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Abstract: To solve the problem of a uneven load for a dual-input counter-rotating transmission 
system, this research is based on Small Displacement Torsor Jacobian-Torsor theory. Considering 
the influence of the local parallel chain of a gearbox on the calculation accuracy of the backlash, the 
processing method of a meshing tooth pair parallel chain is proposed. The probability distribution 
of the tolerance band of gearbox manufacturing and assembly errors is modeled, the three-
dimensional tolerance analysis model of a dual-input counter-rotating gearbox is established, and 
the Monte Carlo method is used to solve the backlash of the output end. The output backlash is 
solved with the Monte Carlo method, and the theoretical design backlash is combined with the 
output backlash to derive the gearbox side clearance range. The gearbox shaft system is analyzed 
statically, the range of the equal load coefficient is calculated, and the equal load performance 
optimization method based on the matching relationship between the gear backlash and the elastic 
shaft torsional stiffness is proposed. The correctness of the three-dimensional tolerance analysis 
combined with the elastic deflection angle used to optimize the equal load performance of the dual-
input counter-rotating transmission system is verified by comparison with the relevant test data. 

Keywords: Jacobian-Torsor; Monte Carlo; local parallel chains; three-dimensional tolerances; equal 
loading 

 

1. Introduction 

A counter-rotating output transmission system, which adopts a power shunt when transmitting 
power, can meet the requirements of high-speed and heavy-duty working conditions with a small 
volume and mass, and this system is widely used in helicopters, torpedoes, underwater unmanned 
boats and aviation. For redundancy and safety, multiple inputs and multiple branch shunt 
convergence drives are generally used. However, due to the inevitable manufacturing and 
installation errors of the gear system, as well as the influence of factors such as the deformation of 
the moving components, the gap size between each branch and the output gear is inconsistent, 
resulting in uneven distribution of the load transmitted by each branch, which seriously affects the 
power density and reliability of the transmission system. The size of the torsional stiffness of each 
branch is also an important factor affecting the load distribution. Therefore, it is important to study 
the matching relationship between the clearance and torsional stiffness of each branch gear and 
optimize the corresponding parameters to reduce the unevenness of the load distribution of each 
branch and improve the reliability of the transmission system. 

To determine how to allocate the side clearance of the gearbox with the stiffness of each branch 
to obtain a reasonable load distribution coefficient, scholars around the world have performed a large 
amount of research in this area: 
(1) Calculation of load distribution based on hydrostatic gear split-torsion transmission 
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Krantz [1,2] et al. conducted a theoretical analysis and experimental study on the load 
distribution of a gear split-torsion transmission system under a static load using a synchronous 
angular load equalization design method without any load equalization device. Yuriy Gmirya,and 
Leslie Leigh [3,4] conducted a hydrostatic study on the equal load problem of multi-branch power 
shunt reducers and derived equal load coefficients satisfying the prevailing manufacturing and 
installation conditions. Dong Hao [5] et al. investigated the static mean load characteristics of gear 
shunt drive wheel systems with different structures based on deformation coordination conditions 
using concentrated parameter theory. Zhibin Li and Guanghu Jin [7–9] investigated the effects of the 
error, torsional stiffness, and standoff stiffness on the static load matching performance of multi-
branch gearing systems. 
(2) Optimization of the load-equalization performance of a gear split-torsion transmission system 

based on a flexible shaft device 
Isabelle[10] et al. proposed the use of elastic devices such as elastic torsion shafts and rectangular 

elastic pads to optimize the load distribution in gear shunt transmission systems.White[11] proposed 
the design method of nesting a flexible shaft inside a duplex shaft, which resulted in better load 
equalization performance of the system.Gmirya[12,13] et al. used a flexible shaft device in a multi-
branch gear shunt transmission system and conducted a static and dynamic experimental study on 
the load equalization performance of the multi-branch transmission system. Yongfang Gui[14]et 
al.studied the equal-load characteristics of the elastic torsion shaft system for a dual-input gear split 
transmission system and proposed a calculation method for the torsional stiffness of the elastic 
torsion shaft and the transmission error of the system.Zehua Hu [15]studied the equal-load 
characteristics of a dual-branch gear transmission system and proposed optimization measures for 
the flexibility of the wheel spokes and the support shaft. 
(3) Analysis of gearbox backlash based on three-dimensional tolerance 

The three-dimensional tolerance analysis model of Jacobian-Torsor takes the backlash at the 
output end of the gearbox as the demand dimension and the other errors affecting the backlash as 
the constituent ring dimensions, which are calculated with the matrix method to avoid the complex 
derivation of geometric relationships. Desrochers [16] et al. proposed a three-dimensional tolerance 
analysis model based on small displacement torsor (SDT)theory and Jacobian matrix for 
characterizing the dimensional and form tolerances in geometries. Min Zhang [17] et al. established 
a transmission error prediction model for complex multi-stage gear reducers based on design 
tolerances. L. Laperrière [18,19] et al. developed a Jacobian-Torsor volume tolerance analysis model 
based on the interval algorithm, which could perform tolerance analysis based on the extreme value 
method and statistical methods. XiaoYan Zuo [20] developed an error propagation model based on 
the Jacobian-Torsor theory. Weihua N, Rivire, Bruyere,and Dantan [21–23] proposed a contact 
analysis method for the rapid determination of gear drive clearance based on the Jacobian-Torsor 
model and the Monte Carlo simulation technique. 

