

Article

Not peer-reviewed version

Gravity and Riemann Hypothesis

Junze Shi *

Posted Date: 8 August 2024

doi: 10.20944/preprints202403.0289.v9

Keywords: gravitation; Riemann hypothesis; Euler's formula; collision; vibration

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Gravity and Riemann Hypothesis

Shi Jun Ze

Hebei Institute of Engineering and Technology in China; 15003615276@163.com; Tel. + 150-0361-5276

Abstract: Theoretical physics addresses the fundamental principles of nature and the mysteries of the universe. In the last century, the theory of relativity challenged people's understanding of time and space, while quantum mechanics revealed various forms of energy. However, the concept of gravity remains elusive. All matter in the universe is composed of energy that can be converted into other forms, yet it is always conserved. However, achieving a state of equilibrium, represented by the equal sign, can be challenging to achieve on both macro and quantum scales. A phenomenon that can transition from one state to infinity is called collision and is essential for understanding natural phenomena and physical processes throughout the universe. In the study of general relativity cannot be three-dimensionalityal problems to gain mathematical inspiration, understand the application of new dimensionalitys. Here, we elucidate the nature of gravity, which inspires the solution of the Riemann hypothesis. Our results show that the conduction mode of dimensionalityal energy is defined by Euler's formula. And a special mode of collision is derived which translates into vibration.

Keywords: gravitation; Riemann hypothesis; Euler's formula; collision; vibration

1. Introduction: Why Gravity is Not a Force

When discussing gravity, the theory of relativity must be taken into account. The theory of relativity explains gravity as a result of the curvature of space. If gravity is a force, it may be quantized, but the results are evidently contradictory.

2. Shape of Space

According to Einstein's theory, the rotation of energy can distort space[1]. During the process of space distortion, a curved space is formed, but this approach overlooks the essential matter: the unit length of space is not fixed. Given that gravitational waves exist, there must be particle states[5]. However, gravitational waves are misleading. Gravitational waves are produced by space deformation and energy change, as gravity is space. Suppose there is a space 10 meters long, one meter of space is compressed and shortened, and nine meters of space is stretched and lengthened, which consists of a compressed space and a stretched space; this compressed space is matter, and the stretched space is similar to gravity. In addition, since the speed of light does not change, how can this stretch of space be calculated?

The key lies in the fact that time does not change. Regardless of how much space may change, the passage of a quantum through a fixed unit of space remains fixed. While the space in the middle may undergo stretching, this extension is not observable. Even though space appears stretched, the time it takes for a quantum to pass through that space remains the same. This implies that the speed increases. Although the length of the unit space can change, the original length is still used to calculate the perceived slow shrinkage of scale. Gravity arises due to this effect. The reason is that speed creates the illusion of changing time; what truly changes is scale. The reason that time does not change is because the total amount of space remaining unchanged does not change.

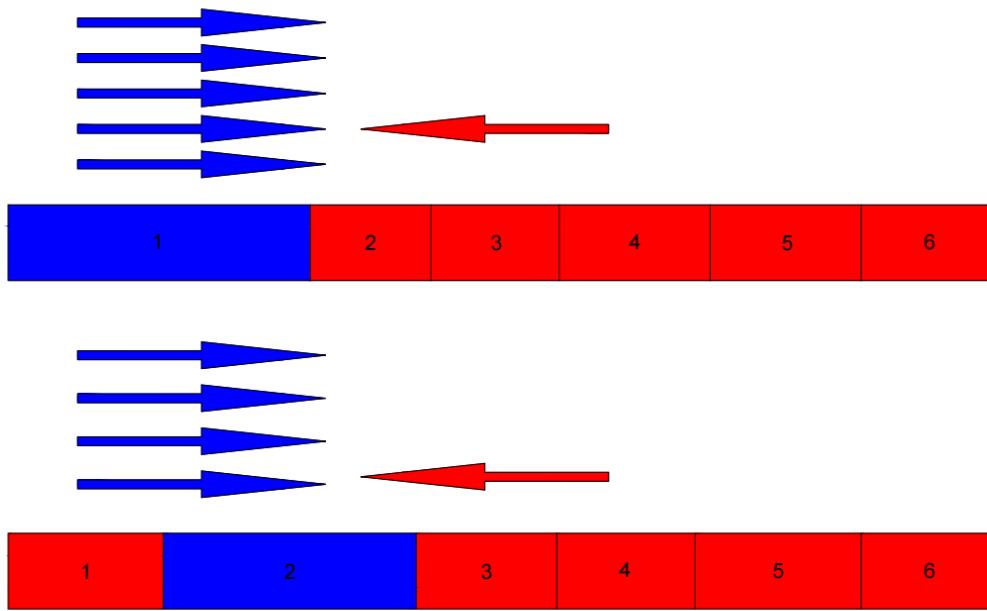


Figure 1. Space shape.

Another important factor to consider is the existence of space for compression. Here, because $v = l/t$, there is a process of slowing down, which results in a repulsive effect. This gives us the illusion of different rates of time. For example, two clocks with different speeds deviate under observation because the slower clock does not complete its own space traversal. This comparison is based on the same length of space. However, for all energetic matter, the duration remains the same. Space is considered an independent unit of existence, much like another form of energy that can undergo change under external influence. This space is an approximate view, and the space that is truly squeezed is all matter, so the squeezed and stretched spaces are intertwined. Two forms of energy make up three-dimensionality matter: positive energy and negative energy. Since the length of the unit space changes, but we cannot observe, the time through the unit space does not change, so we need the time dimensionality as the fourth dimensionality in the calculation process, but the essence of the fourth dimensionality is still the direction dimensionality. Gravitons that form spatial variations are fundamentally different from three-dimensionality space. Adding a dimensionality works the same way as adding time to an existing dimensionality, because time is fixed in unit space.

