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Abstract: Climate change poses a significant threat to global food security, necessitating a thorough examination

across multiple dimensions. Establishing appropriate food security evaluation indicators that align with the

evolving concept of food security is imperative. This study enhances food security evaluation by refining a

multi-dimensional framework and analyzing the impact of climate change across various regions from 2002 to

2021. By constructing an Food Security Index system composed of a three-tier indicator system and employing the

entropy method for weighting, we assess the impacts of climate change on food security using a climate-economic

model. Regression analysis reveals a negative linear relationship between mean temperatures and food security

(p<0.01), while precipitation impacts food security non-linearly, particularly exhibiting inverse U-shaped patterns

in major grain-producing and grain-consuming areas. Extreme high temperatures consistently reduce food

security, whereas extreme precipitation displays a complex, statistically significant inverse U-shaped association.

In regions where production and consumption are balanced, mean temperatures have a negative effect on food

security, while precipitation exhibits a positive correlation, but excessive precipitation can have adverse effects.

These findings highlight the intricate interplay between climate change, regional disparities, and food security

in China, emphasizing the need to consider multi-dimensional factors and regional variations in addressing

food security challenges. These insights are invaluable for policy-making and planning aimed at enhancing food

security in China.

Keywords: climate change; food security; economic-climate model

1. Introduction

Climate change poses a great challenge to global food security and current changes in global food
insecurity can be plausibly attributed to climate change [1,2]. Numerous studies have discussed the
impact of climate change on various aspects of food security, including the quality of agricultural
products [3], the impact on prices [4], as well as the impact on agricultural production environments
such as farmland [5,6], agricultural water use [7], and agricultural ecosystems [8,9]. In fact, the global
food security situation is currently facing unprecedented challenges, with nations experiencing an
increase in systemic food security risks [10,11]. According to the 2022 State of Food Security and
Nutrition in the World report released by the United Nations Food and Agriculture Organization [12],
food security issues still exist widely, especially against the backdrop of changing climates. Climate
change and extreme climate events have become one of the main contributors to the worsening of
global hunger conditions, seriously affecting all aspects of food security, including food supply, access,
utilization, and stability.

As the world’s largest producer and consumer of food, China supports nearly 20% of the global
population with only 9% of the world’s cultivated land and 6% of freshwater resources [13,14]. Food
security has always been seen as China’s most important issue related to people’s livelihood, as well
as a crucial foundation for economic development, social stability, and national security. However,
with rising temperatures, frequent extreme weather events, and changes in precipitation patterns,
China’s food production and supply chain are facing increasingly severe threats of climate change,
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bringing more uncertainty risks [15–18]. The government implements comprehensive strategies to
ensure the stability and continuous improvement of food security through technological advancement,
land protection, subsidies, food reserves, market regulation, agricultural insurance, and international
cooperation. Climate in China typically varies significantly across regions due to its vast land area
and diverse climatic. Therefore, understanding the multi-dimensional impacts of climate change on
China’s food security is crucial.

The concept of food security has undergone three significant evolutions internationally [19]. In
1974, the Food and Agriculture Organization of the United Nations (FAO) defined food security as "the
ability of all people, at all times, to access enough food for an active and healthy life." This definition
emphasized quantitative security. In 1983, the definition evolved further to include affordability,
emphasizing economic security, particularly for low-income groups. At the 1996 World Food Summit,
it raised that "food security exists when all people, at all times, have physical and economic access to
sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and
healthy life," highlighting nutrition and health. Across the world, there are mainly two authoritative
international organizations for food security evaluation are the FAO and the Economist Intelligence
Unit (EIU). The FAO’s food security evaluation system mainly focuses on individual nutritional
status [12], constructed from four dimensions: food supply level, food availability, food utilization
level, and stability. The EIU’s food security index (the Global Food Security Index, GFSI) focuses the
categories of affordability, availability, and quality and safety [20], and and it holds global significance
as a demonstrative tool.

Food security level is impacted by various natural and human factors, and there are many relevant
studies. Study on spatio-temporal evolution and scale differences of food security risk patterns in
China [21] have provided a comprehensive analysis of the evolving risk patterns and their implications
for policy-making and risk management. Zhang et al. (2022) [22] explored the spatio-temporal
evolution and coordination of agricultural green efficiency and food security in China. A quantitative
evaluation of future food security risk considering water scarcity as a key factor is conducted [23],
which highlighted the importance of water resources in ensuring food security and the need for
effective water management strategies. The relationship between gross primary production, solar-
induced chlorophyll fluorescence, terrestrial water storage, crop grain production, and agricultural
investment and policy are examined [24], providing insights into the complex interactions between
these factors and their impact on food security. Focusing on the interaction between food production
security and agricultural ecological protection, Liu et al. (2023) [25] emphasized the need for a
balanced approach that considers both food production and ecological sustainability. The work on the
impact of low-intensity pollution on China’s sustainable development of food security highlighted
the role of pollution in compromising food security and the need for effective pollution control
measures [26]. Yang and Cui (2023) [27] discussed the balance between feed grain security and meat
security, examining the trade-offs and synergies between the two. Zhang et al. (2023) [28] assessed the
impacts of global climate change on water and food security in the black soil region of Northeast China
using an improved SWAT-CO2 model. Their findings provided insights into the potential impacts
of climate change on water resources and food production in this region, highlighting the need for
adaptive measures to mitigate these impacts.

Based on this, it is crucial for assessing global and regional food security to establish appropriate
food security evaluation indicators. Heady and Ecker (2013) [29] suggested concentrating on four key
indicators: calories, poverty, dietary diversity, and subjective indicators. In contrast, Coates (2013) [30]
advocated for the utilization of five dimensions: food sufficiency, nutrient adequacy, cultural accept-
ability, safety, and certainty and stability. Domestic scholars have constructed food security evaluation
systems based on China’s national conditions. These systems have evolved from a single focus on
supply-demand balance to emphasizing food availability, especially for low-income groups, and then
to focusing on ecological and resource security, as well as dietary nutrition and health. Representative
scholars and their research include: Zhang et al. (2015) [31] constructed an indicator system covering
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eight aspects, including supply, distribution, consumption, utilization efficiency, security outcomes,
stability, sustainability, and regulatory capacity. Wang et al. (2022) [32] established a food security eval-
uation system from the perspective of food security guarantee capabilities, covering five dimensions:
basic guarantee capabilities, market regulation capabilities, production supply capabilities, utilization
of international market resources, and agricultural modernization development capabilities. Gao and
Zhao (2023) [33] proposed strengthening the foundation of food security from multiple aspects such as
total quantity security, quality improvement, structural optimization, ecological sustainability, and
supply diversification. These studies have provided a useful theoretical foundation for understanding
the multi-dimensional impacts of climate change on China’s food security.

