

Article

Not peer-reviewed version

Promoting Green Transformations via Smart Engagement: An Assessment of 100 Citizen-led Urban Greening Projects

[Eleni Oikonomaki](#) *, Ilektra Papadaki , [Christina Kakderi](#)

Posted Date: 7 March 2024

doi: 10.20944/preprints202403.0451.v1

Keywords: Urban Greening Initiatives; Civic actions; Smart technologies; Smart Transition; Green Transition; Climate change; Urban Transformation; Green City; City Planning Model

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The importance of urban greening has been recognized by assessment frameworks like LEED [9], BREEAM [10], and Green Star [11] incentivize the integration of outdoor areas and sustainable landscaping into building projects [3, 12]. Yet, most urban structures are primarily characterized by their dense and monochromatic aesthetic. To meet green targets in existing overly populated cities, interventions should take place in existing facades and roofs, sealed pavements, and roads [13, 14].

Today, green infrastructure initiatives are mostly top-down yet citizen-led efforts, can also contribute to the greening of cities, complementing and enriching institutionalized efforts [15]. Engaging citizens in urban greening projects can foster stronger public support and generate interest in democratizing the planning, management, and oversight of public urban areas [16]. It also addresses the exclusionary dynamics of green gentrification and ensures that minority and low-income communities take part in molding fair, diverse, and sustainable urban green spaces [17]. It can also lead to increased satisfaction with planning results, prolong project sustainability, and create avenues for increased public interest and civic involvement [18]. Research on public perceptions of urban nature and green spaces has revealed a broader (than that of the traditional top-down) spectrum of services that the public values, including social interaction opportunities, educational experiences, recreational activities, and sources of inspiration [17].

Existing research has focused on the measurement of the public sentiments and motives behind citizen participation in urban green spaces and the perspectives on urban expansion, quality of life, community conservation, forestry, while delving into intricate social nuances and the dynamics of citizen attitudes [19–22]. However, less emphasis has been given on the study of community efforts, which often consist of small-scale endeavors that cannot be easily monitored, assessed, or scaled up. When it comes to assessing those initiatives, it gets challenging to quantify the dedication and efforts of individuals or businesses in promoting urban greening.

In this paper, we collect 100 citizen-led initiatives of urban greening around the world. We focus on initiatives where the contribution of citizens was the enabling factor. What we aim for is to shed more light into efforts stemming from citizen involvement. By shedding light to these often smaller-scale interventions and understanding the modes of their implementation and the actors' involvement, the research endeavors to offer valuable insights that can guide the implementation of effective green initiatives within communities. The study aims to gain a better understanding of citizen led urban greening initiatives and strengthen citizen ownership of green transformations. The collected data supports evidence-based policy decisions, and targeted scaled up interventions for greening projects. This involves examining various strategies and approaches that can empower individuals and communities to take an active role in the planning, development, monitoring, and maintenance of environmentally sustainable urban greening projects.

The next section provides a literature review covering the role of bottom-up urban greening initiatives in community empowerment (Section 2.1), an overview of existing measurement tools and mechanisms such as indices for assessing urban greening (Section 2.2), and delineates the various types of smart technologies that would support digitally-enabled participatory urban greening and community engagement (Section 2.3). In Section 3, we introduce our methodologies and data collection approach, which involved assessing 100 citizen-led initiatives. Section 4 categorizes the collected initiative based on infrastructure typology, implementation mode, and the integration of smart technologies. Finally, Section 5 concludes with a summary of the various synergies enabling participatory initiatives and the opportunities in the adoption of advanced smart technologies.

2. Literature Review

2.1. Grassroot initiatives for urban greening

The relevance and importance of urban greening is high in the context of the climate crisis. Studies show that in urban areas, there is frequently an unequal distribution of parks, green spaces, and trees, resulting in limited access for low-income and minority communities [23]. In a study conducted in Montreal, African American residents were found to be 52% more inclined than their white counterparts to inhabit neighborhoods characterized by greater impervious surfaces and diminished tree coverage [24]. Embracing nature-based solutions within urban greening initiatives presents an opportunity to enhance resilience and simultaneously tackle multifaceted urban challenges [25]. Integrating these solutions into urban planning holds promise for fostering more just and sustainable development and improving the overall quality of urban life.

Several cities have experimented with ways to remake themselves in response to climate change. These efforts, often driven by grassroots activism, aim at creating fair and livable communities from the ground up, including reclaiming their streets from cars, restoring watersheds, growing forests, and adapting shorelines to improve people's lives while addressing our changing climate [15]. For example, advocacy groups in Washington, DC are expanding the urban tree canopy and offering job training in the growing sector of urban forestry. In San Francisco, community activists are creating shoreline parks while addressing historic environmental injustice. We found several such advocates, non-profit organizations, community-based groups, and government officials which build alliances to support and embolden the urban greening vision together [15]. There are also programs initiated by cities, aimed at preserving local parks, encouraging residents to take on the responsibility of caring for these green spaces, seeking volunteers to assist the parks department. In some instances, the appeals for community involvement were prompted by insufficient funding allocated to public green areas [26].

By transforming concrete landscapes into vibrant green spaces, these initiatives create communal hubs that encourage social interaction, recreational activities, and shared experiences. Pocket parks, community gardens, and green corridors enhance the aesthetic appeal of urban areas and serve as focal points for gatherings, events, and community-driven activities and even urban farming. Multiple past analyses have shown that urban agriculture fosters community bonds, nurtures trust among residents, promotes civic participation, enhances well-being, and potentially mitigates socio-economic disparities [27–30]. The involvement of residents in the planning, maintenance, and use of these green spaces instills a sense of pride and responsibility, nurturing a shared commitment to the well-being and sustainability of their neighborhood, promoting their social cohesion, sense of belonging, social capital and critical health behaviors that might enhance psychological health and well-being [31–33]. Gehl advocated for creating cities that enhance the emotional and psychological well-being of their residents [34, 35], while Jacobs also supported grassroots, community-driven approach to urban planning, as bonds between neighbors foster a sense of unity and collective ownership [36]. Happy cities are characterized by a sense of social trust, which can be achieved through a mix of public and green spaces for communal activities [37].

Urban green spaces including pocket parks were particularly appreciated by residents during the different COVID-19 lockdowns and restrictions. Being the principal place for interaction and exercise, urban green spaces were key for both the physical and mental health of people during that period [8, 38, 39]. Pocket parks can enhance public health and foster social cohesion among residents, particularly in densely populated neighborhoods that are often underserved. The importance of pocket parks in offering accessible green spaces to urban populations was recognized even before the onset of the coronavirus pandemic; however, their role has now become even more critical, serving as essential lifelines for improving the health and well-being of urban residents during these challenging times [40].

2.2 Urban Greening Policies and Measurement Toolkits

. The concept of urban nature is gaining traction as a potential solution for promoting sustainability in urban planning and development [41, 42]. Overall, at different levels

97
98
99
100
101
102
103
104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150

(international, regional, local) urban greening policies and strategies are supported through different means. At the international level, UN issues toolkits and guidance documents, sets international fora for peer learning, offers international visibility (positive reputation of the city) through its platforms and communication channels for the best performing cities and initiatives and often offers capacity-building support with tailored advisory to local authorities.