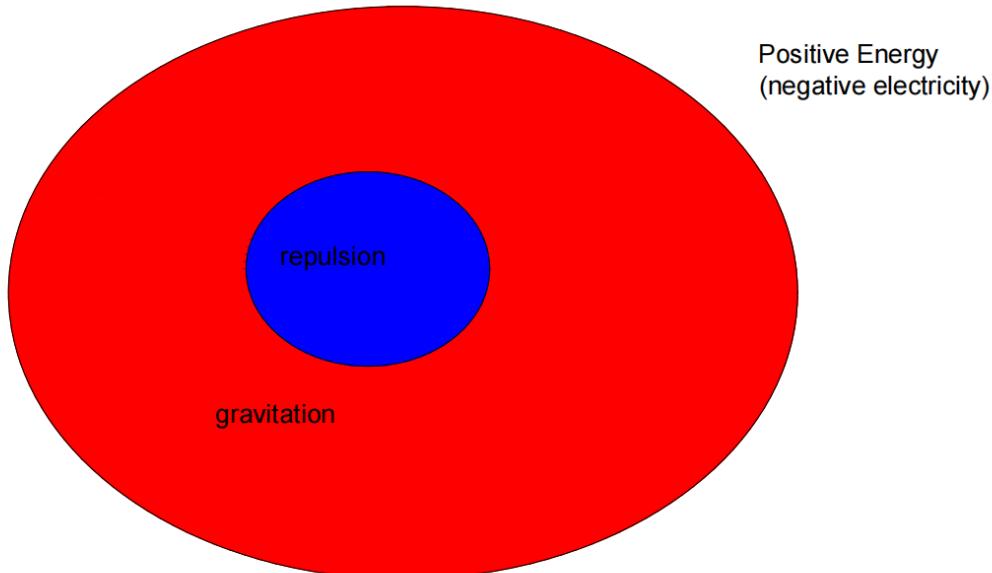
3. Constant Cause of Low Speed

The constancy of the speed of light, as stated in special relativity, means that no matter how fast an observer is moving, the speed of light measured by that observer remains constant. This indicates that it is influenced not by the velocity of an object that affects the speed of light but rather by the shape of the space itself.

Figure 2. The process of spatial shape change.

In a given space, there will be a certain speed, and there is no concept of absolute time. Instead, the different speeds correspond to different lengths of space. When photons are emitted, they start at a speed of c , the speed of light. According to DeBroglie's theory, moving objects generate phase waves. However, these phase waves can reach faster speeds than light. This is because phase waves are not emitted by the objects themselves but rather result from spatial changes caused by the objects. Let us delve into the meaning of the phase wave speed, c^2/v . The velocity represents the spatial variation in the transmission velocity. In the overall space, the shape of space is constantly changing. Throughout this process, the spatial variation can still be transmitted at a speed of c^2 . Therefore, in

the c^2/v^2 inference process, a moving object is constantly transmitting a deceleration signal v into space. Due to the constant changes in space, this value decreases to c^2/v .


$$\frac{c^2}{v} \times v = \text{Spatial transfer velocity}$$

Now, what is the speed of light constant and maximum? The velocity of photon movement in any shape of space is equal to the velocity at which the space transmits the photon. Photons are always moving in a constant space, meaning that their velocity does not change with gravitational influence. Therefore, regardless of the space they traverse, photons consistently maintain a constant velocity, reaching the maximum speed of c . Once the speed of the photon is greater than the speed of space transport, the speed of the photon will slow down so that the speed of the photon is at most equal to the speed of space transport.

$$v < \frac{c^2}{v}$$

When an object approaches the speed of light, its perceived time diminishes because the rate of space transfer aligns with the speed of photons. The process of space transfer corresponds to the time needed for particles to transition between adjacent spaces. However, when particles reach the next space, photons cannot enter the space, resulting in the apparent disappearance of photon time. Importantly, the cessation of time is attributed not only to reaching the speed of light but also to the speed of space transfer. Photons and ether have the same speed, which is why we cannot find ether. The propagation medium of different observers determines the speed of the ether, and the speed of the ether determines the speed of the photon.