Most studies on food security systems primarily focused on grain production, supply and demand,
and distribution, with a strong emphasis on quantitative food security. However, as economic and
social development progressed, food security was given new connotations and objectives. In the
contemporary era, the concept of food security has broadened to encompass not only ensuring
production capacity but also promoting nutritional, green, diverse, and open food production. This
implies safeguarding both quantitative and qualitative food security while maintaining environmental
friendliness, economic efficiency in food production, and high resource utilization efficiency. A
recent work by Cui and Nie (2019) [34] proposed a comprehensive food security evaluation system
encompassing five dimensions: quantitative security, qualitative security, ecological environmental
security, economic security, and resource security. Building upon this framework, the present study
has refined and improved the food security evaluation indicator system, aiming to provide a more
holistic and comprehensive assessment of food security in the modern context.

Therefore, based on inter-provincial panel data, this study constructs multi-dimensional food
security evaluation indicators to explore the mechanism and actual impact of climate change on
food security, and analyzes the regional differences in the impact of climate change on food security
in different regions. The entropy method is employed to determine the weights of indicators and
calculate the FSI for each province in China. A model of economy-climate as the C-D-C model [35,36]
is introduced to assess the multi-dimensional impacts of climate change on China’s food security. This
work will complement the existing evidence of factors influencing food security, help the Chinese
government formulate more comprehensive and targeted policies and measures, provide useful policy
insights for addressing the complex challenges of climate change to China’s food security, and ensure
the sustainability and safety of China’s food supply.

2. Materials and Methods

2.1. Climate Data Source

The climate data used in this study come from the CN05.1 gridded observation dataset developed
and released by the China’s National Climate Center [37]. This dataset is based on daily observation
data from more than 2,400 national stations (basic, benchmark, and general stations) of the National
Meteorological Information Center. The variables included are: daily mean temperature, precipitation,
maximum temperature, minimum temperature, mean wind speed, relative humidity, and evaporation.
In this study, the annual average temperature, annual precipitation, accumulated temperature above
10◦C (Tm10), extreme high temperature index (TX90p, Percentage of days when daily maximum
temperature > 90th percentile) , and extreme precipitation index (R95TOT: Accumulation of summer
precipitation when daily precipitation ≥ 95th percentile) are calculated using these variables.

2.2. Agricultural Data Source and China’s Grain Regional Division

The provincial agricultural data utilized in this study consist of two main components. Firstly,
the construction of food security index data encompasses various metrics, including grain production
volatility, grain yield per unit area, per capita grain production, pesticide and fertilizer usage per
unit of cultivated land area, proportion of grain affected by disasters, grain consumer price index,
Engel’s coefficient for rural residents, cultivated land area per unit of grain production, and water
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resources used per unit of grain production. Secondly, agricultural input data comprises planted area,
effective irrigation area, total agricultural machinery power. These datasets are sourced from multiple
authorities such as the National Bureau of Statistics, provincial statistics bureaus, the China Economic
Data website, the National Intellectual Property Administration, the "China Statistical Yearbook," the
"China Rural Statistical Yearbook," and provincial statistical yearbooks, primarily accessed through
the publicly available website https://data.stats.gov.cn/. Owing to data unavailability and to ensure
research feasibility, data from the Hong Kong, Macau, and Taiwan regions were excluded from this
study.

According to China’s grain regional division, 31 provinces can be divided into three regions,
namely, the main grain-production area (MPA), the main grain-consumption area (MCA), and the
producing-consumption balance area (BA). The MPA refers to the key grain production areas with
geographical, soil, climate, technological, and other advantages, which are suitable for planting
certain grain crops and have certain resource advantages, technological advantages, and economic
benefits, including 13 provinces (Heilongjiang, Jilin, Liaoning, Neimenggu, Hebei, Henan, Shandong,
Jiangsu, Anhui, Jiangxi, Hubei, Hunan, and Sichuan). The MCA refers to the grain consumption
area with relatively developed economy, but with a large population and limited land resources, low
self-sufficiency rate of grain, and a large gap between grain production and demand. It is mainly
concentrated in the southeastern coastal areas and big cities, including 7 provinces (Beijing, Tianjin,
Shanghai, Zhejiang, Fujian, Guangdong, and Hainan). The BA refers to the provinces that contribute
limitedly to the national grain production but can basically maintain self-sufficiency, including 11
provinces (Shanxi, Ningxia, Qinghai, Gansu, Xizang, Yunnan, Guizhou, Chongqing, Guangxi, Shaanxi,
and Xinjiang).

2.3. The Establishment of Food Security Indicator System

When measuring the food security level of each province in China, the entropy method is used to
determine the weights of the three-level indicators of the food security evaluation indicator system as
is shown in Table 1, and the food security index of each province is calculated accordingly.

2.3.1. Detailed Explanation of the Indicators

Firstly, the Quantitative Security (s1) solves the problem of whether people can "eat enough",
directly reflecting the level of grain supply. It is the foundation and most important indicator of food
security. In this work, three indicators are selected as follows, both of which are positive indicators:

• Grain Production Fluctuation Rate (%) . It refers to the measure of changes in grain production
over a specific period of time indicating the stability or variability of grain production from year
to year.

• Grain Yield per Unit Area (kg/hectare). It measures the grain production efficiency of a region.
• Per Capita Grain Production (kg). It refers to the average amount of grain produced per person

in a given region or country.

Secondly, Qualitative Security (s2) measures the issue of whether people can "eat safely and
healthily". This article selects two indicators, both negative, as follows:

• Pesticide Usage per Unit of Cultivated Area (kg/hectare). It measures the amount of pesticide
applied to a specific area of landr reflecting the intensity of pesticide applications.

• Fertilizer Usage per Unit of Cultivated Area (Pure Quantity, kg/hectare). It refers to the quantity
of fertilizers applied to a specific land area. Fertilizer is known as the "food" of grain, mainly
used to improve soil fertility and land yield per unit area. However, excessive application of
fertilizer leads to a decrease in soil organic matter, soil hardening, a decrease in land quality, and
pollution of irrigation water.

Thirdly, Ecological Environment Security (s3) examines the sustainability of food production.
Food production should not only consider whether the current food production and quality can meet
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the needs of contemporary people, but also investigate the sustainability of resources. The Grain
Disaster Rate is selected as follows:

• Grain Disaster Rate (%). It measures the impact and response capabilities of each province to
diseases, pests, and climate disasters through the proportion of food crops affected by disasters.

Table 1. Food Security Indicator System involved in this study.

