MLX, MXD4, PHF8) Middle - Negative 
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regulation of apoptotic process (p <7.58e-4) (EGFR, HRAS, HSPA5, PIK3CA, PIK3R1, SRC) Right 

side - Negative regulation of programmed cell death (p <8.86e-4) (EGFR, HRAS, HSPA5, PIK3CA, 

PIK3R1, SRC) 

Below is a brief illustration of the most intriguing transcription factors found in the networks. 

ZNF423 and ZNF263 (Zinc Finger Protein 423 and 263) can act as both transcriptional repressors and 

activator by binding to DNA, where ZNF423 plays a central role. MXD4 (Max-interacting 

transcriptional repressor MAD4) is a protein that in humans is encoded by the MXD4 gene. PHF8 

(Histone lysine demethylase PHF8) is a transcription activator which acts on the epigenetically 

methylated Histone 3 but is a repressor for the methylated histone 4. Acts as a coactivator of rDNA 

transcription, by activating polymerase I (pol I) mediated transcription of rRNA genes and playing a 

role in the cell cycle. However, its role remains still unsure in vivo. GABPA (GA Binding Protein 

Transcription Factor Subunit Alpha) is a transcription factor interacting with purine rich repeats (GA 

repeats), so positively regulating the transcription of transcriptional repressor RHIT and of ZNF 

family such as ZNF205. MLX (MAX Dimerization Protein MLX), its decoded product (Max-like 

protein X) forms many sequence-specific DNA-binding protein complexes with various proteins. 

These complexes act as transcriptional repressors. Plays a peculiar role as a transcriptional activator 

of glycolytic target genes, thus it is involved in glucose-responsive gene regulation. Here, we have 

another pro-glycemic effect, common to covid patients.  

While the Figure 13 shows the relationships between genes and miRNAs involved in blocking 

programmed death at the post-transcriptional level the Figure 14 shows its co-regulated network 

where we find the occurrence of Myc and TP53, two well-known transcription factors. MYC, (MYC 

Proto-Oncogene or BHLH Transcription Factor, which codes for P01106 · MYC_HUMAN) is involved 

in many diseases (114). The Gene Ontology (GO) annotations that concern MYC comprise DNA-

binding transcription factor activity, and the ability to function with TAF6L to activate target gene 

expression through RNA polymerase II cis-regulatory region sequence-specific DNA binding. 

 

Figure 13. – Post-transcriptional networks related to negative metabolic controls because of ORF7b 

interference. GO analysis for Negative regulation of programmed cell death (p <8.28e-6) (EGFR, 

HRAS, PIK3R1, HSPA5, PIK3CA, SRC). 
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Figure 14. Co-regulated network related to negative metabolic controls because of ORF7b 

interference. GO analysis for Negative regulation of programmed cell death (p<1.82e-5). (TFs: TP53, 

MYC; Genes: SRC, EGFR, HRAS, PIK3R1, HSPA5, PIK3CA; miRNA: has-miR-1 and has-miR-576-5p). 

TP53, also known as Tumor Protein 53 and encoding for P04637, Cellular tumor antigen p53, 

acts as a tumor suppressor, in response to cellular stresses to regulate the expression of target genes 

[115]. However, in specific metabolic contexts, it can induce cell cycle arrest, apoptosis, and changes 

in metabolism [116]. As a matter of fact, it has been discovered that SARS-CoV-2 infection leads to 

the stabilization of TP53 on chromatin [117], contributing to a robust host cytopathic effect. 

Modification of chromatin accessibility, cellular senescence, and inflammatory cytokine release 

through TP53 is brought about by the involvement of this protein in various SARS-CoV-2 spike 

variant-induced syncytia formations. The protein appears to have a role in inflammation associated 

with cellular senescence [117]. In addition, TP53 was discovered to be implicated in IFN-γ-mediated 

signaling, apoptosis, and proteasomal degradation of CD4 T cells [118]. However, uncertainties 

regarding the functionality of miRNAs persist because of technical difficulties and the considerable 

number of miRNAs that are still subject to systematic profiling [107]. Because of their low intrinsic 

stability and RNAses [119], they are susceptible to degradation, and laboratory manipulations can 

have questionable effects on their measurements [120,121].  