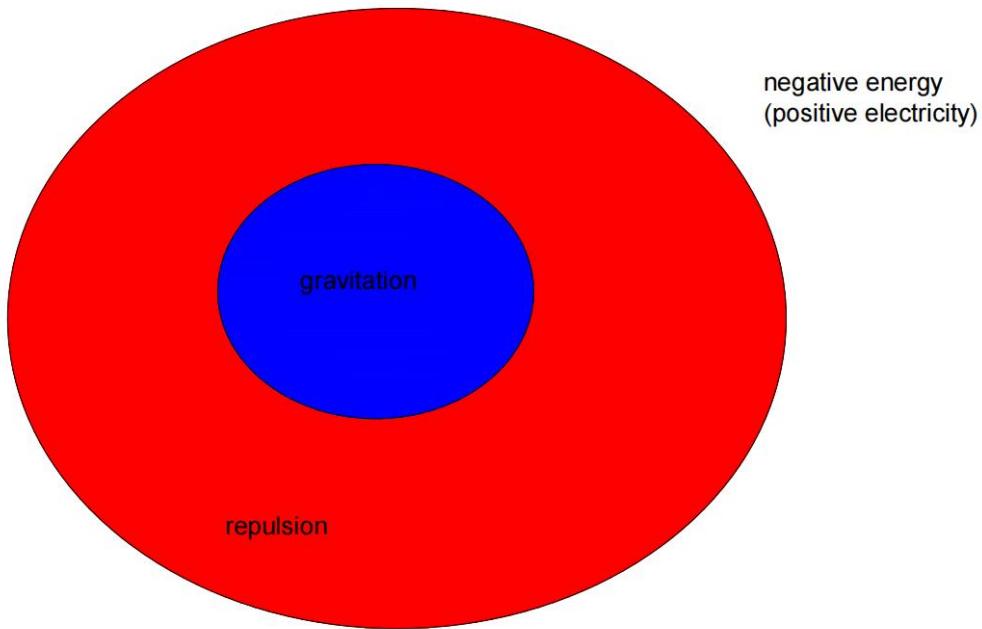

Energy is not confined by volume. Instead, it can be understood as a point of collision that creates a spatial configuration where the range of collisions is compressed. An energy body continuously vibrates within a small range, forming a unit space size and compressing the original unit space to zero, generating an extremely powerful repulsion force. Around this, the repulsion force stretches space one after another. When two objects are at rest, the initial velocity of the unit of energy emitted by this energy body is limited to the speed of light because the velocity of space transmission is limited. There may be two additional types of energy: zero-collision and negative-collision. Zero collisional energy does not produce a repelling volume, so zero collision can move very slowly in what people think of as space.

Figure 3. The positive energy is the central repulsive force, and the surrounding gravitational force is negatively charged.

4. Positive and Negative

There are two types of conclusions: positive and negative. Energy can be categorized into positive energy, negative energy, and massless energy. The negative energy is affected by gravitational acceleration because it creates space for growth. When it enters a gravitational field, the gap in the direction of gravity is larger, and the difference is larger. The negative energy is the center of space that creates tension, so the gravitational field of space will be compressed more, thereby accelerating the process. This acceleration is of the same magnitude as the positive energy. There may be an energy type called dark matter, which is postulated to exert a very large positive collision. Dark energy is just negative energy, whereas antimatter is negative energy that cannot be utilized. The reason is that negative energy cannot absorb photons, which have positive energy. Finally, zero energy is an advancement in dimensionality.

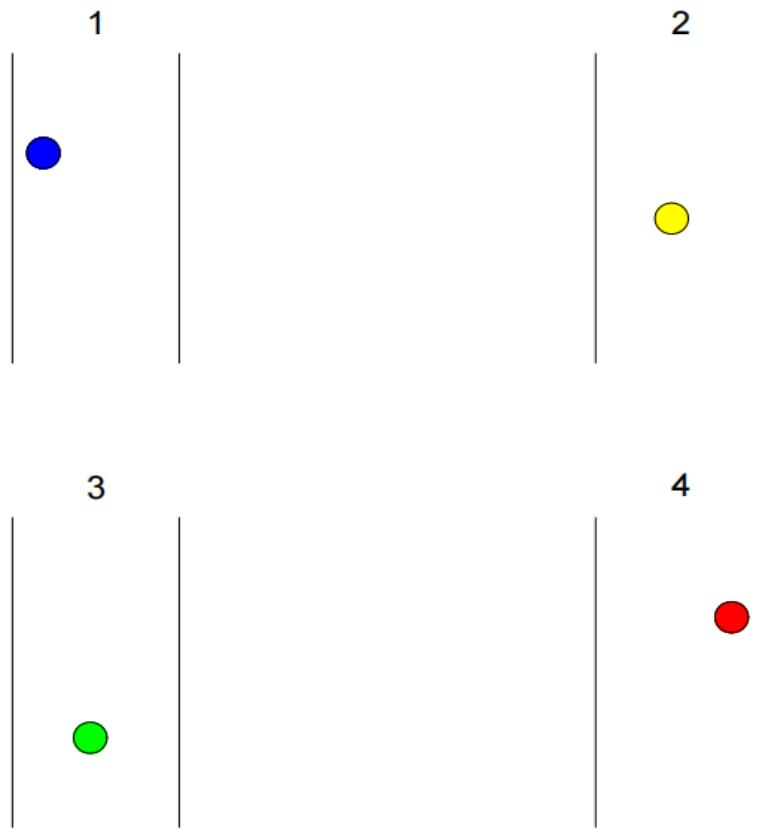


Figure 4. Negative energy is the repulsive force around the central attraction and is positively charged.

5. Explaining Microscopic Uncertainty

Electromagnetic waves, such as light, are usually considered waves. However, in some cases, light particles can behave like waves. This concept leads us to the concept of wave–particle duality. An important aspect of wave–particle duality is the observer effect. Observations have revealed what causes the particle wave function to collapse. Thus, these observations are probabilistic in nature[4].