On a regional scale, in Europe, we observe policies such as those supported by the European Union, which offer similar means and tools, with the important addition of funds given to authorities and partnerships that foster bottom-up and multistakeholder urban greening initiatives. Evidence-based policy and monitoring are informed by the European Environmental Agency (EEA), which is studying and issuing recommendations on urban greening. EEA measures urban greening with two indicators, urban tree cover and urban green space. Other indicators on air pollution and urban heat correlate to assessments on urban green. They also raise awareness that the potential of green spaces to boost health and well-being is increasingly recognized, both in science and policy [43, 44]. The European Union has committed on the European Green deal and on becoming the first climate-neutral continent [45]. In addition, a Biodiversity strategy is set with 2030 as the horizon [41]. It is recognized that green spaces often lose out in the competition for land as the share of the population living in urban areas continues to rise. A guidance and toolkit are put in the availability of municipalities, proposing collaborative processes of developing urban greening plans. It is highlighted that municipalities need to work with citizens and other stakeholders and aim for cross-departmental work and integration of the greening plan with other aspects of urban development, from mobility and health, air and water, to energy and climate adaptation. Overall, this is indicative of many policy frameworks and measures deployed at the EU level as part of the European Green Deal that relies on citizen participation and activation [45]. The "New European Bauhaus" initiative, in the same line, awarded a citizen-led initiative in Spain, where citizens claimed unused space for the creation of a community park [46].

At the local level, authorities are the ones to ultimately set their political priorities and decide to stream funds and resources towards green interventions. Authorities can decide on the degree of citizen involvement in policy and strategy making (e.g., through voting and participatory budget, workshops) as well as the interventions themselves, their monitoring and scaling up. When it comes to citizen-led initiatives, local authorities can decide on their level of tolerance or support for them. In the examples analyzed in the scope of this paper we find several cases of citizen-led occupation of unused and gray spaces and their transformation to green public spaces. There, the role of the local authorities is to tolerate, "legalize", or support such initiatives in the longer term through funds and resources.

Cities can play a key role in meeting the targets outlined in the Paris Agreement on climate change. The engagement of cities and urban stakeholders is also supported by the New Urban Agenda and the 2030 SDGs [47]. Apart from the minimum number of green spaces per capita, a key aim pursued by many municipal leaders is to ensure that open spaces are conveniently accessible within a ten-minute walking radius. For instance, looking at the data in the US, merely 22% of the population in Phoenix enjoys such proximity to a park, while 99% of Washington, DC residents live in proximity to a park. The median city of the 100 most populous U.S. cities scores 74%, while for the median city considering all urban cities and towns in the U.S., the percentage drops to 55% [48]. We see that San Francisco has achieved the commendable milestone of providing a 10-minute walk access to parks for all its residents in 2017, whereas other cities of California are still working towards this goal [49].

Implementing a network of small-scale open spaces, pocket parks, and plazas dispersed throughout neighborhoods can significantly encourage pedestrian activity, ease social engagement, and contribute to an improved state of well-being. These spaces may serve as tranquil retreats for relaxation or dynamic venues for activities such as exercise,

151
152
153
154
155
156157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178179
180
181
182
183
184
185
186
187
188189
190
191
192
193
194
195
196
197
198
199
200201
202
203
204

jogging, work, and more. 'Smart Urban Growth', 'Transit-Oriented Development' and 'New Urbanism' form a conceptual and planning model for environmentally sustainable communities and cities, promoting both the understanding of cities as living ecosystems as well as principles for the preservation of natural resources and ecosystems [50]. Local authorities can also influence the international urban development agenda through their participation in networks. UN Habitat and the UN Environmental Program have set up the Green Cities Partnership that following the AVOID – SHIFT – IMPROVE model, which works focusing on four basic areas: the Information Sharing, Analysis and Advice, Tools Development and Practice and Actions [51].

Networks and city associations, such as C40, ICLEI (Local Governments for Sustainability) or the Global Covenant of Mayors (GCoM), also support urban greening initiatives by issuing guidance and easing peer learning [42, 52–54]. Data4Cities, an initiative by the Global Covenant of Mayors, measures and manages climate ambition and progress of cities and local governments. GCoM cities commit to the use of Environmental Insights Explorer ("Google Environmental Insights Explorer - Make Informed Decisions," n.d.) launched in collaboration with Google for data access and the Data Portal for Cities (designed by GCoM and the World Resources Institute), for community-specific activity data and emission factors for the development of greenhouse gas emissions inventories and fact-based climate action planning [54].

2.3. Smart technologies for Engagement and Participation in Urban Greening Initiatives

Upon evaluating the bibliography on the technological aspects of urban greening initiatives, discernible trajectory appears, outlining the incorporation of smart technologies which can empower citizens to actively engage in urban greening initiatives. For example, residents could compete in tree-planting contests or take part in scavenger hunts to identify plant species in local parks. Mobile applications and online platforms enable citizens to contribute data, report issues, and take part in tree planting activities, participatory budget spending, as in the example of Lisbon analyzed as one of the 100 initiatives. Citizen-contributed data enhances public awareness, fosters a sense of ownership, and creates a feedback loop between the community and urban planners. Mobile applications play a pivotal role by actively involving citizens in data collection efforts [55]. These apps empower users to upload images, pinpoint locations, and provide vital feedback on the state of green spaces. This approach not only fosters a stronger sense of community engagement but also significantly amplifies the volume of data collected. Furthermore, specialized apps designed for citizen science projects enable residents to take an active role in monitoring green spaces, allowing them to report on various aspects such as plant health, wildlife sightings, and even participate in tree inventories [56, 57].

Social media platforms such as Facebook, Twitter, and Instagram and online forums have been helpful in mobilizing and organizing community events, disseminating progress updates, and building a sense of unity around urban greening endeavors [58]. Additionally, digital surveys and feedback forms as well as data visualization tools serve as invaluable tools to gather input from residents on their preferences for green space design, desired amenities, and suggestions for improvement and that help citizens understand current needs and trends.

Furthermore, through IoT, cities are not only transforming urban landscapes but also fostering a stronger sense of community ownership and participation in greening efforts. IoT applications can make agricultural and farming industry processes more efficient by reducing human intervention through automation [59]. Previous study demonstrated that remote sensing imagery provides powerful tools for master planning and analysis regarding green urban area expansion; and measures of urban greening and sustainability cannot be solely based on indicators obtained from 2D geographical information. In fact, 2D urban indicators should be complemented by 3D modelling of geographic data [60].

The incorporation of VR and AR applications allows citizens to immerse themselves in interactive experiences that allow them to visualize and engage with proposed greening projects. Implementing gamification and challenges related to urban greening further encourages participation [61, 62]. This hands-on approach provides a clearer understanding of the potential impact and instills a sense of ownership in the community. Geographic Information Systems (GIS) and mapping tools play a vital role in planning workshops, where they can be used to visualize data and ease discussions about urban greening plans. This enables citizens to actively take part in the decision-making process and contribute valuable insights [63]. The sustainable, dynamic and participative solution includes land cover and land use mapping using remote sensing and GIS [64].

Furthermore, the transformative impact of AI, machine learning and big data have been proven effective in addressing research gaps within this field. These innovative technologies have offered unprecedented insights into ecosystem dynamics and their associated services, easing a deeper comprehension of intricate ecological processes [65]. Machine learning algorithms have become indispensable tools for analyzing extensive datasets. By discerning patterns and relationships, these algorithms offer a more refined understanding of urban greening initiatives [66, 67]. Data suggest that knowledge and practice are biased towards the Global North, under-representing key CBS challenges in the Global South, particularly in terms of climate hazards and urban ecosystems involved [66]. The integration of big data and technology in research and practice of urban greening transcends mere data analysis [65]. These innovative tools have become invaluable resources for decision-makers and urban planners alike. The proposal of a geospatial model for nature-based recreation in Paris underscores the empowerment of a data-driven approach to conservation and urban development [67]. By providing a systematic and informed framework, these technologies ease the seamless integration of sustainable practices into urban development strategies and initiatives.

