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Abstract: This paper presents a quantum formulation for classical abstract dynamical systems
(ADS), defined by coupled sets of first order differential equations. They are referred as “abstract”
because their dynamical variables can be of different interrelated nature, not necessarily
corresponding to physics, such as populations, socioeconomic variables, behavioural variables, etc.
A first order classical Hamiltonian in canonical moments can be derived for ADS by using Dirac’s
dynamics for singular Hamiltonian systems. And also a corresponding first order Schrodinger
equation (which involves the existence of a system Planck constant particular of each system) can
be derived from this Hamiltonian. However, Bohm and Hiley’s reinterpretation of quantum
mechanics produces no further information about the mathematical formulation of ADS. However,
a second order classical Hamiltonian in canonical moments can be also derived for ADS, as well as
a corresponding second order Schrodinger equation. In this case, Bohm and Hiley’s reinterpretation
of quantum mechanics provides a quantum Hamiltonian that does provide the quantum
formulation for ADS, which provides new quantum variables interrelated dynamically with the
classical variables. An application case is presented: the one-dimensional autonomous system given
by the logistic dynamics, where the differences between the classical and the quantum trajectories
are highlighted.

Keywords: dynamical systems; general systems; classical dynamics; Schrodinger equation;
quantum formulation; Bohm and Hiley’s interpretation; quantum dynamics; logistic function

1. Introduction

General System Theory was proposed by Bertalanffy [1] as a new complementary approach to
Science in order to provide it of a mathematical universal language. Since that work, some attempts
to state a General System Theory have been provided. For a summary of these attempts see [2].
However, the objective to provide that universal language seems by the moment too ambitious and
it has been steered to provide general systems as theories that unify different fields of Science. An
example is provided by the work [3] that proposes a unified mathematical view of energy in
psychology and physics. The method followed in [3] is the so-called isomorphism of systems proposed
by Ferrer [4], i.e., translating a known contrasted theory from a field to another field where similar
problems try to be solved.

The present paper objective holds the isomorphism of systems proposal: translating the quantum
formalism from dynamics of physical systems to abstract dynamical systems. Note that the
dynamical systems in physics are defined generally by Newton laws, i.e., by coupled sets of second
order differential equations. However, abstract dynamical systems are here referred as dynamical
models given by coupled sets of first order differential equations, where the unknown temporal
variables have different interrelated nature, not necessarily corresponding to physics, such as
populations, socioeconomic variables, behavioural variables, etc. Actually, these systems are known
in the literature about the subject simply as dynamical systems (see for example the work by Anosov
and Arnold [5]). However, including the adjective abstract presents the transdisciplinary aspect of
this kind of systems. This question must be emphasized because, for instance, a system Planck constant
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is presented in the formalism, and it is not the physical Planck constant, but a singular constant of the
particular system under study.

A first attempt of a (non-relativistic) quantum formalism for abstract dynamical systems was
presented by this author’s paper in [6], but he did not reach any significant solution. Then, this paper
tries to present a significant solution to that objective from a rigorous mathematical approach,
although no empirical support has yet been found. Therefore, this paper tries to open a new field of
research, which lies between General System Theory and mathematical-physics, by presenting the
theoretical finding obtained.

To reach that formalism the well-known method to obtain the Schrédinger equation from the
Hamiltonian is also followed. Then, the first step is to obtain the Hamiltonian for an abstract
dynamical system. The method followed is what discovered by Dirac [7], who provides a method to
obtain a Hamiltonian for which the canonical moments either cannot be explicitly isolated from the
general velocities (i.e., the time derivatives of the configuration variables) or the canonical moments
vanish. This last case is also known as a singular system, and it is which corresponds to an abstract
dynamical system, as it is showed in this work.

Actually, the real objective of Dirac in the work [7] was to quantize the electromagnetic field due
to it is given by first order partial differential equations. Therefore, it was an approach steered to
solve the problem for fields rather for abstract dynamical systems. However, getting the Hamiltonian
for abstract dynamical systems can also be solved with this Dirac’s formalism. See the works [8-10]
for that solution, although only in [6,9] the subsequent quantization method is presented in two
different ways: from a first order Hamiltonian in the canonical moments in [6], and from a second
order Hamiltonian in the canonical moments in [9]. The differences about the Hamiltonian
formulated by first or second order in canonical moments are clarified throughout this paper.

Besides Hamiltonian Dirac’s approach, there exists a Lagrangian approach provided by Havas
[11], who obtains equivalent results to the Hamiltonian Dirac’s approach of [7]. Govaerts highlighted
that equivalence for first order fields in [12] and it was also highlighted for abstract dynamical
systems in [8]. Both problems are known in mathematical-physics respectively as the inverse Lagrange
problem and as the inverse Hamiltonian problem. In other words, the inverse Lagrange problem consists in
finding the Lagrangian corresponding to a coupled set of differential equations; therefore, this set
must obey the Euler-Lagrange equations. Besides, inverse Hamiltonian problem consists in finding the
Hamiltonian that holds the Hamilton equations; therefore, this set must obey the Hamilton equations.

Havas presents the inverse Lagrange problem solution for abstract dynamical systems in the
Annex B of [11] from a set of general sufficient equations that solve the inverse Lagrange problem for
a more significant number of differential systems. Those sufficient solutions were presented in a
previous work [13], where a wide range of general inverse Lagrange problems were dealt and solved.
However, Micé in [8] solves the inverse Lagrange problem for abstract dynamical systems by
following a simpler way and also showing the equivalence with the corresponding inverse
Hamiltonian problem by Dirac’s method [7].

Besides, the paper’s objective enounced as translating the quantum formalism from dynamics of
physical systems to abstract dynamical systems, can be brought further by the Bohm and Hiley’s
reinterpretation of quantum mechanics [14]. This reinterpretation provides a quantum potential
correction to the classical equations through the quantum Hamilton-Jacobi. In fact, the quantum
Hamilton-Jacobi equation arises from the polar form of the quantum wave function and its split in
modulus, which provides the probability conservation, and in phase or action, which provides the
quantum Hamilton-Jacobi equation. Bohm and Hiley linked this correction to the existence of a
microscopic level underlying the quantum level of description. However, the present paper tries to
interpret a possible quantum correction of abstract dynamical systems as a quantum term which
arises rather from the own system complexity. In addition, a system Planck constant, particular of each
system studied and then with different value of physical Planck constant, is presented in the
formalism. Then, the formalism presented assumes an epistemological correction to the dynamics of
an abstract dynamical system, playing a fundamental role the system Planck constant. Also that
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incapability is present in Bohm and Hiley’s formalism [14], but as emphasized above, due to the
assumption of a microscopic world underlying the quantum level. In this paper this incapability is
only assumed in advance as a hypothetical epistemological principle. In fact, throughout the paper,
the usual predictions of the abstract dynamical systems are called as classical dynamics, while the
predictions of the abstract dynamical systems quantum correction are called as quantum dynamics.
Also, depending on the context, classical dynamics can be referred as classical trajectory, and quantum
dynamics can be referred as quantum trajectory.

In addition, Dirac’s first order Hamiltonian in canonical moments is showed here that provides,
by using the quantization rules, a first order Schrodinger equation that has not a Bohm and Hiley’s
quantum potential correction. Therefore, the solution found is applying the same method provided
by Dirac in [7] to a second order Hamiltonian in canonical moments. To do this, the abstract
dynamical system must be previously reformulated as a second order abstract dynamical system (by
taking the time derivative). In addition, some abstract masses are needed to obtain the second order
Hamiltonian in canonical moments. In fact, the corresponding Hamilton equations are Newtonian-
kind equations where the abstract masses play the same role as the masses in the physical systems.
In the subsequent step, a canonical transformation is needed to simplify the Hamiltonian. This further
Hamiltonian provides, by using again the quantization rules, a second order Schrédinger equation
for which the action does provide the Bohm and Hiley’s quantum potential correction. Finally, the
first order abstract dynamical system can be recovered: the quantum potential correction arises as an
integral term. This integral term can be represented by a new system of first order differential
equations coupled with the original ones.

Besides, one of the most important theory about abstract dynamical systems is referred as
synergetics, term coined by Haken [15]. This formalism is probably the closest to here presented. In
fact, it provides a partial differential equation, the Fokker-Planck equation, for a stochastic abstract
dynamical equation, given by Ito equations (see also [15]), which plays a similar role to Schrodinger
equation in Hamiltonian systems. The Fokker-Planck equation provides the time evolution of the
probability density. However, the starting point is stochastic, not deterministic, such as the case here
presented.

In fact, the deterministic or stochastic character of the formalism presented must be commented.
In the present work, the approach is deterministic, i.e., the quantum correction of abstract dynamical
systems is applied by deterministic dynamics, although the approach could be also stochastic in
future works, due to the quantum potential is derived from the previous wave function, which has a
stochastic nature. In fact, both differenced cases are considered in the Bohm and Hiley’s work [14].
This deterministic quantum correction is studied in the application case of Section 7. In this case, the
quantum potential presents singularities that highlight the profound differences between the concept
of classical trajectory and the quantum trajectory here provided.