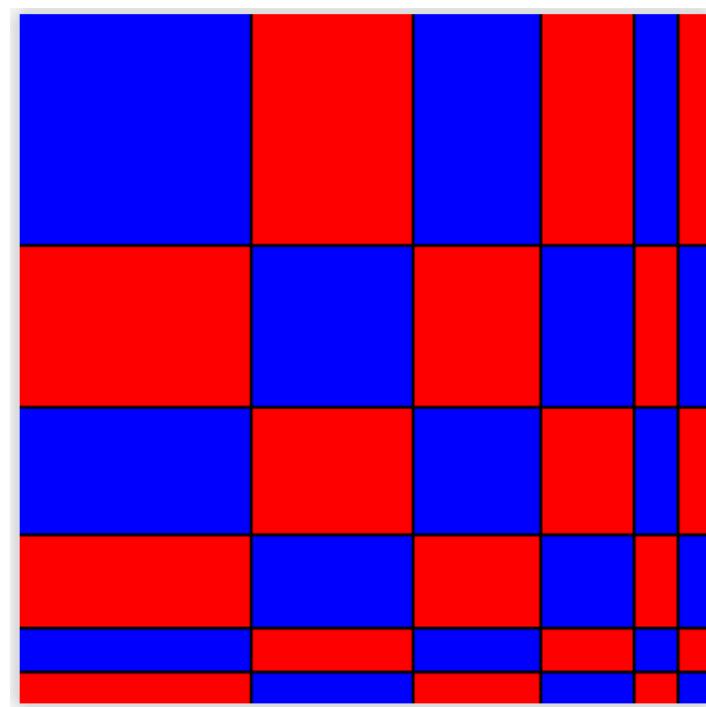

When a particle passes through a narrow gap, the space it occupies undergoes significant changes. The limited space within the gap may not be sufficient to accommodate the gravitational space of the particle. As a result, the compressed space surrounding the particle experiences substantial alterations. As the particle encounters this compressed space, it experiences a high amount of pressure. Causes it to move in a disorderly manner. As a result, the spherical volume is affected, and the resulting wave becomes unstable. The position of the waveform represents the probability as described by the wave function. When the particle exits the gap, the surrounding space stabilizes, and the deformed wave gradually reverts back to its original shape. However, the velocity of the particle becomes uncertain at this point. The absence of wave–particle duality in macroscopic objects is primarily due to their larger size. A significant compression of space is needed to induce changes in fixed energy.

Figure 5. Two-slit interference experiment.

6. Guess

With slight deviation in the exact position where the particle enters the slit, there can be significant variations in the surrounding space around the particle. This variation creates an asymmetrical space when magnetic and electric fields intersect. As a result, the space becomes distorted.

Figure 6. The space formed by the intersection of magnetic and electric fields.

If the form of matter is related to the dimensionality, the original dimensionality of matter will change slightly after entering the slit, and the change is the non-integer dimensionality behind. The reasons can be understood after reading the article.

7. Hypothesis

7.1. Hypothesis Can Dirac antimatter be applied[7]?

Negative energy is generated in later changes, and time, as a dimensionality from the beginning, is not negative, just like space.

7.2. Hypothesis two Black hole[8,9]

From a relativistic perspective, we know that escaping from a black hole is deemed impossible because of the overwhelming force of gravity and the presumption that time has stopped. Therefore, the following question arises: Since energy travels at the speed of light, how does time stop when energy enters a black hole? Each photon occupies a discrete unit of space in which all motion occurs at a speed greater than the speed of light. Black holes can be thought of as precursors to matter, and any energy that enters a black hole is converted into units of collision within the black hole. A black hole can be visualized as a two-dimensionalityal plane, and no matter how fast an object is traveling, once it enters the black hole, it will remain in a state relative to this two-dimensionalityal plane. In addition, in the universe, there is a large amount of two-dimensionalityal energy.

7.3. Hypothesis Three Is It Possible That White Holes Exist[9]?

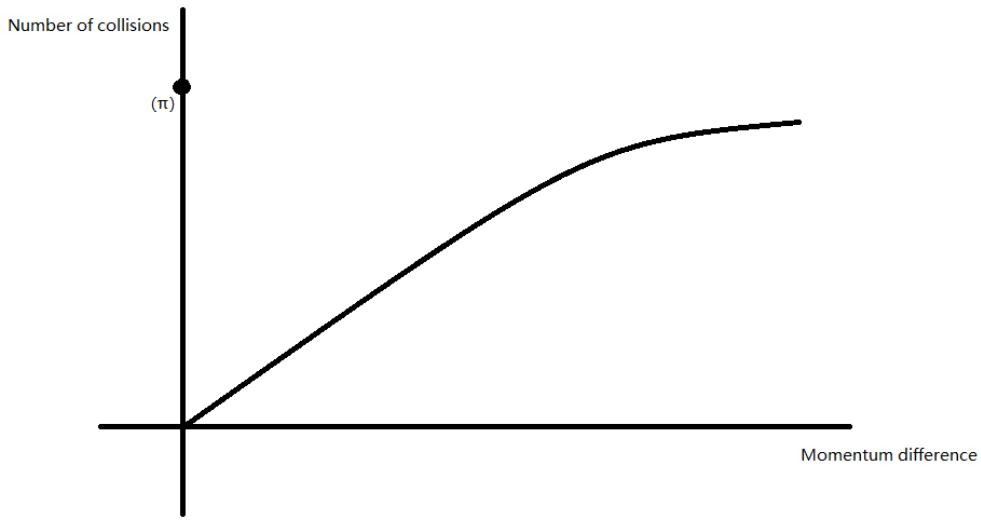
White holes are considered to be the opposite of black holes. A white hole is the result of central gravity produced by negative collisions around the center of the space it occupies, which results in a repulsive effect in its surrounding area. Theoretically, white holes could exist at the center of black holes. However, white holes cannot easily release anything because when quantum objects enter the internal space of a white hole, space contraction occurs, which slows the movement of the white hole.

Traditionally, wormholes are thought of as tools for traveling through time and space by means of a combination of black holes and white holes. According to the theory, black holes and white holes can only return to someone else's timeline. Your own timeline cannot go backward. For example, if A were to go into a black hole first and then go into a white hole, A's time would stop once A entered the black hole. However, B's time would not change. Two years later, A is taken to the white hole by a force, and A's time begins to accelerate. A exits the white hole after a year, and A finds B a year younger than A. However, from B's perspective, three years have passed into B's timeline, and A has gone for two years, which means that A has missed out on that year. Alternatively, if individual A were to go into the white hole first and then go into the black hole, A's time would begin to accelerate, and two years later, A would come out two years older than B. After entering the black hole, A's time would stop. After being pulled out by a force a year later, A would find that B was one year older than A was. Even though A was younger than B by one year, A still had gone for three years, during which events during which A could not change or influence it. In summary, traveling to the past is impossible because the past has already happened, and events in the future cannot be changed. For the reason that dark energy is not easy to observe, it may be that the inverse energy is unable to absorb positive energy photons, or the high dimensionality makes the energy too small to observe.

