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Abstract: The research develops and validates new decomposition models for DNI estimations from
Southern African data. The results demonstrated improved DNI estimation accuracy compared to
the baseline models across all testing and validation datasets. These outcomes suggest that utilising a
localised model can significantly enhance DNI estimations for Southern Africa and potentially for
developing similar models in diverse geographic regions worldwide. Furthermore, clustered models
highlighted the potential advantages of grouping data based on shared geographical and climatic
attributes. This clustering approach could enhance decomposition model performance, particularly
when local data is limited or data is available from multiple nearby stations. The Southern African
decomposition model, which encompasses a wide spectrum of climatic regions and geographic
locations, exhibited notable improvements over the baseline models despite occasional overestimation
or underestimation. The overall metrics affirm the substantial advancement achieved with the
Southern African model. This study focused on validating the model for hourly DNI in Southern
Africa within a range of Kt-intervals from 0.175 to 0.875. Implementing accurate decomposition
models in developing countries can accelerate the adoption of renewable energy sources, diminishing
reliance on coal and fossil fuels.

Keywords: decomposition model; global horizontal irradiance; direct normal irradiance; solar
radiation model

1. Introduction

Photovoltaic (PV) systems require accurate modelling and monitoring to ensure their profitability.
The amount of irradiance at the site, the GPI, is the foundation of designing, modelling and monitoring
PV systems. The global plane-of-array irradiance (GPI) comprises the plane-of-array’s (POA) direct
beam, ground and diffuse irradiance components. GPI is used to model and monitor PV systems, as
this shows the amount of generated solar power and, therefore, one of the most important contributing
factors to designing a PV system. The global horizontal irradiance (GHI), direct normal irradiance
(DNI) and diffuse horizontal irradiance (DHI) components are required to calculate these irradiance
components.

Irradiance components with a transposition model calculate GPI (GPOA) as

GPOA = GBC + GDC + GRC. (1)

GBC is the direct beam irradiance, GRC is the ground-reflected irradiance, and GDC is the diffuse
irradiance component in the POA. GHI, DNI and DHI components are required to calculate GBC, GDC
and GRC. The sum of the DNI projected onto the horizontal surface using the cosine of the solar zenith
angle θZ, and DHI gives the GHI, shown in Figure 1, [1]:

GHI = DNI · cos θZ + DHI. (2)
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Figure 1. The irradiance relationships between GHI, DNI, DHI and θZ.

GHI, DHI, and DNI units are in W/m2.
Most ground-based stations have at least measurements of GHI. Other measurements include

radiometric data such as DNI, DHI and ultra-violet, and meteorologic data such as the temperature,
pressure, rainfall, relative humidity, wind direction and wind speed. Pyranometers measure DHI and
GHI, and the pyrheliometer measures DNI.

GHI is measured with a hemispherical view and is mounted horizontally. Similar in setup to
other pyranometers, the DHI pyranometer includes the additional feature of being shaded from direct
sunlight. The pyrheliometer has a narrow view that only measures the beam directly from the Sun
and is usually a Sun tracker for increased accuracy [2]. The irradiance measurements are converted to
W/m2 and logged accordingly.

Calibrating the equipment to the ISO 9060:1990 standard is necessary, and it is advisable to
undergo recalibration every two years to ensure the reliability of measurements. The maintenance
required is to clean the domes and regularly check and replace the desiccant, which keeps the
instruments dry internally.

GHI, DNI and DHI are interdependent; therefore, having only two irradiance measurements is
sufficient to estimate the third using the decomposition models (also sometimes called separation
models) [3]. If only the GHI is available, the DNI and DHI also are estimated using the decomposition
models. The transposition models calculate GPI using the irradiance components. Therefore, GHI,
DHI and DNI correlations are usually empirically expressed as a decomposition model [4].

Indices are relationships between different irradiance components. Decomposition and
transposition models utilise these relationships.

The definition of the direct beam transmittance Kn and diffuse transmittance Kd is

Kn =
DNI
G0n

, (3)

Kd =
DHI
GHI

. (4)

Liu and Jordan defined the Kt as

Kt =
GHI

G0n cos θZ
. (5)

All K-values (Kt, Kn and Kd) are unitless.
The extraterrestrial irradiance on a normal surface G0n depends on the day of the year

G0n = (Solar Constant)
(

1 + 0.033 · cos
(

360 · n
365

))
. (6)

The Solar Constant is usually 1,367 W/m2.
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Determining the horizontal extraterrestrial irradiance G0h involves multiplying it by the cosine of
θZ as expressed in Equation (7):

G0h = G0n · cos θZ. (7)

Multipredictor decomposition models can improve accuracy compared to single predictor models
[6]. However, the disadvantage is that multiple measurements must be available, which is not always
the case for developing countries or brand-new sites of PV installations.

Boland et al. and Ridley et al. developed a logistical model to estimate solar diffuse radiation [7,8].
Soares et al., Talvitie et al., and Kalyanam and Hoffmann have proposed machine-learning-based models
to predict solar diffuse and direct components [9–11]. Bessafi et al. have proposed a satellite-based
decomposition model as an alternative to ground-based measurements [12], and Janjai et al. have
proposed statistical models for estimating diffuse radiation [13].

Decomposition models have been developed by assessing previous models and improving the
accuracy of these estimations. As more data and measurements become available, researchers have
the opportunity to develop models for different climates and temporal resolutions. Most models
predominantly use Kt. Some of the variables used in the decomposition models are the solar altitude
angle β and dew point temperature Td. Using Kt as the main predictor in decomposition models is
popular because of its simplicity and applicability [6].

Orgill and Hollands developed a relationship between the Kt and Kd [14], and Erbs et al. extended
the Kt-Kd relationship to latitudes from 31 to 42◦ North [15]. Louche et al. established a GHI and DNI
relationship for a Mediterranean site to estimate Kn using Kt [16].

The Direct Insolation Simulation Code (DISC) was developed by Maxwell [17], and Perez et al.
developed the Dirint model with the hopes of increasing the performance of the DISC model [18]. The
Dirint model of Perez et al. has shown superior performance when estimating the DNI [19].

In Korea, Lee et al. developed a model using 6 Korean locations [20], and Lee et al. developed a new
model using Maxwell’s DISC model by refitting the coefficients [3]. Skartveit and Olseth developed
a DNI estimation model using the solar elevation angle for Norway based on hourly GHI and DHI
records [21].

Lam and Li derived Kd for Hong Kong [22]. Reindl et al. determined Kd using two models with
Kt and β [23].

The main limitations of decomposition models are that some have limited climate scope, and the
dataset’s temporal resolution affects the irradiance estimation accuracy. A decomposition model in
a tropical climate may be unsuitable for a desert climate and vice versa. Intra-hourly-based models
perform differently from daily- or monthly-based models, which is why many available decomposition
models exist.

Several regions, such as Belgium [4], China [24], the USA [19], and North Africa [25], evaluated
the accuracy of decomposition models.

Gueymard and Ruiz-Arias provided an extensive study of 140 available decomposition models.
The authors state that the predicted DNI’s accuracy highly depends on the decomposition model.
Validation studies exist but are limited to a few models and test stations, i.e. biased to a specific location
or climate [26]. Research indicates that no decomposition model has been developed and validated for
South Africa.

Laiti et al. state that, in general, decomposition models tend to overestimate DHI and
underestimate DNI and typically, models tend to underestimate DHI in overcast periods and
overestimate during clear-sky periods [19].

Higher resolution data include higher Kt values, resulting in extreme overestimations of DNI.
These hourly DNI estimates have higher accuracy than 1-minute DNI estimates. Subhourly estimations
would be highly beneficial for real-time monitoring and forecasting of solar power [26].

Figure 2 visualises the testing and validation countries of common decomposition models in
green of models such as Orgill and Hollands, Erbs et al., Louche et al., Reindl et al., DISC (Maxwell),
Dirint (Perez et al.), Lee et al., Lee et al., Skartveit and Olseth and Lam and Li) [3,14–18,20–23].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0416.v1



4 of 40

Figure 2. Validation sites of discussed decomposition models.

The development of the decomposition model in South America includes Brazil [28], Argentina
and Brazil [29]. Northern African models include Nigeria [30], Algeria [31] and Morocco [32].

Engerer developed a model for Australia and observed that the model only slightly outperformed
the Dirint model [33]. The BRL model by Ridley et al. developed a method to construct multiple
variable logistic models for the diffuse solar fraction, which includes Mozambique [8]. Figure 2
represents these discussed models [8,28–33] in red.

South African research on decomposition models includes the following: Tsubo and Walker
published the only Southern African-based study on the relationship between radiation and Kt [34].
However, this relationship is with photosynthetically active radiation related to agricultural practices,
not PV systems. Clear-sky model assessments and validation studies have been performed by [35] and
[36] for Southern African countries. Clear-sky models simplify atmospheric attenuation to estimate
solar irradiance under clear-sky conditions and do not represent decomposition models and is not
include these studies as comparison models, as they are irrelevant to the research.

Mahachi’s thesis assessed decomposition and transposition models in South Africa and showed
that the models tend to overestimate the DHI but underestimate the DNI [37]. Furthermore, the DISC
and Dirint decomposition models showed the most accurate estimations of the DNI and DHI for the
South African climatic conditions [38].

As discussed, decomposition models are empirical relationships between GHI, DHI and DNI.
All three irradiance components are required to estimate GPI. Decomposition models are useful as it
reduces the measurement equipment by decomposing one irradiance component into two other; for
example, use GHI to estimate DHI and DNI.