TFs are well-established proteins with reliable experimentally derived results, although 

miRNAs remain somewhat enigmatic. TFs are proteins that control the rate of transcription of genetic 

information from DNA to mRNA binding to DNA. Thus, their function is to regulate, switching on 

and off, genes. This functional activity is to address the gene expression to the exact target cells at the 

right time and in the right amount. Groups of TFs function in a coordinated fashion to direct cell 

division, cell growth, and cell death. TFs work alone or with other proteins in a complex, by 

promoting (as an activator), or blocking (as a repressor) the recruitment of RNA polymerase to 

specific genes.  

We have examined the various correlations between miRNAs, TFs and the components of the 

compact hub-and-spoke architectural system of the PPI network, getting information on the 

fundamental co-regulations operated by some TFs and miRNAs. These findings suggest that 
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crosstalk motifs, comprising the direct and non-shared relationships between regulators and their 

target genes, can have downstream effects on diverse biological processes, in line with the features 

already highlighted in the interactome's analysis network. This analysis amplifies and substantiates 

our findings and deductions from the interactomic analysis. Our result, however, has limitations. The 

human genome contains thousands of coding and non-coding RNA genes. These genes express 

differentially, in diverse locations, at distinct times during normal homeostasis, or in response to 

environmental cues. The differential expression extends to TFs and miRNAs, too. The regulation of 

genes is specific to certain conditions and changes over time, meaning our findings only provide a 

static view of the molecular mechanisms affected by ORF7b. While our conclusions are valid, we can 

only show the presumed targets, not how they dynamically work. 

4. Discussion 

The guiding principle that underpins this research is that SARS-CoV-2 infection leads to changes 

in the deep metabolic activities of infected cells to favor the acquisition and maintenance of viral 

strategies, compared to normal cells. The virus causes a reprogramming of cellular metabolism by its 

proteins. The expression "metabolic reprogramming" refers to the recognition of normal metabolic 

pathways which are modified by viral proteins, when compared to those in normal tissue. This point 

is significant because the analysis of "metabolic normality" is often overlooked. Our training in cancer 

has taught us to search for mutations that can modify signaling processes. In viral infections, 

mutations are absent, as viruses achieve the same aim by up- or down-regulating normal signaling 

pathways or other metabolic processes. 

Our results reveal the functional impact of the accessory protein ORF7b in SARS-CoV-2 infection 

and identify molecules that control metabolic processes dysregulated by this viral protein. Among 

the many functional activities highlighted, we focused on those that promote the spread of infected 

cells in the organism.  

The release of virions into the extracellular space is a common event among numerous viruses, 

which has stimulated the study of virus egress/entry biology. Although some viruses spread through 

the shedding of infected cells [180,181], this is an understudied topic. Recently, several authors 

[182,183] have reported evidence by antibody experiments, that SARS-CoV-2 could spread through 

cell-to-cell transmission. However, no one has studied or hypothesized any related molecular 

mechanism. In this article, we confirm those authors' hypotheses and describe the deep molecular 

mechanism that underlies this feature of SARS-CoV-2. This discovery contributes to our 

understanding of the human immune response to the attack of this virus because cell-to-cell 

transmission is an effective means by which viruses evade host immunity. 

It is still to be considered that our data on spread in some sense support the theory on the 

evolution of virulence which assumes that high growth rates of pathogens should both increase 

transmission between hosts and increase disease induced morbidity or mortality [186,187]. The 

spread of infected cells could fit into this logic, but the theory also suggests that through viral 

“tolerance”, virulence is mitigated without reducing viral load [187,188]. This also dictates that the 

host should allow the selection of the pathogen with a higher growth rate to gain a gain in 

transmission between hosts but without causing harm to the original host [188–190]. Today's clinical 

data tells us that the virulence of Covid-19 is decreasing without any type of specific intervention. 

Our data does not explain the effects of diffusion on the virulence, but it paves the way for 

experimental designs with greater awareness of what actually happens. 

We have analyzed by interactomics only functional and physical correlations between ORF7b 

and the entire human proteome determined by experiments. To obtain reliable interactomics results, 

we extracted from the set of interactors only those that were characterized by high significance. The 

investigation showed that the virus achieves its strategic goals by interacting with metabolic 

processes controlled by human proteins such as EGFR, SRC, HSPA5, MTOR, SEC13, SEC61A1, 

VAMP2, PIK3R1, PIK3CA, GRB2, and HRAS, which are important for human metabolism because 

they are high-ranking, HUB and bottleneck proteins. Through a series of analyses using 

transcriptional co-regulation networks, we have also validated our results by identifying regulatory 
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actions conducted by transcription factors and miRNAs on genes that code for the previously 

identified key proteins. 