The existence of local parallel chains in the process of gear backlash analysis affects the accuracy 
of backlash analysis. Zeng et al [24] compared the analytical results of spiral bevel gearboxes with 
and without partial parallel chains and proved that the effect of partial parallelism on the resolution 
accuracy was not negligible. Yang, Hussain, et al, [25–29] studied linear construction and parallel 
construction methods and proposed a probabilistic approach using a connected assembly model 
without considering partial parallel effects. Sun Jin et al [30] studied a method to solve the partial 
parallel chain problem caused by deterministic deviations and established a generalized deviation 
propagation formulation for n-level component assembly. Chen,H [31–33] et al. proposed the spin 
measure model to transform parallel chains into serial chain tolerances with complex algebraic 
operations. Wenhui Zeng [34] proposed the use of the geometric structure leverage effect and 
combined the advantages of CLIC (an acronym for “localization tolerancing with contact 
influence”)method and analytical line method to generate new serial chain tolerances. 

Current methods for calculating load distribution based on static and elastic shaft structures do 
not take into account the effect of tolerance zones on gear backlash distribution or three-dimensional 
tolerance analysis for parallel shafts, and there has been less research on multi-branch split-torsion 
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transmission. The dual input counter-rotating drive system has a complex structure and many factors 
affect the load distribution. In this research, we consider the effects of the backlash and elastic shaft 
torsional stiffness on the equal load performance at the output of two branches of the dual-input-to-
rotation transmission system, and we establish a three-dimensional tolerance Monte Carlo analysis 
model of gear backlash based on the small displacement torsor theory and Jacobian matrix. The 
method of local parallel chain theory of gearbox meshing tooth pairs is proposed, and the calculation 
method of an elastic deflection angle and an equal load coefficient of the gearbox is combined with 
the theory of the elastic torsional deformation of the shaft system. The side clearance and the range 
of the equal load coefficient are calculated for the dual-input counter-rotating gearbox, and then 
verified through tests and proposed measures to optimize the equal load performance of the system. 

2. Calculation Method of Gear Backlash Based on Jacobian-Torsor Theory 

2.1. Analytical Model of Jacobian-Torsor Based on SDT Theory 

The basic concept of SDT theory is to consider the geometric defects of features as a result of the 
motion of a three-dimensional Euclidean space point set and to represent the spatial motion of points 
with tiny vectors. As a tolerance expression model, SDT theory characterizes the actual variation of 
the key geometric features of a part with respect to the ideal posture using three translational 
components and three rotational components, and the theory can also characterize the variation of 
the gap between the key geometric features of a part in an assembly. The tolerance expression is as 
follows: 

[ ]  ,    T u v w α β γ=  (1) 

where  and u v w、 are the ideal geometric features of the translation along the X, Y, and Z coordinate 
axes respectively,  and α β γ、  are the rotation of the ideal geometric features along the X, Y, and Z 
coordinate axes, respectively. 

A detailed list of SDT models with various characteristics is given in the literature [34]. 
The Jacobian model can accurately transfer the robot’s joint variations to the end, and the 3D 

deviation of the actual features in the assembly from the ideal position can be perfectly transferred to 
the functional requirements (FR) of the assembly with the help of the Jacobian model. With the help 
of SDT to represent each characteristic deviation, the Jacobian matrix is introduced into the tolerance 
transfer model to establish the Jacobian-Torsor model for three-dimensional tolerance analysis, 
whose expression is shown in Equation 2. Each functional element of the part layer in the Jacobian-
Torsor model has a corresponding coordinate system: 0 is the closed-loop element, i denotes the i-th 
functional element in the tolerance transfer chain, (i =1, 2 ,..., n)and n is the last functional element. 

[ ] [ ]
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where, [ ]iJ  is the Jacobian matrix of tolerances, [ ]FR  is the small displacement torsor of the functional 
requirements elements,and [ ]iFE is the amount of small displacement torsor associated with the i-th 
functional element. 

According to SDT theory, the tolerance band can be expressed in a matrix form as follows: 
   
   
   

u
T P R v

w

α
β
γ

 
 = ⋅ =  
  

 (3) 

When the constituent tolerance zone is skewed with respect to the direction of tolerance analysis, 
it is necessary to project this tolerance zone in the direction of tolerance analysis, whose axis direction 
must coincide with or be parallel to the reference coordinate axis. To obtain a projection of the 
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tolerance band, the change in the tilt of the tolerance band with respect to the basic reference system 

must be applied to the translational and rotational torsor of the tolerance band. P
→

denotes the 

translational small displacement torsor, and R
→

denotes the rotational small displacement torsor. The 
expressions for the projected torsor of the tolerance band are as follows: 

[ ]

[ ]
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 (4) 

where [ ]PTiR denotes the inconsistency coefficient of the tolerance analysis direction with respect to 

the i-coordinate system, with the columns 1 2 3  C C C
→ → →

respectively designating the unit vectors along 
axes Xi, Yi, and Zi ,respectively, for the tolerance zone tilted according to the direction to be analyzed 
in reference mark i. The final expression of the small displacement torsor associated with the i-th 
functional element is as follows: 

[ ] 1=i PTi iFE R T−  (5) 