In order to present the formalism announced, Section 2 is devoted to the first order Dirac’s
Hamiltonian in canonical moments for an abstract dynamical system. In Section 3, the corresponding
first order Schrodinger equation is obtained, showing that no quantum potential correction arises in
the Hamiltonian. Therefore, Section 4 is devoted to obtain a second order Dirac’s Hamiltonian in
canonical moments for an abstract dynamical system. Section 5 makes use of this Hamiltonian to
obtain the corresponding second order Schrodinger equation, which does present a quantum
potential correction in the Hamiltonian. Section 6 presents the quantum formulation of the abstract
dynamical systems from the corresponding quantum Hamilton equations. Section 7 presents an
application case: the one-dimensional autonomous system given by the logistic dynamics. Section 8
is devoted to the paper discussion and conclusions.

2. First Order Dirac’s Hamiltonian

An abstract dynamical system is defined by the following coupled set of differential equations
1<k<n)
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In Eq. 1 t is the time variable and q = (g4, q>, ..., q,,) represent the dynamical variables. Their
nature can be arbitrary, not necessarily of physical nature, such as populations, chemical or
biochemical species, socioeconomic or behavioural indicators, etc. In addition, the f,(t,q) (1 <k <
n) represent their dynamical interactions, considering in advance equipped by all kinds of
smoothness properties to develop suitably the formalism. In addition, ¢ = (4,43, ..., G,) are called
as the dynamical velocities.

Following the methodology developed by Dirac [7] for fields, the works [8,10] applied it to
obtain a Hamiltonian to abstract dynamical systems. The method presented in those works is also
here presented due to they are needed in the subsequent sections. Such as noted Dirac in [7], a
Lagrangian for Eq. 1is only possible if it is linear in the dynamical velocities, that is:

L(t,q,q) = X7_,1 9;(t,q) - q; — h(t,q) 2)

In Eq. 2, the g;(t,q) and h(t,q) functions are still undetermined. The corresponding canonical
moments are then defined as (1 < k < n):

JaL
Pr =5, = 9kt @) (3)

Note in Eq. 3 the first problem: the canonical moments do not depend on the dynamical
velocities, thus the dynamical velocities cannot be isolated from the canonical moments. However, in
addition, applying the Hamiltonian definition:

a . .
Ho(t,q,p) = }‘:1;:]_ -, — L(t.q,9) = h(t, @) )

Note in Eq. 4 that the canonical moments are represented as p = (p4, Po, ..., Pn)- Besides the first
problem provided by Eq. 3, Eq. 4 shows a second problem: the H, Hamiltonian does not depend on
the canonical moments. Due to these two problems H, is referred as singular. The Dirac method [7]
consists in solving both problems by, first, defining the primary constants ¢, (t,q,p) as (1 <k <n):

okt qa,p) = Pk — 9k(t, @) @)

And subsequently reinserting the primary constants in the Hamiltonian H, as the usual way of

the (still undetermined) Lagrangre multipliers A, (t,q,p) (1 <k <n):
n

H(t,q.p) = Hot,q,p) + ) 4(6.4.p) - &(6.a.p) =
= (6)
= h(t, @) + T}t 4t a.0) (p; — ;6. D)
Note that the Dirac method to reinsert the canonical moments implies that, in the context of the

Hamiltonian H(t, q, p), the primary constants are not identically zero, but ¢;(t,q,p) = 0 when they
are applied in the Hamilton equations. Therefore, the Hamilton equations become (1 < k < n):

n  04j (tqp) 6¢,(tqp)

q’f(t)zaa_H: j=1 ¢t q,p) + Xj-1 4(t,q.p) = 2.(t, 4, p) e
- 02(t,q, 00, Lap) oG,
®)
f’h(fq) ag,(tq)

= +Z] 1’1 (t q'p)

Note that, comparing Egs. 1 and 7, the simplest solution is: 4;(t,q,p) = f.(t,q@) (1 <k <n).
Then, the Hamilton Egs. 7 and 8 become (1 < k < n):

qr(t) = = fi(t, @) )

do0i:10.20944/preprints202403.0206.v1
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. 0H oh(t,q)
t) =——=—
D (£) 9ar 2ar

0g;(t.q)
: (10)

+ Z?:lf}'(t; Q) dqy
In order to determine the g;(t,q) and h(t,q) functions, the so-called by Dirac as consistency
conditions, ¢;(t,q,p) =0 (1 <1< n), are applied. Then, from Eq. 5:

' = 201tap) | s 3d1tap) . n 90bap) , _
¢u(t,q,p) ==+ Li=1 oq dk T k=175 b =0 (11)

The substitution of Egs. 9 and 10 in Eq. 11 provides, taking into account the zero value of the
primary constraints, and after some calculations (1 <[ < n):

_dgi(tq) _ on(tq) n (_0%91tq) , 99k(tq _
at o T k=1( oo T oa )fk(t,q)—O (12)

In Eq. 12 the following Fy,(t,q) functions can be defined (k,l = 1,2, ...,n):

ag(t, agi(t,
Fu(t,q) = —Fi(t, @) = — 2400 4 200 (13)

Therefore, Eq. 12 can be rewritten by using Eq. 13 as (I = 1,2, ...,n):

agi(t.g)  dn(tq)
=1 Fie(t,q) fi(t, q) = —% _ aq,q 14

In order to obtain an equation for the F,(t,q) functions without the h(t,q) function, such as
in Eq. 14, the following steps are followed: 1. Take the partial derivative respect an arbitrary q; in
Eq. 14; 2. Rewrite Eq. 14 by replacing I by j; 3. Take the partial derivative respect q; in the rewritten
equation; 4. Subtract both equations. Taking into account the equality of both h(t,q) crossed
derivatives, the resultis (j,! = 1,2, ...,n):

T = o (S Fu @) filt, @) = 0 (Fit @) £t @) (15)

Therefore, the process to obtain the g;(t,q) and h(t,q) functions of the Hamiltonian given by
Eq. 8is: 1. Get the Fy(t,q) functions by Eq. 15; 2. Substitute these results in Eq. 13 to get the g;(t,q)
functions; 3. Substitute these results in Eq. 14 to get the h(t,q) function. Take into account in this
process that Fj;(t,q) = 0 and that Fy,(t,q) = —F;(t,q) (i.e, it is antisymmetric functional matrix).

However, two different classes of solutions must be considered depending on the system
dimension n. This is due to the antisymmetric definition of the F;(¢t,q) functions. On the one hand,
if n is even, then, in general det(Flk(t, q)) # 0. In this case Egs. 14 or 15 are independent. On the other
hand, if n is odd, then always det(Fy(t,q)) = 0, and being det(Fy.(t,q)) # 0 for the n-1 even
dimension, one of the Eq. 14 is dependent on the others, which makes that some F(t,q) functions
become undetermined parameters from which the rest ones depend on.

Actually, this last case always happens due to Eq. 14 is a coupled set of n equations and n+1
unknown variables: g;(t,q) (I = 1,2,...,n) and h(t, q). For instance, let the special one-dimensional
(n=1) odd case be. The consistence conditions that provide Eq. 14 become:

dag(t,q) , oh(tq)
n(t ==+ =25 =0 (16)

Note that Eq. 16 does not provide the A(t, q,p) = f(t,q) multiplying function. When this case
happens, the Dirac’s method [7] prescription is to consider the equations such as Eq. 16 as secondary
constraints. In order to get the multiplying function in an equation, the time derivative is taken in Eq.
16:

. _on(ap) | on(tap) . , an(tap) . _
1t q) =—7r—+—"=q+—2=p=0 17)

Taking into account the Hamilton equations of Eqs. 9 and 10, as for the primary constraints, Eq.
17 becomes, after some calculations:

d2g(tq) , 3*h(t.q) d%g(tq) , 8*h(t.q)\ _
at2 + at dq +f(t'q)( dq ot + aq? )_0 (18)
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Note in Eq. 18 that just an equation is provided for two unknown variables, g(t,q) and h(t,q),
then one of the two variables become undetermined, and therefore, different solutions can be applied.

Now, with all the formalism developed, the g;(t,q) (j = 1,2,...,n) and h(t,q) functions can be
found, and the Hamiltonian can be written from Eqs. 7 and 8§, as:

HEap) = ) fi6) (b - 95(6@) +h(t.@) =
j=1 (19)

=21 it @ -pj — Xi=1 fi(t, @) - g;(t, @) + h(t, q)

Observe in addition that, if the action is represented by S(t,q), the corresponding Hamilton-
Jacobi equation for this Hamiltonian is:

as(t.q) as(t.q) _
o T 2= fi(6 Q)qu +W(t,q) =0 (20)

Note that in Eq. 20: W(t,q) = — X7, f;(t, @) - g;(t,q@) + h(t, q).