3. Geographical scope, limitations and methods for data collection

To compile a diverse selection of 100 urban greening initiatives we conducted systematic internet searches with a global scope, verified repeatedly in different languages (English, French, Spanish, Portuguese, German and Greek) including the following key words: "citizen-led urban greening", "urban green", "community greening", "community gardens", "community parks", "civic urban action". By conducting these searches, we acquired the initial 60 examples, shifting through numerous initiatives found in web sources and literature. However, a significant portion of these initiatives were considered inappropriate as they lacked citizen-led leadership.

Through simultaneous literature review we became aware that citizen-led initiatives and especially the ones without involvement from any authority or other stakeholder steering, are often poorly or not at all represented in literature and online platforms. This is also confirmed in the findings of this study, with many initiatives not having even a dedicated website.

In order to complement the list and reach a representative sample, we conducted a specialized workshop during the Placemaking Europe Week 2023 [68]. The workshop was attended by 40 researchers, architects, placemakers and elected municipal representatives. The participants were requested to indicate additional citizen led urban greening initiatives, research and platforms that collect them. As a result, the 100 initiatives were collected, affecting however our sample and adding more gravity to examples from Europe and North America.

However, we recognize and highlight in our literature review that the power of urban greening as a social movement is demonstrated across the world. According to research conducted with examples from the USA and Australia, urban greening is particularly salient for disadvantaged communities in promoting greater resilience, health, and well-being [69]. The existence of a tradition of civic action for greening acts as a factor for the scaling up and multiplication of such efforts. According to research conducted over

257
258
259
260
261
262
263
264
265
266267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282283
284
285
286
287
288
289
290
291292
293
294
295
296
297
298
299
300
301
302
303304
305
306
307
308
309

community gardens in Shanghai, China, residents lacked consciousness and capacities required to implement actions at the initial stage of community engagement. In order to address that the researchers suggested starting with external interventions and capacity buildings carried out by professionals as a supplement to the 'community-driven' principle [70].

310
311
312
313
314
315
316

317

Figure 1. Geographical spread of analyzed initiatives.

318
319
320

We organised and analysed these initiatives based on the type of actors involved, the type of green infrastructure that they promote, their mode of implementation and the technologies that they incorporate. First, for each of the above mentioned characteristics we grouped initiatives based on the type of actors involved: we distinguished initiatives i) with the participation only of citizens, ii) initiatives that were developed through the collaboration of local authorities and citizens iii) initiatives developed with the participation of NGOs and citizens, iv) joint efforts between businesses and citizens, v) initiatives stemming from public institutions such as schools/universities and their communities and finally, vi) more complex efforts arising from multistakeholder partnerships.

321
322
323
324
325
326
327
328
329
330
331
332
333
334

To better understand urban green interventions, it was important to define the type of interventions we are assessing for this study. Green infrastructure refers to the connective matrices of greenspaces that can be found in and around urban and urban-fringe landscapes and provide a number of complimentary benefits to the ecological, economic and social space of the city [71] Urban green infrastructure is characterized by distinctive features than its rural counterparts. One Typology is officially recognized by the European Commission and will be our basis in categorizing the initiatives in terms of the type of greening [72, 73].

335
336
337
338
339

While the following list of elements is not exhaustive, it aims to provide an overview of some of the most common elements within a specifically urban and peri-urban setting

as well as illustrative examples. This typology, as used by the European Commission includes 'Blue areas' and 'Green areas for water management' as two distinct categories. However, in the context of this research we have decided to merge them. Blue and water management cases are already very few, compared to other categories, especially with our scope being citizen-led initiatives in urban centers. In most cases, water management generally requires calculated infrastructure works and institutionalized interventions. Analyzing citizen-led initiatives based on the type of greening can help show the priorities and needs of citizens. Civic initiatives require the investment of time and effort and aim at addressing needs citizens consider important.

Table 1. Types of green infrastructure as identified by European Commission.

Building greens	Green balconies, ground based green wall, facade-bound green wall, extensive green roof, intensive green roof, atrium, green pavements and green parking pavements, green fences, and noise barriers.
Urban green areas connected to gray infrastructure	Tree alley and street tree/hedge, street green and green verge, house garden, railroad bank, green playground/school ground, green parking lots, riverbank greens.
Parks and (semi)natural urban green areas, including urban forests	Large urban park, historical park/garden, pocket park/parklet, botanical garden/arboreta, zoological garden, neighborhood green space, institutional green space, cemetery and church yard, green sport facility, forest, shrubland, abandoned and derelict area with patches of wilderness.
Allotments and community gardens	Allotment, community garden, horticulture.
Agricultural land	Arable land, grassland, tree meadow/orchard, biofuel production/agroforestry, horticulture.
Blue areas/ Green areas for water management	Rain gardens or sustainable urban drainage systems (SUDS), rain gardens, swales/filter strips. Lake/pond, river/stream, dry riverbed, canal, estuary, delta, seacoast, wetland/bog/fen/marsh.

In our analysis of incorporating green technologies, we relied on the technologies outlined in the bibliography (section 2.3) pertaining to citizen participation as our foundational framework. This approach ensured that our exploration of smart technologies was grounded in established research and methodologies, enhancing the credibility of our analysis. By leveraging these identified technologies, we aimed to foster greater engagement and collaboration among citizens in the implementation and adoption of environmentally sustainable solutions such as the urban greening initiatives.

Table 2. Types of technologies as identified in bibliography.

Web Platforms & Mobile Applications	Web and smartphone apps that enable citizens to report issues, participate in surveys, and access information conveniently.
Social Media Platforms	Platforms like Twitter, Facebook, and Instagram used for engaging citizens, sharing information, and gathering feedback.
Crowdsourcing Platforms	Online platforms such as Crowdsourced Mapping and OpenStreetMap that allow citizens to contribute data and insights.

Internet of Things (IoT) Devices	Connected devices like smart sensors and meters that collect data on environmental parameters or infrastructure usage.
Geographic Information Systems (GIS)	Systems for mapping and analyzing spatial data, enabling citizens to visualize and understand local issues better.
Online Forums and Discussion Boards	Web-based forums and discussion boards where citizens can engage in debates, share ideas, and propose solutions.
Virtual Reality (VR) Platforms, Augmented Reality (AR) Application	Immersive platforms that allow citizens to experience simulations of proposed urban developments or environmental changes and applications overlaying digital information onto the physical world, providing citizens with real-time data and contextual information.
Blockchain Technology	Distributed ledgers ensuring transparency and security in citizen-led initiatives such as voting or crowdfunding projects.
Data Visualization Tools	Tools like Tableau or D3.js used to create interactive visualizations that help citizens understand complex datasets and trends.

4. Research Findings and Discussion

358

4.1 Analysis based on Enabling Actors

359

Urban greening initiatives can involve a diverse array of actors and stakeholders, each contributing unique expertise and perspectives to enhance the vitality of urban landscapes. Municipal authorities play a pivotal role, providing the regulatory framework, funding, and strategic planning necessary to initiate and sustain green transformations. NGOs and community-based organizations actively engage with residents, advocating for green spaces, providing expertise, organizing volunteer efforts, and fostering community participation. Private sector entities, including developers and businesses, often collaborate to integrate green elements into urban infrastructure, promoting sustainability while enhancing commercial spaces. Academia and research institutions contribute scientific knowledge and innovation, by conducting pilots, informing evidence-based practices on the ecological and societal benefits of urban greenery [74]. Collectively, citizens and other stakeholders mentioned can create collaborative networks, which can drive urban greening initiatives towards holistic, sustainable outcomes that benefit both the environment and communities. These synergies can vary based on cultural, societal, and legal frameworks.

360

361

362

363

364

365

366

367

368

369

370

371

372

373

Table 3. Types of partnerships and actors leading and implementing the 100 initiatives.