The Jacobian matrix [ ]iJ  represents the transformation relationship between the requirement 
elements of the assembly and the functional elements of the part level, given by 

[ ]
[ ]
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where 0
i

PTiR R  is the directional transformation matrix between coordinate systems , n
iW  is the 

transformation matrix of the positions between coordinate systems, and 0( )n i
i PTiW R R  is the matrix that 

is corrected for the spatial location to overcome the leverage effect. 
0
iR represents the directional change of the i-coordinate system with respect to the zero-

coordinate system, and its expression is as follows: 

[ ]0 1 2 3 3 3
i

i i i x
R V V V= ⋅ ⋅  (7) 

where 1 2 3i i iV V V、 、  are the direction vectors of the axes i i ix y z、 、 , respectively, in the 0th coordinate 
system. 

n
iW is the change in position of the n-coordinate system relative to the i-coordinate system, given 

by 
0           -dz        dy
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-dy       dx          0

n n
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n n n
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dx dy dzn n n
i n i i n i i n idx dx dy dy dz dz= − = − = −、 、  (9) 

where , idx  and ndx  are the x-values, idy  and ndy  are the y-values, idz  and ndz  are the z-values, of 
the origin of the i,n coordinate system in the 0 coordinate system. 

2.2. Three-Dimensional Tolerance Analysis Parallel Chain Serialization Method 

Two or more assembly positioning nodes exist for inter-part assembly positioning, which 
constitutes a parallel chain. According to the type of benchmark, parallel chains can be divided into 
two categories: multiple benchmarks and common benchmarks. Multiple datums and common 
datums are used as criteria for classifying parallel chains. Multiple datums are based on the spatial 
degree of freedom restrictions on the part features from mutually independent coordinate systems, 
while common datums are based on spatial degrees of freedom restrictions on part features from 
mutually coupled coordinate systems. 
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Multi-basis parallel chains are commonly found in contact pairs formed between two surfaces, 
where cylindrical nodes combined with planar nodes are the most common type. When a key 
connection or a clearance fit is used between the gear and the shaft, a chain of parallel tolerances 
similar to the hole-pin is formed, and the partial parallel chain is calculated with the parallel or 
intersection operation [31]. 

The parallel dimensional chain with the geometric tolerance datum in the dimensional chain is 
the common datum. The tolerance of the two contact surfaces can no longer take the serial chain 
operation method due to the existence of the leverage effect, and to eliminate the influence of the 
geometric structure leverage effect on part of the parallel chain, the advantages of the CLIC method 
and the analytical line method are integrated to transform the parallel chain into the new serial chain 
tolerance [24]. 

When a pair of gears meshes, with the active shaft axis as the positioning reference, there is a 
relative offset between the drive shaft axis and the active shaft axis, and the offset of the center 
distance tolerance causes the gears on the shaft to also be offset, The offset makes the gears 
misaligned, there is a local parallel chain between the main serial chain and the center distance 
tolerance, and the dimensional chain is shown in Figure 1 Directly superimposing the center distance 
tolerance on the gear tolerance will increase the error. The center distance tolerance can be equated 
to the gear tooth thickness manufacturing deviation through the geometric relationship, which is 
shown in. Figure 1. 

 
Figure 1. Gear meshing partial parallel dimensional chain diagram. 

IFE3 in Figure 1 represents the tooth thickness deviation of gear 2, given by 

[ ]3 3 3 3 0  0        0T w α β=  (10) 

CFE5 indicates the center distance deviation of the two gears, given by 

[ ]5    0        0T u w α β=  (11) 

In Figure 2 t is the center distance deviation, u  and w  are the displacement components of the 
center distance deviation, 1u and are the displacement components of the center distance deviation 
at the point of engagement, 11u and 11w  are the displacement components of the center distance 
deviation on the engagement line, α and β are the rotational components of the center distance 
deviation. O1O3 is the length of the pitch circle radius of gear 1, which is denoted by 1ar ,and O2O3 is 
the length of the pitch circle radius of gear 2, which is denoted by 2ar , The length of O1O2 is the central 
distance and is denoted by a , and θ is the mesh angle of the two gears, which can be expressed by 
the radius of the base circle 1br and the radius of the indexing circle 1r  of gear 1. 
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Figure 2. Geometric relationship between center distance and gear 2 tooth thickness deviation. 

The deviation of the center distance of the two gears is in the same direction as the rotational 
component of the tooth thickness deviation of gear 2 and can be algebraically superimposed. The 
displacement component of the center distance deviation needs to be translated to the meshing line 
with the geometric relationship and then algebraically superimposed with the displacement 
component of the gear 2 tooth thickness deviation.For 11u  and 11w  as shown in Equations 12 and 13, 
after converting the center distance deviation to the gear 2 tooth thickness deviation, the tolerance 
torsor is IFE3' as shown in Equation 14. 

1 1 b1
11

1

sina a

a

u r u r ru
u a u a r

θ⋅ ⋅= × = ×
+ +

 (12) 

1 1 b1
11

1

sina a

a

w r w r rw
w a w a r

θ⋅ ⋅= × = ×
+ +

 (13) 

[ ]3 1 1 3 3 3 '  0  '       0T u w w α α β β= + + +  (14) 

After the transformation, the center distance deviation CFE5 and the tooth thickness deviation 
IFE3 form a new tolerance torsor IFE3', the coordinates of which coincide with those of IFE3. 