8. Collisions Produce

If the influence of different forms of energy is fixed and the composition of energy is singular, various manifestations of quantum energy should not occur. Additionally, with the passage of time, energy will remain static. To illustrate this, let us consider the three-body motion model. Although the motion of three small balls may be complex, there is a fixed value that governs their interactions. However, if one of the small balls experiences an uncertain change in its properties, the entire system

becomes irregular. This unpredictable aspect can be seen as introducing another dimensionality or variable sphere into the system.


Suppose the universe began with an infinite number of zero-dimensionality points in an infinite dimensionality space. The universe began as a single point that suddenly vibrated. Since the surrounding points were static, the vibrating points would elastically collide with the surrounding points, causing them to vibrate as well and propagate the collisions to the surrounding points. Due to these collisions, the central point and the surrounding points develop different collision frequencies. As this process continues, the dimensionality of the universe gradually emerge.

9. Necessity of Circles

When the central point suddenly vibrates, suppose that a square is filled with countless points without any gaps. When the central point vibrates, the resulting collision will propagate to the surround.

After a certain amount of time, the vibrating pattern evolves and eventually forms a structure resembling countless balls filled with squares. This structure appears relatively stable because there are numerous points in the surrounding space, similar to walls, that help maintain its shape. The reason for the formation of squares around the initial vibrating point is that the collisions cause elastic collisions between the points, leading to the arrangement of squares. These squares are formed in a manner that is a multiple of π , where 1 represents a human-defined size (which can be infinitely small). After a point vibrates back and forth, it exhibits two distinct trends: forward and backward movements. Both of these trends are multiples of π . The forward and backward movements give rise to two opposing forces: central repulsion and central attraction. The forces result from the collisions of the surrounding points, indicating that a single collision can result in the formation of two opposing energies. Due to the reduction in momentum consumption and collision frequency, the positive vibration is larger than the negative vibration.

The newly generated opposing forces can continue to affect the collisions of the surrounding points. However, the newly generated forces are almost negligible compared to the original forces. This is because new forces must be formed in integer multiples of π units of collisions to achieve stability. If this condition is not met, dimensionality separation occurs.

Figure 7. When two objects of the same mass collide, the greater the difference in momentum is, the closer the number of collisions is to the π .

10. Conclusion

When a large central collision occurs, it produces two opposing collisions: positive energy and negative energy. These collisions, in turn, lead to the generation of new opposing collisions. For instance, a perfectly elastic collision can produce a central collision that results in $N\pi$ elastic collisions.

These collisions can take the form of particles that give rise to matter worldwide. All of these phenomena are formed by new unit collisions that are created by previous unit collisions. The newly created quantum cannot directly change the collision frequency of the previous quantum because the new frequency is low.

Matter is governed by hierarchical control, where points vibrate into lines, lines into planes, planes into spheres, and so on. Points on a line move along the line by changing the position of a change in the position of a point without impacting the plane in which it resides. Similarly, planes contained within a sphere cannot fundamentally change the sphere. However, at this point, the final dimensionalitys are not controlled. No action can change the ultimate dimensionality because energy does not disappear; it can only transform. While all the other dimensionalitys are subject to control, the final dimensionality remains static.

11. Understanding the Riemann conjecture

First, based on the previous statement, π is the number of collisions in a dimensionality; thus, how is the energy transmitted? Note that $e, (1+1/n)^n$; this formula is the base number of energy transmission, similar to a multiple of the conduction relationship; and the imaginary number i is the direction of a dimensionality generated by collision in the presence of one dimensionality. The e^i equivalent of a collision produces another dimensionality; this length can also be considered to be energy. That is, each new dimensionality addition is equivalent to 0 energy of the previous dimensionality; of course, 0 is an approximation.

The process of dimensionality formation is the same as the calculation of compound interest by banks. Regardless of the collision frequency and analytic continuation, a straight line collides with a plane composed of $n-1$ straight lines. Let $V1$ denote the velocity of the line and $V2$ denote the velocity of the line in the plane.

$$\frac{1}{2}MV1^2 = \frac{1}{2}nMV2^2$$

$$\frac{1}{n}V1^2 = V2^2$$

This is a straight line colliding to produce a plane. This is an overall dimensionality of speed; however, the number of dimensionalitys is wireless n , and this process is repeated n times.

$$\left(1 + \frac{1}{n}\right)^n = e$$

All the dimensionalitys are in the same direction: $e^{i\pi} = -1$

One dimensionality represents repulsion, two dimensionalitys represent one-dimensionalityal apparent gravity, three dimensionalitys represent one- and two-dimensionalityal apparent gravity, etc., and all the dimensionalitys are 0.

The Riemann conjecture: $1+1/2*s+1/3*s+1/4*s.....[6]$.

Let us say that we start with a point with mass 1 and velocity $V1$. The velocity of each point after n passes is set to $V2$.

$$\frac{1}{2}MV1^2 = \frac{1}{2}M(V2^2 + V2^2 + V2^2 + \dots)$$

$$\frac{1}{2}MV1^2 = \frac{1}{2}MnV2^2$$

$$\frac{1}{n}V1 = V$$

When a line collides to produce a plane, the velocity of a single line satisfies the above equation. A total speed of 0 can be achieved only by introducing imaginary numbers. The energy of the new dimensionality is equal to 0 relative to the previous dimensionality. Therefore, we perform π

collisions and add all the dimensionalitys to find the imaginary part. Since the relative dimensionality can be simplified, the imaginary part has an infinite number of possibilities.

The law of energy transfer can be realized only when the real part satisfies 1/2. The Riemann conjecture is the total energy of the new dimensionalitys, and according to Euler's formula, all dimensionalitys in the same direction produce the effect of -1.