Implementing partners and partnerships of the 100 citizen-led initiatives analyzed	
Citizens (solely at own capacities)	28
Local authority and Citizens	28
NGO and Citizens	20
Multistakeholder partnership (public or public-private including citizens, authorities, NGOs and others)	13
School/University and their communities (professors, students, parents)	9
Businesses and Citizens	2

4.1.1. Citizen-led Initiatives: Nonprofits, Community Groups

374

48 of the studied initiatives are entirely led by citizens (including partnerships between NGOs and citizens). Out of these initiatives, 61,7% are dedicated to urban farms and food growing, also showing the pressuring needs for food securing and self-determination in cities. We observe in some cases that after the creation of the green space takes place, the community organizes, setting non-profit organizations and/or setting up a

375

376

377

378

379

decision-making mechanism that can be as simple as community meetings (e.g., Navarino park in Athens [75]. Such cases show the role of urban gardening in creating bonds within the community and social cohesion. In relevant research, 8 case studies of community-led urban farms were analyzed showing that neighborhood-bound gardens and gardens with communal plots attract gardeners interested in the social aspects of gardening while non-neighborhood-bound gardens and gardens with individual plots attract gardeners interested in harvest and cultivation [31].

Twenty (20) out of the one hundred (100) cases consist of an NGO or other type of non-profit structure playing a key role in providing expertise and guiding citizens or other citizen organizations. Interesting are the examples of urban forests in France, Luxembourg and Belgium mentioning the Akira Miyawaki method [76] of fast growing of diverse urban forests and other methods following similar principles. In certain cases, we see non-profits offering training and opportunities for encouraging civic action to interested citizens and citizen groups. Lastly, we observe other initiatives where citizens act within a capacity, such as the one of the parents or teachers. A few of the collected initiatives (e.g., Greece, France, Poland, Canada, Netherlands) consist of actions taken for the greening of schoolyards through gardens, small allotments, and other interventions to depave. Green schoolyard can facilitate diverse behaviors and activities, provide sensory and embodied nature experiences, provide a restorative environment, support biodiversity, and provide a resilient environment that supports climate resilience and mitigates environmental nuisance [74]. The Grenoble Schoolyard Initiative is a notable urban development project focused on transforming schoolyards in the city of Grenoble, France [74]. The project aims to reimagine schoolyards as multifunctional spaces that not only cater to educational needs but also serve as vibrant community hubs. It involves comprehensive redesigns that prioritize elements such as greenery, recreational facilities. By integrating sustainable features and fostering a sense of community ownership, the Grenoble Schoolyard Initiative exemplifies a forward-thinking approach to urban development, one that prioritizes the well-being and development of both students and the broader population. This project has served as an inspiring model for cities worldwide looking to create inclusive, dynamic, and environmentally conscious spaces within their urban landscapes.

4.1.2. Citizen and authorities' initiatives

28 out of the 100 initiatives are implemented in collaboration between local authorities and citizens. This collaboration materializes in different ways, which we could group under 2 categories:

- The municipality creates a framework for citizen action (23 cases). This materialized with the municipality/local authority giving permits to citizens that wish to intervene in the public space by greening. In such cases the citizens decide on the space and intervention. The authority could also describe a set of urban greening activities eligible for a grant. In one case the local authority creates employment opportunities for artists and gardeners to intervene in public space.
- The municipality is guided by citizens to decide on urban greening actions (5). As such we group cases of citizens pushing for green interventions through participatory budget or putting pressure on authorities to reutilize abandoned spaces or change plans for parking's or buildings to create common green spaces.

We find that the partnership of citizens and authorities is a very successful one through time, impact and geographical range. One of the oldest initiatives we mapped is the New York City Green Thum Program that dates back to 1978 and has supported 550 gardens to now [77].

4.1.3. Private Sector Involvement

11 out of the 100 initiatives collected include the involvement of the private sector and notably local businesses. Two of them are in London and follow the Business

Improvement District (BID) model [78, 79]. BID It is a designated area within a city or town where local businesses collaborate to enhance the economic and physical environment. It operates through a self-imposed tax or fee collected from businesses within the district, which is then reinvested back into the community. The primary goal of a BID is to foster economic development, improve the overall attractiveness and vitality of the area, and address specific concerns shared by local businesses and property owners. This may include initiatives such as streetscape enhancements, marketing campaigns of green initiatives, security measures to protect green/public space, and events designed to increase vibrancy. By pooling resources and working collectively, BIDs play a pivotal role in revitalizing commercial areas, fostering a sense of community, and ultimately driving sustained growth in the local economy. They serve as a powerful model for public-private partnerships, illustrating the potential for businesses to proactively shape and improve the environments in which they operate.

Other isolated cases among the 100 include funds given to the public for greening purposes as part of corporate responsibility strategies and involvement of small businesses in the rehabilitation of brownfield and abandoned areas.

4.2. Types of Urban Greening

Out of the 100 initiatives, 44 interventions referred to the creation of allotments, community gardens and agricultural land. This finding is interesting as it connects the need for green space with the primary need for access to food. 3 initiatives consist of the creation of green spaces connected to grey infrastructure.

When the private sector is involved (11 initiatives), we see a slightly different breakdown with more initiatives connected to gray infrastructure. 5 out of the 11 initiatives that are driven by schools or universities and their students and professors are allotments, community gardens or agricultural land. Out of the 49 initiatives entirely led by citizens with/or NGO involvement, 31 are allotments, community gardens or agricultural land. It gets clear that when citizens lead interventions to green the public space, they are driven (also) by the need to secure access to food.

Table 4. Types of greening associated with actors leading the initiative.

100 citizen-led initiatives analyzed per type of greening	
Building greens	4
Urban green areas connected to gray infrastructure	34
Parks and (semi)natural urban green areas, including urban forests	15
Allotments and community gardens	44
Agricultural land	1
Blue areas/Green areas for water management	2

Initiatives led or supported by NGOs analyzed per type of greening (out of 100)	
Building greens	-
Urban green areas connected to gray infrastructure	10
Parks and (semi)natural urban green areas, including urban forests	8
Allotments and community gardens	31
Agricultural land	-

Blue areas/Green areas for water management	-
---	---

461

Initiatives ran by schools/universities and their communities analyzed per type of greening (out of 100)	11
Building greens	1
Urban green areas connected to gray infrastructure	4
Parks and (semi)natural urban green areas, including urban forests	1
Allotments and community gardens	5
Agricultural land	-
Blue areas/Green areas for water management	-

462

Initiatives that were realized with private sector involvement analyzed per type of greening (out of 100)	11
Building greens	-
Urban green areas connected to gray infrastructure	4
Parks and (semi)natural urban green areas, including urban forests	3
Allotments and community gardens	3
Agricultural land	-

4.3. Modes of implementation and the role of authorities

The initiatives where municipalities and public authorities are involved, are highlighted in yellow in Table 7. The role of the authorities can be interpreted as follows:

- Providing funding;
- Providing a framework for action to citizens and small businesses (e.g., allowing citizens to intervene in the public space);
- Legalizing citizen action (e.g., by accepting green spaces that are a result of occupation, protests or other);
- Transferring part of their power to citizens (e.g., by making part of their budget participatory).

Table 8. Modes of implementation of the citizen-led initiatives. Modes involving public authorities are highlighted in color.

463

464

465

466

467

468

469

470

471

472

473

474

Mode of implementation of the citizen-led initiatives	
Solely civic action	40
NGO-coordinated action	10
Municipality creates framework for citizen initiative	20
Public funding for community greening initiatives	4
Municipality encourages green initiatives by small businesses	1
Research Pilot	2
Citizens decide/mobilize public interventions (including participatory funding)	7
Municipality, NGO, citizen collaboration	3
National fund to municipalities, communities and stakeholders	1
Business Improvement District - BID	2
Private funds, NGO coordination, citizens volunteering	1
Citizen-business common action	1

4.4. Categorization based on the Incorporation of Smart Technologies

Upon evaluating the technological landscape adopted by these initiatives, we see that 46 out of 100 initiatives, a notable portion of the analyzed initiatives, have integrated smart technologies. Of those 46 initiatives, more than 36 of the initiatives have created a web-based platform, with a corresponding number of 5 featuring a user-friendly and interactive map interface. Furthermore, a considerable proportion of these initiatives have embraced social media channels as a means of communication. Table 9 consists of technologies integrated by the initiatives, encompassing only a subset of the technologies examined in section 3.