Most decomposition models are not universally applicable and localised to a specific climate, and
the temporal resolution is not always transferable. There has not been extensive literature published
representing the Southern African region in decomposition models, which this research article will
attempt to address.

2. Model Development

The methodology to develop a novel decomposition model is based on selected data from the
automated QC procedure and addresses three geographical models:

1. a localised decomposition model, which is site-specific;
2. a clustered decomposition model, which encapsulates several sites to group an area based on

their geographical location;
3. and a regional (Southern African) model, which encapsulates the data from the SAURAN network

for developing a model specific to Southern Africa.
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2.1. SAURAN Database

Table 1 summarises the SAURAN stations’ corresponding geographical information, such as
latitude, longitude, and elevation above sea level.

Table 1. SAURAN station summary [39,40].

Name (Location) Coordinates Elevation
(Lat (◦S), Long (◦E)) (m)

CSIR CSIR Energy Centre (Pretoria, South Africa) 25.747, 28.279 1400

CUT Central University of Technology (Bloemfontein,
South Africa) 29.121, 26.216 1397

FRH University of Fort Hare (Alice, South Africa) 32.785, 26.845 540
GRT Graaff-Reinet (Graaff-Reinet, South Africa) 32.485, 24.586 660
HLO Mariendal (Mariendal, South Africa) 33.854, 18.824 178
ILA Ilanga CSP Plant (Upington, South Africa) 28.490, 21.520 884

KZH University of KwaZulu-Natal Howard College
(Durban, South Africa) 29.871, 30.977 150

KZW University of KwaZulu-Natal Westville (Durban,
South Africa) 29.817, 30.945 200

MIN CRSES Mintek (Johannesburg, South Africa) 26.089, 27.978 1521

NMU Nelson Mandela University (Gqeberha, South
Africa) 34.009, 25.665 35

NUST Namibian University of Science and Technology
(Windhoek, Namibia) 22.565, 17.075 1683

RVD Richtersveld (Alexander Bay, South Africa) 28.561, 16.761 141

SUN Stellenbosch University (Stellenbosch, South
Africa) 33.935, 18.867 119

UBG Gaborone (Gaborone, Botswana) 24.661, 25.934 1014

UFS University of Free State (Bloemfontein, South
Africa) 29.111, 26.185 1491

UNV Venda (Vuwani, South Africa) 23.131, 30.424 628

UNZ University of Zululand (KwaDlangezwa, South
Africa) 28.853, 31.852 90

UPR University of Pretoria (Pretoria, South Africa) 25.753, 28.229 1410
VAN Vanrhynsdorp (Vanrhynsdorp, South Africa) 31.617, 18.738 130

Table 3 shows the data points available for the model development, taken from Table 2. Further,
the data points assessed are Kt between 0.175 and 0.875.

The data points are hourly measurements of the GHI, DNI and DHI. The split of the
train-validation-test datasets is 50:25:25, with the exceptions of two datasets, ILA and MIN. The
ILA and MIN have a 0:0:100 data split and are two unknown datasets as part of the test study.

Table 3 also shows each station’s mean GHI, DNI, and DHI determined after applying the QC
procedure.
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Table 2. SAURAN database and dataset sizes from [39].

Station Dataset size Start Date End Date
Before QC After QC

CSIR 46,434 26,539 11 March 2017 31 October 2022
CUT 28,077 14,619 24 October 2017 31 October 2022
FRH 40,895 22,233 7 February 2017 24 February 2022
GRT 18,541 9774 27 November 2013 24 January 2016
HLO 21,532 11,728 8 October 2015 27 October 2020
ILA 8832 4676 13 October 2021 31 October 2022
KZH 52,323 38,898 7 December 2015 07 August 2022
KZW 20,291 10,756 7 December 2015 12 December 2018
MIN 8185 4423 28 October 2021 31 October 2022
MRB 4201 2462 17 March 2017 22 October 2019
NMU 39,969 23,130 10 December 2015 30 September 2022
NUST 52,004 27,401 26 July 2016 31 October 2022
PMB 9773 5415 13 July 2021 31 October 2022
RVD 63,716 34,457 27 March 2014 28 July 2021
SALT 14,151 9908 21 July 2017 22 December 2020
STA 40,256 21,751 7 December 2015 19 April 2021
SUN 87,720 47,733 24 May 2010 31 October 2022
SUT 1715 902 8 February 2017 20 April 2017
UBG 38,917 20,646 26 November 2014 6 November 2020
UFS 31,665 17,152 16 January 2014 30 August 2017
UNV 59,100 33,144 23 April 2015 31 October 2022
UNZ 56,399 30,373 11 July 2014 31 October 2022
UPR 78,792 42,128 19 September 2013 31 October 2022
VAN 24,701 13,234 26 August 2016 10 July 2019

Table 3. Model development stations indicating the mean GHI, DNI and GHI and sizes of training,
validation and testing sets.

Station
Mean1 Dataset2

Cluster
AllocationGHI DNI DHI Total Train Validation Test

[W/m2] [W/m2] [W/m2]

CSIR 575 599 167 14,991 7,495 3,748 3,748 2
CUT 609 639 159 9,161 4,580 2,290 2,291 2
FRH 544 583 151 12,224 6,112 3,056 3,056 4
GRT 573 624 151 5,788 2,894 1,447 1,447 4
HLO 550 608 138 7,061 3,530 1,765 1,766 1
ILA 589 680 131 2,709 0 0 2,709 1
KZH 533 517 179 8,782 4,391 2,195 2,196 3
KZW 531 511 184 5,945 2,972 1,486 1,487 3
NMU 556 545 165 10,562 5,281 2,640 2,641 4
NUST 614 670 149 15,901 7,950 3,975 3,976 1
MIN 564 573 161 2,761 0 0 2,761 2
RVD 630 729 125 19,624 9,812 4,906 4,906 1
SUN 556 645 133 28,508 14,254 7,127 7,127 1
UBG 591 602 158 12,137 6,068 3,034 3,035 2
UFS 567 654 137 10,257 5,128 2,564 2,565 2
UNV 579 524 197 15,874 7,937 3,968 3,969 2
UNZ 530 528 176 10,055 5,027 2,514 2,514 3
UPR 568 609 163 28,089 14,044 7,022 7,023 2
VAN 597 683 126 7,860 3,930 1,965 1,965 1

1 Daylight average, 2 Dataset size after quality control as in [40] and 0.175 ≤ Kt ≤ 0.875
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2.2. Comparison Metrics

The comparison metrics are the root mean square error (RMSE), mean absolute error (MAE) and
mean bias error (MBE).

RMSE =

√√√√ N

∑
i=1

(xi − x̂i)2

n
,

MAE =
1
n

n

∑
i=1

|xi − x̂i|,

MBE =
1
n

n

∑
i=1

(xi − x̂i),

(8)

where xi is the measured value, and x̂i is the predicted value. A low RMSE and MAE indicate a good
model, whereas an MBE should be closer to zero. RMSE indicates the concentration of data around the
line of best fit. Therefore, a smaller RMSE is indicative of a more accurate model.

The Pearson correlation coefficient r indicates the correlation between data:

r = ∑ (xi − x̄) (yi − ȳ)√
∑ (xi − x̄)2 ∑ (yi − ȳ)2

. (9)

In Equation (9), xi and yi represent the individual points with index i and x̄ and ȳ represent the
mean of the x and y sample set. An r closer to -1 has a negative correlation, meaning if one variable
increases, the other decreases. In contrast, if r is closer to 1, it has a positive correlation, meaning if one
variable increases, the other would also [41].

Statistical indicators used for the comparison metrics are the MBE, RMSE and MAE, all expressed
as a percentage of the mean measured DNI [26] and R2. Further comparison metrics are two MAE
Kt-intervals: Kt < 0.60 and Kt ≥ 0.60.

The MBE indicates whether a model over or underestimates the DNI, and the RMSE indicates the
deviation of the errors. A significant difference between MAE and RMSE indicates a larger variance in
the data. Lower RMSE and MAE are ideal, whereas an MBE closer to zero is optimal. The MAE is an
unbiased estimator and also evaluates the two Kt intervals. Lower and higher Kt indicate overcast and
clear-sky conditions, respectively. Therefore, the two Kt intervals assess the models under varying
weather conditions.

2.3. Regression and Fitting

The relationship between two variables is quantified using statistical methods like regression.
Regression techniques can be linear, multi-linear and non-linear.

The definition of a linear relationship is

y = b0 + b1x, (10)

where y is the response, x is the regressor, b0 is the intercept, and b0 is the slope. A regression analysis
quantifies the strength of a relationship between y and x [41].

The least squares method estimates b0 and b1 so that the sum of the squares of the residuals is at a
minimum. The residual sum of squares is denoted as SSE and is the sum of squares of the errors about
the regression line. Thus, the minimisation of

SSE =
n

∑
i=1

(yi − ŷi)
2 , (11)

where ŷ denotes the predicted or fitted value.
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The coefficient of determination, R2, indicates how good the fit of a model is and is a number
between zero and one.

R2 = 1 − ∑ (yi − ŷi)
2

(yi − ȳi)
2 . (12)

A higher R2-value indicates that the model explains the variation in the response variable around
its mean, and the regression model fits the observation better [41].