Tier 1 Indicator Tier 2 Indicator Tier 3 Indicator Indicator Direction*

Food Security Index

(FSI)

Quantitative Security

(s1)

j1: Grain Production Fluctuation Rate (%) Positive

j2: Grain Yield per Unit Area (kg/hectare) Positive

j3: Per Capita Grain Production (kg) Positive

Qualitative Security (s2) j4: Pesticide Usage per Unit of Cultivated Area (kg/hectare) Negative

j5: Fertilizer Usage per Unit of Cultivated Area (Pure Quantity, kg/hectare) Negative

Ecological Environment

Security (s3)
j6: Grain Disaster Rate (%) Negative

Economic Security

(s4)
j7: Consumer Price Index for Grain Products (Previous Year = 100) Negative

j8: Rural Residents’ Engel Coefficient (%) Negative

Resource Security

(s5)
j9: Cultivated Area Used per Unit of Grain Production (hectare/ton) Negative

j10: Water Resources Used per Unit of Grain Production (cubic meters/ton) Negative

* "Positive" indicates that a higher numerical value of the indicator corresponds to a higher level of food security;
"Negative" indicates that a lower numerical value of the indicator corresponds to a higher level of food security.

Then, Economic Security (s4) measures whether people can "afford" to eat. This work selects two
negative indicators as follows:

• Consumer Price Index for Grain Products (Previous Year = 100). It is a measure that tracks
changes in the prices of grain-related products consumed by the general population.

• Rural Residents’ Engel Coefficient (%). It refers to the proportion of food expenditure in the total
consumption expenditure of rural households. This coefficient provides insights into the living
standards and consumption patterns of rural residents.

Lastly, Resource Security (s5) examines the resource occupation of food production. This article
selects two negative indicators as follows:

• Cultivated Area Used per Unit of Grain Production (hectare/ton). It refers to the amount of land
required to produce a certain quantity of grain. It is a measure that indicates the efficiency of
land use in grain production.

• Water Resources Used per Unit of Grain Production (cubic meters/ton). It refers to the amount
of water consumed in the production of a specific quantity of grain. This metric is crucial in
assessing the water efficiency of agricultural systems and the sustainability of grain production
practices.

2.3.2. The Entropy Weight Method

The entropy weight method is a commonly used approach for evaluating the effectiveness of
multiple attributes or criteria in decision-making problems. It is based on the concept of entropy
from information theory, which measures the uncertainty or the amount of information contained in a
random variable or a set of data. In the entropy weight method, the entropy value of each evaluation
criterion is calculated. This entropy value reflects the degree of dispersion or uncertainty associated
with the data for that criterion. The weights of the criteria are then determined based on their entropy
values. Criteria with higher entropy values (indicating greater uncertainty or dispersion) are assigned
lower weights, while criteria with lower entropy values (indicating less uncertainty or dispersion) are
assigned higher weights. The method provides a quantitative measure of the contribution of each
criterion to the overall decision result. It is often used in multi-attribute decision-making problems
where there are multiple criteria or indicators that need to be considered simultaneously.
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In this work, the entropy weight method the entropy weight method is performed to determine
the weight of each indicators in the Food Security Indicator System in Table 1. Detailed steps of how to
perform this method can be seen in section Appendix A.1.

2.4. The Panel Data Analysis Method

Panel Data Analysis is a statistical technique used to analyze data that combines both cross-
sectional and time-series dimensions. This type of data, often referred to as "panel data" or "longitudinal
data," involves observations of multiple entities across multiple time periods. It can be used to estimate
the effects of time-invariant and time-varying explanatory variables on a dependent variable, taking
into account both the cross-sectional and time-series dimensions of the data. The analysis typically
involves fitting a regression model to the panel data, where the dependent variable is regressed on
a set of explanatory variables. Panel regression analysis has a wide range of applications in various
fields, including economics, finance, sociology, and political science. It is particularly useful when
studying processes that involve both individual and time-varying factors, such as economic growth,
firm performance, or social change.

In this work, a climate-economic model is used to assess the multi-dimensional impacts of climate
change on China’s food security. The establishment of this model can be seen in section Appendix A.2.

3. Results

3.1. Climate Mean State and Variability

Agriculture is deeply intertwined with climate. Climate conditions, such as temperature, rainfall,
and humidity, significantly impact crop growth, yield, and diversity. Adapting agricultural practices
to specific climates is crucial for sustainable food production. Thus, the basic conditions of climate
and its changes are presented. Surface air temperature and precipitation over China for the period of
2002-2021 are derived from the CN05.1 observational dataset, as is shown in Figure 1.

Figure 1. (a,b,c) Climatological mean state, standard deviation and linear trend of surface air tempera-
ture, and (d,e,f) that of precipitation same as temperature, basing on the CN05.1 gridded observation
dataset for the period of 2002-2021.

For the 20-year mean annual averaged temperature in Figure 1a, it shows that temperature in
China typically varies significantly across regions due to its vast land area and diverse climatic zones.
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However, in general, the average annual temperature in China ranges between -5◦C to 25◦C, with a
mean of around 10◦C to 15◦C. The northern regions, including the Northeast, North, and parts of the
Northwest, generally have cooler annual temperatures, averaging around 0◦C to 10◦C. These areas
experience colder winters and relatively warmer summers. The central and southern regions, including
the East, Central, South, and Southwest, have warmer annual temperatures, averaging between 10◦C
to 20◦C. The mountainous regions, such as the Himalayas in the west and the Qinghai-Tibet Plateau
in the northwest, have significantly lower annual temperatures, often below 0°C due to their high
altitude. In Figure 1b, it shows that the most pronounced year-to-year variations occur in the North
and Northeast regions. Along with the global warming, China has seen a general trend of warming
over the past 20 years, with average annual temperatures increasing slightly, as is shown in Figure 1c.
However, this trend is not uniform across the country. Some regions, especially in the north, central
and southwest parts, have experienced more pronounced warming than other regions, with linear
trends larger than 0.4◦C per 10 years.

Climatological mean precipitation are presented in Figure 1d, generally showing that the southern
regions of China receive higher average annual precipitation than the northern regions. The southern
areas, including the South, East, and parts of the Central and Southwest regions, experience abundant
rainfall with higher than 1000 mm per year. These regions are influenced by the East Asian monsoon,
which brings moist air from the oceans, resulting in frequent rainy seasons and abundant precipitation.
By contrast, the northern regions, including the North, Northwest, and parts of the Northeast, receive
lower average annual precipitation, ranging from 200 to 600 mm per year. These areas have a more
continental climate, with dry winters and limited moisture supply, leading to lower precipitation levels.
Figure 1e shows that the year-to-year variations have similar pattern to the mean precipitation, and
the most pronounced variations occur over southeast part. Linear trends of precipitation in Figure 1f
shows that regions of Sichuan-Chongqing-Guizhou, Jiangsu-Zhejiang-Shanghai-Anhui, and parts of
the Northeast regions have experienced significant increase in annual precipitation, while regions of
Eastern Guangdong and Western Guangdong, Henan, Yunnan have experienced decrease in annual
precipitation, resulting higher risks of drought in these regions.