On the other hand, Egs. 13-15 are deduced by Havas in Annex 2 of [11] for the Lagrangian of Eq.
2, which provides that both approaches, Lagrangian and Hamiltonian, are equivalent, such as
Govaerts demonstrates in [12] for fields. Also Mico in [8] deduces both formalisms and demonstrates
their equivalence for the abstract dynamical systems here dealt. However, the odd n case is solved
by Havas [11] and Mic¢ [8] by adding the differential equation g, (t) = 0. With this new equation,
n+l is even and, in general, det(F;(t,q)) # 0, becoming independent Eqgs. 14 and 15, such as it
happens in the even n case.

3. First Order Schréodinger Equation

Again, in order to provide a self-contained work, the results of [6] to obtain the quantum
approach to the abstract dynamical systems given by Eq. 1, are here also provided. If H(t,q,P) is the
quantum operator corresponding to a known Hamiltonian H(t, q,p), the Schrodinger equation is
written as:

. 0w(t,
io o _
at

H(t,q,p) Y(t q) 1)

In Eq. 21 W(t,q) is the wave function. Due to the Hamiltonian is that corresponding to an
abstract dynamical system such as Eq. 19, o represents the system Planck constant different of the
current Planck constant of physics. Then, the hypothesis assumed is that each abstract dynamical
system has its own system Planck constant, whose value represents a limitation of the mathematical
knowledge on the system. In addition, following the quantization rules provided for the Copenhagen
formalism of the quantum theory [16], H(t,§,P) is an operator that acts on the wave function as:

AEap) Y e =330, (HEDp +5AED) YED+WED YL (22

Such that in Eq. 22: W(t,q) = =X}, f;(t,9) g;(t, @) + h(t,q), W(t, @) ¥(t,q) = W(t,q) ¥(t,q),

. W, . A LA . .
and p; ¥(t,q) = —io %jq). Note in Eq. 22 that the term %Z}‘zl (fj & Qp; +p;fi(t, q)) provides that
the Hamiltonian is a self-adjoint operator [16].

Then, the first order Schrodinger equation corresponding to the Hamiltonian of Eq. 19 is written
as:

. 0¥Y(t,q) .0 on oW (t, .0 on a
io S5 =~ 5B St ) T = S (@) (@) + W) (Ea) (23)

Note that Eq. 23 is a first order partial differential equation, contrary to the physical problems
where it is second order. However, following Bohm and Hiley’s approach [14]: does Eq. 23 provide
a new information for Eq. 1 through a quantum potential arising in Hamiltonian? To answer this
question, splitting the wave function in its amplitude A(t,q) and its phase B(t, q) is needed:

do0i:10.20944/preprints202403.0206.v1



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2024 d0i:10.20944/preprints202403.0206.v1

.B(t,q)
W(t,q) = At q) e o (24)

The substitution of Eq. 24 in Eq. 23 provides, respectively for the real and the imaginary parts of
B(tq)
the equation (after some easy operations and cancelling the term equ):

—AL @ = AL @ T fi(6 @) B2 + AL QW(E, ) (25)
o ad
S 1ﬁ@qf“””—;(t)2 “aw 26)
Dividing Eq. 25 by A(t,q) and dividing Eq. 26 by ¢ and subsequently multiplying it by
2A(t, q):
) Lﬂ@qu””+wﬁ Q) =0 27)
AA2(t,q)
E S (o M) =0 (28)

Eq. 27 provides the Hamilton-Jacobi equation of Eq. 20, corresponding to the Hamiltonian of Eq.
19, for the phase B(t, q), and Eq. 28 provides the probability conservation for the square amplitude
A?(t, @), being the vector of components fj(t,q) (1 < j < n) the probability current density. Note that
contrary to the physical systems, despite that the probability conservation holds, a quantum potential
in the Hamiltonian of Eq. 19 does not arise in this context, which would produce a further quantum
term (following Bohm and Hiley’s approach) in the original abstract dynamical system of Eq. 1. Thus,
the Schrodinger equation Eq. 23 does not provide further mathematical information to Eq. 1.

Therefore, is there any possibility to obtain a second order Schrodinger equation for the abstract
dynamical systems of Eq. 1? The answer is positive, but previously a reformulation of Eq. 1 as a
second order differential equation system is necessary, as well as finding the corresponding
Hamiltonian that will be second order in canonical moments (referred as second order Hamiltonian).
This is the objective of the following section.

4. Second Order Dirac’s Hamiltonian

As “second order”, this section is referred as second order in canonical moments, unlike to Eq.
19, which is first order in abstract canonical moments. Then, a corresponding second order
formulation is needed instead the original Eq. 1. This alternative second order is presented as a
Newtonian-kind equation by multiplying previously Eq. 1 by a set of functions (1 < k < n), here
called as abstract masses my(t,q) (still unknown), and subsequently taking the time derivative, that
is(l<k<n)

a(mu(tg)-ae®) _ d(m(ta)-frta) _ d(m(tq)-fi(t.a) 6(mk(t.q)'fk(t.q)) .
dt dt at +2j- aq; 9j (29)

The Dirac method [7] is also applied here to get the second order Hamiltonian in canonical
moments corresponding to Eq. 29. To do this, the starting Lagrangian is also that of Eq. 2, and also
the corresponding Hamiltonian of Eq. 6 with the primary constants ¢, (t,q,p) = pr — g (t,q) (1 <
k < n). However, due to the multipliers 4,(t,q,p) (1 <k < n) can also depend on the canonical
moments (the Dirac’s method permits it), then, the further hypothesis now assumed is that they have
the following form (1 < k < n):

A(t,q,p) = (30)

2m (t q)

Inserting Eq. 30 in the Hamiltonian of Eq. 6:



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2024 d0i:10.20944/preprints202403.0206.v1

H(t,q,p) = h(t,q) + X}, ¢t q,p) =

2mj (tq)
(31)
= h(t,@) + Do gt (2~ 950 @)

Note in Eq. 31 that also, in addition of the m;(t, q) functions, the h(t,q) and g;(t,q) functions
are still undetermined, i.e., they are not here obtained by Egs. 13-15, due to the new hypothesis of Eq.
30. Taking into account that outside the Hamiltonian expression the primary constants are
¢;(t,q,p) =p; —g;(t,q =0 1 <j <n, the corresponding Hamilton equations for Eq. 31 are (1 <

k <n):
RPN B
WO = 5 = e (32)
_OH _ _ 0n(te) n pj 0g;(tq)
Pe(®) = dqy dqy J=lomi(tq) dqk (33)
Observe that multiplying Eq. 32 by 2m,(t, q), taking the time derivative, and substituting Eq.
33:
d(em(tg)-ar®) _ . _ _ 9h(tg) n pj 0g;(tq)
dt =pe(t) = dqx J=lomj(tq) o (34)

Comparing Eq. 34 with Eq. 29, multiplied by 2, and substituting q;(t) = from Eq. 32, the

2m; (t q)
following equations arise (1 < k < n):

__on(tq)

pj  9g;(ta) _ 3(2my(ta)fi(ta) 0(2mk(t,q)~fk(t.q)) pj
aqy +Z

ta) 0qk ot aq; 2mj(t.q)

+ Yo (35)
Applying the consistency conditions, ¢,(t,q,p) =0 (1 <k <n), and taking into account the
zero values of the primary constants outside the Hamiltonian expression in the Hamilton equations
Eq.32and 33 (I <k <n):
; _ 0 (t.q,p) C00,(t,q,p) ¢ (t,q,p) | ng(t D 0gtq)
betap) ==L ag, +Z o, U Z aq;

j=1 k=1 Jj=1

n n
+25..'=_69k(t,q)_ 99t p; _ohtaq) Z 99, @) _
£, P o0 LT oq; (o) g YGRS
=

]

(36)

From the last term of Eq. 36 equal to zero, the followmg terms can be isolated (1 < k < n):

oh(t,q)
aqg

pj 99t _ 5gk(tq) + 3 6gk(tq) pj
j=1

Zj:l 2m - 2m;(t,q)

Q)  9qk (37)

And the left hand terms (1 < k < n) of Eq. 35 can be substituted by the right hand terms (1 <
k < n) of Eq. 37:

09kt | yn Ogkt@) _ Pj  _ 0(2mi(ta)-fr(tq)) 0(2mk(t,q)~fk(t.q)) Pj
+ Z = dq; 2m;(t, Pl at + Z aq; 2m;(t,q) (38)
Note from Eq. 38 that the following results hold (1 < k < n):

9 (t, @) = 2my(t, @) - fi(t, q) (39)

In addition, Eq. 37 can be rewritten as:

n pj  (99i(t@) dgr(te)) _Oh(tq) _Odgr(ta) _
j=1 2m;(t,q) ( aqy aq; ) aqy a 0 (40)
Then, from Eq. 40, the following sufficient conditions are assumed to be held:
0gj(ta) _ agx(t.q) ,
Toa —oq 1<jk<n (41)
oh(t@) , 99kt _
0. T ot =0 1<k<n (42)

And from Eq. 39 in Egs. 41 and 42:
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B(mj(t,q)-f j(t.q)) _o(m(ta) frta)

<ilk< 43

aqy 9q; t=plesn )

ontg) _  9(2my(t.q) fk(tq) 1<k<n (44)
aqk - at - -

Note that both sets of Egs. 43 and 44 must be obeyed in order that the Hamiltonian of Eq. 31
holds for Egs. 29, which are an equivalent second order formulation of Eq. 1.