Polynomial regression is the modelling of a dependent, y, as an nth-degree polynomial of x

y = bo + b1x + b2x2 + · · ·+ brx2. (13)

Exponential regression is where the best fit of an equation is an exponential function, like

y = a + bcx, (14)

or
y = a + becx. (15)

Multi-linear regression has multiple variables, which is the outcome of a response variable

y = β0 + b1x1i + b2x2i + · · ·+ bkxki. (16)

2.4. Software Development Tools

The model development utilises a combination of data science applications and modelling. The
primary tool is the open-source language Python with the anaconda interface [42], and various
available libraries [43–45].

2.5. Baseline Models

Three comparative models are used as a baseline to compare the new models. Based on the
literature, the DISC and Dirint models performed well for Southern African climates [38,46].

The Dirint [18] and Lee [3] models are also used for comparison because their foundation is
similar to the DISC model [17].

Maxwell’s DISC quasi-physical approach has three assumptions [3]:

1. The relative air mass AM is the dominant parameter affecting the relationship between Kn and
Kt;

2. The physical model used to calculate Kn will provide a physically-based reference from which the
changes in Kn can be calculated (see Equation (20) below);

3. Seasonal, annual and climate variations in the relationship between Kn and Kt are fully accounted
for by parametric functions in Kt that relate ∆Kn to AM, cloud cover and PW vapour.

AM is defined as [47]

AM =
[
cos θZ + 0.5057 · (96.080 − θZ)

−1.634
]−1

. (17)

The absolute AM (AMa) is the pressurised normalisation of AM, expressed as

AMa = AM
(

P
Po

)
, (18)

where P refers to the atmospheric pressure at the test site, and Po is the atmospheric pressure at sea
level.
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The modelled DNI is determined using Equation (3):

DNI = G0n · Kn, (19)

where
Kn = Knc − ∆Kn, (20)

and
∆Kn = aDISC + bDISCecDISC·AM. (21)

The clear-sky limit Knc is a polynomial in AM:

Knc = 0.866 − 0.122AM + 0.0121AM2 − 0.00653AM3 + 0.000014AM4. (22)

Two Kt intervals determine the coefficients aDISC, bDISC and cDISC: Kt ≤ 0.60 and Kt > 0.60.
For Kt ≤ 0.60

aDISC = 0.512 − 1.56Kt + 2.286K2
t − 2.222K3

t ,

bDISC = 0.370 + 0.962K3
t ,

cDISC = −0.280 + 0.932Kt − 2.048K2
t .

(23)

For Kt > 0.60
aDISC = −5.743 + 21.77Kt − 27.49K2

t + 11.56K3
t ,

bDISC = 41.4 − 118.5Kt + 66.05K2
t + 31.90K3

t ,

cDISC = −47.01 + 184.2Kt − 222.0K2
t + 73.81K3

t .

(24)

Maxwell’s model possesses a different functional form because the quasi-physical approach is
applied; therefore, it partially reflects the physics involved in the atmospheric transmission of solar
radiation [3]. The aDISC, bDISC and cDISC parameters were fitted based on solar radiation data from Atlanta,
Georgia, USA, 1981 [17]. Maxwell adopted the Bird clear-sky model for Knc (see Equation (22)). The
parameters aDISC, bDISC and cDISC, as described in Equations (23) and (24), were then fitted based on the
dataset.

The DISC model, termed ‘quasi-physical’, combines a clear-sky model with experimental fits for
other sky conditions. The model is a clear-sky irradiance attenuated by a function of Kt. Maxwell
derived the empirical regressions from 12 years of recorded radiation data at 70 stations [4,17].

The Dirint model is based on the DISC model and was developed by Perez et al. [18]. The goal
was to improve the accuracy of the DISC model by Maxwell [17].

The Dirint model uses a clearness index variation parameter K′
t:

K′
t =

Kt

1.031e−1.4/(0.9+9.4/AM) + 0.1
. (25)

Furthermore, a stability index parameter ∆K′
t:

∆K′
t = 0.5

(
|K′

t(i) − K′
t(i+1)|+ |K′

t(i) − K′
t(i−1)|

)
, (26)

considers the previous (i − 1), current (i) and next hourly (i + 1) record. When the preceding or hourly
record is missing, ∆K′

t is
∆K′

t = |Kt(i) − Kt(i±1)|. (27)

A low ∆K′
t is a stable condition, whereas a high ∆K′

t characterises unstable conditions, which
allows the distinction between hazy and partly cloudy conditions. The Td is an adequate atmospheric
PW estimator [18]. The Dirint model’s atmospheric PW (W) is estimated using:

W = exp(0.07 · Td − 0.075). (28)
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The Dirint is a four-dimension conditional model, having the θZ, Kt, ∆K′
t and W. Based on the

four-dimensional model, the calculation of hourly DNI is

DNI =
I0n · k′be−1.4/(0.9+9.4/AM)

0.87291
. (29)

where
k′b = 0 for K′

t < 0.2,

k′b = aDirintK′
t + bDirint.

(30)

Coefficients aDirint and bDirint are from a complex lookup table.
Lee et al. created a new model for Korea with the same format as Maxwell’s DISC model.

aLee = 0.342 − 0.3782Kt,

bLee = 0.5329 + 0.2676Kt − 0.0216k2
t + 0.1584K3

t .
(31)

For Kt ≤ 0.5
cLee = −0.2117 − 0.0513Kt + 1.2976K2

t − 3.3222K3
t (32)

or Kt > 0.5
cLee = 0.7221 − 10.2801Kt + 30.3285K2

t − 27.9766K3
t . (33)

The evaluation consists of comparing the localised, clustered and regional models against the
three baseline models: DISC, Dirint and Lee. The DISC and Dirint models were selected based on
their performance in estimating DNI for Southern African climates. The Lee and Dirint models have
foundational similarities to the DISC model. These models consider whether the newly developed
decomposition model improves the accuracy of hourly DNI estimations for Southern Africa. The
accuracy evaluation uses the comparison metrics discussed in the next section.

2.6. Decomposition Model Development Methodology

The methodology builds on the DISC model. The DISC model stands out as one of the
better-performing models for estimating DNI for South Africa [38]. Its simplicity is evident in its lack
of need for a complex four-dimensional lookup table, unlike the Dirint model.

The original DISC model uses Equation (21), an exponential function. However, the regression
model for an exponential function, as discussed in Section 2.3, showed difficulty in finding optimal a,
b and c coefficients in all cases. Instead, a second-order polynomial function of AM

∆Kn = a + b · AM + c · AM2 (34)

is a suitable substitute with similar regression results.
The training set then fits a, b and c for intervals Kt ≤ 0.60 and Kt > 0.60:

a = a0 + a1Kt + a2K2
t + a3K3

t ,

b = b0 + b1Kt + b2K2
t + b3K3

t ,

c = c0 + c1Kt + c2K2
t + c3K3

t ,

(35)

and the validation and testing sets evaluate the model’s accuracy.
Each model development undergoes the following initial processing steps:

1. Empirical formulae estimate θZ, AM, pressure, I0n, Kt and Kn. From this, the assessment of
available models aids in developing a new model;

2. Data is split into intervals of 0.05 Kt, starting from 0.175 to 0.875;
3. ∆Kn is then modelled as Equation (34);

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0416.v1



11 of 40

4. The interval or intervals are then fitted against the function to determine Equation (34) to
determine the a, b and c coefficients using a least squares regression analysis;

5. From the Kt-interval function, the a0-a3, b0-b3 and c0-c3 coefficients are fitted to a polynomial of
Equation (35) with regards to Kt;

6. These equations can be used to determine ∆Kn and Kn, which, in turn, calculates the DNI (see
Equations (19) and (20)).

For each SAURAN station, a localised decomposition model is developed. A clustered
decomposition model describes an area with similar irradiance patterns using the clustered areas
discussed in [40]. Farmer and Rix first presented a two-cluster correlation map using the SAURAN
database [48] and, by using this approach, this study formulated four clusters instead of two in
Southern Africa, as shown in Figure 3a.

Figure 3a shows the clusters’ geographical location, and Figure 3b shows the penetration levels of
GHI. Table 4 shows the different clusters’ training sets’ mean GHI, DNI and DHI.

a SAURAN [39]. b GHI across South Africa [49].
Figure 3. Clusters within the Southern African context.

Table 4. Clusters mean irradiances.

Mean4

GHI DNI DHI
[W/m2] [W/m2] [W/m2]

Cluster 1 592 669 135
Cluster 2 583 604 165
Cluster 3 534 523 178
Cluster 4 557 579 158

4 Mean values of training set

Cluster 1 receives the most GHI and DNI, and Cluster 3 receives the least, as evident from
Figure fig:Clustersb. The different climates are also evident in these clusters: Cluster 3 is more humid
and receives, on average, more DHI than Cluster 1.

Figure 4 shows how the cluster data is combined. Each cluster and the regional (Southern African)
model are combined with even distributions of datasets to avoid introducing a bias, as some stations
are over-represented in the original data set. Some stations, such as the SUN, UPR and RVD stations,
have considerably more data available as they are either older stations or have not been closed down.
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Figure 4. Distribution of data within clusters.

The different stations have varying climates, and therefore, a larger representation of one station
will result in a biased model towards that station. The advantage of the even distribution is that every
station is sufficiently represented and will not cause a model bias, but this reduces the amount of
available data.

Cluster 2’s stations have higher elevation and summer humidity due to its warm, rainy summers
and dry, cold winters. The expected annual irradiance levels are lower, as seen in Figure 3b. The
stations have higher humidity because of their location and higher DHI levels.