The gearbox is composed of main parts such as the drive shaft, gear, bearing and box. For a gear 
transmission system with a known transmission structure, the three-dimensional tolerance analysis 
of the gearbox backlash is as shown in Figure 3. 
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Figure 3. Flowchart of three-dimensional tolerance analysis of gearbox backlash. 

3. Condition of Backlash Distribution of Dual Input Counter-Rotating Gearbox 

The dual-input counter-rotating gearbox is symmetrical from left to right. The parameters are 
shown in Table 1. Taking the bearing seat axis of output shaft 1 as the positioning reference, and the 
backlash between Gd1,Gd2, and Go1 as the functional requirement FRi and each element tolerance torsor 
as FEi, serializing the parallel chain is established, the Jacobian-Torsor model of the gearbox, and 
calculating the distribution of the gearbox is established, and the distribution of the gearbox backlash 
is calculated. 

Table 1. Basic parameters of dual input counter-rotating gearbox. 

Gear 
Number 
of teeth 

Normal 
module 

Pressure 
angle 

Helix 
angle 

Face 
width 

Center 
distance 

Tooth 
thickness 
deviation 

 Z nm /mm α /° nm β /° b/mm a a /mm Asn/mm 
Gl1 Gr1 30 

4.0 20 16.26 
45 

350 
0.03 

Go1 138 40 0.08 
Gl2 Gr2 30 

3.0 20 12.27 
45 

92 
0.03 

Gd1 Gd2 30 45 0.03 
Go2 138 40 258 0.06 

The tooth thickness deviation parameter shows that the theoretical backlash at the engagement 
of Gd1 and Gd2 with Go1 is 0.2443 mm. 

3.1. Structural Analysis of Dual Input Counter-Rotating Gearbox 

A multi-branch shunt drive system adopts the method of a fixed shaft drive to achieve a power 
shunt, and multi-branch input, so that the load of each branch is only part of the original load, thus 
greatly reducing the volume and weight of the wheel. A multi -branch drive system has certain a 
fault tolerance. When one of the branches is damaged, the other branches can still maintain the 
normal operation of the system, which improves the reliability of the drive system. 

Due to the existence of these errors, the backlashs between the multi-branch gears and the output 
gears are not equal, resulting in an uneven distribution of the system’s load. To study the system’s 
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load equalization performance, the backlash distribution of each branch is calculated with the system 
errors, and thus the system load equalization factor is calculated. 

The three-dimensional tolerance analysis model based on a Jacobian-Torsor can consider the 
coupling of various errors in gearboxes well, avoiding the derivation of complex geometric 
relationships. The small displacement torsor and matrix are used to represent the tolerance of each 
element, and combined with the Monte Carlo analysis method to calculate the distribution of the 
backlash at the output end. 

Due to the difficulty of processing and cost limitations, the test is carried out using a double-
input counter-rotating gearbox for theoretical calculation and experimental verification. The gearbox 
has synchronized inputs on the left and right branches and counter-rotating outputs on the two 
output shafts, and its transmission structure sketch is shown in Figure 4. 

 

Figure 4. Sketch of dual input counter-rotating gearbox transmission structure. 

3.2. Tolerance Specifications for Gearing Systems 

Based on the new generation GPS standard system, the main parts of the gear transmission 
system include the case, shaft, bearing and gear. The bearing clearance is not considered here. Go1, 
Go2, and the output shaft are hot-mounted without considering assembly clearance. The tolerance 
specification of each part is shown in Figure 5, and the tolerance dimensions are shown in Table A1 
in Appendix A. 
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Figure 5. Tolerance specification of each part of gearbox. 

3.3. Modeling of the Jacobian-Torsor Model of the Gearing System 

The gearbox is symmetrical from left to right and can be modeled on one side. The left side of 
the gearbox is modeled with the output shaft 1 as the positioning reference and the backlash between 
Gd1 and Go1 as the closed ring. 

In the gear transmission system, choosing a reasonable working backlash is beneficial for 
improving transmission accuracy. The intersection of the two gear axis lines and the gear mesh line 
is the origin of the characteristic coordinate system on the two gear tooth profiles, and the backlash 
is the minimum distance between the two tooth profiles. The schematic diagram of the two gears 
meshing is shown in Figure 6. 

 

Figure 6. Schematic diagram of gear meshing. 

In accordance with the gearbox assembly relationship and the tolerance specification of each 
part, the coordinate system shown in Figure 7 is established with the gearbox bearing bond surface 
as the reference. The housing bore is machined based on a uniform datum, so the output shaft 1 and 
output shaft 2 mounting bores are common datum. Considering the gear tooth thickness deviation 
and center distance tolerance, the Jacobian spin volume model is established with each part 
manufacturing error and assembly error as the constituent ring and the output gear backlash 1jn as 
the closed ring. Three-dimensional tolerance calculations are usually performed in the closed-loop 
tolerance direction. However, the direction of the constituent ring tolerance is mostly inconsistent 
with the backlash direction, so the output shaft reference hole is used as the tolerance analysis 
direction, and finally 1jn is calculated with angular conversion to the closed ring coordinate system 
direction. The dimensional chain of the gearbox assembly is shown schematically in Figure 8.  