3.2. Food Security Evaluation

To more accurately assess the impact of climate change on China’s food security, we should
establish an indicator system that can reflect the level of food security. Basing on the indicator system
shown in Table 1, the entropy weight method is performed to determine the weight of each indicators
in the subsystem. Detailed steps of how to perform this method can be seen in section Appendix A.1.
Using provincial panel data collected from public dataset, the food security index (FSI) are derived,
together with score series of the five Tier-2 indicators of Quantitative Security (s1), Qualitative Security
(s2), Ecological Environment Security (s3), Economic Security (s4), and Resource Security (s5). The
respective weights assigned to each individual indicator within the Food Security Indicator System are
presented in Table 2. Utilizing the available provincial panel data and the food security indicator system
outlined in Table 1, it becomes apparent that Quantitative Security (s1) holds a substantial weight of
approximately 63% in determining the overall FSI. This significant influence primarily originates from
the key indicator of j3: Per Capita Grain Production (kg). Following closely is Qualitative Security
(s2) with a weight of around 13%, while Economic Security (s4) and Resource Security (s5) contribute
with weights of approximately 11% and 9%, respectively. Lastly, Ecological Environment Security (s3)
accounts for the least, weighing in at around 4%. This distribution of weights highlights the significant
influence of various factors on food security and their relative importance within the indicator system.
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Table 2. Weights of indicators in Food Security Indicator System involved in this study.

Tier 2 Indicator Tier 3 Indicator Weight

s1
j1 2.54%

j2 19.15%

j3 41.25%

s2 j4 5.64%

j5 7.51%

s3 j6 3.78%

s4 j7 3.08%

j8 7.67%

s5 j9 6.09%

j10 3.30%

The fluctuations in the national FSI and its associated indicators are depicted in Figure 2. From a
holistic perspective, China’s food security exhibited a fluctuating upward trend over this period as
per the FSI. To delve deeper, the Tier-2 indicators in Table 1, which compose the FSI, provide further
insights into these variations. Specifically, the Quantitative Security (s1), Ecological Environment
Security (s3), Economic Security (s4), and Resource Security (s5) – contributing 62.9%, 3.8%, 10.8%,
and 9.4% to the FSI respectively – all exhibit strong positive correlations with the FSI (correlation
coefficients of 0.98, 0.94, 0.94, and 0.93 respectively, all exceeding the 99% confidence level), reflecting a
similarly fluctuating growth pattern during the specified period. In contrast, the Qualitative Security
(s2) demonstrates a negative correlation (-0.62, surpassing the 99% confidence threshold), suggesting a
declining trend throughout the same period.

Figure 2. Variations of national mean Food Security Index (FSI) and the sub-system indicators during
2002-2021.
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Similar work is conducted by combining panel data on food security indicators in 31 provincial
administrative regions of China. Figure 3 introduces the boxplot to show the diversity of FSI on spacial
and temporal dimensions. On spacial dimension, as is shown in Figure 3a, five provinces (Heilongjiang,
Jilin, Neimenggu, Liaoning, Xinjiang) see higher level of food security, with median values above
0.50. The lowest level of food security occur at Hainan province, with the median value less than 0.30.
In terms of mean scores, the top 13 provinces are all in the set of MPA, which is consistent with the
national grain production regional division. The 14th to 25th places include 11 provinces, in which 6
provinces (Xinjiang, Chongqing, Yunnan, Guangxi, Shanxi, Ningxia) are BA areas, and 5 provinces
(Shanghai, Zhejiang, Tianjin, Beijing, Guangdong) are MCA areas. The remaining 7 provinces with
the lowest average grain scores are Fujian, Shaanxi, Guizhou, Xizang, Gansu, Hainan, and Qinghai.
Among them, 5 provinces (Shaanxi, Guizhou, Tibet, Gansu, Qinghai) are BA areas, and 2 provinces
(Fujian, Hainan) are MCA areas. It can be seen that the food security of the BA areas has already been
suffering a warning issued for food security. From a temporal perspective, as is shown in Figure 3b,
the provincial food security level generally shows a continuous upward trend. The median value of
the 31 provinces has risen from below 0.4 to nearly 0.5.

Figure 3. Boxplot of the provincial FSI on Dimensions of (a) space and (b) time.

To quantitatively evaluate the provincial food security level, a Taylor diagram is introduced in
Figure 4, which can provide a visual framework for comparing provincial FSI to national wide mean
FSI. The radial distance from the origin represents the fraction of provincial FSI variations and national
wide mean FSI variation. The temporal correlation coefficient between the provincial FSI and national
wide mean FSI is denoted by the angular distance from the x-axis. As can be seen from this figure,
there are significant regional differences in food security indices among provinces nationwide. From
the perspective of variance, compared to the national wide mean FSI, the standard deviation of FSI for
most provinces falls within the range of 0.5 to 1.5. There are four provinces (Heilongjiang, Neimenggu,
Jilin, Xinjiang) with standard deviations above 1.5, indicating larger interannual fluctuations. On
the other hand, three provinces (Fujian, Guangdong, Zhejiang) have standard deviations below
0.5, indicating smaller interannual variations in their FSI. From the perspective of correlation, the
interannual variations of the majority of provinces are relatively consistent with that of the national
wide mean FSI. There are 28 provinces with correlation coefficients exceeding 0.7, with the highest
exceeding 0.99 (Neimenggu). However, there are 3 provinces (Guangdong, Hainan, Beijing) with
correlation coefficients below 0.7, indicating that their variations differ significantly from those of other
provinces.
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Figure 4. Taylor diagram for evaluating the diversity of provincial FSI. The angular distance from the
x-axis denotes the temporal correlation coefficient between each provincial FSI to national wide mean
FSI.

3.3. Empirical Analysis of the Impact of Climate Change on China’s Food Security

On the basis of the understanding of China’s climate conditions and changes over the past 20
years, combined with the newly constructed provincial-level food security index in China, this section
employs panel regression analysis methods to investigate the multi-dimensional impacts of climate
change on China’s food security during the period of 2002-2021.

Climate change is a significant and growing threat to food security, already affecting vulnerable
populations across the world [38]. In the context of climate change, both climate extremes and climate
mean are important considerations. Climate change is causing shifts in both the mean and extreme
values of weather variables. For example, global warming is leading to higher average temperatures
and more frequent and intense extreme heat events. Similarly, changes in precipitation patterns
are resulting in both wetter and dryer regions, with more intense rainfall events in some areas and
decreased rainfall in others. It is important to consider both climate extremes and climate mean when
assessing the impacts of climate change and developing adaptation strategies. Understanding how
these two aspects of climate are changing can help us prepare for and mitigate the potential negative
impacts of climate change on human society and the natural environment. Thus, two groups of climate
variables are analyzed respectively.

3.3.1. Impact of Climate Mean State Change on FSI

Climate change refers to long-term shifts in the Earth’s climate system, including temperature,
precipitation, wind patterns, and other weather variables. In this work, the variables of accumulated
temperature above 10◦C (Tm10) and yearly accumulated precipitation (Pre) are used to represent
the climate mean state change for the period of 2002-2021, and are designated to be the explanatory
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variables. The provincial food security index (FSI) is designated to be the dependent variable. Besides,
the cultivated land area (CLA), the effective irrigation area (EIA), and the total agricultural machinery
power (TAMP) are selected as the control variables. Both entity-specific fixed effects and time fixed
effects have been incorporated into the model.