Table 9. Types of smart technologies incorporated by the initiatives studied.

Integration of smart technologies in the 100 analyzed initiatives	
No technology detected	54
Web Platform or. Application (only)	35
Social Media Platforms (only)	5
Social media & Website	4
Internet of Things (IoT) Devices (tracking) & Website	2

475

476

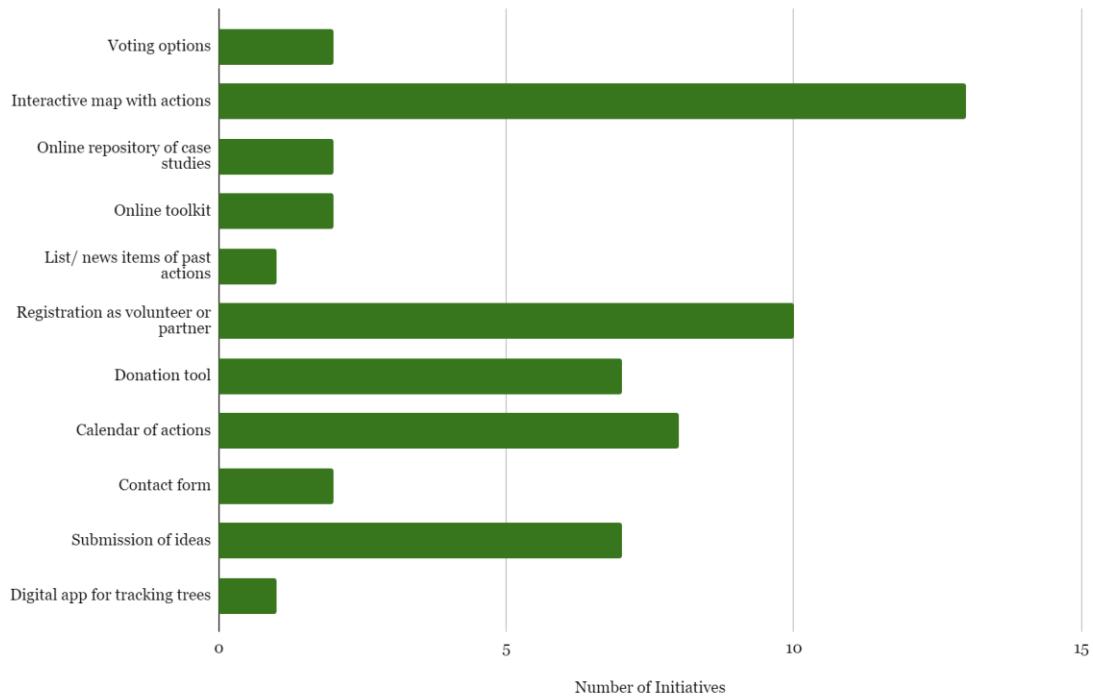
477

478

479

480

481


482

483

484

485

Website Functionalities

Figure 2. Functionalities of the urban greening web platforms.

We've observed a restricted adoption of IoT (Internet of Things). There is much opportunity for neighborhoods and communities that would adopt IoT devices, and get the capacity to oversee their initiatives and promptly address the ongoing requirements of the green space. Through the strategic application of these technologies, citizens and community organizers will become empowered to monitor small scale urban green areas in their neighborhoods, fostering a profound sense of ownership and pride in their local environment. In contrast to the environmental logic of New Urbanism and LEED-ND, which tries to improve the physical environment of cities, IoT-based environmental sustainability focuses on user behavior. We may describe the entire process by a sequence that starts from: (a) the deployment of sensors and smart meters across city ecosystems, districts, neighborhoods and utilities, which collect information from city activities, people, and supply chains; (b) information processing, analytics, knowledge extraction and dissemination to users and authorities; (c) users becoming aware and motivated to develop sustainable behavior through realizing they have a direct gain, a long-term environmental benefit, or some kind of reward; (d) public authorities obtaining information to design more sustainable policies; and (e) impact which is monitored, measured, documented, and disseminated [50].

The Cityscape Lab Berlin is a proper example of this type of initiatives, which was originated within the framework of the Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), a collective of both university and non-university research

institutions dedicated to biodiversity studies in Berlin and Potsdam. Its real-world implementation began in 2016, supported by funding from the German Federal Ministry of Education and Research (BMBF) under the collaborative initiative “Bridging in Biodiversity Science—BIBS,” spearheaded by Berlin’s Technical University. The major aim of the Cityscape Lab Berlin is to provide a flexible research platform for exploring the effects of urbanization and rapid transitions in urban land-use patterns on biodiversity and ecosystem functioning at different spatial and temporal scales [80].

513
514
515
516
517
518
519

5. Conclusions, Challenges and Future Outlook

520
521
522
523
524
525
526
527
528
529
530
531

The analysis of citizen-led initiatives showed the actual user needs. Rather than institutionalized and top-level planning, citizen-led initiatives address very real and often urgent needs of the communities. These grassroots efforts, fueled by local insight and passion, target immediate challenges faced by residents, ranging from food insecurity and access to green spaces and environmental conservation. These initiatives leverage the collective expertise, creativity, and resourcefulness of individuals to devise practical solutions. Whether through neighborhood urban farming, to urban greening programs, or advocacy addressed towards authorities for better or bigger green community infrastructure, these endeavors express the urgent needs on the ground. They show the remarkable impact that citizen-driven action can have in effecting positive change within communities.

532
533
534
535
536
537
538
539
540
541
542
543

We observe that most of entirely citizen-led initiatives aimed at the creation of urban farms and food growing, demonstrating the pressing needs for food securing and self-determination in communities. Initiatives also have better chances to scale up and multiply when public authorities provide a framework or a type of support for their development or when an NGO or other organization is available to provide expertise and mobilize citizens at various stages. Scaling up green initiatives involves navigating a range of factors to ensure their successful expansion and impact. From this study we see that clear frameworks, incentives, and regulations that promote sustainability encourage the adoption and expansion of green initiatives. In addition, engaging stakeholders, garnering local support, and fostering a sense of ownership are vital for successful scaling. Knowledge sharing of best practices, and lessons learned ensures that successful strategies can be replicated or adapted in other contexts, accelerating scaling efforts.

544
545
546
547
548
549
550

Most of the initiatives that receive any type of support from a larger organization, being the municipality or a nonprofit with relevant expertise, are digitally documented through interactive maps, while most calls for further action and support are addressed through online platforms and social media. Integration of more advanced digital technologies in the future could enable accurate and real-time assessment of green spaces, facilitate community engagement, robust monitoring and evaluation mechanisms and inform evidence-based decision-making.

551
552
553
554
555
556
557
558
559
560
561
562
563

Through this study, we investigated the ways citizens participate and lead urban greening initiatives, as well as the digital means they use. However, we recognize that the responsibility for advancing further digitization initiatives, monitoring, and scaling up greening in urban and larger levels lies with the public authorities. This pivotal role involves not just observing the ongoing technological landscape but also orchestrating strategies for widespread adoption and expansion. In addition, authorities bear the crucial task of ensuring that digitization efforts align with broader organizational goals, fostering seamless integration and maximizing the potential benefits of technological advancements across the spectrum. Collaborations among urban planners, technologists, researchers, and policy makers are crucial for designing effective monitoring systems. As cities continue to grow, the use of smart technologies can contribute to creating sustainable, resilient, and livable urban environments that prioritize the health and well-being of residents and ecosystems alike.

