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Abstract: This paper presents a quantum formulation for classical abstract dynamical systems 
(ADS), defined by coupled sets of first order differential equations. They are referred as “abstract” 
because their dynamical variables can be of different interrelated nature, not necessarily 
corresponding to physics, such as populations, socioeconomic variables, behavioural variables, etc. 
A first order classical Hamiltonian in canonical moments can be derived for ADS by using Dirac’s 
dynamics for singular Hamiltonian systems. And also a corresponding first order Schrödinger 
equation (which involves the existence of a system Planck constant particular of each system) can 
be derived from this Hamiltonian. However, Bohm and Hiley’s reinterpretation of quantum 
mechanics produces no further information about the mathematical formulation of ADS. However, 
a second order classical Hamiltonian in canonical moments can be also derived for ADS, as well as 
a corresponding second order Schrödinger equation. In this case, Bohm and Hiley’s reinterpretation 
of quantum mechanics provides a quantum Hamiltonian that does provide the quantum 
formulation for ADS, which provides new quantum variables interrelated dynamically with the 
classical variables. An application case is presented: the one-dimensional autonomous system given 
by the logistic dynamics, where the differences between the classical and the quantum trajectories 
are highlighted. 

Keywords: dynamical systems; general systems; classical dynamics; Schrödinger equation; 
quantum formulation; Bohm and Hiley’s interpretation; quantum dynamics; logistic function 

 

1. Introduction 

General System Theory was proposed by Bertalanffy [1] as a new complementary approach to 
Science in order to provide it of a mathematical universal language. Since that work, some attempts 
to state a General System Theory have been provided. For a summary of these attempts see [2]. 
However, the objective to provide that universal language seems by the moment too ambitious and 
it has been steered to provide general systems as theories that unify different fields of Science. An 
example is provided by the work [3] that proposes a unified mathematical view of energy in 
psychology and physics. The method followed in [3] is the so-called isomorphism of systems proposed 
by Ferrer [4], i.e., translating a known contrasted theory from a field to another field where similar 
problems try to be solved. 

The present paper objective holds the isomorphism of systems proposal: translating the quantum 
formalism from dynamics of physical systems to abstract dynamical systems. Note that the 
dynamical systems in physics are defined generally by Newton laws, i.e., by coupled sets of second 
order differential equations. However, abstract dynamical systems are here referred as dynamical 
models given by coupled sets of first order differential equations, where the unknown temporal 
variables have different interrelated nature, not necessarily corresponding to physics, such as 
populations, socioeconomic variables, behavioural variables, etc. Actually, these systems are known 
in the literature about the subject simply as dynamical systems (see for example the work by Anosov 
and Arnold [5]). However, including the adjective abstract presents the transdisciplinary aspect of 
this kind of systems. This question must be emphasized because, for instance, a system Planck constant 
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is presented in the formalism, and it is not the physical Planck constant, but a singular constant of the 
particular system under study.  

A first attempt of a (non-relativistic) quantum formalism for abstract dynamical systems was 
presented by this author’s paper in [6], but he did not reach any significant solution. Then, this paper 
tries to present a significant solution to that objective from a rigorous mathematical approach, 
although no empirical support has yet been found. Therefore, this paper tries to open a new field of 
research, which lies between General System Theory and mathematical-physics, by presenting the 
theoretical finding obtained.  

To reach that formalism the well-known method to obtain the Schrödinger equation from the 
Hamiltonian is also followed. Then, the first step is to obtain the Hamiltonian for an abstract 
dynamical system. The method followed is what discovered by Dirac [7], who provides a method to 
obtain a Hamiltonian for which the canonical moments either cannot be explicitly isolated from the 
general velocities (i.e., the time derivatives of the configuration variables) or the canonical moments 
vanish. This last case is also known as a singular system, and it is which corresponds to an abstract 
dynamical system, as it is showed in this work.  

Actually, the real objective of Dirac in the work [7] was to quantize the electromagnetic field due 
to it is given by first order partial differential equations. Therefore, it was an approach steered to 
solve the problem for fields rather for abstract dynamical systems. However, getting the Hamiltonian 
for abstract dynamical systems can also be solved with this Dirac’s formalism. See the works [8–10] 
for that solution, although only in [6,9] the subsequent quantization method is presented in two 
different ways: from a first order Hamiltonian in the canonical moments in [6], and from a second 
order Hamiltonian in the canonical moments in [9]. The differences about the Hamiltonian 
formulated by first or second order in canonical moments are clarified throughout this paper.  

Besides Hamiltonian Dirac’s approach, there exists a Lagrangian approach provided by Havas 
[11], who obtains equivalent results to the Hamiltonian Dirac’s approach of [7]. Govaerts highlighted 
that equivalence for first order fields in [12] and it was also highlighted for abstract dynamical 
systems in [8]. Both problems are known in mathematical-physics respectively as the inverse Lagrange 
problem and as the inverse Hamiltonian problem. In other words, the inverse Lagrange problem consists in 
finding the Lagrangian corresponding to a coupled set of differential equations; therefore, this set 
must obey the Euler-Lagrange equations. Besides, inverse Hamiltonian problem consists in finding the 
Hamiltonian that holds the Hamilton equations; therefore, this set must obey the Hamilton equations. 