Firstly, employing a panel regression analysis on the provincial dataset, we confined our attention
to the linear effects by considering only the first-order terms of the explanatory variables. This was
done using the Panel Data Analysis model (Equation A11) detailed in Appendix A.2. The outcomes
from this specific analysis are displayed in Table 3. From the presented table, one can discern that
for the Food Security Index (FSI), the coefficient of Tm10 stands at -0.188, a value that is statistically
significant at the p<0.01 level. This implies a negative linear relationship between Tm10 and FSI,
suggesting that as Tm10 rises, there is a corresponding decrease in the FSI. On the contrary, no
statistically significant association exists between Pre and FSI. Regarding control variables, both
CLA and EIA exert significant positive influences on food security. The model’s R-squared value
amounts to 0.758, signifying that our model effectively accounts for 75.8% of the variability in the
dependent variable FSI. This is considered a relatively high R-squared value, indicating that our model
offers a good fit to the data, with substantial explanatory power regarding fluctuations in China’s
provincial food security levels. Regarding the sub-indicators, it is evident that both Quantitative
Security (s1) and Economic Security (s4) demonstrate strong correlations with variations in Tm10,
where the significance level surpasses p<0.01. This signifies a detrimental effect on Quantitative
Security but a favorable impact on Economic Security due to changes in Tm10. Additionally, Resource
Security (s5) exhibits a negatively correlated relationship with Tm10 at a significant level of p<0.1,
suggesting a decrease as Tm10 increases. However, no statistically significant effects are observed
between Tm10 and Qualitative Security (s2) or Ecological Environment Security (s3).

Table 3. The linear impact of annual mean climate variables on China’s provincial Food Security Index
(FSI) and its five Tier-2 sub-indicators, as enumerated in Table 1.

Variables s1 s2 s3 s4 s5 FSI

Tm10 -0.553*** 0.137 -0.272 0.418*** -0.175* -0.188***
(0.12) (0.10) (0.18) (0.08) (0.09) (0.06)

Pre 0.063* 0.024 0.061 -0.022 0.010 0.024
(0.04) (0.03) (0.06) (0.03) (0.03) (0.02)

CLA 0.242*** 0.478*** 0.114 0.002 -0.066* 0.176***
(0.05) (0.04) (0.07) (0.03) (0.04) (0.02)

EIA 0.261*** -0.267*** -0.020 -0.016 0.187*** 0.087***
(0.05) (0.04) (0.08) (0.04) (0.04) (0.02)

TAMP -0.134*** -0.079*** -0.004 0.206*** -0.001 -0.026*
(0.03) (0.03) (0.05) (0.02) (0.02) (0.01)

Constant -0.811 -4.957*** -2.620 -7.471*** -2.159*** -1.399***
(1.08) (0.88) (1.68) (0.78) (0.83) (0.50)

Entity FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
R2 0.652 0.381 0.366 0.859 0.298 0.758
Observation 620 620 620 620 620 620

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

Subsequently, to account for the non-linear effects of precipitation and temperature on food
security, quadratic terms for the explanatory variables Pre and Tm10 are incorporated into the model.
A refined panel regression analysis is performed using a modified version based on Equation A13
detailed in Appendix A.2. Post-regression, individual U-tests were carried out to examine each
variable’s non-linearity. The results from this advanced analysis are showcased in Table 4. The findings
reveal that while there is no statistically significant U-shaped relationship between Tm10 and food
security, an inverse U-shaped relationship between Pre and food security has been established as
significant. This leads to the conclusion that the effect of temperature (Tm10) on food security is
linear, whereas the influence of precipitation (Pre) exhibits a nonlinear pattern. Consequently, only
the first-order term of temperature is retained in the model, while both the first-order and second-
order terms for precipitation are maintained to reflect its nonlinear impact. This indicates that when
annual precipitation falls within a certain optimal range, increasing it can indeed contribute positively
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to ensuring food security. Yet, beyond a particular threshold, any further rise in precipitation will
inversely affect food security levels, leading to a decline. This inverse U-shaped relationship between
precipitation and food security is consistently mirrored in the Quantitative Security (s1), Ecological
Environment Security (s3), and Resource Security (s5) sub-indicators, suggesting that the effects of
precipitation on these dimensions follow a similar pattern of initially improving then potentially
deteriorating food security conditions under excessive amounts.

Table 4. Same as Table 3, but with the quadratic terms for Pre and Tm10 being incorporated.

Variables s1 s2 s3 s4 s5 FSI

Tm10 -0.512*** 0.138 -0.201 0.414*** -0.152* -0.166***
(0.11) (0.10) (0.18) (0.09) (0.09) (0.05)

Pre 2.397*** 0.088 4.076*** -0.224 1.342*** 1.321***
(0.41) (0.34) (0.63) (0.30) (0.32) (0.19)

(Pre)2 -0.173*** -0.005 -0.297*** 0.015 -0.099*** -0.096***
(0.03) (0.03) (0.05) (0.02) (0.02) (0.01)

CLA 0.208*** 0.478*** 0.056 0.005 -0.085** 0.157***
(0.05) (0.04) (0.07) (0.03) (0.04) (0.02)

EIA 0.253*** -0.267*** -0.035 -0.016 0.182*** 0.082***
(0.05) (0.04) (0.08) (0.04) (0.04) (0.02)

TAMP -0.116*** -0.078*** 0.027 0.204*** 0.009 -0.016
(0.03) (0.03) (0.05) (0.02) (0.02) (0.01)

Constant -8.755*** -5.174*** -16.288*** -6.781*** -6.693*** -5.814***
(1.74) (1.45) (2.69) (1.28) (1.36) (0.80)

Entity FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
R2 0.671 0.381 0.408 0.859 0.319 0.777
Observation 620 620 620 620 620 620

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

3.3.2. Impact of Climate Extremes Change on FSI

Climate extremes refer to the occurrence of unusually high or low values of weather variables,
such as temperature, precipitation, that fall outside the range of normal variations expected in a given
region. These extreme events can include extreme heat waves, droughts, floods, and other severe
weather conditions. Climate extremes can have significant impacts on human health, agriculture,
infrastructure, and ecosystems.

In a similar vein to the examination of mean climate state changes (Pre for precipitation and Tm10
for temperature), we use two variables that embody climate extremes: TX90p, which represents the
percentage of days when the daily maximum temperature exceeds the 90th percentile, and R95TOT,
denoting the accumulated precipitation on days where daily precipitation is equal to or above the 95th

percentile. These variables encapsulate climate extremes data for the period between 2002 and 2021
and are thus designated as the explanatory variables in our subsequent analysis. The fixed effects
configuration, as well as the inclusion of other variables – including the control variables and the
constant term – remain consistent across the analyses.