Author Contributions: Conceptualization, E.O., I.P.; methodology, E.O., I.P.; formal analysis, E.O., I.P.; investigation, E.O., I.P.; resources, E.O., I.P., C.K; data curation, E.O., I.P.; writing—original draft preparation, E.O., I.P.; writing—review and editing, E.O., I.P., C.K.; visualization, E.O., I.P.; All authors have read and agreed to the published version of the manuscript. 564

Funding: This research received no external funding. 565

Conflicts of Interest: The authors declare no conflicts of interest. 566

Appendix: 567

570

Location (City, Country)	Name of Initiative
Lisbon, Portugal	Participatory Budget
Alberta, Canada	Guerilla gardeners
Amsterdam, Netherlands	'De Ruigi Hof" nature association
Amsterdam, Netherlands	Bio-receptive concrete as green wall
Melbourne, Australia	Laneway Greening
Amsterdam, The Hague Netherlands	Green Schoolyards
Athens, Greece	Adopt your city, Pocket parks
Athens, Greece	City interventions ("Πλαζεμβάσεις στην Πόλη")
Athens, Greece	Navarinou Park
Athens, Greece	Urban Farmers (Αγρότες στην Πόλη)
San Sebastian, Spain	Ulia Garden
Berlin, Germany	Nomadisch Grün
Berlin, Germany	Prinzessinnengarten
Berlin, Germany	Tempelhofer Feld
Berlin, Germany	CitiScapeLab
Berlin, Germany	Volkspark Lichtenrade
Bristol, UK	Avon Wildlife Trust
Brussels, Belgium	Asiat Park
Buenos Aires, Argentina	Huerta Luna garden
Buenos Aires, Argentina	Vivera Organica in Rodrigo Bueno green and social housing development
Canada	Eco-urban gardens
Canada, USA	TD Bank's Green Streets Program
Cape Town, South Africa	Abalimi Bezekhaya

Cape Town, South Africa	Oranjezicht City Farm
Greece	Green schoolyards
Chicago, USA	NeighborSpace
Copenhagen, Denmark	Bioteket
Copenhagen, Denmark	Copenhagen, Denmark
Copenhagen, Denmark	Garden in a night
New York, USA	High Line
San Francisco, USA	Hayes Valley Farm
Durban, South Africa	Local communities improve river flow
Edinburgh, UK	Duddingston Field Group
France, Belgium, Luxembourg	Urban forests
São Paulo, Brazil	Parque Augusta
Glasgow, Scotland	Glasgow Community Gardens
Grenoble, France	Greening of the street in front of the schools
Melbourne, Australia	Pocket Parks
Mumbai, India	Urban Leaves
New York, USA	It's My Park Day
London, UK	Community Garden
London, UK	Curve Garden
London, UK	Drummond BID
London, UK	Green interventions through business Improvement District - Waterloo
London, UK	Guerrilla gardening
London, UK	London's DIY Streets
London, UK	Paper garden
London, UK	Skip Garden
London, UK	The Edible Bus Stop
London's	Capital Growth
Los Angeles, California	Guerrilla gardening
Los Angeles, USA	Los Angeles Community Garden Council
New York, USA	MillionTreesNYC, USA
Los Angeles, USA	Los Angeles TreePeople

Ixelles, Belgium	Planting permit
Manchester, UK	Leaf Street Community Garden
Amsterdam, Netherlands	ROEF - green roof festival
Melbourne, Australia	3000 Acres
Melbourne, Australia	CERES Community Environment Park
Barcelona, Spain	Guide for green roofs to citizens
Milan, Italy	Boscoincittà
Montreal, Canada	Loyola Farm
Montreal, Canada	NDG Food Depot
Montreal, Canada	P.A.U.S.E -Urban Garden network in the university campus
Montreal, Canada	Santropol Roulant
Netherlands	Tiny forests
Curitiba, Brasil	100 000 trees for Curitiba
Detroit, USA	Detroit Future City's Field Guide to Working with Lots
Ilam, East Nepal	Greening of urban commercial center
Madrid, Spain	Huertos Urbanos
San Francisco, USA	San Francisco's Pavement to Parks
Paris, France	Greening of the street in front of the schools
Paris, France	Greening Roofs
Philadelphia, USA	Orchard Project
Paris, France	Planting permit
Seattle, USA	Seattle P-Patch Program
Philadelphia, USA	Gibbsboro Community Garden
Portland, USA	Depave
Portland, USA	Portland Neighborhood Greening Projects
Singapore	Singapore's Community in Bloom
Rotterdam, Netherlands	Voedseluin Rotterdam
Rotterdam, Netherlands	Educational Gardens
San Francisco, USA	Alemany Farm
Philadelphia, USA	Tree Tenders Program
Philadelphia, USA	Philadelphia LandCare Program

San Francisco, USA	San Francisco's Friends of the Urban Forest
Los Angeles, USA	Los Angeles Green Alleys
Freetown, Sierra Leone	The TreeTown campaign
Seattle, USA	Seattle's Neighborhood Street Fund
Seattle, USA	Beacon Food Forest
New York, USA	NYC GreenThumb
Reggio Emilia, Italy	Regulation for citizenship labs
San Francisco, USA	Salesforce Park
Stockholm, Sweden	Stockholm's Inner-City Gardens
Tampere, Finland	Medow planting in the city
Toronto, Canada	Depave Paradise
Toronto, Canada	Toronto Green Community
Trento, Italy	Comun'Orto
Vancouver, Canada	CityStudio Greenest City Projects
Warsaw, Poland	Green schoolyards

Table 10. Locations and names of the studies initiatives**References**

1. Quaranta, E., Dorati, C., Pistocchi, A.: Water, energy and climate benefits of urban greening throughout Europe under different climatic scenarios. *Sci Rep.* 11, 1–10 (2021). <https://doi.org/10.1038/s41598-021-88141-7> 576
2. UNFCCC: UN Climate Change Conference - United Arab Emirates UNFCCC, <https://unfccc.int/cop28> 577
3. Kleerekoper, L., van Esch, M., Salcedo, T.B.: How to make a city climate-proof, addressing the urban heat island effect. *Resour Conserv Recycl.* 64, 30–38 (2012). <https://doi.org/10.1016/j.resconrec.2011.06.004> 578
4. Gary Backhaus, J.M.: Transformations of Urban and Suburban Landscapes: Perspectives from Philosophy, Geography, and Architecture. Lexington Books, Lanham (2002) 579
5. Qiu, Y., Liu, Y., Liu, Y., Li, Z.: Exploring the Linkage between the Neighborhood Environment and Mental Health in Guangzhou, China. *Int J Environ Res Public Health.* 16, 3206 (2019). <https://doi.org/10.3390/ijerph16173206> 580
6. Alcock, I., White, M.P., Wheeler, B.W., Fleming, L.E., Depledge, M.H.: Longitudinal Effects on Mental Health of Moving to Greener and Less Green Urban Areas. *Environ Sci Technol.* 48, 1247–1255 (2014). <https://doi.org/10.1021/es403688w> 581
7. Jennings, V., Bamkole, O.: The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. *Int J Environ Res Public Health.* 16, 452 (2019). <https://doi.org/10.3390/ijerph16030452> 582
8. Kakderi, C., Oikonomaki, E., Papadaki, I.: Smart and Resilient Urban Futures for Sustainability in the Post COVID-19 Era: A Review of Policy Responses on Urban Mobility. *Sustainability.* 13, 6486 (2021). <https://doi.org/10.3390/su13116486> 583
9. U.S. Green Building Council: Guide to LEED Certification: Commercial, <https://www.usgbc.org/tools/leed-certification/commercial> 584
10. BREEAM - BRE Group, <https://bregroup.com/products/breeam/> 585
11. Home - Green Building Council of Australia, <https://new.gbc.org.au/> 586
12. European Commission: Energy Performance of Buildings Directive, https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en 587
13. Jul 4, P. por S.C., News, 2023: Lisbon leading the regeneration of european historic areas, <https://smart-cities.pt/news/lisbon-leading-the-regeneration-04-07of-european-historic-areas/>, (2023) 588
14. Moreno, M., Ortiz, P., Ortiz, R.: Analysis of the impact of green urban areas in historic fortified cities using Landsat historical series and Normalized Difference Indices. *Sci Rep.* 13, 8982 (2023). <https://doi.org/10.1038/s41598-023-35844-8> 589
15. Slingerland, G.: From the ground up: Local efforts to create resilient cities, by Alison Sant. *J Urban Aff.* 1–2 (2023). <https://doi.org/10.1080/07352166.2023.2190678> 590