The two stations in Cluster 2, UPR and CSIR, are expected to have more diffuse particles due to
the higher air pollution levels and, therefore, higher DHI levels. Cluster 2 has a large bias of the data
from Pretoria, South Africa, from the CSIR and UPR datasets.

Cluster 4 has lower annual irradiance levels, as seen in Figure 3b, and FRH and NMU are closer
to the coastline, whereas GRT is inland.

3. Development of New Decomposition Models

This section discusses the newly developed a, b and c coefficients of Equation (34).
The section consists of three subsections:

1. The localised decomposition models, developed using the training dataset of the SAURAN
station;

2. The clustered decomposition models, which are modelled on the training data of all the stations
within the cluster, as discussed in Figure 4;

3. And the regional model is modelled on all the stations’ training data (Table 3).

3.1. Localised Decomposition Models

The localised decomposition model equations for the a, b and c coefficients are presented in
Appendix A.

3.2. Cluster Decomposition Models

Figures 5–8 show the different corresponding clusters’ model coefficients.

3.2.1. Cluster 1

Cluster 1 comprises the HLO, NUST, RVD, SUN and VAN datasets, as shown in Figures 3a and 4.
Figure 5 shows the Cluster 1 and five stations’ a, b and c coefficients. The discussion of the

different stations is in Appendix A under Subsections A.5 (HLO), A.11 (NUST), A.12 (RVD), A.13
(SUN) and A.19 (VAN).
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The RVD model is the only model showing difficulty fitting the coefficients with Kt. Table 3
indicates that the RVD station has the highest mean DNI and GHI, with the lowest DHI measurements,
compared to the rest of Cluster 1’s stations.

a a coefficient.

b b coefficient.

c c coefficient.

Figure 5. Cluster 1 coefficients in ∆Kn = a + b · AM + c · AM2.

The coefficients for Cluster 1 are

a =

{
2.4134 − 15.428Kt + 50.7433K2

t − 50.3864K3
t for Kt < 0.60,

18.4363 − 61.7241Kt + 67.5365K2
t − 23.9963K3

t for Kt ≥ 0.60

b =

{
−1.4538 + 13.4628Kt − 43.4278K2

t + 40.7081K3
t for Kt < 0.60,

−7.7071 + 23.0993Kt − 20.5561K2
t + 4.7883K3

t for Kt ≥ 0.60

c =

{
0.2232 − 2.1593Kt + 6.6964K2

t − 6.0805K3
t for Kt < 0.60,

0.7064 − 1.9679Kt + 1.5214K2
t − 0.2153K3

t for Kt ≥ 0.60

(36)
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3.2.2. Cluster 2

Cluster 2 consists of the CSIR, CUT, UBG, UFS, UPR, and UNV datasets. Figure 6 shows the
Cluster 2 and six stations’ a, b and c coefficients.

The discussion of the different stations are in Appendix A under Subsections A.1 (CSIR), A.2
(CUT), A.14 (UBG), A.15 (UFS), A.18 (UPR) and A.16 (UNV). The UFS have the greatest deviation from
the Cluster 2 fit.

a a coefficient.

b b coefficient.

c c coefficient.

Figure 6. Cluster 2 coefficients in ∆Kn = a + b · AM + c · AM2.
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The coefficients for Cluster 2 are

a =

{
1.4234 − 6.6647Kt + 25.5673K2

t − 27.8939K3
t for Kt < 0.60,

10.5939 − 28.4856Kt + 21.7611K2
t − 3.348K3

t for Kt ≥ 0.60.

b =

{
−0.8033 + 7.723Kt − 26.9074K2

t + 25.9995K3
t for Kt < 0.60,

−6.1286 + 15.6674Kt − 9.4832K2
t − 0.4949K3

t for Kt ≥ 0.60.

c =

{
0.1604 − 1.5968Kt + 5.0219K2

t − 4.537K3
t for Kt < 0.60,

0.8966 − 2.6121Kt + 2.2392K2
t − 0.4802K3

t for Kt ≥ 0.60.

(37)

3.2.3. Cluster 3

Cluster 3 consists of the KZH, KZW and UNZ datasets. Figure 7 shows the Cluster 3 and three
stations’ a, b and c coefficients.

The discussion of the different stations is in Appendix A under Subsections A.7 (KZH), A.8 (KZW)
and A.17 (UNZ). The three models fit quite well and are similar to Cluster 3.

a a coefficient.

b b coefficient.

c c coefficient.

Figure 7. Cluster 3 coefficients in ∆Kn = a + b · AM + c · AM2.
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The coefficients for Cluster 3 are

a =

{
1.7678 − 9.8995Kt + 34.9076K2

t − 36.2495K3
t for Kt < 0.60,

41.1735 − 157.5062Kt + 201.1335K2
t − 85.5391K3

t for Kt ≥ 0.60.

b =

{
−1.0914 + 10.2302Kt − 33.9924K2

t + 32.4023K3
t for Kt < 0.60,

−31.151 + 121.964Kt − 158.1413K2
t + 67.9737K3

t for Kt ≥ 0.60.

c =

{
0.2256 − 2.1961Kt + 6.8092K2

t − 6.1997K3
t for Kt < 0.60,

3.4215 − 13.4513Kt + 17.5277K2
t − 7.5726K3

t for Kt ≥ 0.60.

(38)

3.2.4. Cluster 4

Cluster 4 consists of the NMU, FRH and GRT datasets. Figure 8 shows the Cluster 4 and three
stations’ a, b and c coefficients.

The discussion of the different stations is in Appendix Avvvv under Subsections A.10 (NMU),
A.3 (FRH) and A.4 (GRT). The GRT station’s c-coefficient does show difficulty in a fit determination.

a a coefficient.

b b coefficient.

c c coefficient.

Figure 8. Cluster 4 coefficients in ∆Kn = a + b · AM + c · AM2.
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The coefficients for Cluster 4 are

a =

{
0.7671 − 0.9387Kt + 9.7073K2

t − 14.2827K3
t for Kt < 0.60,

20.0495 − 67.0086Kt + 73.6919K2
t − 26.4669K3

t for Kt ≥ 0.60.

b =

{
−0.2382 + 2.3908Kt − 11.3676K2

t + 12.3585K3
t for Kt < 0.60,

−12.5095 + 42.6536Kt − 47.1486K2
t + 16.8022K3

t for Kt ≥ 0.60.

c =

{
0.0451 − 0.5012Kt + 1.8485K2

t − 1.7706K3
t for Kt < 0.60,

1.4976 − 5.1597Kt + 5.8075K2
t − 2.1264K3

t for Kt ≥ 0.60.

(39)

3.3. Regional Decomposition Model

The regional (Southern African) decomposition model data is an even distribution of the SAURAN
stations regarding the number of data points used per station. Multiple climates, different elevations
and pollution levels are represented within the dataset, leading to a better decomposition model for
Southern Africa and a regional application.

Figure 9 shows the coefficients a, b and c of the regional model and the four clusters.
The coefficients for the regional model are

a =

{
1.2893 − 5.2531Kt + 21.5081K2

t − 24.5156K3
t for Kt < 0.60,

19.0295 − 63.9357Kt + 70.7485K2
t − 25.6524K3

t for Kt ≥ 0.60.

b =

{
−0.6327 + 5.891Kt − 21.4431K2

t + 21.2593K3
t for Kt < 0.60,

−11.7813 + 39.923Kt − 43.6596K2
t + 15.3252K3

t for Kt ≥ 0.60.

c =

{
0.1118 − 1.1105Kt + 3.6089K2

t − 3.3222K3
t for Kt < 0.60,

1.49 − 5.2009Kt + 5.9381K2
t − 2.2137K3

t for Kt ≥ 0.60.

(40)

a a coefficient.

Figure 9. Cont.
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b b coefficient.

c c coefficient.

Figure 9. Regional model coefficients in ∆Kn = a + b · AM + c · AM2.

4. Results

Each station is discussed individually by assessing the dataset’s comparison metrics: the R2-value,
MBE, RMSE and MAE, and the MAE of two Kt-intervals. The results compare the localised, clustered
and regional (Southern African) models to the three baseline models, DISC, Dirint and Lee. The tables
visualise the results for each station using red and green, with green denoting lower error and red
denoting higher error.

Table 3 discusses the validation data. In the previous section, the localised, clustered, and regional
models were empirically determined. Appendix A expands on the equations for the localised models.

Sections 3.2 and 3.3 discussed the clustered and regional models. The test data also introduces
two unknown datasets, the ILA and MIN datasets. These datasets assess the models with new data for
the developed models. ILA and MIN have no localised model, but geographically, they fall within a
cluster: ILA falls under Cluster 1 and MIN under Cluster 2.

4.1. Testing and Validation Results

4.1.1. CSIR

Section A.1 shows the decomposition model equations for the CSIR station. Table 5 shows
the results of the CSIR station. The results show that the localised, Cluster 2 and regional models
outperform the baseline models in all metrics. The localised model significantly improves for lower Kt,
reducing the MAE from around 60% to 36%.