In the context of solely examining the linear effects of the explanatory variables, we utilized
the regression model constructed in accordance with Equation A12 detailed in Appendix A.2. The
outcomes from this regression analysis are showcased in Table 5. As evidenced by the table, there
is a highly statistically significant (p<0.01) negative association between extreme high temperatures
(TX90p) and food security, indicating that an escalation in intense heat occurrences results in a
reduction of food security levels. However, no discernible linear correlation exists between extreme
precipitation (R95TOT) and food security. Upon closer inspection of the Tier-2 indicators, it becomes
apparent that TX90p consistently exerts detrimental impacts on Quantitative Security (s1), Ecological
Environment Security (s3), and Resource Security (s5). This uniform manifestation of adverse influence
suggests that the deleterious effect of extreme heat on food security is channeled through its impact on
these specific sub-indicators.
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Table 5. Same as Table 3, but for impact of climate extremes change.

Variables s1 s2 s3 s4 s5 FSI

TX90p -0.069*** -0.028 -0.155*** 0.020 -0.054*** -0.041***
(0.03) (0.02) (0.04) (0.02) (0.02) (0.01)

R95TOT 0.017 0.002 -0.068* -0.024 -0.015 -0.005
(0.03) (0.02) (0.04) (0.02) (0.02) (0.01)

CLA 0.221*** 0.484*** 0.102 0.017 -0.072** 0.169***
(0.05) (0.04) (0.07) (0.03) (0.04) (0.02)

EIA 0.250*** -0.265*** -0.020 -0.007 0.183*** 0.083***
(0.05) (0.04) (0.08) (0.04) (0.04) (0.02)

TAMP -0.137*** -0.079*** -0.015 0.205*** -0.004 -0.028*
(0.03) (0.03) (0.05) (0.02) (0.02) (0.01)

Constant -4.674*** -3.660*** -3.566*** -4.231*** -3.246*** -2.595***
(0.42) (0.34) (0.64) (0.30) (0.32) (0.19)

Entity FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
R2 0.642 0.381 0.379 0.853 0.304 0.758
Observation 620 620 620 620 620 620

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

In the context of examining the non-linear effects encapsulated by the quadratic terms of the
explanatory variables, we utilized a regression model derived from Equation A14 detailed in Appendix
A.2. The results of this analysis are showcased in Table 6. Our research findings reveal that there is no
statistically significant non-linear correlation between TX90p and overall food security. However, it
is noteworthy that the sub-indicators Quantitative Security (s1) and Economic Security (s4) exhibit
opposing U-shaped trends. On the other hand, an inverted U-shaped relationship with statistical
significance has been observed between R95TOT and food security, which has successfully undergone
validation via the U-test. This particular relationship is primarily underpinned by the inverse U-shape
associations existing between R95TOT and the following Tier-2 indicators: Quantitative Security (s1),
Ecological Environment Security (s3), as well as Resource Security (s5).

Table 6. Same as Table 5, but with the quadratic terms for explanatory variables being incorporated.

Variables s1 s2 s3 s4 s5 FSI

TX90p 0.482** 0.022 -0.140 -0.421** 0.016 0.045
(0.23) (0.19) (0.35) (0.17) (0.18) (0.11)

(TX90p)2 -0.126** -0.011 -0.005 0.101*** -0.016 -0.020
(0.05) (0.04) (0.08) (0.04) (0.04) (0.02)

R95TOT 1.054*** 0.062 2.319*** -0.160 0.730*** 0.631***
(0.23) (0.19) (0.35) (0.17) (0.18) (0.11)

(R95TOT)2 -0.086*** -0.005 -0.197*** 0.012 -0.062*** -0.053***
(0.02) (0.02) (0.03) (0.01) (0.01) (0.01)

CLA 0.197*** 0.482*** 0.073 0.028 -0.083** 0.160***
(0.05) (0.04) (0.07) (0.03) (0.04) (0.02)

EIA 0.247*** -0.265*** -0.042 -0.012 0.177*** 0.078***
(0.05) (0.04) (0.08) (0.04) (0.04) (0.02)

TAMP -0.137*** -0.080*** -0.003 0.209*** -0.000 -0.026*
(0.03) (0.03) (0.05) (0.02) (0.02) (0.01)

Constant -8.135*** -3.877*** -10.416*** -3.448*** -5.442*** -4.493***
(0.80) (0.66) (1.20) (0.59) (0.61) (0.37)

Entity FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes
R2 0.658 0.382 0.428 0.855 0.325 0.773
Observation 620 620 620 620 620 620

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

3.4. Regional Differences in the Impact of Climate Change on FSI

In order to delve deeper into the regional disparities in the effects of climate change on food
security, this study introduces three regional dummy variables: D1 is set to 1 for provinces within
the MPA region and 0 for those outside it; similarly, D2 assumes a value of 1 for provinces in the BA
region and 0 for others, while D3 takes the value 1 for provinces in the MCA region and 0 otherwise.
We proceed with a panel regression analysis using provincial panel data based on the Panel Data
Analysis model presented in Equation A15 and A16 within Appendix A.2. Throughout all analyses,
the fixed effects settings are maintained consistently, as are the inclusion of other variables such as
control variables and the constant term. This approach allows us to discern how the impacts of climate
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change, including climate mean and climate extremes, vary across different regions with respect to
food security.

3.4.1. Impacts of Climate Mean State Change

We initially explore the impacts of climate mean state changes, as represented by Tm10 (mean
temperature) and Pre (precipitation). The outcomes from this investigation are presented in Table 7.
These results reveal that a significant negative linear relationship between Tm10 and the Food Security
Index (FSI) prevails predominantly in the BA region, with a p-value less than 0.05. Moreover, the
analysis also shows a positive linear correlation between Pre and FSI, which is statistically significant
at the p<0.01 level in the BA region and marginally significant at the p<0.1 level in the MPA region.

Table 7. Regional disparities in the influence of climate mean state changes on China’s provincial Food
Security Index (FSI) by considering the distinct roles and characteristics of provinces within the context
of food production and sales distribution.

Variables FSI in MPA FSI in BA FSI in MCA

Tm10 -0.155 -0.114** 0.024
(0.13) (0.06) (0.23)

Pre 0.042* 0.111*** -0.024
(0.02) (0.03) (0.03)

CLA 0.169*** 0.125*** 0.121**
(0.03) (0.04) (0.05)

EIA 0.285*** 0.004 0.010
(0.03) (0.04) (0.06)

TAMP -0.029 -0.063*** -0.071*
(0.02) (0.02) (0.04)

Constant -3.348*** -1.443** -1.503
(1.17) (0.57) (2.06)

Entity FE Yes Yes Yes
Time FE Yes Yes Yes
R2 0.889 0.811 0.615
Observations 260 220 140

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

In contrast to linear analysis, the investigation incorporates non-linear effects by including
quadratic terms of the explanatory variables. Table 8 showcases the outcomes from this non-linear
examination. It is noteworthy that no significant non-linear relationship between Tm10 and the Food
Security Index (FSI) can be observed across all three designated regions. However, when it comes
to precipitation (Pre), a distinct non-linear pattern emerges: there is a statistically significant inverse
U-shaped association between Pre and food security in both the MPA and MCA regions. This implies
that beyond certain thresholds, an increase in precipitation does not proportionally enhance food
security in these areas; instead, it may lead to diminishing returns or even negative impacts on food
security.
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Table 8. Same as Table 7, but with the quadratic terms for explanatory variables being incorporated.