Whether π is irrational depends on the dimensionality. The lower the dimensionality is, the closer the number of collisions is to π . The more obvious the trend of the polygon until the motion stops. Even if we observe that the universe is expanding, it is just a different frame of reference; the whole universe is a frame of reference, and the universe is static.

12. Dimensionality and Life

A two-dimensionalityal substance vibrating in space will generate a direction of motion, but in space, all directions are the same (moving forward), so the motion formula will not change, therefore the direction of vibration towards the lower dimensionality is also the same. The original integer dimensionality determines the complex part in the Riemann hypothesis. Only one imaginary number i can exist because matter can only change direction in one dimensionality at a moment.

Substances of the same dimensionality must be the same, and the direction of any substance vibrating towards a lower dimensionality is fixed. Different dimensionalitys combine to form new dimensionalitys, for example, $2.1+2.3=2.2$, but the newly generated higher dimensionality cannot be produced by the original single dimensionality, for example, 2.23 cannot be produced solely by 2.2 . However, 2.23 can affect the motion of 2.2 , but this effect is minimal. Although 2.2 has a significant impact on 2.23 , due to the huge energy of the two-dimensionalityal vibration itself, it cannot directly change the vibration direction of 2.23 . So $2.2 + 2.23 = 2.2\dots\dots$ 2.2 and 2.23 have the same vibration direction but are different types of substances. Due to the principle of collision, assuming the energy of three-dimensionalityal matter is 1, in the process of forming three-dimensionalityal matter, the energy of two-dimensionalityal matter is n times that of three-dimensionalityal matter, but the curvature in the collision may create a closed loop, so the new dimensionalityal matter produced by two-dimensionalityal matter is always an integer multiple of the final dimensionality.

If collision times τ can generate curvature, vibration transmission process can form a closed loop, non-integer dimensionalitys will arise. dimensionalitys are not fixed but variable. When an object vibrates as shown in Figure 9, new vibration directions will be generated. Due to collision times, curvature will occur during the motion process, leading to the emergence of new dimensionalitys.

A zero-dimensionalityal point vibrating into an infinite-dimensionalityal point will eventually come to a complete stop, until all points vibrate into infinite dimensionalitys without colliding. However, the imbalance of positive and negative energy will still exist, leading to vibration occurring again.

Assuming the first two dimensionalitys of 2.2 and 2.3 have exactly the same vibration direction, these two substances can combine to form a new dimensionalityal substance. This new substance has a characteristic that it can exist as a single substance rather than a combination of two substances, at this point entanglement occurs.

It is difficult to accurately raise the dimensionality from 2.19 to 2.2 in large quantities of producing a certain dimensionalityal energy. If we want more 2.2 energy, we need more 2.1 and 2.3 , which means higher and lower dimensionalityal energies need to become more. This way, the probability of producing 2.2 will also increase. We need to know that when a certain dimensionalityal energy is abundant, its anti-energy will also be abundant.

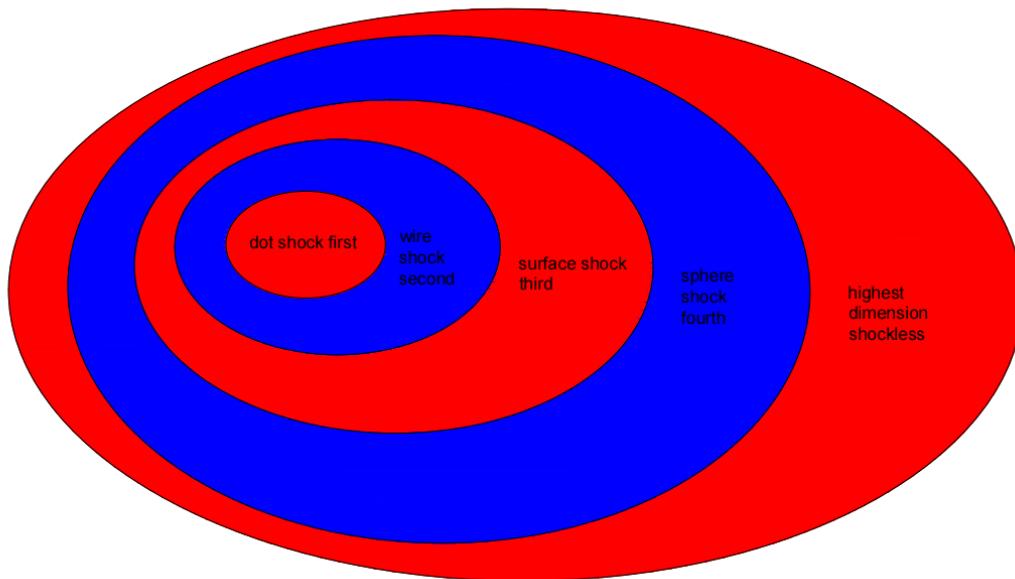
Now we go back to the Wheeler delayed selection experiment, and after the photon passes through the half lens, it is possible to produce another moving particle with a higher dimensionality. For example, $3.01+3.29=3.15$, before incident on the second half lens, the photon may be divided into two parts, but the two energies are very different. As a result, the photon appears to take only one path. The reason why this merger is so simple is that they come from the same photon and vibrate in the same direction. The previous dimensionalitys caused particles to have an infinite number of

vibrational directions, which prevented matter from transforming at will. For example, excessive energy such as inflammation can be alleviated by dimensionality reduction.