Note in addition that, by Eq. 43, these abstract masses can be arbitrary as long as they obey it. In
addition, they also could be chosen by a question of practical or theoretical convenience. For instance,
if the field f(t,q) derived from a potential, then the abstract masses could be all taken equal to unit
or constant values. Also the h(t,q) can be arbitrary as long as it obeys Eq. 44. Also in addition, it
could be chosen by a question of practical or theoretical convenience. For instance, if the dynamical
system was autonomous, i.e., f(t,q) = f(q), then the abstract masses could be all taken as m;(q)
and h(t,q) = 0. However, a general solution for the abstracts masses can be provided: m;(t,q) =
, being p;, constants with the suitable dimensions. Then, Eq. 43 holds identically and it can be

fk (t @
also considered that h(t,q) = 0.

Substituting Eq. 39 in Eq. 31, the second order Hamiltonian arises:
H(t,q,p) = h(t, @) + X}y (tq) 9t q,p) =

= h(t,@) + D gt (0 = 2my (6 @) £ @) =

(45)
v}
J=1amj(tq)

=h(t, @) + X7

7:1]‘}'(1:; q) "Dj

And the corresponding Hamilton equations given by Eq. 32 plus the substitution of Eq. 39 in Eq.

33(1<k<n):
_ _ Pk
4 () = apk P (46)
__oH __ont@ , wn P d(mita)fte)
O e P PRI S Sy 7y R PN (47)

Note that Egs. 43 and 44 must be obeyed in Eqs. 45-47. However, to obtain the second order
corresponding Schrodinger equation by applying the quantization rules [16] on the Hamiltonian of
Eq. 45, imaginary terms such those of Eq. 23’s second right hand arise, due to the terms proportional
to p; (1 <j <n)inEq. 45. These terms make that the corresponding time-independent second order
Schrodinger equation be non-real. Then, a canonical transformation is needed on Eqs. 45-47 to cancel
these terms. The proposed canonical transformationis (1 < I < n):

Q=q }
_ml(ti q) 'fl(t' ‘I)

To prove that Eq. 48 is a canonical transformation the following matrix equation must be obeyed
[17]:

(48)

M-j-MT =] (49)

In Eq. 49, M (M” is the transposed matrix of M), and ] are the following 2nx2n dimensional

matrices:
5l [5]
J :[—O?n g;] ; M= [gg]nxn [a ]nxn (50)
q

ap nxn nxn

In Eq. 50 I, is the nxn identity matrix and 0, is the nxn null matrix. Taking into account Eq.
48, the M matrix and its transposed matrix M” become:
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_[ ] . r_|[In On
M_[O In] ! M _[_FT In] (51)
Where in Eq. 51 [Fn],r—a(m’(tg—;f’(tq)) 1<[r<n, and [FT]lr—a(mr(t;—;lﬁ(m)) 1<lr<n.

Then, the left hand side of Eq. 49 becomes:

M-]-MTz[F"__IF”T én] (52)

However, in Eq. 52, [E,], — [ET], = a(ml(t:;f (&) a(mr(t;’;lf et q)) 1 < I, <n; but all these

terms are zero due to Eq. 43. Therefore, Eq. 49 holds, and the proposed transformation in Eq. 48 is
canonical, i.e., it preserves the Hamilton equations.

In order to get the transformed Hamiltonian, K(t,Q,P), from the previous Hamiltonian,
H(t,q,p), the generating function, G, is needed. The three functions are related by the following
equations [17]:

aQ aF
Pk—Z?ﬂaT;Pl:a 1<k<n (53)
aQ aF
?zla—pipﬁa 1<k<n (54)
a0 oF

_H + K Zl 1 atl = a_ (55)
Taking into account Eq. 48, — 6,k, then, from Eq. 53: py — P, = T ie, m(t,q) - fi(t, @) =
a—F. Besides, from Eq. 48 in Eq. 54 — =0, thus, F(t,q,p) = F,(t,q), i.e., mi(t,q) - fi.(t,q) = M,

gy
(t Q) fx(t, Q). Inaddition, from Eq. 48in Eq.55: K = H + thus
taking (Q,P) as the 1ndependent variables, the primary constants in Hamiltonian of Eq. 44 become,
by Eq. 48, ¢;(t,q,p) = ¢;(t,Q,P) =P —m;(t,Q)-fj(t,Q) (1<k<n), and the transformed
Hamiltonian, also taking into account Eq. 48, becomes:

and also, from Eq. 48: aFl(t @ _

K(t,Q,P) = H(t,Q,P) + "5 =
(56)

=h(t, Q) + 1 (P +m;(t, Q) - f(t, Q)) 0,(t, Q. P) _|_0F1(t0)

I=10m(6.Q) (to)

Note in Eq. 56 that the term — = CLRG

i(aFl(tQ)) a (0F1(tQ))t
a0, \ ot at\ a0

%(mk(t, Q) - fi.(t, Q)) = a_Qk(_Eh(t’ Q)) ; then, comparing both results: w = —%h(t, Q) .

must be computed. To do this, note that from the above

result that: (mk(t, Q) fi(t, Q)). However, from Eqgs. 44 and 48:

Therefore, the transformed Hamiltonian becomes:

K&Qm—hu®+zz (r+m (@£t @) gt 0.P) =

m;(t, Q)
(57)

= h(t, Q)+,

- (tq)—— -1 (6,Q) - f7 (6, @)

Observe that in this transformed Hamiltonian, the h(t, Q) function obeys Eq. 44 due to the
change in the dynamical variables is the identity, i.e,, Q; = q; (1 £ < n). For the same reason, the
same assertion can be done about the relationships of Eq. 43 that the abstract masses must obey.

From now on, for the sake of simplicity, the expressions of the dynamical velocities and of the
canonical moments are recovered for the, i.e., P, 2 pj, Q; 2 q;, and also for the expression of the
Hamiltonian, K(t,Q,P) = H(t, q,p). Therefore, Eq. 46 is rewritten as:
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1 <
H(t,q,p) =5h(t,@) + ]Zm(pj +m(t @) f;(6,@) 9;(t.0,p) =
=1 (58)

=h(t,q) +330, 2y m(t q) - (6 q)

m; (tq)_

Here, the fact that Eqs. 43 and 44 must be held in this last Hamiltonian is emphasized. However,
if the abstract dynamical system of Eq. 1 is autonomous, the abstract masses can be chosen, by Eq. 43,
as time-independent, and h(t,q) =0 by Eq. 44, as it has been pointed out above. Then, the
Hamiltonian of Eq. 58 becomes a time-conserved magnitude, which, as in the physical context, is
called here as energy and represented by E. Its expression form Eq. 57 is therefore:

2
1gn pj

i@ 2 SYamy(@) - (@) (59)

E_

Also, the Hamilton-Jacobi equation corresponding to the Hamiltonian of Eq. 58 is:

2
as aS(t,
(O 4yt (B) Iy m ) @ D=0 (60)

In addition, taking into account that the transformed primary constraints are zero outside the
Hamiltonian of Eq. 58, ie., ¢;(t,q,p) =p; —m;(t,q) - fj(t,q) =0 (1 <j <n), the corresponding
Hamilton equations of this Hamiltonian are (1 < k < n):

. _ OH _ pr+mp(tq)-fi(t.9)

qi(t) = s — (61)
) _oH __10nt@ | wn  Prmyc@fce 3(mita) 1)
Dr(t) = e 2 oax + 2j-1 (o) o0r (62)

To end this section, the proof that the second order version (Eq. 29) of original Eq. 1 is recovered
from Egs. 61 and 62, is provided. Isolating p, from Eq. 61 and taking the time derivative, it can be
equalled to Eq. 62, by also using Eq. 44, thatis (1 < k < n):

@M@ 4 - m(6@) - filt @) =

(63)
_10(2m(te) fr(tD) P a(mj(ta) fi(tm)
____________4_2
T2 at 2m;(t,q) aqy
And after handling Eq. 63, taking into account Eq. 61 (1 < k < n):
d .
E(ka(ﬁ Q- q) =
(64)
d t t.q) p m;(t.q)-fj(t.q)
(mk(t D folt, ) + (my( q)fk( ) +3 L4 o(m; 0qk] )

Note in Eq. 64 that the first and second terms of the right hand equation are the same by
expanding the total time derivative of the first term, therefore:

a(m;e)-f;t.)
dqx

a(mk(t Q) Fk(t.q))

= @my(t,q) - ;) = 22 IED) g5 g, (65)

Dropping the term 2 in Eq. 65, Eq. 29 is recovered. This deduction is important to be compared
with the deduction made in the following section. There, the quantum potential (obtained from the
second order Schrodinger equation) changes significantly Eq. 29, and also the original Eq. 1.