Variables FSI in MPA FSI in BA FSI in MCA

Tm10 3.321 -1.233 5.616
(2.50) (0.95) (6.56)

(Tm10)2 -0.208 0.078 -0.330
(0.15) (0.07) (0.38)

Pre 1.866*** 0.242 1.424***
(0.30) (0.29) (0.48)

(Pre)2 -0.135*** -0.010 -0.104***
(0.02) (0.02) (0.03)

CLA 0.123*** 0.128*** 0.129**
(0.03) (0.04) (0.05)

EIA 0.283*** -0.000 -0.004
(0.03) (0.04) (0.06)

TAMP -0.025 -0.059*** -0.038
(0.02) (0.02) (0.04)

Constant -23.615** 2.056 -30.319
(10.31) (3.48) (28.54)

Entity FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 260 220 140
R2 0.905 0.813 0.646

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

Similarly, we performed regression analyses on the climate extremes changes, represented by
TX90p (extreme high temperature) and R95TOT (extreme precipitation), examining both linear and
non-linear effects. The outcomes of these analyses are presented in Table 9 for linear effects and Table 10
for non-linear effects. In terms of extreme temperatures, a consistent negative linear relationship
with food security is observed across all three regions, although this correlation reaches statistical
significance at the p<0.01 level only within the BA region. On the other hand, the influence of extreme
precipitation exhibits an inverse U-shape relation with food security in all three regions. Notably, this
non-linear relationship surpasses the p<0.01 significance threshold in both the MPA and MCA regions,
indicating that there is a threshold beyond which increased extreme precipitation negatively impacts
food security in these areas.

Table 9. Same as Table 7, but for impact of climate extremes change.

Variables FSI in MPA FSI in BA FSI in MCA

TX90p -0.017 -0.062*** -0.019
(0.02) (0.02) (0.02)

R95TOT 0.019 0.028 -0.031
(0.02) (0.02) (0.02)

CLA 0.172*** 0.096** 0.123**
(0.03) (0.04) (0.05)

EIA 0.281*** -0.003 0.012
(0.03) (0.04) (0.06)

TAMP -0.027 -0.073*** -0.073*
(0.02) (0.02) (0.04)

Constant -4.447*** -1.334*** -1.251***
(0.33) (0.37) (0.36)

Entity FE Yes Yes Yes
Time FE Yes Yes Yes
R2 0.888 0.815 0.620
Observations 260 220 140

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.
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Table 10. Same as Table 9, but with the quadratic terms for explanatory variables being incorporated.

Variables FSI in MPA FSI in BA FSI in MCA

TX90p -0.002 -0.066*** -0.029
(0.02) (0.02) (0.02)

R95TOT 1.359*** 0.233* 0.981***
(0.21) (0.14) (0.30)

(R95TOT)2 -0.108*** -0.018 -0.080***
(0.02) (0.01) (0.02)

CLA 0.118*** 0.097** 0.135***
(0.03) (0.04) (0.05)

EIA 0.274*** -0.009 0.022
(0.03) (0.04) (0.06)

TAMP -0.024 -0.072*** -0.067*
(0.02) (0.02) (0.04)

Constant -8.098*** -1.860*** -4.571***
(0.65) (0.51) (1.06)

Entity FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 260 220 140
R2 0.905 0.817 0.655

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1; All variables being taken the logarithm.

4. Discussion

The assessment of food security in China is a multifaceted and intricate process, heavily influenced
by regional disparities and varying policy frameworks. The complexity of the subject has led to the
development of distinct indicator systems reflecting individual research priorities, which may yield
differing conclusions when evaluating the nation’s food security status. This study presents a holistic
framework for food security analysis that encompasses five key dimensions: Quantitative Security,
Qualitative Security, Ecological Environmental Security, Economic Security, and Resource Security.
This robust structure builds upon and refines existing indicators, aiming to offer a more integrated and
thorough understanding of food security in light of current challenges and dynamics.

Quantitative Security accounts for a critical 63% weight within China’s Food Security Index
(FSI). Over time, there has been a general strengthening of China’s food security, with strong positive
correlations observed for Quantitative, Ecological Environment, Economic, and Resource Security
aspects. However, the decline in Qualitative Security, as indicated by its negative correlation, highlights
the vital need for persistent improvements in grain production efficiency and strict adherence to
cultivated land red line policies. Core strategies include advancing agricultural technologies, judicious
land use management, and stringent protection against overexploitation to ensure sustainable food
output and resilience to adversities.

A closer examination of Figure 3 reveals that among the 31 provinces studied, five provinces—Shaanxi,
Guizhou, Xizang, Gansu, and Qinghai—in balanced production-consumption regions exhibit notably
low food security scores, signifying heightened insecurity and significant challenges to national food
security. These regions, characterized by less fertile lands and underdeveloped infrastructure, are
prime targets for agricultural improvement initiatives. In response to intensifying food security risks in
these balance zones, urgent and comprehensive action is required. This involves enhancing agricultural
productivity, protecting arable land, augmenting grain reserves, optimizing logistics, establishing
robust emergency plans, promoting climate-smart agriculture, encouraging moderate-scale farming,
and implementing targeted support measures. These strategic steps are indispensable for maintaining
stable grain supplies and reinforcing national food security amidst growing threats from climate
change, dwindling land resources, and volatile market conditions.

Climate change, marked by rising temperatures and more frequent extreme heat events, signifi-
cantly impacts China’s food security landscape. Precipitation influences display a U-shaped pattern,
initially benefiting food production until it reaches a point where excessive levels become detrimental.
Therefore, local food security strategies must be adapted to address climate change by assessing re-
gional climate risks, diversifying agricultural outputs, optimally allocating water resources, upgrading
agricultural facilities, promoting resilient farming practices, bolstering community resilience, and
fostering collaboration across stakeholders to enhance adaptive capabilities. Upholding the red line
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for cultivated land, improving soil quality, and endorsing moderate-scale farming operations are
fundamental elements to strengthen the stability and resilience of agricultural production under an
evolving climate scenario.

5. Conclusions

To conduct a comprehensive quantitative assessment of China’s food security, this study devised
a provincial Food Security Index (FSI) system consisting of five secondary indicators and ten tertiary
indicators. The entropy method was employed to assign weights and compute the FSI for each
province. Leveraging a climate-economic model, the investigation scrutinized the multifaceted impacts
of climate change on China’s food security landscape over the 2002-2021 period, culminating in several
noteworthy findings.