Havas presents the inverse Lagrange problem solution for abstract dynamical systems in the 
Annex B of [11] from a set of general sufficient equations that solve the inverse Lagrange problem for 
a more significant number of differential systems. Those sufficient solutions were presented in a 
previous work [13], where a wide range of general inverse Lagrange problems were dealt and solved. 
However, Micó in [8] solves the inverse Lagrange problem for abstract dynamical systems by 
following a simpler way and also showing the equivalence with the corresponding inverse 
Hamiltonian problem by Dirac’s method [7].  

Besides, the paper’s objective enounced as translating the quantum formalism from dynamics of 
physical systems to abstract dynamical systems, can be brought further by the Bohm and Hiley’s 
reinterpretation of quantum mechanics [14]. This reinterpretation provides a quantum potential 
correction to the classical equations through the quantum Hamilton-Jacobi. In fact, the quantum 
Hamilton-Jacobi equation arises from the polar form of the quantum wave function and its split in 
modulus, which provides the probability conservation, and in phase or action, which provides the 
quantum Hamilton-Jacobi equation. Bohm and Hiley linked this correction to the existence of a 
microscopic level underlying the quantum level of description. However, the present paper tries to 
interpret a possible quantum correction of abstract dynamical systems as a quantum term which 
arises rather from the own system complexity. In addition, a system Planck constant, particular of each 
system studied and then with different value of physical Planck constant, is presented in the 
formalism. Then, the formalism presented assumes an epistemological correction to the dynamics of 
an abstract dynamical system, playing a fundamental role the system Planck constant. Also that 
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incapability is present in Bohm and Hiley’s formalism [14], but as emphasized above, due to the 
assumption of a microscopic world underlying the quantum level. In this paper this incapability is 
only assumed in advance as a hypothetical epistemological principle. In fact, throughout the paper, 
the usual predictions of the abstract dynamical systems are called as classical dynamics, while the 
predictions of the abstract dynamical systems quantum correction are called as quantum dynamics. 
Also, depending on the context, classical dynamics can be referred as classical trajectory, and quantum 
dynamics can be referred as quantum trajectory.  

In addition, Dirac’s first order Hamiltonian in canonical moments is showed here that provides, 
by using the quantization rules, a first order Schrödinger equation that has not a Bohm and Hiley’s 
quantum potential correction. Therefore, the solution found is applying the same method provided 
by Dirac in [7] to a second order Hamiltonian in canonical moments. To do this, the abstract 
dynamical system must be previously reformulated as a second order abstract dynamical system (by 
taking the time derivative). In addition, some abstract masses are needed to obtain the second order 
Hamiltonian in canonical moments. In fact, the corresponding Hamilton equations are Newtonian-
kind equations where the abstract masses play the same role as the masses in the physical systems. 
In the subsequent step, a canonical transformation is needed to simplify the Hamiltonian. This further 
Hamiltonian provides, by using again the quantization rules, a second order Schrödinger equation 
for which the action does provide the Bohm and Hiley’s quantum potential correction. Finally, the 
first order abstract dynamical system can be recovered: the quantum potential correction arises as an 
integral term. This integral term can be represented by a new system of first order differential 
equations coupled with the original ones.  

Besides, one of the most important theory about abstract dynamical systems is referred as 
synergetics, term coined by Haken [15]. This formalism is probably the closest to here presented. In 
fact, it provides a partial differential equation, the Fokker-Planck equation, for a stochastic abstract 
dynamical equation, given by Ito equations (see also [15]), which plays a similar role to Schrödinger 
equation in Hamiltonian systems. The Fokker-Planck equation provides the time evolution of the 
probability density. However, the starting point is stochastic, not deterministic, such as the case here 
presented. 

In fact, the deterministic or stochastic character of the formalism presented must be commented. 
In the present work, the approach is deterministic, i.e., the quantum correction of abstract dynamical 
systems is applied by deterministic dynamics, although the approach could be also stochastic in 
future works, due to the quantum potential is derived from the previous wave function, which has a 
stochastic nature. In fact, both differenced cases are considered in the Bohm and Hiley’s work [14]. 
This deterministic quantum correction is studied in the application case of Section 7. In this case, the 
quantum potential presents singularities that highlight the profound differences between the concept 
of classical trajectory and the quantum trajectory here provided.  

In order to present the formalism announced, Section 2 is devoted to the first order Dirac’s 
Hamiltonian in canonical moments for an abstract dynamical system. In Section 3, the corresponding 
first order Schrödinger equation is obtained, showing that no quantum potential correction arises in 
the Hamiltonian. Therefore, Section 4 is devoted to obtain a second order Dirac’s Hamiltonian in 
canonical moments for an abstract dynamical system. Section 5 makes use of this Hamiltonian to 
obtain the corresponding second order Schrödinger equation, which does present a quantum 
potential correction in the Hamiltonian. Section 6 presents the quantum formulation of the abstract 
dynamical systems from the corresponding quantum Hamilton equations. Section 7 presents an 
application case: the one-dimensional autonomous system given by the logistic dynamics. Section 8 
is devoted to the paper discussion and conclusions.  