5. Second Order Schrédinger Equation

As “second order”, this section is referred to the second order partial derivatives respect the
dynamical variables of the Schrodinger equation. They arise by applying the quantization rules [16]
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to the canonical moments of the Hamiltonian of Eq. 58, once the primary constants are substituted
(that is, the second equality of Eq. 58), taking into account that in Eq. 58 the canonical moments are
now second order. Therefore, if H(t,§,P) is the quantum operator corresponding to the Hamiltonian
of Eq. 58 (its second equality), the Schrodinger equation is written again as:

.o, Flr A s
o 7050 = [(6,9,9) W (¢, q) (66)

In Eq. 66 ¥(t,q) is the wave function, where ¢ represents again the system Planck constant,
with the same sense commented in Section 2. In addition, following the quantization rules provided
by the Copenhagen formalism of the quantum theory [16], H(t,§,P) is an operator that acts on the
wave function as:

1a0) Y60 = 3355 (g P + gy Y0 @ +

m;(tq) (67)

H(38em e e +1hED) Y )

Such that in Eq. 67: (—% mom(,q) - fA a)) W(t,q) = (—§ momy(t,q) - FA(, q)) w(t,q),
Lh(e Wt q) = 2h(t, @) - (@) and §; W(t,q) = —io Z2L Note that the term %zyzl(
L J
Pi e
is not dealt in [16]). In fact, by making explicit this operator in Eq. 67, and subsequently in Eq. 66, the
second order Schrodinger equation arises:

mamm

) W(t,q) provides that the Hamiltonian is a self-adjoint operator (see [18] for this case, which

. ow(t,
io o _
at

_1o(ym 1 2?%(te) 68
22 (Zj:lmj(t,q) 9q? + 2] 1aq (m o, w(t, Q)>> (68)

nmi(t,q) - fA(tq) - ¥(t.q) +h(t,q) - ¥(tq)

If the abstract dynamical system of Eq. 1 is autonomous, the abstract masses can be chosen, by
Eq. 43, as time-independent, and h(t,q) =0 by Eq. 44, as it has been pointed out in Section 4.
Therefore, the time-independent second order Schrédinger equation corresponding to Eq. 68 can be

.E
found by the current substitution ¥(t,q) = €7%" - (q), where E corresponds to the system energy
of Eq. 59, that is:

E-y(q) =
10?2 n 1 9%Y(q)
77( @ ot 20 16q (m (q)w(q)» (69)

—-3r m(@) - A q) - (@)

In order to find out if some quantum potential arises from the second order Schrédinger
equation (Eq. 68), then, as in Eq. 24, the wave function split in its amplitude A(t,q) and its phase
B(t, q) is done:

.B(t,q)
9(t,q) =Alt,q) € o

(70)

Such as it has been done in Section 3, the substitution of Eq. 70 in Eq. 68 provides an equation

for the real part and another equation for the imaginary part (after some operations and cancelling
;Bt.@)
the term € o ):



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 March 2024 d0i:10.20944/preprints202403.0206.v1

13

6B(t ) 2 1 %At AL 1 (9Bt
—A(t ) q __572;1_1 q + 211 Z;'l—1 ( q) _

“Tmj(q) aqu- =tmi@\ aq;
0 an @ ( 1 )BA(t,q) < 1 )
- ——= —A(t, - 71
2 ZI=hoq; \mj@)  0a; G Z] 16‘1 m;(@ 7l

— X my(tq) - fA(6,@) - Alt, @) +3h(t q) - At q)

0A(tq) _ _ _yn OALQ)IB(LY)
at J=1 aq;  agq;
(72)
o 1 8%B(tq) o d ( 1 )6B(t,q)
—=A(t, n ——A(t, n—
2 ( Q) 21—1 m](q) 6q]2- 2 ( Q) Z}—l aqj m}(q) aqj

Dividing the first one by A(t,q) and dividing the second one by o and subsequently
multiplying it by 2A(t, q):

2
aB(t 1 0B(t, 1on 1
D e (B2) Xm0 @+ SR + Y@ =0 (3)
A2 (tq) 1 0B(tq) 52 _
+ 2= (m 0 oa — A%, q)) 0 (74)

In Eq. 73, V,(t,q) is the quantum potential, whose expression is:

_dlon az( 1 )_ a2 n i( 1 aA(t,q))
Va(t@) = =152 \m; () ~ 24 %=1 aq; \m;c) 0q; (75)

Therefore, Eq. 73 represents the quantum Hamilton-Jacobi equation [14], due to the difference
with the Hamilton-Jacobi equation of Eq. 60 is the quantum potential of Eq. 75. In addition, Eq. 74

represents the conservation of the probability density provided by A%(t,q), being the vector of
1  0B(tq)

mj(t.q) 0q;

coordinates (1 £j < n) the current density.

6. The Quantum Hamilton Equations and the Quantum Formulation of the Abstract Dynamical
Systems

By comparing the Hamilton-Jacobi equation of Eq. 60 and that corresponding to the wave
equation phase of Eq. 73, the difference is the quantum potential V,(t, q). Then, following Bohm and
Hiley’s interpretation of quantum mechanics [14], a quantum version of the Hamiltonian can be
found out, H,(t, q,p), differenced from the Hamiltonian of Eq. 58 by the quantum potential, that is:

Hy(t,q,p) = H(t,q,p) + V,(t, @) =

= 3t @) + Zfa g () + my (6 @) 16 @) 05 (6.0, 9) + Vo (60) 6

2
_1lon pj 1

=28 22D f7 (6 @) + 5 h(t, @) + Vy (£, @)

In Eq. 76 V,(t,q) is the quantum potential of Eq. 75. Therefore, taking into account that the
transformed primary constraints are zero outside the Hamiltonian of Eq. 76 (¢;(t,q,p) =p; —
m;(t,q) - f;(t,q) = 0,1 < j < n), the quantum Hamilton equations corresponding to the quantum
Hamiltonian of Eq. 76 are (1 < k < n):

. _ OHg _ prt+me(t.@) fr(t.a)

Q) =5, = 2mp(6.q) (77)
3 (£) = _0OHq _ _10h(tq n p,-+m,-(t.q)-f,-(t,q)0(m,-(t.q)-f,-(t,q)) Vgt (78)
Pk aqy 2 9qy J=1 2m;(t,q) dqy dqy
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The second order version of the abstract dynamical system corresponding to the quantum
Hamilton equations, Egs. 77 and 78, is also obtained by following the method to obtain Eq. 65 from
Egs. 61 and 62: isolating p, from Eq. 77 and taking the time derivative, it can be equalled to Eq. 78,
by also using Eq. 44, thatis (1 < k < n):

Mt @) 4 - m(t@) it @) =

(79)
_ 10Cmta fita) | S ISLTICOIFIC 3(mj(a)f;(6)  avg(ta)
T2 at ij(t,q) aqy aqy
And after handling Eq. 79, taking into account Eq. 77 (1 < k < n):
d .
I @my(t, q) - 4x) =
(80)

3(mj(ta)f(t®)  avy(ta)

(M (t.@) fr(t, p
(mk(t D - fi(t, ) 4 Jmett q) [1e) + X514y aar L

Note in Eq. 80 that the first and second terms of the right hand equation are the same by
expanding the total time derivative of the first term, therefore:

4 o) = o 200 Fit) 5 A0 1,¢0)  ovytea)
dt (ka (t, Q) qk) - ot +2 Z] 1 ] Aqx Ern (81)
Dividing by 2 in Eq. 81, Eq. 29 is recovered, now with the additional quantum term — 1)
2 0qg
However, trying to recover the original Eq. 1, Eq. 81 can be rewritten more simplified as:
a Ceoy At frte) 13Vt
L (e, q) - gp0) = LD s (82)

Taking now the time integral in Eq. 82 and subsequently dividing by m;(t,q) (1 < k <n), the
quantum version of Eq. 1 is obtained, that is (1 < k < n):

. t Vg

4k (t) = fi(t, @) — (tq) to PaK

(s.q(s))ds (83)

Note in Eq. 83 that the quantum potential V,(t,q) is provided by Eq. 75, taking into account that

A(t,q) = |¥(t, q)| = \/ W(t,q) - ¥*(t,q), after being solved the second order Schrodinger equation
(Eq. 68) for the wave function W(t, q), or its time-independent version (Eq. 69) for the autonomous

case for the wave function ¥(q), such that ¥(t,q) = e“'gt -(q). In this last case, A(q) = |¥(t,q)| =
l¥(Ql.

In addition, if the second order Schrodinger equation of Eq. 68 (or its time-independent version
of Eq. 69 for the autonomous case) provides quantized wave functions depending on an integer n,
¥, (t, q), base of a Hilbert space, this quantization can be translated to quantum formulation of Eq.
83.