The test results of the CSIR dataset are presented in Figure A1. As seen in the figure, the localised,
cluster, and regional models outperform the baseline models, consistent with the validation results of
the previous section in Table 5.
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Table 5. Hourly validation results of decomposition model development for CSIR.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.52 -10.6 39.7 32.5 60.7 25.2
Dirint 0.59 -20.2 37.8 30.3 61.6 22.3

Lee 0.62 6.49 31.0 25.3 56.9 17.2
CSIR 0.72 1.19 25.8 19.5 36.2 15.3

Cluster 2 0.72 1.59 25.9 19.4 35.7 15.3
Regional 0.72 4.32 26.3 19.6 36.2 15.4

4.1.2. CUT

Section A.2 shows the decomposition model equations for the CUT station. Table 6 shows the
CUT station results. The localised Cluster 2 and regional model significantly improve the comparison
metrics over the three baseline models. The Lee model has a similar MBE to the regional model
(±0.7) and has a higher Kt-metric similar to Cluster 2. However, the Lee RMSE and MAE still do not
outperform the new models.

Figure A2 presents the test results of the CUT dataset, where the localised, cluster and regional
models outperform the baseline models. The test results are consistent with the validation results
presented in Table 6.

Table 6. Hourly validation results of decomposition model development for CUT.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.55 -15.7 38.0 31.2 61.0 23.9
Dirint 0.6 -23.4 38.6 31.8 62.3 24.4

Lee 0.6 0.7 30.9 24.9 56.5 17.2
CUT 0.71 -1.8 26.0 20.1 33.7 16.8

Cluster 2 0.7 -1.6 26.2 20.5 34.6 17.1
Regional 0.7 0.66 26.3 20.3 34.7 16.7

4.1.3. FRH

Section A.3 shows the decomposition model equations for the FRH station. Table 7 shows the
results of the FRH station. The localised model outperforms the baseline models by improving R2

and MBE and reducing MAE and RSME. The Lee model shows the lowest MAE for higher Kt-values;
however, it does show an overestimation for DNI with a higher MBE. For most metrics, the localised,
Cluster 4 and regional model outperforms the baseline models.

Figure A3 presents the test results of the FRH dataset. The localised Cluster 2 and regional models
outperform the baselines, but no significant difference exists between the new three models. The test
results presented in Figure A3 correspond with the validation results in Table 7.

Table 7. Hourly validation results of decomposition model development for FRH.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.51 -5.49 41.8 31.8 60.9 24.0
Dirint 0.52 -15.9 42.0 33.5 63.2 25.6

Lee 0.51 6.71 39.7 29.7 64.1 20.6
FRH 0.58 -0.44 36.0 26.8 44.6 22.1

Cluster 4 0.58 -0.28 36.0 26.4 45.5 21.4
Regional 0.57 2.63 36.2 26.1 44.5 21.2
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4.1.4. GRT

Section A.4 shows the decomposition model equations for the GRT station. Table 8 shows the GRT
station results. The localised model does show improvement over the DISC and Dirint model but does
not significantly outperform the Lee model. The Lee model has a higher R2, lower MBE AND RMSE,
whereas the localised model has a lower MAE for the entire dataset and the two Kt intervals. The
Cluster 4 and regional models perform better than the DISC and Dirint models but do not significantly
outperform all the baseline models.

Figure A4 shows the test results of the GRT dataset. The results correspond with the validation
results in Table 8. The localised, Cluster 4 and regional model does outperform the DISC and Dirint
model but only marginally outperforms the Lee model.

Table 8. Hourly validation results of decomposition model development for GRT.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.62 -13.9 36.1 28.3 59.1 20.0
Dirint 0.67 -22.8 37.5 30.4 60.4 22.3

Lee 0.67 -0.89 29.4 24.2 59.2 14.8
GRT 0.65 -1.99 32.3 21.0 47.1 13.9

Cluster 4 0.73 -7.43 27.6 21.5 42.9 15.7
Regional 0.71 -4.75 28.0 20.9 42.2 15.2

4.1.5. HLO

Section A.5 shows the decomposition model equations for the HLO station. Table 9 shows the
HLO station results. The localised model performs better than the baseline models and improves all
comparison metrics.

Figure A5 shows the test results of the HLO dataset. The validation results in Table 9 and the test
results correspond well, indicating that the localised Cluster 1 and regional models outperform the
baseline models.

Table 9. Hourly validation results of decomposition model development for HLO.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 -7.95 34.6 27.1 58.7 18.7
Dirint 0.67 -18.4 34.7 27.0 60.5 18.2

Lee 0.67 2.31 29.1 23.3 59.2 13.9
HLO 0.75 -1.16 25.2 18.9 41.3 13.0

Cluster 1 0.75 2.44 25.3 18.8 40.8 13.0
Regional 0.75 -3.69 25.3 19.7 42.3 13.7

4.1.6. ILA

Figure A6 presents the test results of the ILA dataset. The ILA dataset has no localised
decomposition model; therefore, the testing only assesses the Cluster 1 and regional models. The
results show that the Cluster 1 and regional models outperform the baseline models. The results
highlight the substitution of using a Cluster model when no localised model is available, subject to the
geographical location within the Cluster area.

4.1.7. KZH

Section A.7 shows the decomposition model equations for the KZH station. Table 10 shows
the results of the KZH station. The localised, Cluster 3 and regional models all show significant
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improvements in reducing the error over the baseline models. The DISC has a lower MBE than the
regional model.

Figure A7 shows the test results of the KZH dataset. The localised, Cluster 3 and regional models
all outperform the baseline models. The regional model does not outperform Cluster 3 or the localised
model significantly.

Table 10. Hourly validation results of decomposition model development for KZH.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 -2.15 38.1 30.4 59.3 21.9
Dirint 0.67 -12.7 35.3 28.1 61.0 18.5

Lee 0.67 13.4 35.5 28.6 67.2 17.3
KZH 0.75 -0.29 28.5 21.7 44.5 15.0

Cluster 3 0.75 1.3 28.5 21.7 44.5 15.0
Regional 0.75 4.95 29.0 21.7 45.0 14.9

4.1.8. KZW

Section A.8 shows the decomposition model equations for the KZW station. Table 11 shows the
results of the KZW station. The localised, clustered, and regional models show improvement over the
baseline models with metrics that assess the entire data set.

Figure A8 shows the test results of the KZW dataset. The validation and testing results from
Table 11 correspond.

Table 11. Hourly validation results of decomposition model development for KZW.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.63 -4.26 39.7 31.5 57.1 23.5
Dirint 0.68 -14.8 37.0 28.8 58.5 19.6

Lee 0.67 13.6 36.5 29.9 67.6 18.2
KZW 0.76 1.47 28.9 22.2 43.0 15.7

Cluster 3 0.76 0.58 28.9 22.3 43.2 15.8
Regional 0.75 3.83 29.8 22.5 43.8 15.8

MIN

The test results of the MIN dataset are presented in Figure A9. MIN has no localised decomposition
model and falls geographically under Cluster 2. The cluster model and localised model show
improvement over the baseline models. Much like the ILA dataset, the MIN dataset demonstrates how
the clustered and regional models can serve as alternatives to enhance DNI estimations in Southern
Africa.

Ň Section A.10 shows the decomposition model equations for the NMU station. Table 12 shows
the NMU station results. The localised, Cluster 4 and regional models show significant improvement
in reducing the errors from the baseline models. Based on the higher MBE, the Cluster 4 and regional
models overestimate the DNI more than the DISC and Dirint models.

The test results of the NMU dataset are presented in Figure A10. Localised and cluster models
outperform baseline models, consistent with the results in Table 12.
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Table 12. Hourly validation results of decomposition model development for NMU.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.59 8.72 40.0 29.6 57.7 24.1
Dirint 0.61 -4.49 35.8 26.7 59.9 20.3

Lee 0.61 18.3 39.7 29.3 72.1 21.0
NMU 0.67 0.78 32.5 23.6 49.6 18.5

Cluster 4 0.67 6.98 33.2 22.9 49.7 17.7
Regional 0.66 9.8 34.0 23.2 51.5 17.7

4.1.9. NUST

Section A.11 shows the decomposition model equations for the NUST station. Table 13 shows
the results of the NUST station. The localised model shows superior performance over the baseline
models, as well as the clustered and regional models. The metrics of the clustered model compared to
the baselines indicate that the regional model slightly overestimates the DNI compared to the lowest
baseline model (Lee), which slightly underestimates the DNI.

The test results of the NUST dataset are presented in Figure A11. Localised, clustered, and
regional models outperform the baseline models, consistent with the validation results presented
in Table 13. The regional model shows marginal underperformance compared to the localised and
Cluster 1 model, but not significant enough to warrant it as unusable.

Table 13. Hourly validation results of decomposition model development for NUST.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.54 -20.9 39.2 32.6 64.2 24.9
Dirint 0.6 -28.0 40.4 34.0 65.0 26.5

Lee 0.61 -3.36 28.7 23.7 54.3 16.3
NUST 0.74 -0.42 23.0 17.7 29.1 14.9

Cluster 1 0.73 3.11 23.9 17.7 28.2 15.1
Regional 0.72 -2.68 23.8 19.0 31.7 15.9

4.1.10. RVD

Section A.12 shows the decomposition model equations for the RVD station. Table 14 shows the
RVD station results. The localised, clustered, and regional models outperform the baseline models. The
Lee model performs better than the regional model but does not outperform the localised and cluster
models. The RVD station receives more irradiance on average than other stations in the SAURAN
database.