Viruses do not perform metabolic processes but know how to interact with them to their own 

advantage. Although various attempts have been made to identify metabolic pathways and nodes 

under the control of the virus, to our knowledge, this is the first wide-ranging interactome map 

identified for a specific protein of SARS-CoV-2. We have identified some metabolic pathways under 

the control of ORF7b, but still, we have a limited knowledge of the comprehensive set of viral proteins 

involved, and by which specific mechanisms. Despite that, several authors have hypothesized some 

functional activities of ORF7b in the infected cell and its synergism with other viral proteins, but no 

one has attempted to study in depth the molecular and functional interactions within human 

metabolism implemented by ORF7b. In particular, they identified its involvement in SNARE-driven 

vesicular transport, exocytic processes, ERBB signaling, but without a functional characterization that 

identifies the actual role of ORF7b, possibly in synergy with other viral proteins [122]. There have 

been other studies that have endeavored to juxtapose the mechanisms of diseases between SARS1 

and SARS2 [123,124], but none of them have deciphered any common molecular mechanism. Both 

viruses lead to acute respiratory distress, but many phenomenological observations show differences. 

One study predicted that SARS-CoV-2 induces a systemic disease, which, unlike SARS1, damages 

various organs in the body, such as the heart, kidney, and brain [125,126]. These results suggest that 

the two viruses use different molecular mechanisms but also that we do not know which mechanisms 

they use. Out of curiosity, searching PubMed for "differences in molecular mechanisms of SARS-

CoV-1 and SARS-CoV-2" or "molecular mechanisms of SARS-CoV-1 and SARS-C0V-2 (or similar 

terms), yielded no results.The continuous work conducted by the curators of BioGRID, in selecting 

and evaluating the statistical significance of each single experimentally characterized interaction 

between the viral proteins and the human proteome, has allowed us to design this study with the 

methods of Interactomics. Direct knowledge of the deep molecular mechanisms implemented by 

individual viral proteins is essential because only through this knowledge will we be able to design 

specific and effective antiviral drugs. A study at a deep molecular level, a research area still rather 

obscure in its modes of action in space and time, is an important approach if aimed at identifying 

those human proteins which, in viral infection, play crucial roles such as hub nodes or as a bottleneck. 

These proteins represent the crossroads of multiple biological activities and, therefore, are the best 

targets for disease control. 

ORF7b is a tiny viral protein of 43 amino acids, a macro-polyanion with a net charge of –4 at 

neutral pH (four negative residues and no positive charge); the central part from 9 to 29 is helical, 

and the protein surface is negative [6]. This protein does not appear to operate on its own (see TABLE 

IX). What emerges from this study is the precise interference of ORF7b into various molecular 

mechanisms at the basis of our metabolism. ORF7b showed mostly diverse behaviors, in terms of 

localization, membrane recruitment, and metabolic dynamics. The results show its important role in 

conditioning cellular transport processes as well in some important signaling pathways (see Table 

III). The topological characteristics of this interactome reveal a group of proteins with structural and 

functional properties that are consistently implicated in multiple metabolic activities, some of which 

are dysregulated by ORF7b's action. These proteins are characterized by their high degree of 

functional relationships and by their high ability to regulate a multitude of significant metabolic and 

signaling pathways. The interactome shows certain metabolic modules that perform necessary 

functional activities for normal cellular metabolism. A large central core (GCC) comprising two 

closely connected clusters was identified through cluster analysis as the primary functional location 

of these proteins. The high number of tight connections favors a high metabolic rate, which 

accelerates any functional activity. 