2. First Order Dirac’s Hamiltonian  

An abstract dynamical system is defined by the following coupled set of differential equations 
(1 ≤ 𝑘 ≤ 𝑛): 
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𝑞ሶ௞(𝑡) = 𝑓௞(𝑡, 𝒒)  (1) 

In Eq. 1 𝑡 is the time variable and 𝒒 = (𝑞ଵ, 𝑞ଶ, … , 𝑞௡) represent the dynamical variables. Their 
nature can be arbitrary, not necessarily of physical nature, such as populations, chemical or 
biochemical species, socioeconomic or behavioural indicators, etc. In addition, the 𝑓௞(𝑡, 𝒒) (1 ≤ 𝑘 ≤𝑛 ) represent their dynamical interactions, considering in advance equipped by all kinds of 
smoothness properties to develop suitably the formalism. In addition, 𝒒ሶ = (𝑞ሶଵ, 𝑞ሶଶ, … , 𝑞ሶ௡) are called 
as the dynamical velocities.  

Following the methodology developed by Dirac [7] for fields, the works [8,10] applied it to 
obtain a Hamiltonian to abstract dynamical systems. The method presented in those works is also 
here presented due to they are needed in the subsequent sections. Such as noted Dirac in [7], a 
Lagrangian for Eq. 1 is only possible if it is linear in the dynamical velocities, that is:  𝐿(𝑡, 𝒒, 𝒒ሶ ) = ∑ 𝑔௝(𝑡, 𝒒) · 𝑞ሶ௝ − ℎ(𝑡, 𝒒)௡௝ୀଵ   (2) 

In Eq. 2, the 𝑔௝(𝑡, 𝒒) and ℎ(𝑡, 𝒒) functions are still undetermined. The corresponding canonical 
moments are then defined as (1 ≤ 𝑘 ≤ 𝑛): 𝑝௞ = డ௅డ௤ሶ ೖ = 𝑔௞(𝑡, 𝒒)  (3) 

Note in Eq. 3 the first problem: the canonical moments do not depend on the dynamical 
velocities, thus the dynamical velocities cannot be isolated from the canonical moments. However, in 
addition, applying the Hamiltonian definition:  𝐻଴(𝑡, 𝒒, 𝒑) = ∑ డ௅డ௤ሶ ೕ · 𝑞ሶ௝ − 𝐿(𝑡, 𝒒, 𝒒ሶ )௡௝ୀଵ = ℎ(𝑡, 𝒒)  (4) 

Note in Eq. 4 that the canonical moments are represented as 𝒑 = (𝑝ଵ, 𝑝ଶ, … , 𝑝௡). Besides the first 
problem provided by Eq. 3, Eq. 4 shows a second problem: the 𝐻଴ Hamiltonian does not depend on 
the canonical moments. Due to these two problems 𝐻଴ is referred as singular. The Dirac method [7] 
consists in solving both problems by, first, defining the primary constants 𝜙௞(𝑡, 𝒒, 𝒑) as (1 ≤ 𝑘 ≤ 𝑛):  𝜙௞(𝑡, 𝒒, 𝒑) = 𝑝௞ − 𝑔௞(𝑡, 𝒒)  (5) 

And subsequently reinserting the primary constants in the Hamiltonian 𝐻଴ as the usual way of 
the (still undetermined) Lagrangre multipliers 𝜆௞(𝑡, 𝒒, 𝒑) (1 ≤ 𝑘 ≤ 𝑛): 𝐻(𝑡, 𝒒, 𝒑) = 𝐻଴(𝑡, 𝒒, 𝒑) + ෍ 𝜆௝(𝑡, 𝒒, 𝒑) · 𝜙௝(𝑡, 𝒒, 𝒑)௡

௝ୀଵ = 

= ℎ(𝑡, 𝒒) + ∑ 𝜆௝(𝑡, 𝒒, 𝒑) ቀ𝑝௝ − 𝑔௝(𝑡, 𝒒)ቁ௡௝ୀଵ   
(6) 

Note that the Dirac method to reinsert the canonical moments implies that, in the context of the 
Hamiltonian 𝐻(𝑡, 𝒒, 𝒑), the primary constants are not identically zero, but 𝜙௝(𝑡, 𝒒, 𝒑) = 0 when they 
are applied in the Hamilton equations. Therefore, the Hamilton equations become (1 ≤ 𝑘 ≤ 𝑛): 𝑞ሶ௞(𝑡) = డுడ௣ೖ = ∑ డఒೕ(௧,𝒒,𝒑)డ௣ೖ · 𝜙௝(𝑡, 𝒒, 𝒑)௡௝ୀଵ + ∑ 𝜆௝(𝑡, 𝒒, 𝒑) · డథೕ(௧,𝒒,𝒑)డ௣ೖ௡௝ୀଵ = 𝜆௞(𝑡, 𝒒, 𝒑)  (7) 

𝑝ሶ௞(𝑡) = − 𝜕𝐻𝜕𝑞௞ = − ෍ 𝜕𝜆௝(𝑡, 𝒒, 𝒑)𝜕𝑞௞ · 𝜙௝(𝑡, 𝒒, 𝒑)௡
௝ୀଵ − ෍ 𝜆௝(𝑡, 𝒒, 𝒑) · 𝜕𝜙௝(𝑡, 𝒒, 𝒑)𝜕𝑞௞

௡
௝ୀଵ − 𝜕ℎ(𝑡, 𝒒)𝜕𝑞௞ = 

= − డ௛(௧,𝒒)డ௤ೖ + ∑ 𝜆௝(𝑡, 𝒒, 𝒑) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ   
(8) 