Figure A12 shows the test results of the RVD dataset. The results indicate that the localised, cluster
and regional models outperform the baseline models, which is consistent with the validation results of
the previous section in Table 14. The localised model’s RMSE is higher than the Lee model; however,
the localised model does best in reducing the error for the other metrics. Though the regional model
outperforms the baseline models, it does show the worst performance of the three newly developed
models for RVD.
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Table 14. Hourly validation results of decomposition model development for RVD.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.61 -12.2 29.8 23.1 59.7 16.2
Dirint 0.65 -21.5 32.1 26.4 62.6 19.5

Lee 0.65 -5.21 23.8 18.5 53.3 11.9
RVD 0.76 -0.58 19.0 13.1 30.5 9.7

Cluster 1 0.77 -3.15 18.7 14.3 32.7 10.8
Regional 0.76 -8.64 20.8 17.0 36.4 13.4

4.1.11. SUN

Section A.13 shows the decomposition model equations for the SUN station. Table 15 shows
the SUN station results. The localised model outperforms the baseline models by improving R2 and
reducing the MBE, RMSE and MAE. The Cluster 1 and regional models show a slightly worse MBE
than the Lee baseline model but otherwise outperform the baseline models. The Lee model also
predicts higher Kt points with a lower MAE than the regional model; however, the other metrics
indicate that the regional model shows better results overall.

Figure A13 shows the test results of the SUN dataset. The results indicate that the localised, cluster
and regional models outperform the baseline models, which is consistent with the testing results of the
previous section in Table 15. As with the validation results, the regional model is the worst-performing
new model but still outperforms the baseline models.

Table 15. Hourly validation results of decomposition model development for SUN.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.59 -11.1 34.9 27.2 59.8 19.3
Dirint 0.65 -21.5 35.9 28.9 61.2 21.0

Lee 0.65 -2.16 28.2 22.4 55.4 14.4
SUN 0.75 -0.71 23.9 17.8 38.8 12.7

Cluster 1 0.75 -1.9 24.0 18.0 38.1 13.1
Regional 0.75 -7.81 25.3 20.2 40.5 15.3

4.1.12. UBG

Section A.14 shows the decomposition model equations for the UBG station. Table 16 shows the
UBG station results. The localised, clustered and regional models all outperform the baseline models.
The Lee model has a lower MBE than the Cluster 1 and regional models. The Lee model also has a
lower MAE for Kt ≥ 0.60; however, the other metrics indicate that the model does not improve the R2,
RMSE, overall MAE and Kt < 0.60 MAE.

Table 16. Hourly validation results of decomposition model development for UBG.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.36 -11.7 47.2 37.4 66.5 30.4
Dirint 0.41 -20.4 45.9 36.9 66.8 29.6

Lee 0.44 5.4 39.8 28.5 58.9 21.2
UBG 0.46 -0.53 38.7 25.0 40.5 21.3

Cluster 2 0.51 0.4 36.1 24.5 40.8 20.5
Regional 0.51 3.07 36.4 24.1 41.3 19.9
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Figure A14 shows the test results of the UBG dataset. The test results show that the localised,
Cluster 1 and regional models outperform the baseline models. The Lee model has a lower MBE than
the regional model, consistent with the validation results in Table 16.

4.1.13. UFS

Section A.15 shows the decomposition model equations for the UFS station. Table 17 shows the
UFS station results. The localised, Cluster 2 and regional models outperform the baseline models. The
Lee model underestimates the DNI slightly better than the Cluster 2 model.

Figure A15 shows the test results of the UFS dataset. All three new decomposition models
significantly improve the errors compared to the baseline models, consistent with the validation results
in Table 17.

Table 17. Hourly validation results of decomposition model development for UFS.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.53 -18.0 38.7 31.7 61.8 23.4
Dirint 0.58 -26.4 40.0 33.0 63.6 24.6

Lee 0.6 -2.68 29.3 24.0 54.7 15.5
UFS 0.72 0.27 24.2 18.2 32.0 14.4

Cluster 2 0.73 -4.03 24.1 19.5 33.2 15.7
Regional 0.72 -1.79 23.9 19.0 33.4 15.1

4.1.14. UNV

Section A.16 shows the decomposition model equations for the UNV station. Table 18 shows the
UNV station results. The localised, Cluster 2 and regional models significantly improved over the
baseline models. The Cluster 2 and regional model overestimates the DNI more than the DISC model,
based on the MBE.

Figure A16 shows the test results of the UNV dataset. The test results correspond with the
validation results in Table 18, where the localised, Cluster 2 and regional models outperform the
baseline models. The only exception is the MBE, where the Cluster 2 and regional models perform
worse than the DISC model. Considering all the metrics, the new models outperform the baselines in
reducing the overall error of DNI estimations.

Table 18. Hourly validation results of decomposition model development for UNV.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.5 1.72 45.9 34.9 59.3 29.1
Dirint 0.56 -9.42 40.7 31.3 60.4 24.3

Lee 0.56 19.0 43.5 33.5 71.0 24.4
UNV 0.62 0.19 36.0 26.5 47.2 21.6

Cluster 2 0.61 7.05 37.3 25.9 47.1 20.8
Regional 0.62 10.1 37.8 26.1 47.0 21.1

4.1.15. UNZ

Section A.17 shows the decomposition model equations for the UNZ station. Table 19 shows the
results of the UNZ station. The localised, clustered and regional models all show improvement over
the baselines. The Dirint model has a lower MBE than the regional model.

Figure A17 shows the test results of the UNZ dataset, which correspond with the validation
results in Table 19.
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Table 19. Hourly validation results of decomposition model development for UNZ.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.56 -0.21 41.6 32.0 58.7 24.4
Dirint 0.6 -11.9 38.2 29.5 59.9 20.9

Lee 0.6 13.5 38.2 30.2 64.7 20.3
UNZ 0.66 0.42 32.8 24.0 45.5 17.9

Cluster 3 0.66 0.13 33.0 24.1 45.9 17.9
Regional 0.68 3.56 32.3 23.8 44.7 17.9

4.1.16. UPR

Section A.18 shows the decomposition model equations for the UPR station. Table 20 shows the
UPR station results. The localised, cluster and regional models outperform the baseline models.

Figure A18 shows the test results of the UPR dataset. The comparison metrics of the entire dataset
indicate that the localised, cluster and regional models outperform the baseline models, which is
consistent with the results of the validation dataset in Table 20.

Table 20. Hourly validation results of decomposition model development for UPR.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.5 -15.2 40.6 33.3 61.0 25.5
Dirint 0.58 -24.0 39.7 32.1 61.3 23.9

Lee 0.61 2.48 29.9 24.7 55.2 16.1
UPR 0.71 -0.17 25.5 19.3 36.3 14.5

Cluster 2 0.71 -2.49 25.7 19.6 36.6 14.8
Regional 0.72 0.13 25.3 19.4 36.8 14.4

4.1.17. VAN

Section A.19 shows the decomposition model equations for the VAN station. Table 21 shows the
results of the VAN station. The localised model outperforms the baseline models by improving R2 and
reducing the MBE, RMSE and MAE. The new models significantly reduce the MAE in the higher Kt

compared to the baseline models. Even when outperforming the baseline models, the regional model
performs the worst of the new model. The VAN station receives a very high average DNI and DHI
and lower DHI than the rest of the database’s stations. These results are similar to the RVD station,
which has significantly higher irradiance levels than the other stations.

Figure A19 shows the test results of the VAN dataset. The new models all outperform the
baseline models. The regional model shows the worst performance of the new models, even when
outperforming the baseline models, similar to the RVD station that receives more irradiance on average
compared to the other stations. These results are consistent with the validation results in Table 21.

Table 21. Hourly validation results of decomposition model development for VAN.

Model Entire Dataset Kt < 0.60 Kt ≥ 0.60

R2 MBE [%] RMSE [%] MAE [%] MAE [%] MAE [%]

DISC 0.58 -11.3 32.2 25.3 60.6 17.9
Dirint 0.63 -21.0 33.6 27.5 62.7 20.1

Lee 0.64 -3.04 25.8 20.5 55.9 13.0
VAN 0.76 -1.17 20.9 15.7 35.2 11.6

Cluster 1 0.76 -1.57 20.9 15.9 36.3 11.7
Regional 0.75 -7.41 22.3 18.2 38.9 13.8
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4.2. Discussion

Table 22 summarises the performance of the localised, clustered and regional models for both the
test and validation sets.

As expected, the localised models outperformed the baseline models for all station datasets
because of the site-specific climatic training data. As discussed in the previous section, the cluster
model combines multiple stations in a similar geographical area.

The clustered model will have significantly more data from which to train a model. A clustered
model is ideal if a site has no data for localised model development using the discussed methodology.
The regional (Southern African) model also shows improvement over the baseline models, indicating
that this model may be appropriate for adoption as a new model for Southern Africa. The two models
with no localised model (ILA and MIN) showed improvement using the clustered and regional model
in the validation study.

Table 22. Summary of test and validation sets of stations outperforming baseline models.