China’s diverse climates exhibit increasing temperatures and variable precipitation patterns, with
the most significant warming trends observed in its northern, central, and southwestern regions.
Southern provinces receive higher annual rainfall due to monsoons, whereas interannual fluctuations
in southeast regions elevate the likelihood of drought occurrences.

Quantitative Security elements account for a dominant share (63%) within the overall FSI, which
has generally exhibited improvement across multiple dimensions, except for Qualitative Security,
which experienced a downturn. While provincial food security levels have improved collectively, they
are notably under threat in BA designated areas.

Statistical regression analyses uncovered a robust negative linear relationship between accumu-
lated temperatures (Tm10) and provincial food security, demonstrating statistical significance at p<0.01.
Precipitation, conversely, influences food security in a non-linear fashion, manifesting as an inverse
U-shaped curve that becomes substantial when surpassing certain thresholds, particularly in MPA and
MCA zones.

Extreme high temperatures consistently lower food security across multiple indicators, while
no such linear correlation exists for extreme precipitation. However, there’s a statistically significant
inverse U-shaped association between extreme precipitation and food security.

In the specific context of the BA region, Tm10 exert a significantly detrimental effect on food
security, contrasting sharply with the positive correlation found between Pre and food security, a
relationship that appears more pronounced in BA compared to MPA. Further, non-linear analyses
divulge that beyond certain thresholds, escalating precipitation can lead to diminishing returns or
even adverse effects on food security.
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Abbreviations

The following abbreviations are used in this manuscript:

FSI Food security index
Tm10 Accumulated temperature above 10◦C
Pre Precipitation,
TX90p Percentage of days when daily maximum temperature > 90th percentile
R95TOT Accumulation of precipitation when daily precipitation ≥ 95th percentile
FE Fixed effects
CLA Cultivated land area
EIA Effective irrigation area
TAMP Total agricultural machinery power
MPA Main grain-production areas
BA Production-consumption balance areas
MCA Main grain-consumption areas

Appendix A. Supplement Materials for the Methods

Appendix A.1. Performing the Entropy Weight Method to Composite FSI

The use of entropy weight method to determine the weights of indicators and to composite the
FSI follow seven steps:

Step1: Given n samples and m indicators, Xij represents the numerical value of the jth indicator
for the ith sample (where i=1, 2, ..., n; j=1, 2, ..., m).

Step2: Indicator standardization: Since the units, dimensions, and scales of the indicators may
vary, standardization of the initial indicators is necessary to avoid meaningless values. The following
processing methods are applied for positive (eq.A1) and negative (eq.A2) indicators respectively:

X′
ij =

Xij − min(Xj)

max(Xj)− min(Xj)
, i = 1, ..., n; j = 1, ..., m (A1)

X′
ij =

max(Xj)− Xij

max(Xj)− min(Xj)
, i = 1, ..., n; j = 1, ..., m (A2)

Step3: Calculating the proportion of indicator values for the ith sample and jth indicator:

Pij =
X′

ij

∑n
i=1 X′

ij
, i = 1, ..., n; j = 1, ..., m (A3)

Step4: Obtaining the information entropy of the jth indicator:

ej = −k
n

∑
i=1

Pijln(Pij), k =
1

ln(n)
> 0, j = 1, ..., m (A4)

Step5: Calculating the redundancy of information entropy:

dj = 1 − ej, j = 1, ..., m (A5)

Step6: Calculating the weights of the indicators:

wj =
dj

∑m
j=1 dj

, j = 1, ..., m (A6)

Step7: Calculating the food security index of the ith sample for each subsystem:

si =
m

∑
j=1

wjPij, i = 1, ..., n (A7)
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In these formulas used in this work, n represents the number of years, and m represents the
number of indicators in the subsystem.

Appendix A.2. The Panel Data Analysis Model

The Cobb-Douglas production function is based on the empirical study of the American manu-
facturing industry made by Paul H. Douglas and C.W. Cobb. It is a linear homogeneous production
function of degree one which takes into account two inputs, labour (L) and capital (C), for the entire
output of the manufacturing industry (Q):

Q = ALαCβ (A8)

On this basis, previous works [35,36] developed a C-D-C model to estimate China’s climate
change risks on food production by introducing the impact of climate change:

Y = Xβ1
1 Xβ2

2 Xβ3
3 Cγµ (A9)

The formula can be linearized by taking the logarithm:

lnY = β1lnX1 + β2lnX2 + β3lnX3 + γlnC + lnµ (A10)

In this work, climate variables of Tm10, Pre, TX90p, R95TOT are used to represent the climate
risks on the FSI. Thus, this work developed a formula to determine FSI when considering mean
climate change:

ln(FSI) = A + β1ln(Tm10) + β2ln(Pre)

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε (A11)

in which the the cultivated land area (CLA), the effective irrigation area (EIA), and the total
agricultural machinery power (TAMP) are selected as the control variables. When considering extreme
climate change, the formula can be expressed as:

ln(FSI) = A + β1ln(TX90p) + β2ln(R95TOT)

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε (A12)

Further, by taking into account the non-linear effects of precipitation and temperature on food
production, the quadratic terms for climate variables are introduced into this model as:

ln(FSI) = A + β1ln(Tm10) + β′
1ln(Tm10)2 + β2ln(Pre) + β′

2ln(Pre)2

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε (A13)

and,

ln(FSI) = A + β1ln(TX90p) + β′
1ln(TX90p)2 + β2ln(R95TOT) + β′

2ln(R95TOT)2

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε (A14)

To further consider the regional differences in the impact of climate change on food security, this
study has set up three regional dummy variables: the MPA region D1=1 with other regions D1=0, the
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BA region D2=1 with other regions D2=0, and the MCA region D3=1 with other regions D3=0. The
relevant formula is as follows (V1, V2 represent the Tm10, Pre and TX90p, R95TOT respectively):

ln(FSI) = A + β1ln(V1) + β2ln(V2)

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε

+
3

∑
k=1

ρ1Dkln(V1) +
3

∑
k=1

ρ2Dkln(V2) (A15)

and,

ln(FSI) = A + β1ln(V1) + β′
1ln(V2

1 ) + β2ln(V2) + β′
2ln(V2

2 )

+ β3ln(CLA) + β4ln(EIA) + β5ln(TAMP) + µ + ν + ε

+
3

∑
k=1

ρ1Dkln(V1) +
3

∑
k=1

ρ′1Dkln(V2
1 ) +

3

∑
k=1

ρ2Dkln(V2) +
3

∑
k=1

ρ′2Dkln(V2
2 ) (A16)

In these formulas, the µ, ν and ε represent regional fixed effects, temporal fixed effects, and
random disturbances respectively. Other variables are consistent with the definition in above text as
well as in the section of Abbreviations.
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