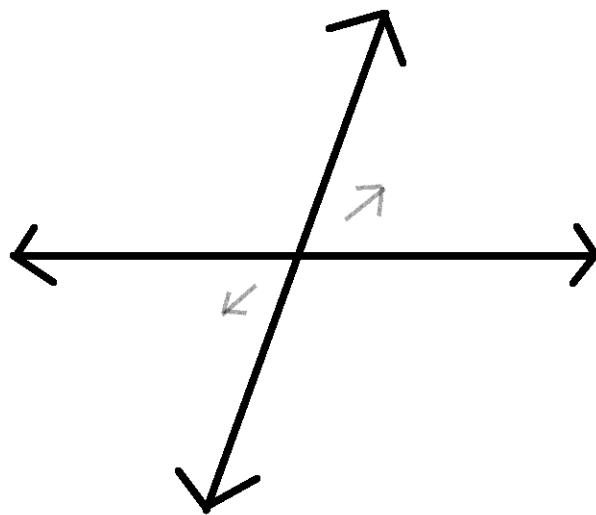
With some inspiration, we can solve problems or diseases in our lives, such as paying attention or not thinking similar to not using substances to reduce the dimensionality of matter, thinking about problems or using substances to increase the dimensionality, changing the dimensionality can fundamentally change matter.

When we think about the energy of matter we think about the kinetic energy of matter, and that basis only includes velocity. However, any substance contains positive and negative energy, and a static material mass is the negative and positive energy difference. This result is abstract. As shown in Figure 9, the direction of the vibration represents the positive and negative energy, and the difference between the positive and negative energy determines the magnitude of the dimensionality, so the moment of the vibration represents the dimensionality of the matter at this moment. The abstract expression is that positive and negative energies are vibrations of ascending and decreasing dimensionality. But the process of collision can be changed, the direction of collision is different in the relative environment, we can imagine that matter of the same dimensionality can also be different, but this is under a fixed frame of reference, if the relativity of the frame of reference is not considered, the matter of the same dimensionality must be the same. That is to say, two substances of the same dimensionality have the same total positive and negative energy, but the direction of positive and negative energy vibration is different. This process of expression is also abstract.

Next you need to think carefully. If the material has vibrations in all directions, then the next dimensionality of the material is easier to ascend but more difficult to reduce. Because the more the vibration direction of the material, the easier it is to require energy in a specific direction. In other words, the process of raising the dimensionality can not avoid the collision to form a closed loop, so the promotion of the dimensionality requires collisions in all directions.


Next, we consider a special case where the velocity of the material reaches the speed of light c . In the previous analysis, we know that the speed of motion reaching the speed of light is equivalent to time pause, and time is equivalent to the comparison of material motion and space motion. Positive energy and negative energy are equivalent to shrinking space and stretching space. The matter reaching the speed of light can not produce space deformation, that is, can not occur relative collision, the positive and negative energy of this material is equal. In general, this material is an integer dimensionality material.

From Figure 8, we can see that the change of dimensionality is equivalent to the alternation between positive energy and negative energy. This alternation is the reason for the process cycle of material lifting dimensionality. The difference between positive energy and negative energy is similar to the change of $y = \sin x$, and there are some zero points in this change. Next, we introduce another special time when positive energy and negative energy are the same. It is assumed that the positive energy is greater than the negative energy at the beginning, but the negative energy is greater than the positive energy in the process of increasing the dimensionality, and so on. But there is an intermediate process in which the positive energy is equal to the negative energy. At this time, the process of raising the dimensionality is stopped, and it must go through other collisions to raise the dimensionality again. This intermediate moment can form a closed loop, and the closed loop leads to the stability of energy. This material is also a stable material that is not easy to change.


There are four kinds of forces that are most easily observed in any dimensionality of matter. Assume that the dimensionality of a substance is 2.2, 2 dimensionality can produce a strong force, 0.2 can produce a weak force, the positive and negative energy difference between this substance and other substances can produce a force, the new dimensionality of this substance can produce a force. There is another force that is not easy to find, because the energy is too large and stable. This force is the previous dimensionality energy that 1 can generate. This force is a kind of balance force, because the positive energy of the former dimensionality must be equal to the negative energy and very strong, so this force can not be considered in life.

It is assumed that there is no life on the earth, and there is water on the earth. In my understanding, the dimension of matter is related to the state of motion. The higher the dimension,

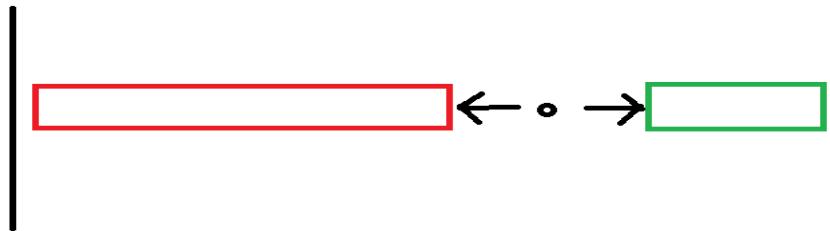
the more complex the state of motion. The moon appears in the development of the earth, and the movement of the moon directly affects the complexity of the water source. With the influence of photons and water on electrons, the material dimension is increasing. We know that the change of dimension depends on the alternation of positive energy and negative energy. If the positive energy and negative energy are basically balanced, it is difficult to change the dimension.

Figure 8. The relationship between dimensionalitys is that the higher dimensionalitys have a larger range but infinitely small energy, the lower dimensionalitys are faster, and the lower dimensionalitys produce more dimensionalitys.

Figure 9. A two-dimensionalityal substance.

The most obvious vibration in the organs is the heart. Although the brain determines the complexity of the body. However, it is clear that the changes in the brain do not directly affect the organ but the movement behavior. This process is not as good as the impact of changes in the heart on the organ. After strenuous exercise, the biggest change is the heartbeat, here does not consider breathing changes in lung activity. Because body movement is a smaller dimension of ascension, it

has the greatest impact on the lowest dimension. Similar to the sleep process, the weakly reduced dimension affects the brain the most. A slight effect during sleep may bring a slight increase in dimension. This dimension can only bring dreams on the contrary and it is difficult to affect other organs. But after night falls, the human body's day of labor has reached the limit. If you do not go through sleep, the dimension of the body can not be reduced, and the greatest impact is also the brain. So some people like to think at night, because at this time the ability to think is stronger.