However, Eq. 83 can be presented as a 2n-dimensional system by defining the additional

dynamical variables x,(t) = to . ] (s,q(s))ds (1 <k < n). Therefore, Eq. 83 becomes (1 < k < n):

4 () = fi(t, @) — (tq)
o () = Vet (84)
X (1) = Toar
Note that, in order to compute the quantum dynamics by Eq. 84, the initial values are needed: if
t =ty = 0 istheinitial time, then q,(t,) = q(o) (1 £ k < n)mustbeknown, and x;(t)) =0 (1 <k <

n), following the above integral definition of x;(t).
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7. The Autonomous One-Dimensional Case: The Logistic Function Dynamics

To better support the formalism provided and its limitations, an application case is presented:
the one-dimensional case particularized to the logistic function dynamics. Then, Eq. 1 can be written
as:

c'z(t)=f(q)=a-q—b-q2} (85)
q(to) = qo

Eq. 85 can describe a population dynamics with parameter b > 0, which avoids an infinite
population growth. Parameter a can be positive or negative, and represents the population growth
rate (if positive) or population decay rate (if negative). If a > 0, the q = 0 value is a repulsor from
which the dynamics escapes, and the g = ¢ = a/b value is a saturation population or attractor to
which the dynamics tends asymptotically (growing toward q = c if the initial value is gy < ¢, and
decaying toward q = c if the initial value is q, > c). If a <0, the q = ¢ value is a repulsor from
which the dynamics escapes, and the value q =0 is an attractor to which the dynamics tends
asymptotically (decaying toward q = 0 if the initial value is qy < ¢, and infinitely growing if the
initial value is q, > c).

For the application case the following values are taken: t, = 0.0 qo = 2.0, a =0.01, and b =
0.001, thus ¢ ==

toward g =c =

5 = 10.0. Therefore, the dynamics represents the case of an asymptotic growth
% = 10.0. In addition, to compute the classical logistic dynamics given by Eq. 85, the
integration of the equation differential provides:

c

q(t) = e oW (86)

It must be highlighted that all figures and computations have been obtained with the
MATHEMATICA software except for the quantized energies, which have been obtained by a C++
program.

First of all, Eq. 86 provides Figure 1 for the classical logistic dynamics with the above values
chosen. Note that for a long time term of t = 1000.0 time units the dynamics tends to the attractor

a
c =-=10.0.
b
107................................_.‘. .... B R T L L
\‘\‘ =
\‘
\‘
8 -
-
3 -
it R4
= 6 — 4
] -
= ~
L4

— 4 -
= -
= [

2{*"

. . .
200 400 600 800 1000

Time

Figure 1. Classical logistic dynamics by Eq. 86, solution of Eq. 85, with the particular values provided
(to =0.0 go =2.0, a=0.01, and b =0.001), with t = 1000.0 time units. The dotted straiht line
value represents the saturation value ¢ = % = 10.0 and the dot dashed curve the classical logistic

dynamics.

Figure 1 is important to be presented because it is compared along all section with the quantum
dynamics provided by the corresponding formulation of Eq. 84. Note that being the case one-
dimensional, the corresponding abstrac mass can be taken equal to the unit (m(q) = 1). Then, Eq. 84
becomes for this case as (t, = 0.0 gy = 2.0, a = 0.01, and b = 0.001):
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q®) =fl@~-5=a-q—b-q*—>

x(t) = VqI(Q) (87)
q(to) = qo
x(ty) =0

Note that the g-derivative of the quantum potential V;(q) contains already the abstract Planck
system o (see Eq. 75). Then, its value should be here provided. However, it is provided above for the
reasons there explained. In addition, to obtain this quantum potential V,(q) and its g-derivative
V;(q), the corresponding time-independent Schrodinger equation of Eq. 69 must be solved. After
some manipulations it becomes (note that m(q) = 1):

'@+ (E2+ ) y(g) = 0 (88)

Notein Eq. 88 that f(q) = a - q — b - ¢*. The way to solve it has two differenced steps. In the first
step the approach is analytical, and it is inspired in the method provided in [19] (concretely in that of
the IV section called as transformation-group method) to reduce a differential equation that models a
forced time-dependent oscillator to an autonomous differential equation. The second step is a
numerical approach.

The first step consists in two consecutive changes: first on the dependent variable, ¥(q) =
e?@q(q), and second on the independent variable z = z(q), then w(z) = Q(q(z)). After some
calculations, including the €@ cancellation, both changes provide:

(' () w" (2) + z'(q)(z"(q) +20'(@Q)w'(2) +

+( f(q) ) w(z) = 0

In Eq. 89 the term multiplying w'(z) can be vanished if z"(q) +2-6'(q) =0, i.e, if z'(q) =
—20(q) or z(q) = -2 f ? 0(y) dy, being q, an arbitrary value. Then, Eq. 89 becomes:

(89)

n

46%(q) w" (@) + (8”@ + (@) + =2 + ) w(z) = 0 (90)
Now, Eq. 90 is forced to hold that:
0"(@) +(0'(@)" + 52+ % = k2 - 46%(q) 1)
In Eq. 91 the constant k? # 0. Then, Eq. 90 becomes:
w'(z) +k?-w(z)=0 (92)

The solution of Eq. 92 is then trivial:
w(z)=C-sinlk-z+y) (93)

In Eq. 93 C and y are two arbitrary constants. Undoing now the proposed changes, the
analytical solution of Eq. 88 is:

Y(q) = C-€Wsin (—Zk fq‘i 6(y) dy + y) (94)

Some additional considerations about the solution (q) of Eq. 94 must be done. The first one is
choice of the k value. Note that in the neighbouring of the points ¢ =0 and g = c=a/b, f(q) =0,
then, Eq. 91 becomes approximately:

0" () + (0'(@)" + % = 4k?6(q) (95)

A solution of Eq. 95 is an arbitrary constant 6(q) = R, then 8'(q) =6"(q) =0 and k = ig.

Note that the energy must positive, E > 0. In addition, in the neighbouring of the critical points of
f(@) (f(q) = 0), the Eq. 94 solution becomes:

do0i:10.20944/preprints202403.0206.v1
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Y(q) = C - €Rsin (?%quo Rdy + y) = (- eFfsin (??(q —qo) + y) (96)
In Eq. 96, the sign of + ? can be chosen taking into account that, also in the neighbouring of
the critical points of f(q) (f(q) = 0), Eq. 88 becomes:
(@) +ZP(g) = 0 (97)
Being the Eq. 97 solution (with E > 0):
W) =D -sin(Lq +0) (98)

Comparing Egs. 96 and 98, the conclusions are that the sign considered in Eq. 96 must be

positive, i.e., +g and, in addition, the respective constants are related as D = C-€% and

—g% + vy = 6. Therefore, k = —%, and in Eq. 94: -2k = %. The R constant value can be
arbitrary and it has been considered as R = 1. Therefore, Eq. 94 can be rewritten as:
. (VZE
Y(q) = C - €°@sin (“Z 7 0(y) dy +v) (99)

And, in addition, Eq. 91 becomes:
2
0" () + (0'(q))" + =2 =2 (0%(q) - 1) (100)

This author’s paper has not been able to find the analytical solution of Eq. 100. Therefore, at this
point the numerical approach is necessary to be taken. This numerical approach needs of the system
Planck constant value ¢ and of the boundary conditions. Several numerical essays with different
E > 0 values provide an adequate o = 10 value, although strangely it can look like a big value.
Besides, the boundary conditions considered have been: §(0) = —1, trying to obtain a negative
domain for 6(q), and 6'(0) = 0, trying that ¢ = 0 be a maximum, and that 6(q) - —o0 as q = +oo.
Therefore, in Eq. 99, ¥(q) = 0, as g = to. These assumptions are confirmed below with the
numerical solutions of Egs. 99 and 100.

In addition, under the hypothesis that the wave function cancels in the two critical points of
f(q), the wave function becomes quantized. On the one hand, if 1(0) = 0:

?fqoo@(y) dy+y=m-n ; mnEL (101)
On the other hand, if ¥(c) = 0:
@f;oﬁ(y) dy+y=m-n, ; m, €L (102)
Subtracting Eq. 102 minus Eq. 101, the condition of quantization arises:
JZ{,T"IOC 6,()dy =n(n,—ny) =m-n ; n=n,—n; €ZLg (103)

Note in Eq. 103 that n=n,—n; <0 due to foc 0,(y)dy <0, under the 6,(q) above
assumptions and below confirmed. Therefore, in order to compute the E, energies, with n <0, Eq.