 

Figure 7. Characteristic coordinate system of dual input counter-rotating gearbox. 
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Figure 8. Schematic diagram of the left dimensional chain of the gearbox. 

As shown in Figure 8, FRi is the output gear backlash tolerance torsor, IFE is the internal part 
tolerance torsor, CFE is the inter-part tolerance torsor, and the PFE parallel tolerance torsor can be 
solved as described in Section 2.2 

The housing and shaft parallel chains are converted into serial chain parameters as shown in 
Table A2 in Appendix A. The SDT of each tolerance is shown in Table 4 in Appendix A. The Jacobian 
matrix of each tolerance is shown in Table A1 in Appendix A. 

The calculation of 1sinθ  in the Table A1 is as follows: 

1 o2 2sin /bG Gor rθ =  (15) 
where o2bGr is the base circle radius of Go2 ,and 2Gor is the reference circle radius of Go2. 

3.4. Three-Dimensional Tolerance Analysis of Output Gear Backlash of Gearbox 

Three-dimensional tolerance analysis mainly has an extreme value method and a statistical 
method. The backlash calculated with the extreme value method is large. In this research, we use the 
Monte Carlo method in the statistical method for the tolerance analysis of the backlash. 

Monte Carlo simulation is a numerical method for solving approximate solutions to 
mathematical, physical and engineering technology problems through stochastic simulations and 
statistical experiments. The method is computationally accurate and consistent with the actual 
generation, and it is suitable for the solution of assembly functions with nonlinear expressions. 

The dimensional and shape tolerances of the gearbox follow the principle of independence, and 
the tolerance zones of their dimensional and shape tolerances are symmetrically distributed and obey 
a normal distribution. The symmetrically distributed tolerances, regardless of whether they are 
defined as increasing or decreasing rings, have the same effect on the closed ring. Therefore, in the 
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process of tolerance analysis, the tolerance of each component ring is expressed as 
2i
tT ± (t is the 

tolerance of the component ring). 
The closed-loop samples FR1 and FR2 conform to a normal distribution, for which the tolerance 

can be calculated as follows: 
=w FR FRFR Zμ δ±  (16) 

where FRμ  and FRδ are the mean and the variance of FR, respectively. The confidence level at 99.73% 
probability is used, and Z is taken as 3. 

The backlash jn value is calculated as follows: 

( ) ( )( )1 1 2 2cos cos sinw wjn FR FR FR FRδ δ θ= + ⋅ + + − ⋅ + ×       (17) 

where 1wFR is the upper deviation of the z-directional translation of closed dimensional chain 1, 2wFR

is the lower deviation of the z-directional translation of closed dimensional chain 2, 1FR δ is the upper 
deviation of the z-directional rotation of closed dimensional chain 1, 2FR δ is the lower deviation of the 
z-directional rotation of closed dimensional chain 2 , andθ  is the angle of engagement of Gd1 and Gd2 
with Go1. 

The results of the jn calculation are shown in Table 2. 

Table 2. Calculation results of jn . 

N 

Closed-loop z-translation 
coordinates/mm 

Closed-loop z-rotation coordinates/mm 
jn /mm 

1wFR  2wFR  1FR δ  2FR δ  

1000 (-0.405,0.391) (-0.047,0.048) (-0.0059,0.0062) (-0.0042,0.0041) 0.4107 
5000 (-0.402,0.399) (-0.049,0.049) (-0.0058,0.0058) (-0.0042,0.0042) 0.4191 

10000 (-0.397,0.395) (-0.047,0.047) (-0.0059,0.0059) (-0.0042,0.0042) 0.4146 
15000 (-0.401,0.399) (-0.047,0.047) (-0.0059,0.0059) (-0.0042,0.0042) 0.4185 
20000 (-0.397,0.398) (-0.047,0.047) (-0.0059,0.0059) (-0.0042,0.0043) 0.4173 
25000 (-0.396,0.396) (-0.047,0.047) (-0.0059,0.0059) (-0.0042,0.0042) 0.4150 

The theoretical value of 0.2443 mm is used as the lower limit of the backlash, and the value 
calculated with the Monte Carlo method, 0.4150 mm, is used as the upper limit of the backlash. The 
actual measurement of the backlash should be distributed in this range. 

The contribution of each dimensional tolerance to the backlash closure ring is shown in Figure 
9. 

 

Figure 9. Contribution of each dimensional tolerance to the backlash closure ring. 
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As can be seen from Figure 9, the tolerance T3 has the highest contribution to the backlash at 
38.65%, followed by the tolerances T8, and T1, at 17.24%, and 16.41%, respectively. 

4. Calculation Method of Equal Load Factor for Dual Input Counter-Rotating Gearbox 

4.1. Calculation of the Elastic Deflection Angle of the Gear Shaft System 

For the dual-input counter-rotating transmission system, when the two input torques are the 
same, the load difference between Gl1, Gr1, and Go2 is neglected because the cumulative error between 
Gl1, Gr1, and Go2 is small and the two gears are very close to the input motor and the deformation of 
the shaft system is small. During the loading process, one of the two idler pulleys enters into 
engagement first. Due to the influence of manufacturing and installation errors, there is a gap 
between the idler pulley that enters into engagement later and Go1, and with the increase of the input 
torque T, the gap is gradually eliminated through the elastic deformation of the engagement sub and 
input shaft system. Then all idler pulleys enter into engagement. The rotation angle of Gl1 and Gr1 is 

l1 1G Grθ = θ .The rotation angles of Gl2 and Gr2 is l2 2 and G Grθ θ , respectively. Go1 and Go2 rotation angles are

1 2andGo Goθ     θ , respectively. The left and right input shaft torsion angles are  andnl nrθ  θ , respectively. 
The gear meshing deformation and rotation angle are calculated as shown in Equation 18. The 

torsion angle formed by the torsional deformation of the shaft is calculated as shown in Equation 19. 
The equations for the static balance of the input shaft, idler shaft, and output shaft 1 are shown in 
Equation 20. The theoretical normal backlash can be converted into a circumferential backlash with 
equation 21. 