Note that, comparing Eqs. 1 and 7, the simplest solution is: 𝜆௞(𝑡, 𝒒, 𝒑) = 𝑓௞(𝑡, 𝒒) (1 ≤ 𝑘 ≤ 𝑛). 
Then, the Hamilton Eqs. 7 and 8 become (1 ≤ 𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = డுడ௣ೖ = 𝑓௞(𝑡, 𝒒)  (9) 
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𝑝ሶ௞(𝑡) = − డுడ௤ೖ = − డ௛(௧,𝒒)డ௤ೖ + ∑ 𝑓௝(𝑡, 𝒒) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ   (10) 

In order to determine the 𝑔௝(𝑡, 𝒒) and ℎ(𝑡, 𝒒) functions, the so-called by Dirac as consistency 
conditions, 𝜙ሶ ௟(𝑡, 𝒒, 𝒑) = 0 (1 ≤ 𝑙 ≤ 𝑛), are applied. Then, from Eq. 5: 𝜙ሶ ௟(𝑡, 𝒒, 𝒑) = డథ೗(௧,𝒒,𝒑)డ௧ + ∑ డథ೗(௧,𝒒,𝒑)డ௤ೖ 𝑞ሶ௞௡௞ୀଵ + ∑ డథ೗(௧,𝒒,𝒑)డ௣ೖ 𝑝ሶ௞௡௞ୀଵ = 0  (11) 

The substitution of Eqs. 9 and 10 in Eq. 11 provides, taking into account the zero value of the 
primary constraints, and after some calculations (1 ≤ 𝑙 ≤ 𝑛): − డ௚೗(௧,𝒒)డ௧ − డ௛(௧,𝒒)డ௤೗ + ∑ ቀ− డ௚೗(௧,𝒒)డ௤ೖ + డ௚ೖ(௧,𝒒)డ௤೗ ቁ 𝑓௞(𝑡, 𝒒)௡௞ୀଵ = 0  (12) 

In Eq. 12 the following 𝐹௞௟(𝑡, 𝒒) functions can be defined (𝑘, 𝑙 = 1,2, … , 𝑛): 𝐹௞௟(𝑡, 𝒒) = −𝐹௟௞(𝑡, 𝒒) = − డ௚೗(௧,𝒒)డ௤ೖ + డ௚ೖ(௧,𝒒)డ௤೗   (13) 

Therefore, Eq. 12 can be rewritten by using Eq. 13 as (𝑙 = 1,2, … , 𝑛): ∑ 𝐹௟௞(𝑡, 𝒒) 𝑓௞(𝑡, 𝒒)௡௞ୀଵ = − డ௚೗(௧,𝒒)డ௧ − డ௛(௧,𝒒)డ௤೗   (14) 

In order to obtain an equation for the 𝐹௟௞(𝑡, 𝒒) functions without the ℎ(𝑡, 𝒒) function, such as 
in Eq. 14, the following steps are followed: 1. Take the partial derivative respect an arbitrary 𝑞௝ in 
Eq. 14; 2. Rewrite Eq. 14 by replacing l by j; 3. Take the partial derivative respect 𝑞௟ in the rewritten 
equation; 4. Subtract both equations. Taking into account the equality of both ℎ(𝑡, 𝒒)  crossed 
derivatives, the result is (𝑗, 𝑙 = 1,2, … , 𝑛): డிೕ೗(௧,𝒒)డ௧ = డడ௤ೕ (∑ 𝐹௟௞(𝑡, 𝒒) 𝑓௞(𝑡, 𝒒)௡௞ୀଵ ) − డడ௤೗ ቀ𝐹௝௞(𝑡, 𝒒) 𝑓௞(𝑡, 𝒒)ቁ  (15) 

Therefore, the process to obtain the 𝑔௝(𝑡, 𝒒) and ℎ(𝑡, 𝒒) functions of the Hamiltonian given by 
Eq. 8 is: 1. Get the 𝐹௟௞(𝑡, 𝒒) functions by Eq. 15; 2. Substitute these results in Eq. 13 to get the 𝑔௝(𝑡, 𝒒) 
functions; 3. Substitute these results in Eq. 14 to get the ℎ(𝑡, 𝒒) function. Take into account in this 
process that 𝐹௟௟(𝑡, 𝒒) = 0 and that 𝐹௞௟(𝑡, 𝒒) = −𝐹௟௞(𝑡, 𝒒) (i.e, it is antisymmetric functional matrix).  

However, two different classes of solutions must be considered depending on the system 
dimension n. This is due to the antisymmetric definition of the 𝐹௟௞(𝑡, 𝒒) functions. On the one hand, 
if n is even, then, in general 𝑑𝑒𝑡൫𝐹௟௞(𝑡, 𝒒)൯ ≠ 0. In this case Eqs. 14 or 15 are independent. On the other 
hand, if n is odd, then always 𝑑𝑒𝑡൫𝐹௟௞(𝑡, 𝒒)൯ = 0 , and being 𝑑𝑒𝑡൫𝐹௟௞(𝑡, 𝒒)൯ ≠ 0  for the n-1 even 
dimension, one of the Eq. 14 is dependent on the others, which makes that some 𝐹௟௞(𝑡, 𝒒) functions 
become undetermined parameters from which the rest ones depend on. 