103 must be considered jointly the quantized version of Eq. 100 (the boundary conditions are now
added):

2 2
61 (@) + (6n(@)" +E2 =22 (02(9) - 1)
6,(0) = —1 ; MELg (104)
6,(0) =0
Once the E, energies are obtained, from Eq. 102: y =m-n; + ? foqo 0(y)dy =n(n, —n) +

g ) Oqo 6(y) dy. However, - n, can be removed due to this term influence does not provide further

mathematical information. The substitution in Eq. 99 provides the quantized wave functions:

do0i:10.20944/preprints202403.0206.v1
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Ya(@) = Gy - €2 @sin (L2216, (y) dy 7 - ) (105)

o]

En
Note that the €, must be positive as a consequence that the set {‘Pn (t,q) =e Sy, (q)}

n=-1
be orthonormal, for the scalar product f_+:)° v (t,q) - ¥,(t,q)dq = f_:o Y (q) - Wo(t,q) dg < +. In
other words: f:: wr(t,q) W,(t,q)dg = f_Jr;O Yo (@) ¥, (t,q)dq=C,Cp -8y, . Therefore,
W, (t,q) € L*(R) Vn € Zy, such as it is numerically showed below for the first three negative
integers.

In order to compute the quantum dynamics by Eq. 87, the quantum potential must be computed.
First of all the modulus of the wave function becomes quantized, that is:

A (@) = |¥,(t, q)| = B,€%@

sin <@ foq 0,(y)dy —m- n)| (106)

Note in Eq. 105 that the absolute value vanishes due to the quantum potential computation is
finally divided by A,(q). Effectively, from Eq. 75 for the present application case:
o? d*A,(q)
24,(9) dq*

@ =~
(107)

2 2 [2E, ,, 2En
_r 2(q) +E, - %ggn(q)(zgn(q) + 1)cotg (‘/U—foq 6,y)dy —m- n)

In the Eq. 107 derivation, the quantized differential equation of Eq. 104 has been taken into
account to simplify it. Then, the g-derivative of V;I(") (q) becomes:

av,” (q)

q =f@-f'(@—

JZE,

q
En
0

V2E, 2
- 20 (63/(@)(26,(0) + 1) + 2(6(@))”) cotg

6n(q)-67.(q)(26n(q)+1)
sin? (—“zfn f(? 0,(y) dy—n.n)

+E,

Taking into account Eq. 108, Eq. 87 to compute the quantum depending on the any integer n <
0 becomes:

qn(t) = 0.01 - g, — 0.001 - g3 — 2

(n)
o (6) = 220 (109)
Qn(o) =2 J
x,(0) =0

Let now present the results. First, the quantized energies have been computed by setting up a

C++ program for Eq. 103 plus the phase ¢,(q) = ‘/ZUT" foq 6,(y) dy of Eq. 105, due to the energies are

involved in both equations. This program has used the 4th order Runge-Kutta method to solve the
differential equations, such that ¢, (q) is rewritten as a differential equation as ¢ (q) = 6,(q) with

¢,(0) = 0. The C++ program includes the condition that the energies E, must hold ¢,(c) =

g
are presented in Table 1 for the 10 first negative integers.

foq 0,(y) dy = m - n, with an error bound of 103, for each n < 0 considered. The energy outcomes

Table 1. Quantized energies.

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
E, 4.838 19.350 43.538 77.401 120939 174.153  237.041 309.604 391.843 483.757
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The numerical results for n= -1, 6;(q) of Eq. 104, and the corresponding ¢,(q) =
‘/Z_Elfoq 0:(y) dy, are presented in Figure 2, for the interval q € [-15 ¢, 15 - ¢] = [-150,150]. Note

a

that 6,(q) <0 and that 6,(q) » — as q = oo, which implies that, by Eq. 105, ¥;(t,q) = 0 as
q — too.In addition, as it is showed below numerically, f:: Y, (t, q) < o, therefore W, (t,q) € L*(R).

o1(q) function
w1(q) function

Abstract variable q Abstract variable q

‘/? foq 6,(y) dy funtion (right) for the interval

Figure 2. 6,(q) (left) and the corresponding ¢;(q) =
q € [-15-¢,15 - c] = [-150, 150].

Similar patterns to those of Figure 2 present 6,,(q) and ¢,(q) for the subsequent negative
integers. Therefore, from now on, the attention is focused in the wave functions of Eq. 105 and the
quantum dynamics provided by Eq. 109 for the three first negative integers. All the results have been

@=L

obtained from the previous results of 6,(q) and ¢, 6,(y) dy in the interval q €

[-15-¢,15 - ¢] = [-150, 150]. Note that the g-derivative of the quantum potential of Eq. 108 present
singularities when @ foq 0,(y)dy —m-n=0. These singularities represent the fundamental

difference between the classical dynamics given by Eq. 1 and the quantum dynamics given by Eq.
109. The way that these singularities are overcome is explained below. To do this, both the wave
function and the corresponding quantum dynamics are presented in the following three figures in
the same interval q € [-15-¢,15 - ¢] = [—150,150].

Figure 3 presents the normalized wave function 1,(q) of Eq. 105 jointly the corresponding
quantum dynamics g, (t) for t € [0,1000] of Eq. 109, plotted jointly the Figure 1 classical dynamics.
On the one hand, note that, such as announced above, ;(q) = 0, as ¢ = . The C; constant is

computed, as usual, as Cf = f_t: Y2(q) dq = fjllss’.: Y?(q) dg = 7.348 . On the other hand, no
singularity arises in the quantum dynamics g, (t), at least in the interval t € [0,1000]. Therefore, the
quantum dynamics g4 (t) represents a correction of the classical logistics dynamics of Figure 1 that
should be taken into account for empirical studies. However, some singularities do arise in the

following two cases.

q(t) dynamics

wave function: y1(q)

-0.15 200 400 600 800 1000
Abstract variable q Time

Figure 3. Normalized wave function ,(q) for q € [-15:¢,15¢] = [-150,150] (left) and the
corresponding quantum dynamics ¢q,(t) for t € [0,1000] (right). The quantum dynamics
corresponds to the continous curve, while the dotted straiht line value represents the saturation value
c= % = 10.0 and the dot dashed curve the classical logistic dynamics.
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Figure 4 presents the normalized wave function ¥,(q) of Eq. 105 jointly the corresponding
quantum dynamics q,(t) for t € [0,1000] of Eq. 109, plotted jointly the Figure 1 classical dynamics.
On the one hand note that, such as announced above, ¥,(q) = 0, as ¢ » . The C, constant is
computed, as usual, as Cf = f_+;° Y2(q)dq = f:'f;:w%(q) dq = 10.345. On the other hand, a
singularity arises in the quantum dynamics q,(t) in the time t = 136.53, corresponding to q =
5.050. It is represented in Figure 4 with a vertical line. The solution to represent the quantum
dynamics in all the overall interval t € [0,1000] has been to consider the characteristic time interval

= GE = 0.689, provided in [16]. This time represents an approximation for the Energy-Time
1752

uncertainty relation, and then it can be interpreted as a time interval for which no information about
the quantum dynamics is known. Then, the quantum dynamics is computed first in the interval ¢ €

[0, 136.53 —%] with the same initial conditions, and in a second interval t € [136.53 +A2—T, 1000]
with ¢ (136.53 + %) =51 and x (136.53 + %) =0.0. Avoiding like this the singularity, the

quantum dynamics q,(t) represents again a correction of the classical logistics dynamics of Figure 1
that should be taken into account for empirical studies.

15

00

q(t) dynamics

Wave function: 42(q)
I

0.1

- 200 400 600 800 1000
Abstract variable g Time

Figure 4. Normalized wave function ¥,(q) for q € [-15:¢,15¢c] = [-150,150] (left) and the
corresponding quantum dynamics q,(t) for t € [0,1000] (right). The quantum dynamics
corresponds to the continous curve, where the vertical line in t = 136.53 represents the singularity,
while the dotted straiht line value represents the saturation value ¢ = % = 10.0 and the dot dashed
curve the classical logistic dynamics.