Dataset

Localised model Cluster model Regional model
outperforms outperforms outperforms

baseline models baseline models baseline models

Test Validation Test Validation Test Validation

CSIR ✓ ✓ ✓ ✓ ✓ ✓

CUT ✓ ✓ ✓ ✓ ✓ ✓

FRH ✓ ✓ ✓ ✓ ✓ ✓

GRT ✓ ✓ ✓ ✓ ✓ ✓

HLO ✓ ✓ ✓ ✓ ✓ ✓

ILA - ✓ - ✓ - ✓

KZH ✓ ✓ ✓ ✓ ✓ ✓

KZW ✓ ✓ ✓ ✓ ✓ ✓

MIN - ✓ - ✓ - ✓

NMU ✓ ✓ ✓ ✓ ✓ ✓

NUST ✓ ✓ ✓ ✓ ✓ ✓

RVD ✓ ✓ ✓ ✓ ✓ ✓

SUN ✓ ✓ ✓ ✓ ✓ ✓

UBG ✓ ✓ ✓ ✓ ✓ ✓

UFS ✓ ✓ ✓ ✓ ✓ ✓

UNV ✓ ✓ ✓ ✓ ✓ ✓

UNZ ✓ ✓ ✓ ✓ ✓ ✓

UPR ✓ ✓ ✓ ✓ ✓ ✓

VAN ✓ ✓ ✓ ✓ ✓ ✓

5. Conclusion

This article presented the development of a new decomposition model of hourly DNI estimations
for Southern Africa. The new models improved the DISC model [17] in developing new decomposition
models localised for Southern African climates. The new decomposition models improved the DNI
estimation errors over the baselines for all validation and test sets.

The results indicate that a localised model will improve the estimations of DNI. The proposed
methodology can be helpful for the development of local decomposition models for other areas
worldwide.

Clustered models also indicate that grouping data based on similar geographical and climatic
properties can also improve the performance of decomposition models. This phenomenon could be
helpful when using a clustered decomposition model if no local model or limited data is available but
from two or more geographically close stations.

The overall model, the regional decomposition model, is encapsulated by different climatic regions
and geographical locations. There are also some exceptions where the model over- or underestimates

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 March 2024                   doi:10.20944/preprints202403.0416.v1



27 of 40

the DNI; however, the overall metrics indicate that the Southern African model significantly improves
over the baseline models.

The study validates hourly irradiance data for Kt-intervals between 0.175 and 0.875.
Recommendations for future work include developing models for higher and lower Kt values and
models for higher temporal resolutions with increased accuracy, which is ideal for real-time monitoring
and short-term forecasting of PV power.

Developing countries with an accurate decomposition model can open the path to expanding the
use of renewable energy sources and reducing their dependence on coal and fossil fuels. Good-quality
data is needed to ensure the progress of solar energy research and development. The next step is
assessing the decomposition models with well-known transposition models to determine improved
accuracy for PR estimations.
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Appendix A. Localised Decomposition Models

Appendix A.1. CSIR

The a, b and c coefficients for Equation (34) for the CSIR station are

a =

{
0.6472 − 1.0883Kt + 12.3429K2

t − 17.7027K3
t for Kt < 0.60,

6.1444 − 9.484Kt − 5.138K2
t + 9.2371K3

t for Kt ≥ 0.60.

b =

{
−0.5032 + 5.67Kt − 22.0707K2

t + 22.2654K3
t for Kt < 0.60,

2.8669 − 22.2584Kt + 43.4833K2
t − 24.9682K3

t for Kt ≥ 0.60.

c =

{
0.1418 − 1.4904Kt + 4.7805K2

t − 4.3489K3
t for Kt < 0.60,

−1.1287 + 5.8459Kt − 9.4568K2
t + 4.8729K3

t for Kt ≥ 0.60.

(A1)

The test results of the CSIR dataset are in Figure A1.

Figure A1. Hourly test results of decomposition model development for CSIR.
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Appendix A.2. CUT

The a, b and c coefficients for Equation (34) for the CUT station are

a =

{
2.4122 − 15.382Kt + 48.3773K2

t − 45.8766K3
t for Kt < 0.60,

−15.7689 + 86.1878Kt − 141.6902K2
t + 73.2142K3

t for Kt ≥ 0.60.

b =

{
−1.6214 + 14.8897Kt − 45.5364K2

t + 40.6731K3
t for Kt < 0.60,

17.2881 − 85.5492Kt + 134.0146K2
t − 67.4052K3

t for Kt ≥ 0.60.

c =

{
0.2864 − 2.6906Kt + 7.8329K2

t − 6.7318K3
t for Kt < 0.60,

−1.9147 + 9.6635Kt − 15.3053K2
t + 7.7563K3

t for Kt ≥ 0.60.

(A2)

The validation results of the CUT dataset are in Figure A2.

Figure A2. Hourly test results of decomposition model development for CUT.

Appendix A.3. FRH

The a, b and c coefficients for Equation (34) for the FRH station are

a =

{
1.3199 − 6.0578Kt + 24.6953K2

t − 27.3825K3
t for Kt < 0.60,

33.3782 − 124.5221Kt + 155.5513K2
t − 64.7203K3

t for Kt ≥ 0.60.

b =

{
−0.5658 + 5.6247Kt − 21.3334K2

t + 21.2952K3
t for Kt < 0.60,

−26.2959 + 102.0318Kt − 131.6271K2
t + 56.3592K3

t for Kt ≥ 0.60.

c =

{
0.0963 − 1.024Kt + 3.5042K2

t − 3.2887K3
t for Kt < 0.60,

3.9117 − 15.5175Kt + 20.4822K2
t − 8.9754K3

t for Kt ≥ 0.60.

(A3)

The test results of the FRH dataset are in Figure A3.
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Figure A3. Hourly test results of decomposition model development for FRH.

Appendix A.4. GRT

The a, b and c coefficients for Equation (34) for the GRT station are

a =

{
2.9602 − 19.6392Kt + 58.9738K2

t − 55.4505K3
t for Kt < 0.60,

−29.0697 + 138.0498Kt − 209.2486K2
t + 102.455K3

t for Kt ≥ 0.60.

b =

{
−2.2843 + 20.1509Kt − 58.384K2

t + 51.362K3
t for Kt < 0.60,

34.8693 − 155.9554Kt + 227.6821K2
t − 108.7518K3

t for Kt ≥ 0.60.

c =

{
0.4656 − 4.1668Kt + 11.5129K2

t − 9.7101K3
t for Kt < 0.60,

−8.4664 + 36.6029Kt − 51.9382K2
t + 24.2327K3

t for Kt ≥ 0.60.

(A4)

Figure A4 shows the test results of the GRT dataset.

Figure A4. Hourly test results of decomposition model development for GRT.

Appendix A.5. HLO

The a, b and c coefficients for Equation (34) for the HLO station are

a =

{
3.1156 − 21.0151Kt + 62.5312K2

t − 57.2369K3
t for Kt < 0.60,

50.8058 − 194.5525Kt + 248.2624K2
t − 105.3977K3

t for Kt ≥ 0.60.

b =

{
−2.0533 + 18.2104Kt − 53.4859K2

t + 46.7754K3
t for Kt < 0.60,

−33.1822 + 128.4612Kt − 164.8983K2
t + 70.2185K3

t for Kt ≥ 0.60.

c =

{
0.3508 − 3.2108Kt + 9.1319K2

t − 7.7849K3
t for Kt < 0.60,

3.7247 − 14.4408Kt + 18.5853K2
t − 7.9382K3

t for Kt ≥ 0.60.

(A5)
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Figure A5 shows the test results of the HLO dataset.

Figure A5. Hourly test results of decomposition model development for HLO.

Appendix A.6. ILA

There is no decomposition model developed for the ILA station.
The test results of the ILA dataset are in Figure A6.

Figure A6. Hourly test results of decomposition model development for ILA.

Appendix A.7. KZH

The a, b and c coefficients for Equation (34) for the KZH station are

a =

{
1.3444 − 6.1333Kt + 23.7139K2

t − 25.5604K3
t for Kt < 0.60,

56.4073 − 216.3047Kt + 276.4264K2
t − 117.5281K3

t for Kt ≥ 0.60.

b =

{
−0.7156 + 6.8854Kt − 24.0569K2

t + 22.9604K3
t for Kt < 0.60,

−45.6353 + 178.5713Kt − 231.593K2
t + 99.6179K3

t for Kt ≥ 0.60.

c =

{
0.1646 − 1.6569Kt + 5.2451K2

t − 4.7368K3
t for Kt < 0.60,

6.2156 − 24.5162Kt + 32.0741K2
t − 13.9205K3

t for Kt ≥ 0.60.

(A6)

The test results of the KZH dataset are in Figure A7.
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Figure A7. Hourly test results of decomposition model development for KZH.

Appendix A.8. KZW

The a, b and c coefficients for Equation (34) for the KZW station are

a =

{
2.2627 − 14.4806Kt + 47.1629K2

t − 46.2386K3
t for Kt < 0.60,

35.0603 − 132.558Kt + 167.2728K2
t − 70.2359K3

t for Kt ≥ 0.60.

b =

{
−1.4332 + 13.4317Kt − 42.4822K2

t + 39.1838K3
t for Kt < 0.60,

−28.1708 + 109.9004Kt − 141.9142K2
t + 60.6943K3

t for Kt ≥ 0.60.

c =

{
0.2678 − 2.6116Kt + 7.9363K2

t − 7.1072K3
t for Kt < 0.60,

3.1759 − 12.4602Kt + 16.1949K2
t − 6.9726K3

t for Kt ≥ 0.60.

(A7)

Figure A8 shows the test results of the KZW dataset.

Figure A8. Hourly test results of decomposition model development for KZW.

Appendix A.9. MIN

There is no decomposition model developed for the MIN station.
The test results of the MIN dataset are in Figure A9.
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Figure A9. Hourly test results of decomposition model development for MIN.