Actually, this last case always happens due to Eq. 14 is a coupled set of n equations and n+1 
unknown variables: 𝑔௟(𝑡, 𝒒) (𝑙 = 1,2, … , 𝑛) and ℎ(𝑡, 𝒒). For instance, let the special one-dimensional 
(n=1) odd case be. The consistence conditions that provide Eq. 14 become: 𝜂(𝑡, 𝑞): = డ௚(௧,௤)డ௧ + డ௛(௧,௤)డ௤ = 0  (16) 

Note that Eq. 16 does not provide the 𝜆(𝑡, 𝑞, 𝑝) = 𝑓(𝑡, 𝑞) multiplying function. When this case 
happens, the Dirac’s method [7] prescription is to consider the equations such as Eq. 16 as secondary 
constraints. In order to get the multiplying function in an equation, the time derivative is taken in Eq. 
16:  𝜂ሶ(𝑡, 𝑞) = డఎ(௧,௤,௣)డ௧ + డఎ(௧,௤,௣)డ௤ 𝑞ሶ + డఎ(௧,௤,௣)డ௣ 𝑝ሶ = 0  (17) 

Taking into account the Hamilton equations of Eqs. 9 and 10, as for the primary constraints, Eq. 
17 becomes, after some calculations: డమ௚(௧,௤)డ௧మ + డమ௛(௧,௤)డ௧ డ௤ + 𝑓(𝑡, 𝑞) ቀడమ௚(௧,௤)డ௤ డ௧ + డమ௛(௧,௤)డ௤మ ቁ = 0  (18) 
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Note in Eq. 18 that just an equation is provided for two unknown variables, 𝑔(𝑡, 𝑞) and ℎ(𝑡, 𝑞), 
then one of the two variables become undetermined, and therefore, different solutions can be applied.  

Now, with all the formalism developed, the 𝑔௝(𝑡, 𝒒) (𝑗 = 1,2, … , 𝑛) and ℎ(𝑡, 𝒒) functions can be 
found, and the Hamiltonian can be written from Eqs. 7 and 8, as: 

𝐻(𝑡, 𝒒, 𝒑) = ෍ 𝑓௝(𝑡, 𝒒) ቀ𝑝௝ − 𝑔௝(𝑡, 𝒒)ቁ௡
௝ୀଵ + ℎ(𝑡, 𝒒) = 

= ∑ 𝑓௝(𝑡, 𝒒) · 𝑝௝௡௝ୀଵ − ∑ 𝑓௝(𝑡, 𝒒) · 𝑔௝(𝑡, 𝒒)௡௝ୀଵ + ℎ(𝑡, 𝒒)  

(19) 

Observe in addition that, if the action is represented by S(𝑡, 𝒒), the corresponding Hamilton-
Jacobi equation for this Hamiltonian is:  பୗ(௧,𝒒)డ௧ + ∑ 𝑓௝(𝑡, 𝒒) பୗ(௧,𝒒)డ௤ೕ௡௝ୀଵ + W(𝑡, 𝒒) = 0  (20) 

Note that in Eq. 20: W(𝑡, 𝒒) = − ∑ 𝑓௝(𝑡, 𝒒) · 𝑔௝(𝑡, 𝒒)௡௝ୀଵ + ℎ(𝑡, 𝒒). 
On the other hand, Eqs. 13-15 are deduced by Havas in Annex 2 of [11] for the Lagrangian of Eq. 

2, which provides that both approaches, Lagrangian and Hamiltonian, are equivalent, such as 
Govaerts demonstrates in [12] for fields. Also Micó in [8] deduces both formalisms and demonstrates 
their equivalence for the abstract dynamical systems here dealt. However, the odd n case is solved 
by Havas [11] and Micó [8] by adding the differential equation 𝑞ሶ௡ାଵ(𝑡) = 0. With this new equation, 
n+1 is even and, in general, 𝑑𝑒𝑡൫𝐹௟௞(𝑡, 𝒒)൯ ≠ 0, becoming independent Eqs. 14 and 15, such as it 
happens in the even n case.  

3. First Order Schrödinger Equation 

Again, in order to provide a self-contained work, the results of [6] to obtain the quantum 
approach to the abstract dynamical systems given by Eq. 1, are here also provided. If 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) is the 
quantum operator corresponding to a known Hamiltonian 𝐻(𝑡, 𝒒, 𝒑), the Schrödinger equation is 
written as: 𝑖𝜎 డஏ(௧,𝒒)డ௧ = 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) Ψ(𝑡, 𝒒)  (21) 

In Eq. 21 Ψ(𝑡, 𝒒) is the wave function. Due to the Hamiltonian is that corresponding to an 
abstract dynamical system such as Eq. 19, 𝜎 represents the system Planck constant different of the 
current Planck constant of physics. Then, the hypothesis assumed is that each abstract dynamical 
system has its own system Planck constant, whose value represents a limitation of the mathematical 
knowledge on the system. In addition, following the quantization rules provided for the Copenhagen 
formalism of the quantum theory [16], 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) is an operator that acts on the wave function as:  𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) Ψ(𝑡, 𝒒) = ଵଶ ∑ ቀ𝑓௝(𝑡, 𝒒ෝ)𝑝̂௝ + 𝑝̂௝𝑓௜(𝑡, 𝒒ෝ)ቁ௡௝ୀଵ  Ψ(𝑡, 𝒒) + 𝑊(𝑡, 𝒒ෝ) Ψ(𝑡, 𝒒)  (22) 