( )
( )
( )
( )

2
l1 l1 2 1 l1

2
l2 l2 1 2 l2

2
1 1 2 1 1

2
2 2 1 2 2

1 l2 2 l1/ ; /

G G Go bG

G G Go nl tl bG

Gr Gr Go bGr

Gr Gr Go nr tr bGr

Go G Go G

T K r

T j K r

T K r

T j K r
i i

θ θ

θ θ θ

θ θ

θ θ θ
θ θ θ θ

 = − ⋅


= − − − ⋅


= − ⋅
 = − − − ⋅
 = =

 (18) 

2
4

32 Gl
n

T l
Gd

θ
π

=  (19) 

3 l1 1

l1 2 1 2

1 1 2 1 2

4 l2 2

l2 1 2 1

=
=

G Gr

G Go Gr Go

Go Go

G G Gr

G Go Gr Go

T T T
T T i T T i
T T T T T
T T T
T T i T T i

= +
 = ⋅ = ⋅ = +
 +
 = ⋅ = ⋅

；

；

 (20) 

1cos( ) cos( )b bGo

jnjt
rβ α

=
⋅ ⋅

 (21) 

where i is the transmission ratio, 1K is the average meshing stiffness of gears Go2 and Gl1, and 2K is the 
average meshing stiffness of gears Go1 and Gl2. l1GT is the torque applied to gear Gl1, and l1bGr is the 
radius of the base circle of the gear l2GT is the torque applied to gear Gl2 and l2bGr is the radius of the 
base circle of the Gl2. 1GrT is the torque applied to gear Gr1, and 1bGrr is the radius of the base circle of 
gear Gr1. 2GrT is the torque applied to gear Gr2 and 2bGrr is the radius of the base circle of gear Gr2. 1GoT

is the torque applied to gear Go1, and 2GoT is the torque applied to gear Go2. bβ is the base helix angle 
of gear Go1, α is the gear Go1 engagement angle, l  is the input shaft length, d  is the input shaft 
diameter, andG is the input shaft modulus of elasticity. 

In Equation 18 and 21, the torsional deformation of the input shaft is solved according to material 
mechanics, the average meshing stiffness of the gear is calculated according to GB/T 3480-1997, and 
the meshing angle is calculated by referring to ISO/TR10064-2:1996. 

When the input torques 1 2,T T  are equal to 200 N m, the calculated deformation of the system 
under a load, Gd1 turns at an angle of 0.007 rad with respect to Go1. The previous theoretical backlash 
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value of 0.2443 mm is the normal backlash, and the rotation angle corresponding to the Gd1 
circumferential backlash is 0.006 rad. If the manufacturing and assembly errors of the system are not 
considered, the theoretical equal load performance of the system is good. 

4.2. Analysis and Calculation of the Uniform Load Factor 

In fact, the dual input counter-rotating gearbox has manufacturing and assembly errors, and the 
two branches are not loaded in the same way. It is then assumed that the left branch backlash is the 
theoretical value of 0.2443 mm and the right branch backlash value is the upper limit of 0.4150 mm, 
and the elastic deformation of the two branches can compensate for the backlash. The torque values 
of gears Gl2 and Gr2 are calculated according to Equations 18 and 19, and the equal load factor is 
defined as follows: 

l2 2

l2 2

( , )
( ) / 2

r

r

G G
P

G G

MAX T T
K

T T
=

+
 (22) 

where,
l2 2

 and 
rG GT T is the torque value of gear Gl2 and Gr2, respectively. 

From the previous calculations of backlash and torque values, it can be seen that the uniform 
load coefficient of the dual input counter-rotating gearbox ranges from 1 to 1.259. 

5. Experimental Verification of Load Distribution Characteristics of Dual Input Counter-
Rotating Gearbox 

The range of the Gd1, Gd2 and Go1 backlash calculated by with the three-dimensional tolerance 
discussed in Section 3.3 shows that when the input torque of the two branches is equal, the backlash 
of Gl2, Gr2 and the value of the torque applied are not equal. 

The previous calculation shows that theGd1, Gd2 and Go1 backlash range is 0.2443-0.4150 mm, 
and the system’s uniform load coefficient range is 1-1.259. To verify the reasonableness of the 
previous calculation method, a test rig is built for testing. The test rig for the dual input counter-
rotating gearbox is shown in Figure 10. 

 
Figure 10. Dual input counter-rotating gearbox test stand. 