Appendix A.10. NMU

The a, b and c coefficients for Equation (34) for the NMU station are

a =

{
0.0688 + 5.2168Kt − 7.122K2

t + 0.2163K3
t for Kt < 0.60,

15.7683 − 48.8606Kt + 48.5956K2
t − 15.0438K3

t for Kt ≥ 0.60.

b =

{
0.3483 − 2.9436Kt + 3.2778K2

t − 0.0145K3
t for Kt < 0.60,

−11.0783 + 37.046Kt − 39.8763K2
t + 13.6687K3

t for Kt ≥ 0.60.

c =

{
−0.0758 + 0.598Kt − 1.1265K2

t + 0.7025K3
t for Kt < 0.60,

1.9782 − 7.2272Kt + 8.7285K2
t − 3.4834K3

t for Kt ≥ 0.60.

(A8)

The test results of the NMU dataset are in Figure A10.

Figure A10. Hourly test results of decomposition model development for NMU.

Appendix A.11. NUST

The a, b and c coefficients for Equation (34) for the NUST station are

a =

{
2.0021 − 11.1478Kt + 36.3216K2

t − 35.8544K3
t for Kt < 0.60,

−17.9917 + 91.7087Kt − 144.5222K2
t + 72.3519K3

t for Kt ≥ 0.60.

b =

{
−1.2658 + 11.3567Kt − 35.6964K2

t + 32.4545K3
t for Kt < 0.60,

24.1237 − 111.1616Kt + 165.4905K2
t − 79.997K3

t for Kt ≥ 0.60,

c =

{
0.2056 − 1.9277Kt + 5.7745K2

t − 5.0518K3
t for Kt < 0.60,

−2.59 + 11.8847Kt − 17.6199K2
t + 8.4894K3

t for Kt ≥ 0.60.

(A9)
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The test results of the NUST dataset are in Figure A11.

Figure A11. Hourly test results of decomposition model development for NUST.

Appendix A.12. RVD

The a, b and c coefficients for Equation (34) for the RVD station are

a =

{
4.0191 − 28.309Kt + 83.0024K2

t − 74.0684K3
t for Kt < 0.60,

84.2546 − 327.2114Kt + 422.3587K2
t − 181.2345K3

t for Kt ≥ 0.60.

b =

{
−2.8895 + 25.4823Kt − 74.043K2

t + 63.2378K3
t for Kt < 0.60,

−65.5943 + 256.2577Kt − 331.9301K2
t + 142.7166K3

t for Kt ≥ 0.60.

c =

{
0.5456 − 4.9199Kt + 13.8139K2

t − 11.415K3
t for Kt < 0.60,

10.4557 − 41.161Kt + 53.7847K2
t − 23.3378K3

t for Kt ≥ 0.60.

(A10)

The test results of the RVD dataset are in Figure A12.

Figure A12. Hourly test results of decomposition model development for RVD.
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Appendix A.13. SUN

The a, b and c coefficients for Equation (34) for the SUN station are

a =

{
1.4996 − 7.646Kt + 30.0235K2

t − 33.6216K3
t for Kt < 0.60,

32.6225 − 122.3879Kt + 152.4023K2
t − 62.9667K3

t for Kt ≥ 0.60.

b =

{
−0.835 + 7.9823Kt − 28.5353K2

t + 28.4965K3
t for Kt < 0.60,

−19.4403 + 73.2046Kt − 90.6277K2
t + 36.9662K3

t for Kt ≥ 0.60.

c =

{
0.1285 − 1.3014Kt + 4.3214K2

t − 4.0834K3
t for Kt < 0.60,

2.0866 − 7.7979Kt + 9.595K2
t − 3.8902K3

t for Kt ≥ 0.60.

(A11)

The test results of the SUN dataset are in Figure A13.

Figure A13. Hourly test results of decomposition model development for SUN.

Appendix A.14. UBG

The a, b and c coefficients for Equation (34) for the UBG station are

a =

{
0.5601 + 1.4348Kt + 1.9992K2

t − 6.4178K3
t for Kt < 0.60,

42.1623 − 152.8269Kt + 183.6564K2
t − 73.01K3

t for Kt ≥ 0.60.

b =

{
−0.0378 + 0.6077Kt − 6.2716K2

t + 7.0084K3
t for Kt < 0.60,

−44.4913 + 167.9403Kt − 209.5344K2
t + 86.5114K3

t for Kt ≥ 0.60.

c =

{
0.0159 − 0.2605Kt + 1.1245K2

t − 0.8877K3
t for Kt < 0.60,

9.2841 − 35.956Kt + 46.1639K2
t − 19.6586K3

t for Kt ≥ 0.60.

(A12)

The test results of the SUN dataset are in Figure A14.
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Figure A14. Hourly test results of decomposition model development for UBG.

Appendix A.15. UFS

The a, b and c coefficients for Equation (34) for the UFS station are

a =

{
1.1152 − 5.4355Kt + 27.3687K2

t − 32.6276K3
t for Kt < 0.60,

18.8962 − 58.0528Kt + 56.4791K2
t − 16.8735K3

t for Kt ≥ 0.60.

b =

{
−0.5439 + 6.5875Kt − 27.7113K2

t + 28.8812K3
t for Kt < 0.60,

−19.1711 + 65.1123Kt − 71.8324K2
t + 25.6916K3

t for Kt ≥ 0.60.

c =

{
0.1395 − 1.6147Kt + 5.7356K2

t − 5.4904K3
t for Kt < 0.60,

5.238 − 19.7369Kt + 24.6715K2
t − 10.2415K3

t for Kt ≥ 0.60.

(A13)

The test results of the SUN dataset are in Figure A15.

Figure A15. Hourly test results of decomposition model development for UFS.

Appendix A.16. UNV

The a, b and c coefficients for Equation (34) for the UNV station are

a =

{
1.6679 − 8.8496Kt + 30.8258K2

t − 31.7801K3
t for Kt < 0.60,

17.0947 − 58.7362Kt + 67.3532K2
t − 25.6036K3

t for Kt ≥ 0.60.

b =

{
−0.9329 + 8.8795Kt − 29.6546K2

t + 28.1554K3
t for Kt < 0.60,

−11.0559 + 39.0859Kt − 45.1859K2
t + 17.0921K3

t for Kt ≥ 0.60.

c =

{
0.1744 − 1.744Kt + 5.4271K2

t − 4.9023K3
t for Kt < 0.60,

0.7738 − 2.5106Kt + 2.5888K2
t − 0.8303K3

t for Kt ≥ 0.60.

(A14)
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The test results of the UNV dataset are in Figure A16.

Figure A16. Hourly test results of decomposition model development for UNV.

Appendix A.17. UNZ

The a, b and c coefficients for Equation (34) for the UNZ station are

a =

{
1.1129 − 5.2859Kt + 25.5284K2

t − 30.5998K3
t for Kt < 0.60,

33.4179 − 127.1391Kt + 161.8637K2
t − 68.7679K3

t for Kt ≥ 0.60.

b =

{
−0.6222 + 7.0597Kt − 28.1112K2

t + 29.4187K3
t for Kt < 0.60,

−24.1838 + 94.1721Kt − 121.4204K2
t + 51.9098K3

t for Kt ≥ 0.60.

c =

{
0.1398 − 1.5931Kt + 5.5902K2

t − 5.4749K3
t for Kt < 0.60,

2.3838 − 9.2877Kt + 11.9991K2
t − 5.1432K3

t for Kt ≥ 0.60.

(A15)

The test results of the UNZ dataset are in Figure A17.

Figure A17. Hourly test results of decomposition model development for UNZ.
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Appendix A.18. UPR

The a, b and c coefficients for Equation (34) for the UPR station are

a =

{
1.3766 − 6.4439Kt + 25.7243K2

t − 28.9372K3
t for Kt < 0.60,

−2.5908 + 24.5466Kt − 49.3217K2
t + 28.3294K3

t for Kt ≥ 0.60.

b =

{
−0.8308 + 8.2061Kt − 29.0534K2

t + 28.667K3
t for Kt < 0.60,

9.0641 − 45.9866Kt + 73.7132K2
t − 37.7903K3

t for Kt ≥ 0.60.

c =

{
0.1626 − 1.6496Kt + 5.2698K2

t − 4.8501K3
t for Kt < 0.60,

−1.7989 + 8.4045Kt − 12.7021K2
t + 6.2414K3

t for Kt ≥ 0.60.

(A16)

The test results of the UPR dataset are in Figure A18.

Figure A18. Hourly test results of decomposition model development for UPR.

Appendix A.19. VAN

The a, b and c coefficients for Equation (34) for the VAN station are

a =

{
1.8649 − 12.2743Kt + 47.2823K2

t − 50.5904K3
t for Kt < 0.60,

7.6031 − 11.9134Kt − 6.9687K2
t + 12.3734K3

t for Kt ≥ 0.60.

b =

{
−1.1265 + 12.1632Kt − 44.5245K2

t + 44.4602K3
t for Kt < 0.60,

3.6296 − 27.7921Kt + 54.161K2
t − 31.162K3

t for Kt ≥ 0.60.

c =

{
0.2277 − 2.5008Kt + 8.4732K2

t − 8.0774K3
t for Kt < 0.60,

−1.3247 + 7.0528Kt − 11.5818K2
t + 6.025K3

t for Kt ≥ 0.60.

(A17)

Figure A19 shows the test results of the VAN dataset.
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Figure A19. Hourly test results of decomposition model development for VAN.
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