Such that in Eq. 22: 𝑊(𝑡, 𝒒ෝ) = − ∑ 𝑓௝(𝑡, 𝒒ෝ) 𝑔௝(𝑡, 𝒒ෝ) + ℎ(𝑡, 𝒒ෝ)௡௝ୀଵ , 𝑊(𝑡, 𝒒ෝ) Ψ(𝑡, 𝒒) = 𝑊(𝑡, 𝒒) Ψ(𝑡, 𝒒), 
and 𝑝̂௝ Ψ(𝑡, 𝒒) = −𝑖𝜎 பஏ(௧,𝒒)డ௤ೕ . Note in Eq. 22 that the term ଵଶ ∑ ቀ𝑓௝(𝑡, 𝒒ෝ)𝑝̂௝ + 𝑝̂௝𝑓௜(𝑡, 𝒒ෝ)ቁ௡௝ୀଵ  provides that 

the Hamiltonian is a self-adjoint operator [16]. 
Then, the first order Schrödinger equation corresponding to the Hamiltonian of Eq. 19 is written 

as: 𝑖𝜎 డஏ(௧,𝒒)డ௧ = −𝑖 ఙଶ ∑ 𝑓௝(𝑡, 𝒒) பஏ(௧,𝒒)డ௤ೕ௡௝ୀଵ − 𝑖 ఙଶ ∑ பడ௤ೕ ቀ𝑓௝(𝑡, 𝒒) · Ψ(𝑡, 𝒒)ቁ௡௝ୀଵ  + 𝑊(𝑡, 𝒒) Ψ(𝑡, 𝒒)  (23) 

Note that Eq. 23 is a first order partial differential equation, contrary to the physical problems 
where it is second order. However, following Bohm and Hiley’s approach [14]: does Eq. 23 provide 
a new information for Eq. 1 through a quantum potential arising in Hamiltonian? To answer this 
question, splitting the wave function in its amplitude A(𝑡, 𝒒) and its phase B(𝑡, 𝒒) is needed:  
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Ψ(𝑡, 𝒒) = A(𝑡, 𝒒) ℮௜ా(೟,𝒒)഑   (24) 

The substitution of Eq. 24 in Eq. 23 provides, respectively for the real and the imaginary parts of 

the equation (after some easy operations and cancelling the term ℮௜ా(೟,𝒒)഑ ):  −A(𝑡, 𝒒) ப୆(௧,𝒒)డ௧ = A(𝑡, 𝒒) ∑ 𝑓௝(𝑡, 𝒒) ப୆(௧,𝒒)డ௤ೕ௡௝ୀଵ + A(𝑡, 𝒒)W(𝑡, 𝒒)  (25) 

𝜎 ப୅(௧,𝒒)డ௧ = −𝜎 ∑ 𝑓௝(𝑡, 𝒒) ப୅(௧,𝒒)డ௤ೕ௡௝ୀଵ − ఙଶ A(𝑡, 𝒒) ∑ ப௙ೕ(௧,𝒒)డ௤ೕ௡௝ୀଵ   (26) 

Dividing Eq. 25 by A(𝑡, 𝒒)  and dividing Eq. 26 by 𝜎  and subsequently multiplying it by 2A(𝑡, 𝒒):  ப୆(௧,𝒒)డ௧ + ∑ 𝑓௝(𝑡, 𝒒) ப୆(௧,𝒒)డ௤ೕ௡௝ୀଵ + W(𝑡, 𝒒) = 0  (27) 

ப୅మ(௧,𝒒)డ௧ + ∑ பడ௤ೕ ቀ𝑓௝(𝑡, 𝒒) · Aଶ(𝑡, 𝒒)ቁ௡௝ୀଵ = 0  (28) 

Eq. 27 provides the Hamilton-Jacobi equation of Eq. 20, corresponding to the Hamiltonian of Eq. 
19, for the phase B(𝑡, 𝒒), and Eq. 28 provides the probability conservation for the square amplitude Aଶ(𝑡, 𝒒), being the vector of components 𝑓௝(𝑡, 𝒒) (1 ≤ 𝑗 ≤ 𝑛) the probability current density. Note that 
contrary to the physical systems, despite that the probability conservation holds, a quantum potential 
in the Hamiltonian of Eq. 19 does not arise in this context, which would produce a further quantum 
term (following Bohm and Hiley’s approach) in the original abstract dynamical system of Eq. 1. Thus, 
the Schrödinger equation Eq. 23 does not provide further mathematical information to Eq. 1. 

Therefore, is there any possibility to obtain a second order Schrödinger equation for the abstract 
dynamical systems of Eq. 1? The answer is positive, but previously a reformulation of Eq. 1 as a 
second order differential equation system is necessary, as well as finding the corresponding 
Hamiltonian that will be second order in canonical moments (referred as second order Hamiltonian). 
This is the objective of the following section.  