5.1. Backlash Test Verification 

The Gd1, Gd2 and Go1 backlash is measured using a dial gauge. When measuring the side 
clearance, the input shaft and output shaft 1 positions are fixed, and the dial gauge is located at the 
Gd1 and Gd2 indexing circle. Then Gd1 and Gd2 are turned, and the dial gauge reading is the backlash 
value. The actual measurement method is shown in Figure 11. 
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Figure 11. Dual input counter-rotating gearbox backlash measurement physical diagram. 

When measuring, the input shaft is rotated four times with the output shaft 1 position, and the 
backlash is taken as the average of eight measurements. The measurement data are shown in Table 
3. 

Table 3. Actual backlash measurement data. 

 1 2 3 4 5 6 7 8 Average 

Gd1 0.24 0.25 0.25 0.24 0.25 0.26 0.26 0.26 0.251 

Gd2 0.42 0.46 0.39 0.38 0.42 0.37 0.42 0.41 0.410 

The actual measured Gd1 and Go1 backlash value is 0.251 mm and the Gd2 and Go1 backlash value 
is 0.410 mm. The actual measured backlash is within the theoretical calculated backlash range of 
0.2443-0.4150 mm, and the three-dimensional tolerance analysis plays a more important role in the 
study of the system’s even-load performance. 

With the actual measured backlash values, the two branch torques are calculated as 86.736 N m 
and 141.680 N m using Equations 18, 19, 20and 21, and the uniform load coefficient is calculated as 
1.241 according to the definition of the uniform load coefficient Equation 22. 

5.2. Uniform Load Performance Test 

The uniform load coefficient is calculated to be 1.241 according to the backlash, and the gear Gl2 
and Gr2 torque values are then measured using a stress-torque sensor with strain gauges applied to 
the two input shafts at the corresponding two measurement points. The measurement principle is 
shown in Figure 12. 
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Figure 12. Gearbox equal load test schematic. 

The results of the torque measurement at measurement point 1 and measurement point 2 for 
various input conditions are shown in Table 4. 

Table 4. Multi-case torque measurement results. 

Same torque input for 
left and right 

Measurement point 1 
torque /N.m 

Measurement point 2 
torque /N.m 

Mean value of 
uniform load 

factor PK  
100 0 159.255 / 
150 0 273.940 / 
200 68.417 133.560 1.323 
250 85.695 164.660 1.315 
300 103.664 196.106 1.308 
350 123.015 228.243 1.300 
400 140.708 259.344 1.296 

The uniform load coefficient test data are shown in Figure 13, and the relationship between the 
input torque and the average value of the uniform load coefficient is shown in Figure 14. 
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Figure 13. Graph of the test data of the uniform load coefficient. 

 

Figure 14. Input torque versus equal load factor. 

From Figure 14, it can be seen that the maximum system uniform load coefficient is 1.323, which 
exceeds the theoretical uniform load coefficient of 0.064, and the-test measured uniform load 
coefficient exceeds the theoretical value by 5.08%. The error is 6.61% compared to the uniform load 
coefficient calculated from the measured backlash. According to the experimental data, it can be seen 
that the larger the input torque is, the lower the equal load coefficient is. The difference between the 
elastic deflection angles of the two branches decreases as the torque increases, resulting in a more 
uniform load distribution of the system. Due to the input torque limitation, the system load 
equalization performance can be improved by reducing the elastic shaft torsional stiffness of the 
branch with a large backlash. 
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6. Conclusion 

(1) From the tolerance contribution degree, it can be seen that T3 is the output shaft 2 large gear 
tooth thickness deviation, and T8 is the input shaft 1 two gear phase angle deviation. These two 
tolerances have the greatest influence on the backlash. These two design tolerances can be 
reduced appropriately in the theoretical design stage to obtain a more reasonable equal load 
factor. 

(2) The three-dimensional tolerance analysis method is used to derive the law of backlash 
distribution, and the torsional stiffness of the elastic shaft of the branch with a larger backlash is 
reduced to improve the system’s load equalization performance. 

(3) The three-dimensional tolerance theory analysis method can calculate the backlash range more 
accurately, and utilize the backlash range to calculate the uniform load coefficient range. The 
test measured uniform load coefficient exceeds the theoretical range by 5.08%. The error is 6.61% 
compared to the uniform load coefficient calculated from the measured backlash. This method 
of calculating the uniform load coefficient has a greater reference value. 

Appendix A 

Table A1. Tolerance dimensions of each part. 

Component Serial number Dimensional tolerance Position tolerance 

First input shaft 

1, 2 30k6Φ  0.015 A-B  
3 / 0.02 A-B  
5, 6 50k6Φ  0.015 A-B  
37 = 5'θ ±  / 

Left idler shaft 
7, 8, 10, 11 30k6Φ  0.015 A-B

9 / 0.015 A-B

First output shaft 
12, 13, 15, 16 100m6Φ  0.015 A-B  
14 / 0.02 A-B  

Second output shaft 
17, 18, 20, 21 100m6Φ  0.015 A-B  
19 / 0.02 A-B  

Housing 

22, 23 72H7Φ  0.02  
24, 25 62H7Φ  0.02  
26, 27 90H7Φ  0.02  
28, 29, 32, 33 150H7Φ  0.015  
30, 31 150H7Φ  0.02  
34, 35, 36 92js7 js7 js7、258 、350  / 

Table A2. Housing and shaft parallel chain conversion to serial chain parameters. 