Figure 5 presents the normalized wave function 3(q) of Eq. 105 jointly the corresponding
quantum dynamics qs(t) for t € [0,1000] of Eq. 109, represented jointly the Figure 1 classical
dynamics. Again, such as announced above, ¥3(q) = 0, as q = Foo. The C; constant is computed,
as usual, as C% = f:: Y2(q)dq = f_?;: Y3(q) dq = 14.492. On the other hand, also a singularity
arises in the quantum dynamics q;(t) in the time t = 63.81, corresponding to g = 3.367. It is
represented in Figure 5 with a vertical line. The solution to represent the quantum dynamics in all
the overall interval t € [0,1000] has been to consider again the characteristic time interval At =

B GE = 0.689, provided in [16], with the meaning mentioned above in the context of Figure 4. Then,
1752

the quantum dynamics is computed first in the interval t € [0,63.81 - %] with the same initial

conditions, and in a second interval t € [63.81 + %, 1000] with q (63.81 + %) =34 and x (63.81 +
%) = 0.0. Avoiding like this the singularity, the quantum dynamics g;(t) represents now a very

different periodic kind-pattern, not a correction of the classical logistics dynamics of Figure 1, which
also could be taken into account for empirical studies.
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g g

Al 200 400 600 800 1000
Abstract variable q Time

Figure 5. Normalized wave function 3(q) for q € [-15-¢,15-c] = [-150,150] (left) and the
corresponding quantum dynamics q3(t) for t €[0,1000] (right). The quantum dynamics
corresponds to the continous curve, where the vertical line in t = 63.81 represents the singularity,
while the dotted straiht line value represents the saturation value ¢ = % =10.0 and the dot dashed
curve the classical logistic dynamics.
To complete the results presented, note that f_t: Y,(q) - P,(q) dg = f_+1155‘: P,(q) - Y,(q) dg =

+15-c

0.00003 , [*71(q) - w3(@) dg = [70 1 (@) - 3(q) dg = ~0.00001 and [T 1(q) - s(q) dg =
1) Hise Y,(q) - P3(q) dq = 0.003. These outcomes point out that, numerically, it can be asserted that

—15-c En —o
the set {¥,(t,q) = €70 Y (@)}
is lesser in the third integral than for the other two first integrals. Note that this outcome is related
with density of curves in the same interval q € [-15-¢,15 - c] = [-150,150], and then with the
number of zeros, of the wave function ;(q) in Figure 5, versus 1,(q) in Figure 4 and ¥,(q) in
Figure 3. In fact, subsequent results not here presented support this trend: the density of curves in
the same interval q € [—-15 ¢, 15 - ¢] = [-150,150], and then the number of zeros, increase as the
quantum integer becomes more negative.

is orthonormal. However, the approximation to the zero value

That pattern indicates that, as the quantum integer becomes more negative, the number of
singularities increases for the quantum dynamics of Eq. 109. For instance, for n = —4, a singularity
arises at t = 24.82, becoming also periodical the dynamics after the singularity; and for n = =5 a
first singularity arises at t = 0.53 and a second one at t = 72.61. For this last case, the pattern
between the first and second singularity is of growing-kind, while the pattern after the second
singularity is also periodical, similar to that of Figure 5.

The general conclusions of this section can be summarized as:

1. The system energy is positive and it becomes quantized as a function of the non-zero negative
integers, over the hypotheses that the quantum wave vanishes in the critical points of the

logistic function. Table 1 shows these energy outcomes.

—oo

En
2. The set of quantized wave functions given by Eqs. 104 and 105, {\I/n (t,q) =€ "y, (q)} ,

n=-1
define an orthonormal set of functions, i.e., f_+: W (tq) V,(t,q)dq=Cy - Cp - Spm-

3. Itis expectable that, as the quantum integer becomes more negative, the density of curves of
Y, (q) by Eq. 105 increases in the all the domain g € (—eo, +°), as well as the number of zeros
in the same interval.

4. Asaconsequence of item 3, it is also expectable that, as the quantum integer becomes more
negative, the number of singularities will increase in the time interval of prediction for the

quantum dynamics given by Eq. 109.
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5. As a consequence of item 4, the conception of quantum trajectory given by Eq. 109 becomes
radically different from the classical trajectory given by Eq. 85. The growth of singularities as

the negative integers become more negative seems to be the key point of this radical difference.

In addition, a general conclusion is that a fundamental objective of research must be to study if
the singularities can be avoided. Avoiding the singularities will allow a better comparing between
classical and quantum dynamics, such as Figure 3 provides. However, on the other hand, the
singularities could be unavoidable under the quantization hypotheses stated and other quantization
hypotheses should be instead stated. Note that these quantization hypotheses provided in Eqs. 99
and 100 have been ¥(0) =0 and ¥(c) =0, but other hypotheses could provide a quantum
dynamics that avoids the singularities. Besides, although the quantization hypotheses ¥(0) = 0 and
Y(c) = 0 maintain, the boundary conditions 6,(0) = -1 and 6,(0) =0 in Eq. 104 could be
different, in order to avoid the singularities.

Finally, the assumption of the system Planck constant as o = 10 has been chosen by numerical
computations’ convenience. However, finding the way to relate the system Planck constant with
other significant constants of other formalisms could be necessary. For instance, in the work [20],
Feigenbaum provides significant constants in the context of the logistic dynamics and similar
functions. Then, could the system Planck constant be related with those constants? And, in addition,
if the singularities discovered were unavoidable, could they represent also a route to chaos as the
integers of the quantum approach become more negative?

Therefore, only in the context of this section, the future research is enormous and it has to be
gone on.

8. Discussion and Conclusions

A first discussion and the corresponding conclusions have been presented in the final
paragraphs of Section 7. It is unavoidable to present them in the context of Section 7 because the
formalism presented has been put in practice for the application case of this section. Therefore, for
concrete discussion and conclusions about the quantum dynamics of the logistic function, Section 7
must be addressed.

However, on the other hand, the application case of Section 7 can also enlighten the general
discussion and conclusions paper. A first question that any researcher of General Systems Theory or
of mathematical-physics could wonder is if there exists a need of such formalism. The answer is
positive in the sense that an understanding of the world complexity needs of new formalisms such
as here presented. However, this is only an epistemological assumption, and only future empirical
supports could provide the formalism validity.

Besides, from a mathematical point of view, note that Dirac’s work [7] was what allowed to
obtain his equation for fermionic quantum fields [21]. That equation is also first order in the partial
derivatives, such the first order Schrodinger equation of Eq. 23. However, Eq. 23 is non-relativistic
unlike Dirac’s equation. However, a magnitude such as the information speed, similarly to the light
speed, has never been defined in the context of abstract dynamical systems. If this magnitude could
be discovered and empirically supported, may be a kind of Dirac’s equation could be developed. In
this context, the Fj,(t,q) (k,l = 1,2,...,n) of Eq. 14 could play the role of the electromagnetic field
and the g;(t,q) (I =1,2,..,n)and the h(t,q) could play the role of, respectively, its vector potential
and its scalar potential. However, that theoretical advance has not been produced and, in addition,
the first order Schrodinger equation of Eq. 23 presented in Section 3 no further information provides
to the dynamics of abstract dynamical systems.

The last disappointing conclusion is what motivates the second order formulation presented
from Section 4 until Section 7. It must be highlighted that both Hamiltonians of Section 4, those
corresponding to Eqs. 47 and 58, could provide significant information besides its use to obtain a
second order Schrodinger equation in Section 5. For instance, the energy conservation of autonomous
systems for both Hamiltonians, could help us to better understand the classical dynamics of the
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abstract dynamical systems? This point should be also investigated. In addition, could there be a
universal way to define the abstract masses? The answer has been provided also in Section 4: the
_Hk
frta)

suitable dimensions. In this case, Eq. 43 holds identically, and it can be also considered that h(t,q) =

0. Therefore, the application case of Section 7 could have been presented like this, i.e., as m(q) = %

instead m(q) = 1. Then, the conclusions of the application case could be different. This hypothesis
must also be investigated.
However, the most important contribution of this paper is, in Section 5, the second order

abstract masses could be defined as m;(t,q) = (k =1,2,..,n), being p; constants with the

Schrodinger equation of Eq. 68 or tis time-independent version of Eq. 69 for autonomous systems;
and besides, in Section 6, the quantum formulation of the abstract dynamical systems of Eq. 84. Note
that more application cases must be developed besides that of Section 7.

On the one hand, similar theoretical contributions to that of Section 7 must be developed trying
to discover if the abstract masses choice can be universal, such as discussed above, or their choice can
be arbitrary (while they hold Egs. 43 and 44). On the other hand, the formalism needs of a great
amount of empirical supports. The systems that could support all the formalism presented can be of
different nature. For instance, population dynamics or chemical reaction dynamics can provide a
great amount of empirical data to support the formalism, basically because both kind of dynamical
systems are modelled by systems of first order differential equations.

A question that must also be studied in a future research is the stochastic formulation of Eq. 84.
This question was highlighted by Bohm and Hiley in [14]. In fact, in that work, the deterministic and
the stochastic approaches are considered. The stochastic approach can provide reliable quantum
dynamics, i.e., outcomes with confidence intervals, which are not possible with a deterministic
approach. To support this possible approach, note that the wave functions of Eq. 105 are probability
densities. In addition, the stochasticity consideration could provide a quantum dynamics similar to
those of physical systems, such as the dynamics of an electron around the proton in a hydrogen atom
[16]. However, the stochastic approach must take part of a subsequent phase of research, after having
found better theoretical and empirical support for the formalism presented.

Finally, this paper’s author is conscious that the system Planck constant is, conceptually, a
challenger magnitude. Its inclusion in the formalism causes epistemological and mathematical
questions difficult to be explained without previous empirical or theoretical evidences. Some ways
to support its existence and its value for a particular abstract dynamical system have been discussed
in the Section 7 conclusions. However, from a theoretical approach, the system Planck constant arises
with the translation of the quantum formalism to the abstract dynamical systems, such as it has been
showed throughout this paper. However, as in all new proposed theories, the existence of the system
Planck constant, as well as all the formalism background, take part of a hypothetical proposal that
must be supported in a future by empirical evidences.
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