16. Lieberherr, E., Green, O.: Green Infrastructure through Citizen Stormwater Management: Policy Instruments, Participation and Engagement. *Sustainability*. 10, 2099 (2018). <https://doi.org/10.3390/su10062099> 603
604

17. Anguelovski, I., Brand, A.L., Connolly, J.J.T., Corbera, E., Kotsila, P., Steil, J., Garcia-Lamarca, M., Triguero-Mas, M., Cole, H., Baró, F., Langemeyer, J., del Pulgar, C.P., Shokry, G., Sekulova, F., Argüelles Ramos, L.: Expanding the Boundaries of Justice in Urban Greening Scholarship: Toward an Emancipatory, Antisubordination, Intersectional, and Relational Approach. *Ann Am Assoc Geogr*. 110, 1743–1769 (2020). <https://doi.org/10.1080/24694452.2020.1740579> 605
606
607
608

18. Meerow, S., Woodruff, S.C.: Seven Principles of Strong Climate Change Planning. *Journal of the American Planning Association*. 86, 39–46 (2020). <https://doi.org/10.1080/01944363.2019.1652108> 609
610

19. Henwood, K., Pidgeon, N.: Talk about woods and trees: Threat of urbanization, stability, and biodiversity. *J Environ Psychol*. 21, 125–147 (2001). <https://doi.org/10.1006/jevp.2000.0196> 611
612

20. Bonita L. McFarlane, P.C.B.: Factors Influencing Forest Values and Attitudes of Two Stakeholder Groups: The Case of the Foothills Model Forest, Alberta, Canada. *Soc Nat Resour*. 13, 649–661 (2000). <https://doi.org/10.1080/08941920050121927> 613
614
615

21. Mehta, J.N., Henine, J.T.: Does Community-Based Conservation Shape Favorable Attitudes Among Locals? An Empirical Study from Nepal. *Environ Manage*. 28, 165–177 (2001). <https://doi.org/10.1007/s002670010215> 616
617

22. Bonaiuto, M., Fornara, F., Bonnes, M.: Indexes of perceived residential environment quality and neighbourhood attachment in urban environments: a confirmation study on the city of Rome. *Landsc Urban Plan*. 65, 41–52 (2003). [https://doi.org/10.1016/S0169-2046\(02\)00236-0](https://doi.org/10.1016/S0169-2046(02)00236-0) 618
619
620

23. Pham, T.-T.-H., Apparicio, P., Séguin, A.-M., Landry, S., Gagnon, M.: Spatial distribution of vegetation in Montreal: An uneven distribution or environmental inequity? *Landsc Urban Plan*. 107, 214–224 (2012). <https://doi.org/10.1016/j.landurbplan.2012.06.002> 621
622
623

24. Pham, T.-T.-H., Apparicio, P., Séguin, A.-M., Landry, S., Gagnon, M.: Spatial distribution of vegetation in Montreal: An uneven distribution or environmental inequity? *Landsc Urban Plan*. 107, 214–224 (2012). <https://doi.org/10.1016/j.landurbplan.2012.06.002> 624
625
626

25. Bowler, D.E., Buyung-Ali, L., Knight, T.M., Pullin, A.S.: Urban greening to cool towns and cities: A systematic review of the empirical evidence. *Landsc Urban Plan*. 97, 147–155 (2010). <https://doi.org/10.1016/j.landurbplan.2010.05.006> 627
628

26. Rosol, M.: Public Participation in Post-Fordist Urban Green Space Governance: The Case of Community Gardens in Berlin. *Int J Urban Reg Res*. 34, 548–563 (2010). <https://doi.org/10.1111/j.1468-2427.2010.00968.x> 629
630

27. Camps-Calvet, M., Langemeyer, J., Calvet-Mir, L., Gómez-Baggethun, E.: Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. *Environ Sci Policy*. 62, 14–23 (2016). <https://doi.org/10.1016/j.envsci.2016.01.007> 631
632
633

28. 'Yotti' Kingsley, J., Townsend, M.: 'Dig In' to Social Capital: Community Gardens as Mechanisms for Growing Urban Social Connectedness. *Urban Policy and Research*. 24, 525–537 (2006). <https://doi.org/10.1080/0811140601035200> 634
635

29. Peters, K., Elands, B., Buijs, A.: Social interactions in urban parks: Stimulating social cohesion? *Urban For Urban Green*. 9, 93–100 (2010). <https://doi.org/10.1016/j.ufug.2009.11.003> 636
637

30. Teig, E., Amulya, J., Bardwell, L., Buchenau, M., Marshall, J.A., Litt, J.S.: Collective efficacy in Denver, Colorado: Strengthening neighborhoods and health through community gardens. *Health Place*. 15, 1115–1122 (2009). <https://doi.org/10.1016/j.healthplace.2009.06.003> 638
639
640

31. Veen, E.J., Bock, B.B., den Berg, W., Visser, A.J., Wiskerke, J.S.C.: Community gardening and social cohesion: different designs, different motivations. *Local Environ*. 21, 1271–1287 (2016). <https://doi.org/10.1080/13549839.2015.1101433> 641
642

32. Westphal, L.M.: Social Aspects of Urban Forestry: Urban Greening and Social Benefits: a Study of Empowerment Outcomes. *Journal of Arboriculture*. 29, 137–147 (2003) 643
644

33. Jennings, V., Bamkole, O.: The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. *Int J Environ Res Public Health*. 16, 452 (2019). <https://doi.org/10.3390/ijerph16030452> 645
646

34. Jan Gehl: Life Between Buildings: Using Public Space. Island Press (2012) 647

35. Jan Gehl: Cities for People. Opensource (2023) 648

36. Jane Jacobs: The death and life of great American cities. New York : Random House (1961) 649

37. Charles Montgomery: Happy City: Transforming Our Lives Through Urban Design. Farrar, Straus and Giroux | New York (2013) 650
651

38. Kakderi, C., Komninos, N., Panori, A., Oikonomaki, E.: Next City: Learning from Cities during COVID-19 to Tackle Climate Change. *Sustainability*. 13, 3158 (2021). <https://doi.org/10.3390/su13063158> 652
653

39. Ugolini, F., Massetti, L., Calaza-Martínez, P., Cariñanos, P., Dobbs, C., Ostoić, S.K., Marin, A.M., Pearlmuter, D., Saaroni, H., Šaulienė, I., Simoneti, M., Verlič, A., Vučetić, D., Sanesi, G.: Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. *Urban For Urban Green*. 56, 126888 (2020). <https://doi.org/10.1016/j.ufug.2020.126888> 654
655
656
657

40. Liu, S., Wang, X.: Reexamine the value of urban pocket parks under the impact of the COVID-19. *Urban For Urban Green*. 64, 127294 (2021). <https://doi.org/10.1016/j.ufug.2021.127294> 658
659