 1L /mm 2L /mm 2H /mm L/mm 1u /mm 2u /mm 

1PFE  74 121.5 24 145.5 0.051 0.046 
6PFE  224.5 273 19 292 0.043 0.039 
7PFE  66.5 273 19 292 0.043 0.039 
13PFE  63.5 120.5 16 136.5 0.0415 0.039 
16PFE  74 121.5 24 145.5 0.051 0.046 
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Table A3. SDT for each tolerance of the gearbox. 

Tolerance Type Small displacement torsor 

1T 16T  1PFE 16PFE  -4 -40.067   0   0.067   5.636 10    0   5.636 10 ± ± ± ⋅ ± ⋅   

2T  2IFE  
-4 -40.01   0   0.01   5 10    0   5 10 ± ± ± ⋅ ± ⋅   

3T  3IFE  3 30   0   0.04   8.89 10    2 10    0− − ± ± ⋅ ± ⋅   

4T  4PFE  
-3 -40.0215   0   0.0315   3.42 10    8.2 10    0 ± ± ± ⋅ ± ⋅   

5T 9T 12T 14T

17T  
5IFE 9IFE 12IFE

14IFE 17IFE  
-4 -40.01   0   0.01   4.44 10    0   4.44 10 ± ± ± ⋅ ± ⋅   

6T  6PFE  -4 -40.097   0   0.097   2.808 10    0   2.808 10 ± ± ± ⋅ ± ⋅   

7T  7PFE  -4 -40.052   0   0.052   2.808 10    0   2.808 10 ± ± ± ⋅ ± ⋅   

8T  8IFE  -3 -30   0   0.0335   9.91 10    1.67 10    0 ± ± ⋅ ± ⋅   

10T  10IFE  -3 -40   0   0.015   4.44 10    6.7 10    0 ± ± ⋅ ± ⋅   

1 1T  11PFE  
-3 -3 -47.97 10    0   0.02297   461 10    7.9 10    0 ± ⋅ ± ± ⋅ ± ⋅   

13T  13PFE  -4 -40.068   0   0.068   6.007 10    0   6.007 10 ± ± ± ⋅ ± ⋅   

15T  15PFE  -3 -3 -44.35 10    0   0.01935   4.47 10    7.3 10    0 ± ⋅ ± ± ⋅ ± ⋅   

18T  18IFE  
-3 -30   0   0.03   8.89 10    1.5 10    0 ± ± ⋅ ± ⋅   

Table A4. Jacobian matrix for each tolerance. 

 0 i→  0
iR  PTiR  n

iW  

1PFE
2IFE  

0→7 
0→9 

1   0   0
0   1   0
0   0   1

 
 
 
  

 
1   0   0
0   1   0
0   0   1

 
 
 
  

 
   0               0          155.5
   0               0         211.85
-155.5    -211.85          0

 
 
 
  

 

3IFE
4PFE  

0→10 
0→11 

1 1

1 1

cos    0   -sin
   0      1       0
sin    0   cos

θ θ

θ θ

 
 
 
  

 
1

1

1   0   -sin
0   1     0
0   0   cos

θ

θ

 
 
 
  

 
   0               0          155.5
   0               0         -75.65
-155.5      75.65          0

 
 
 
  

 

5IFE
6PFE  

0→13 
0→20 

1   0   0
0   1   0
0   0   1

 
 
 
  

 
1   0   0
0   1   0
0   0   1

 
 
 
  

 
   0               0          155.5
   0               0         -138.15
-155.5      138.15          0

 
 
 
  

 

7PFE
8IFE
9IFE  

0→27 
0→28 
0→29 

1   0   0
0   1   0
0   0   1

 
 
 
  

 
1   0   0
0   1   0
0   0   1

 
 
 
  

 
0           0            0
0           0      -138.15
0      138.15        0

 
 
 
  

 

10IFE
11PFE  

0→30 
0→31 

2 2

2 2

cos    0   -sin
   0      1       0
sin    0   cos

θ θ

θ θ

 
 
 
  

 
2

2

1   0   -sin
0   1     0
0   0   cos

θ

θ

 
 
 
  

 
0         0        0
0         0    -92.2
0      92.2      0

 
 
 
  

 

13PFE
12IFE
14IFE  

0→32 
0→33 
0→42 

1   0   0
0   1   0
0   0   1

 
 
 
  

 
1   0   0
0   1   0
0   0   1

 
 
 
  

 
0         0         0
0         0    -46.15
0      46.15     0

 
 
 
  

 

15PFE  0→43 
2 2

2 2

cos    0   -sin
   0      1       0
sin    0   cos

θ θ

θ θ

 
 
 
  

 
2

2

1   0   -sin
0   1     0
0   0   cos

θ

θ

 
 
 
  

 
0         0         0
0         0         0
0         0         0

 
 
 
  

 

16PFE
17IFE  

0→50 
0→52 

1   0   0
0   1   0
0   0   1

 
 
 
  

 
1   0   0
0   1   0
0   0   1

 
 
 
  

 
0         0            0
0         0      211.85
0      -211.85    0

 
 
 
  
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18IFE  0→53 
2 2

2 2

cos    0   -sin
   0      1       0
sin    0   cos

θ θ

θ θ

 
 
 
  

 
2

2

1   0   -sin
0   1     0
0   0   cos

θ

θ

 
 
 
  

 
0         0         0
0         0         0
0         0         0

 
 
 
  
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