4. Second Order Dirac’s Hamiltonian 

As “second order”, this section is referred as second order in canonical moments, unlike to Eq. 
19, which is first order in abstract canonical moments. Then, a corresponding second order 
formulation is needed instead the original Eq. 1. This alternative second order is presented as a 
Newtonian-kind equation by multiplying previously Eq. 1 by a set of functions (1 ≤ 𝑘 ≤ 𝑛), here 
called as abstract masses 𝑚௞(𝑡, 𝒒) (still unknown), and subsequently taking the time derivative, that 
is (1 ≤ 𝑘 ≤ 𝑛):  ௗ൫௠ೖ(௧,𝒒)·௤ሶ ೖ(௧)൯ௗ௧ = ௗ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯ௗ௧ = డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௤ೕ௡௝ୀଵ 𝑞ሶ௝  (29) 

The Dirac method [7] is also applied here to get the second order Hamiltonian in canonical 
moments corresponding to Eq. 29. To do this, the starting Lagrangian is also that of Eq. 2, and also 
the corresponding Hamiltonian of Eq. 6 with the primary constants 𝜙௞(𝑡, 𝒒, 𝒑) = 𝑝௞ − 𝑔௞(𝑡, 𝒒) (1 ≤𝑘 ≤ 𝑛). However, due to the multipliers 𝜆௞(𝑡, 𝒒, 𝒑) (1 ≤ 𝑘 ≤ 𝑛) can also depend on the canonical 
moments (the Dirac’s method permits it), then, the further hypothesis now assumed is that they have 
the following form (1 ≤ 𝑘 ≤ 𝑛):  𝜆௞(𝑡, 𝒒, 𝒑) = ௣ೖଶ௠ೖ(௧,𝒒)  (30) 

Inserting Eq. 30 in the Hamiltonian of Eq. 6: 
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𝐻(𝑡, 𝒒, 𝒑) = ℎ(𝑡, 𝒒) + ∑ ௣ೕଶ௠ೕ(௧,𝒒) · 𝜙௝(𝑡, 𝒒, 𝒑)௡௝ୀଵ =  = ℎ(𝑡, 𝒒) + ∑ ௣ೕଶ௠ೕ(௧,𝒒) ቀ𝑝௝ − 𝑔௝(𝑡, 𝒒)ቁ௡௝ୀଵ   
(31) 

Note in Eq. 31 that also, in addition of the 𝑚௝(𝑡, 𝒒) functions, the ℎ(𝑡, 𝒒) and 𝑔௝(𝑡, 𝒒) functions 
are still undetermined, i.e., they are not here obtained by Eqs. 13-15, due to the new hypothesis of Eq. 
30. Taking into account that outside the Hamiltonian expression the primary constants are 𝜙௝(𝑡, 𝒒, 𝒑) = 𝑝௝ − 𝑔௝(𝑡, 𝒒) = 0 1 ≤ 𝑗 ≤ 𝑛, the corresponding Hamilton equations for Eq. 31 are (1 ≤𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = డுడ௣ೖ = ௣ೖଶ௠ೖ(௧,𝒒)  (32) 

𝑝ሶ௞(𝑡) = − డுడ௤ೖ = − డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕଶ௠ೕ(௧,𝒒) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ   (33) 

Observe that multiplying Eq. 32 by 2𝑚௞(𝑡, 𝒒), taking the time derivative, and substituting Eq. 
33:  ௗ൫ଶ௠ೖ(௧,𝒒)·௤ሶ ೖ(௧)൯ௗ௧ = 𝑝ሶ௞(𝑡) = − డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕଶ௠ೕ(௧,𝒒) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ   (34) 

Comparing Eq. 34 with Eq. 29, multiplied by 2, and substituting 𝑞ሶ௝(𝑡) = ௣ೕଶ௠ೕ(௧,𝒒) from Eq. 32, the 

following equations arise (1 ≤ 𝑘 ≤ 𝑛):  − డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕଶ௠ೕ(௧,𝒒) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ = డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௤ೕ௡௝ୀଵ ௣ೕଶ௠ೕ(௧,𝒒)  (35) 

Applying the consistency conditions, 𝜙ሶ ௞(𝑡, 𝒒, 𝒑) = 0 (1 ≤ 𝑘 ≤ 𝑛), and taking into account the 
zero values of the primary constants outside the Hamiltonian expression in the Hamilton equations 
Eq. 32 and 33 (1 ≤ 𝑘 ≤ 𝑛): 𝜙ሶ௞(𝑡, 𝒒, 𝒑) = 𝜕𝜙௞(𝑡, 𝒒, 𝒑)𝜕𝑡 + ෍ 𝜕𝜙௞(𝑡, 𝒒, 𝒑)𝜕𝑞௝ 𝑞ሶ௝௡

௝ୀଵ + ෍ 𝜕𝜙௞(𝑡, 𝒒, 𝒑)𝜕𝑝௝ 𝑝ሶ௝௡
௞ୀଵ = − 𝜕𝑔௞(𝑡, 𝒒)𝜕𝑡 − ෍ 𝜕𝑔௞(𝑡, 𝒒)𝜕𝑞௝ 𝑞ሶ௝௡

௝ୀଵ + 

+ ෍ 𝛿௞௝ 𝑝ሶ௝௡
௝ୀଵ = − 𝜕𝑔௞(𝑡, 𝒒)𝜕𝑡 − ෍ 𝜕𝑔௞(𝑡, 𝒒)𝜕𝑞௝ 𝑝௝2𝑚௝(𝑡, 𝒒)௡

௝ୀଵ − 𝜕ℎ(𝑡, 𝒒)𝜕𝑞௞ + ෍ 𝑝௝2𝑚௝(𝑡, 𝒒) 𝜕𝑔௝(𝑡, 𝒒)𝜕𝑞௞
௡

௝ୀଵ = 0 
(36) 