41. European Commission: Biodiversity strategy for 2030, https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en, (2023) 660
661

42. ICLEI - Local Governments for Sustainability, <https://iclei.org/> 662

43. European Environment Agency: Urban tree cover — European Environment Agency, <https://www.eea.europa.eu/data-and-maps/dashboards/urban-tree-cover> 663
664

44. European Environment Agency: How green are European cities? Green space key to well-being – but access varies, <https://www.eea.europa.eu/highlights/how-green-are-european-cities> 665
666

45. European Commission: The European Green Deal, https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en 667
668

46. Ulia Garden - New European Bauhaus, <https://2021.prizes.new-european-bauhaus.eu/node/269248> 669
670

47. UNFCCC: Key aspects of the Paris Agreement, <https://unfccc.int/most-requested/key-aspects-of-the-paris-agreement> 670
671

48. ParkScore® Index 2020, https://parkserve.tpl.org/downloads/historic/2020_ParkScoreRank.pdf 671

49. San Francisco - 10 minute city, <https://www.tpl.org/media-room/san-francisco-first-us-city-where-all-residents-live-within-10-minute-walk-park> 672
673

50. Komninos, N.: Smart Cities and Connected Intelligence: Platforms, Ecosystems and Network Effects. Routledge, London (2019) 674
675

51. UN-Habitat: Greener Cities Partnership (UN-Habitat and UN Environment), <https://unhabitat.org/greener-cities-partnership> 676
677

52. C40: C40 Cities - A global network of mayors taking urgent climate action, <https://www.c40.org/> 678

53. Global Covenant of Mayors, <https://www.globalcovenantofmayors.org/> 679

54. Global Covenant of Mayors: Data Portal for Cities, <https://dataportalforcities.org/> 680

55. Nitolsawski, S.A., Galle, N.J., Van Den Bosch, C.K., Steenberg, J.W.N.: Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. *Sustain Cities Soc.* 51, 101770 (2019). <https://doi.org/10.1016/j.scs.2019.101770> 681
682
683

56. Møller, M.S., Olafsson, A.S., Vierikko, K., Sehested, K., Elands, B., Buijs, A., van den Bosch, C.K.: Participation through place-based e-tools: A valuable resource for urban green infrastructure governance? *Urban For Urban Green.* 40, 245–253 (2019). <https://doi.org/10.1016/j.ufug.2018.09.003> 684
685
686

57. European Commission: Citizen Science: an essential ally for sustainable cities, https://rea.ec.europa.eu/news/citizen-science-essential-ally-sustainable-cities-2023-10-27_en 687
688

58. Balakrishnan, S., Elayan, S., Sykora, M., Solter, M., Feick, R., Hewitt, C., Liu, Y.Q., Shankardass, K.: Sustainable Smart Cities—Social Media Platforms and Their Role in Community Neighborhood Resilience—A Systematic Review. *Int J Environ Res Public Health.* 20, 6720 (2023). <https://doi.org/10.3390/ijerph20186720> 689
690
691

59. Madushanki, A.A.R., N, M., A., W., Syed, A.: Adoption of the Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review. *International Journal of Advanced Computer Science and Applications.* 10, (2019). <https://doi.org/10.14569/IJACSA.2019.0100402> 692
693
694

60. Santos, T., Tenedório, J., Gonçalves, J.: Quantifying the City's Green Area Potential Gain Using Remote Sensing Data. *Sustainability.* 8, 1247 (2016). <https://doi.org/10.3390/su8121247> 695
696

61. Hassan, L., Hamari, J.: Gameful civic engagement: A review of the literature on gamification of e-participation. *Gov Inf Q.* 37, 101461 (2020). <https://doi.org/10.1016/j.giq.2020.101461> 697
698

62. Fox, N., Campbell-Arvai, V., Lindquist, M., Van Berkel, D., Serrano-Vergel, R.: Gamifying Decision Support Systems to Promote Inclusive and Engaged Urban Resilience Planning. *Urban Plan.* 7, (2022). <https://doi.org/10.17645/up.v7i2.4987> 699
700

63. Balram, S., Dragičević, S.: Attitudes toward urban green spaces: integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. *Landsc Urban Plan.* 71, 147–162 (2005). <https://doi.org/10.1016/j.landurbplan.2004.02.007> 701
702
703

64. Stephenne, N., Beaumont, B., Hallot, E., Wolff, E., Poelmans, L., Baltus, C.: Sustainable and smart city planning using spatial data in Wallonia. *ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences.* IV-4/W1, 3–10 (2016). <https://doi.org/10.5194/isprs-annals-IV-4-W1-3-2016> 704
705
706

65. Manley, K., Nyelele, C., Egoh, B.N.: A review of machine learning and big data applications in addressing ecosystem service research gaps. *Ecosyst Serv.* 57, 101478 (2022). <https://doi.org/10.1016/j.ecoser.2022.101478> 707
708

66. Goodwin, S., Olazabal, M., Castro, A.J., Pascual, U.: Global mapping of urban nature-based solutions for climate change adaptation. *Nat Sustain.* 6, 458–469 (2023). <https://doi.org/10.1038/s41893-022-01036-x> 709
710

67. Liu, H., Hamel, P., Tardieu, L., Remme, R.P., Han, B., Ren, H.: A geospatial model of nature-based recreation for urban planning: Case study of Paris, France. *Land use policy.* 117, 106107 (2022). <https://doi.org/10.1016/j.landusepol.2022.106107> 711
712
713

68. Placemaking Week Europe 2023, <https://placemakingweekeurope2023.sched.com/event/1RbQE/eco2-global-urban-greening-strategies-from-policies-to-community-action> 714
715

69. Metcalf, S.S., Svendsen, E.S., Knigge, L., Wang, H., Palmer, H.D., Northridge, M.E.: Urban Greening as a Social Movement. In: *Urban Sustainability: Policy and Praxis.* pp. 233–248. Springer International Publishing, Cham (2016) 716
717

70. Kou, H., Zhang, S., Liu, Y.: Community-Engaged Research for the Promotion of Healthy Urban Environments: A Case Study of Community Garden Initiative in Shanghai, China. *Int J Environ Res Public Health.* 16, 4145 (2019). <https://doi.org/10.3390/ijerph16214145> 718
719
720

71. Mell, I.: Green Infrastructure: concepts and planning. *Forum EJournal.* (2008) 721

72.	Kabisch, N., Korn, H., Stadler, J., Bonn, A. eds: Nature-Based Solutions to Climate Change Adaptation in Urban Areas. Springer International Publishing, Cham (2017)	722
73.	Urban Greening Platform	723
74.	van den Bogerd, N., Hovinga, D., Hiemstra, J.A., Maas, J.: The Potential of Green Schoolyards for Healthy Child Development: A Conceptual Framework. <i>Forests</i> . 14, 660 (2023). https://doi.org/10.3390/f14040660	724
75.	Elli Ismailidou: Ναυαρίνου: Το πάρκο – πάρκινγκ έκλεισε δύο χρόνια ζωής, (2011)	725
76.	Miyawaki, A.: Restoration of living environment based on vegetation ecology: Theory and practice. <i>Ecol Res</i> . 19, 83–90 (2004). https://doi.org/10.1111/j.1440-1703.2003.00606.x	726
77.	City of New York: Green Thumb, NYC Parks, https://www.nycgovparks.org/greenthumb	727
78.	Paulo Coelho Ávila: Desenvolvimento urbano por meio dos Business Improvement District	728
79.	We are Waterloo, https://wearewaterloo.co.uk/	729
80.	Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), https://www.igb-berlin.de/en/bbib	730
		731
		732
		733
		734
		735
		736
		737

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.