The activity of these proteins extends to very different places in the cell (see Table 4) according 

to a hub-and-spoke topological model and potentially also to those tissues that have the molecular 

characteristics suitable for the entry of the virus (see Table 6). All this suggests that ORF7b must have 

a remarkable ability to interact with different molecular partners, such as to allow it to operate 

practically everywhere, at the membrane level and in the cytoplasm. Indeed, the list of its main 
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molecular interactors shows both membrane proteins and cytoplasmic proteins. Some authors have 

hypothesized a role for ORF7b as an intrinsic single-span membrane protein, in analogy with the 44 

amino acid homolog ORF7b of SARS [6]. This hypothesis is rather restrictive considering the wide 

spectrum of functions in which this protein is involved and the spatio-temporal characteristics that a 

biological object of this type must possess in order to be involved in the various intracellular transport 

processes (see GO:0006810, p-value 3.04e-67); or even having also to guide and regulate target 

localization (see GO:0008104 and GO:0045184, p-values 1.4e-58 and 2.85e-58, respectively). But, at the 

same time this protein must also have the characteristic to interact with different membrane systems 

(see GOCC:0016020, GOCC:0031090, GOCC:0031982 or GOCC:0098588, with p-values of 2.5e-92, 

2.07e-77, 5.13e-62 and 3.17e- 58, respectively) and to interfere with metabolic signaling paths (see 

GO:0007169, GO:0007167; HAS-9006934, HAS-1227986, or HAS-6811558, with p-values of 1.23e-66, 

7.95e-59, 4.44e-84, 2.43e-30, and 5.16e-24, respectively). 

The regulated functional re-localization seems one of the most important characteristics of this 

protein [127]. ORF7b shows coherent functional solutions with viable biochemical functional models. 

The closest class of proteins possessing these types of broad properties is called the “Peripheral 

Membrane Proteins”, a class of proteins that live at the membrane interface [128,129]. In 2002, Felix 

Goñi [130] introduced the concept of "non-permanent membrane proteins", to encompass the wide 

variety of proteins that are not found in a stable membrane-bound form under physiological 

conditions, but interact with the membrane in certain phases of their specific course of action. Despite 

the fundamental biological meaning of these proteins, an experimental characterization of their 

structure has always been vague because attempts at structure prediction often fail. Therefore, this 

protein class has a poor representation of its 3D structures within the PDB because they are difficult 

to study [131]. Wanting to represent them in a few words, they are soluble proteins that bind 

transiently to the surface of biological membranes or even to proteins on the outer side of the 

membrane, where they perform their functions. The reversible attachment of proteins to biological 

membranes shows how they can regulate cell signaling and many other important cellular events, 

through a variety of mechanisms [132,133]. Thus, the behavior of peripheral proteins, reversibly 

associated with the lipid bilayer [132,134], may also explain the behavior of ORF7b, coherently with 

its structural/functional properties. Therefore, this protein appears as a very reliable member of the 

class of "non-permanent membrane proteins" [135]. 

Recent molecular dynamics simulations experiments provided molecular insights of the 

protein's dimerization [191]. This study shows different dimerization models, parallel and 

antiparallel. Among the various structures modeled, the authors suggest the possibility that the 

parallel dimer may operate docked to the membrane, from 7 to 30, and floating in the cytoplasm from 

31 to 43. According to authors, while simulations support the homodimerization of ORF7b, the 

analysis of genetic mutations of orf7b during the evolution of the pandemic suggests an unstable 

dimerization when associated with the regulation of IFN production, the apparent function 

attributed to this protein. They conclude that the lack of detailed structural information on lateral 

protein-protein associations hinders a thorough evaluation of packing, which means that there is not 

yet sufficient detail to define consistent structure-function relationships. This information adds to the 

previous considerations but every hypothesis made still remains valid. 

Like other viruses, SARS-CoV-2 can cause reinfection/reactivation and persistent infection, as 

supported by several experimental studies [136]. SARS-CoV-2 has the potential to activate or 

modulate oncogenic cancer-promoted pathways, leading to chronic low-grade inflammation and 

tissue damage, according to growing evidence [137]. Several authors perceive oncogenesis as a 

potential long-term effect of SARS-CoV-2 infection, which could lead to the onset of cancer by 

inhibiting tumor suppressor genes [138]. The utilization of similar tactics as EBV or HSV1 by SARS-

CoV-2 to manipulate p53 is clear, as the virus takes over the protein using viral antigens, which lead 

to p53 deterioration [139]. By deactivating both external and internal apoptotic pathways of host cells, 

SARS-CoV-2 may spread like cancer cells [140,141]. Our results suggest that the cancer-like effects of 

SARS-CoV-2 result from the virus capability to spread infected cells through the action of its proteins, 

mimicking cancer and its metastasis. The lack of adequate understanding of the mechanisms that 
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govern the progression of the virus after the release of infected cells makes it impossible to make 

accurate predictions about the long-term implications of the long-covid.  