When two substances are close, the collision will not occur immediately. Because the material itself does not exist in volume. This collision will produce high-dimensional substances and their reactions due to the proximity of substances. This high-dimensional particle is similar to a gluon. These processes will become more and more complex as the dimension increases, which can only be briefly introduced here.

When two substances are close, the collision will not occur immediately. Because the material itself does not exist in volume. This collision will produce high-dimensional substances and their reactions due to the proximity of substances. This high-dimensional particle is similar to a gluon. These processes will become more and more complex as the dimension increases, which can only be briefly introduced here.

The previous theory shows that the lower the dimension, the more stable the material is, and the higher the dimension, the more complex the vibration and the smaller the energy. And the higher the dimension means that the positive energy is greater than the negative energy (only three to four dimensions are discussed here), then the same-sex repulsion and opposite-sex attraction between energy are more obvious.

The higher the dimension, the more the direction of material vibration. Without external force, the complex vibration direction will make it difficult to reduce the dimension. The application of to people will lead to the usual always like to daze, and because of the direction of vibration, the speed of receiving information is fast but the speed of response is slow.

Explain why microscopic particles have multiple paths at the same time. First, we assume that there is a one-dimensional particle, and there are countless zero-dimensional points in the one-dimensional particle that vibrate. Figure 10 shows that the vibration of one of the zero-dimensional points will produce two spaces of different lengths, which are positive energy and negative energy. Then it is assumed that one-dimensional particles move in space, and all zero-dimensional points will also move in this direction. If this one-dimensional particle is composed of zero-dimensional points in each vibration direction, then this motion process will produce high-dimensional energy. The high-dimensional energy generated by all zero-dimensional points in the process of one-dimensional particles moving from the starting point to the end point is as if the zero-dimensional points reach the target according to different trajectories. But actually not, in order to facilitate the calculation of the use of path integration. In mathematics, it is like a one-dimensional particle walking through all paths.

Figure 10. The generation of positive and negative energy.

A material's short-term ascension dimension will be accompanied by the reduction of the surrounding material dimension, because the positive energy of the material is greater than the

negative energy. Due to the balance, the negative energy of the surrounding material will be greater than the positive energy.

When two materials with different vibration directions are together for a long time, the vibration direction and vibration trend of the two materials will become similar, because the long-term collision will produce the force to change the vibration direction. However, if the energy difference between the two substances is large, then the large energy will absorb the small energy. Because the high dimension around the large energy will react with the small energy material.

Emphasize how to maintain the stability of the material, and the difference between positive energy and negative energy will increase the dimension. Only when the positive energy and negative energy are equal can the material be stable. Increasing the dimension will change the energy size, which is not conducive to the stability of energy.

13. Goldbach Conjecture

By the definition of prime numbers, we know that all prime numbers satisfy a relation[10]. Let y be a multiple of 2. The prism numbers are of size a, and even the numbers are of size b.

$$\text{All prime numbers except } 2: 2 \times y_1 + 3 = 2(y_1 + 1.5)$$

$y_1 \neq$ multiples of 3. Because you cannot add 3 to y if it is a multiple of 3. If the ones place is 1 or 6, the result is a multiple of 5 $y_1 \neq 3.5X + 2$. This includes the result of multiplying two large prime numbers, but the result can still be written as a prime number plus an even number, without affecting the result, and can be ignored.

$$\text{even number: } 2 \times y_2$$

Therefore, any even number greater than 6 can be expressed as the sum of two prime numbers.

Funding: This research received no external funding

Data Availability Statement: No data are available in the manuscript.

Acknowledgments: I express my sincere gratitude to all the individuals who provided assistance and support during the course of my research. It is my aspiration that my paper will be of assistance to a wider audience.

Conflicts of Interest:

References

1. "Relativity theory." An Einstein Encyclopedia, 31 Dec. 2015, pp. 208–216, <https://doi.org/10.1515/9781400873364-036>.
2. "Newton and the law of Gravitation." Pioneers of Science, 28 June 2012, pp. 180–202, <https://doi.org/10.1017/cbo9781139380904.010>.
3. "Lagrange and Laplace—the stability of the solar system, and the nebular hypothesis." Pioneers of Science, 28 June 2012, pp. 254–272, <https://doi.org/10.1017/cbo9781139380904.013>.
4. "From classical mechanics to Quantum Mechanics." Quantum Mechanics, 16 Apr. 2009, pp. 7–42, <https://doi.org/10.1017/cbo9780511813955.002>.
5. "Gravitational waves, theory and experiment (an overview)." Gravitational Waves, 29 Jan. 2001, pp. 15–28, <https://doi.org/10.1201/9781420034257-3>.
6. "The Riemann hypothesis." The Riemann Hypothesis, pp. 41–58, <https://doi.org/10.5948/9780883859896.006>.
7. "Antimatter." Paul Dirac, 12 Feb. 1998, pp. 46–87, <https://doi.org/10.1017/cbo9780511564314.004>.
8. Bambi C, Dolgov A, Freese K. A black hole conjecture and rare decays in theories with low scale gravity[J]. Nuclear Physics, Section B, 2006, 763(1):91–114.
9. Unveiling the edge of time: black holes, white holes, wormholes[J]. Choice Reviews Online, 1993, 30(07):30–3810.
10. Friedland, Gerald. On the Goldbach Conjecture, 22 Feb. 2018, <https://doi.org/10.2172/1476233>.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.