However, we should make a last consideration given the recent advances in our understanding 

of the N protein of SARS-CoV-2. Phosphorylation of the central disordered region of the N protein 

forms dynamic, liquid-like condensates that control also the viral genome transcription [142]. N 

protein contains three dynamic disordered regions that house putative transiently helical binding 

motifs and the protein undergoes liquid-liquid phase separation [142,143] thus phosphorylation 

regulates the accessibility and assembly of N protein to bio-condensate [144]. Another critical 

function of N is to encapsulate the viral genome of ssRNA to evade immune detection and protect 

viral RNA from degradation by host factors [144–147].  

Viral proteins form condensates for their molecular strategies, such as infection and signaling 

transduction [148,149]. Viruses regularly execute their molecular tactics in specific parts of cells. For 

instance, we should consider how phase separation in cell compartments affects important processes 

like viral transcription or viral spread [148,149]. The fact that ORF7b interacts with N (TABLE IX) 

supports the involvement of ORF7b in viral diffusion phenomena, with mechanisms of alteration of 

the cytoskeleton, but, perhaps, also with more complex mechanisms involving liquid droplets. After 

all, phase separation is one of the basic molecular processes that govern multiple cellular activities, 

such as cancer progression, gene expression, and signaling transduction [150].  

In SARS-CoV-2, the properties of the liquid-like condensate that forms phase-separated 

compartments without a membrane and the transient nature of interactions within them, are 

determined by the interaction of N protein with viral RNA because of its intrinsic disorder properties 

[151]. The threshold for phase separation decreases as the number of interacting sites of a molecule 

increases. This multivalency comes from structural domains, where each domain contributes to 

binding [151]. Intrinsically disordered-regions (IDRs) often participate in phase separation, as they 

might provide a source of multivalency. In fact, the low affinity of their individual interactions can 

enable liquid-like properties [151].  

We are studying SARS-CoV-2-host interactions in a simplistic context because crucial 

information is missing from the databases. For example, there have been few studies evaluating 

virus-host molecular interactions considering the range of post-translational modifications. Without 

the enormous potential of the biological role of post-translational modifications, we run serious risks 

of having distorted information on the biology of this virus. Researchers have shown crucial roles of 

phosphorylation and ubiquitylation in other systems, but have not yet identified the corresponding 

proteoforms in SARS-CoV-2-host interactions. 

However, many of the high-ranking proteins we have studied and selected show that they have 

all the characteristics necessary to act even through forms of bio-condensates. Therefore, we cannot 

exclude that, together with the co-regulation that we have highlighted, there may also be a further 

form of regulatory activity exerted by the liquid-like condensates. We cannot exclude it, considering 

their well-established presence in cells and the important roles they play. 

5. Conclusions  

The proposed model, although created on the most robust basis possible in consideration of our 

current knowledge on the interactions of ORF7b and other SARS-CoV-2 proteins with the human 

proteome (see “Robustness of the study” in Supplements), will definitely be worth seeing again, 

supported by more precise knowledge on transcriptional modifications and the spatio-temporal 

characteristics of its proteins, and by the role of bio-condensates. Deep biological aspects are still very 

little known, and often overlooked. Without this, we will continue to have inconsistent flat views of 

metabolism and viral action.  

Notably, our work offers a mechanistic hypothesis to explain aspects of the virulence of SARS-

CoV-2. More generally, demonstrates key differences in using the mesoscopic approach of Systems 

Biology compared to symptom-based macroscopic approaches, which tells us very little about what 

might be happening at deep metabolic levels in the human body. Obviously, as long as it is based 

exclusively on omics data, experimental and significant, because this is the real limit. Our 
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interactomics framework indeed offers a series of testable questions and predictions, drawable to 

stimulate future work, such as comparing deep mechanisms of virulence evolution in diverse 

infection stages. Understanding the molecular mechanisms that select the evolution of viral traits in 

the human host should allow us to better predict and combat the virulence of probable future threats, 

and also to understand the most suitable targets for designing a drug. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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