From the last term of Eq. 36 equal to zero, the following terms can be isolated (1 ≤ 𝑘 ≤ 𝑛): − డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕଶ௠ೕ(௧,𝒒) డ௚ೕ(௧,𝒒)డ௤ೖ௡௝ୀଵ = డ௚ೖ(௧,𝒒)డ௧ + ∑ డ௚ೖ(௧,𝒒)డ௤ೕ ௣ೕଶ௠ೕ(௧,𝒒)௡௝ୀଵ   (37) 

And the left hand terms (1 ≤ 𝑘 ≤ 𝑛) of Eq. 35 can be substituted by the right hand terms (1 ≤𝑘 ≤ 𝑛) of Eq. 37: డ௚ೖ(௧,𝒒)డ௧ + ∑ డ௚ೖ(௧,𝒒)డ௤ೕ ௣ೕଶ௠ೕ(௧,𝒒)௡௝ୀଵ = డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௤ೕ௡௝ୀଵ ௣ೕଶ௠ೕ(௧,𝒒)  (38) 

Note from Eq. 38 that the following results hold (1 ≤ 𝑘 ≤ 𝑛): 𝑔௞(𝑡, 𝒒) = 2𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒)  (39) 

In addition, Eq. 37 can be rewritten as: ∑ ௣ೕଶ௠ೕ(௧,𝒒) ൬డ௚ೕ(௧,𝒒)డ௤ೖ − డ௚ೖ(௧,𝒒)డ௤ೕ ൰௡௝ୀଵ − డ௛(௧,𝒒)డ௤ೖ − డ௚ೖ(௧,𝒒)డ௧ = 0  (40) 

Then, from Eq. 40, the following sufficient conditions are assumed to be held: డ௚ೕ(௧,𝒒)డ௤ೖ = డ௚ೖ(௧,𝒒)డ௤ೕ     1 ≤ 𝑗, 𝑘 ≤ 𝑛  (41) 

డ௛(௧,𝒒)డ௤ೖ + డ௚ೖ(௧,𝒒)డ௧ = 0   1 ≤ 𝑘 ≤ 𝑛  (42) 

And from Eq. 39 in Eqs. 41 and 42: 
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డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ = డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௤ೕ     1 ≤ 𝑗, 𝑘 ≤ 𝑛  (43) 

డ௛(௧,𝒒)డ௤ೖ = − డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧         1 ≤ 𝑘 ≤ 𝑛  (44) 

Note that both sets of Eqs. 43 and 44 must be obeyed in order that the Hamiltonian of Eq. 31 
holds for Eqs. 29, which are an equivalent second order formulation of Eq. 1.  

Note in addition that, by Eq. 43, these abstract masses can be arbitrary as long as they obey it. In 
addition, they also could be chosen by a question of practical or theoretical convenience. For instance, 
if the field 𝒇(𝑡, 𝒒) derived from a potential, then the abstract masses could be all taken equal to unit 
or constant values. Also the ℎ(𝑡, 𝒒) can be arbitrary as long as it obeys Eq. 44. Also in addition, it 
could be chosen by a question of practical or theoretical convenience. For instance, if the dynamical 
system was autonomous, i.e., 𝒇(𝑡, 𝒒) = 𝒇(𝒒), then the abstract masses could be all taken as 𝑚௞(𝒒) 
and ℎ(𝑡, 𝒒) = 0. However, a general solution for the abstracts masses can be provided: 𝑚௞(𝑡, 𝒒) =ఓೖ௙ೖ(௧,𝒒), being 𝜇௞ constants with the suitable dimensions. Then, Eq. 43 holds identically and it can be 

also considered that ℎ(𝑡, 𝒒) = 0.  
Substituting Eq. 39 in Eq. 31, the second order Hamiltonian arises:  𝐻(𝑡, 𝒒, 𝒑) = ℎ(𝑡, 𝒒) + ∑ ௣ೕଶ௠ೕ(௧,𝒒) · 𝜙௝(𝑡, 𝒒, 𝒑)௡௝ୀଵ =  = ℎ(𝑡, 𝒒) + ∑ ௣ೕଶ௠ೕ(௧,𝒒) ቀ𝑝௝ − 2𝑚௝(𝑡, 𝒒) · 𝑓௝(𝑡, 𝒒)ቁ =௡௝ୀଵ   

= ℎ(𝑡, 𝒒) + ∑ ௣ೕమଶ௠ೕ(௧,𝒒)௡௝ୀଵ − ∑ 𝑓௝(𝑡, 𝒒) · 𝑝௝௡௝ୀଵ   

(45) 

And the corresponding Hamilton equations given by Eq. 32 plus the substitution of Eq. 39 in Eq. 
33 (1 ≤ 𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = డுడ௣ೖ = ௣ೖଶ௠ೖ(௧,𝒒)  (46) 

𝑝ሶ௞(𝑡) = − డுడ௤ೖ = − డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕ௠ೕ(௧,𝒒) డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ   (47) 

Note that Eqs. 43 and 44 must be obeyed in Eqs. 45-47. However, to obtain the second order 
corresponding Schrödinger equation by applying the quantization rules [16] on the Hamiltonian of 
Eq. 45, imaginary terms such those of Eq. 23’s second right hand arise, due to the terms proportional 
to 𝑝௝ (1 ≤ 𝑗 ≤ 𝑛) in Eq. 45. These terms make that the corresponding time-independent second order 
Schrödinger equation be non-real. Then, a canonical transformation is needed on Eqs. 45-47 to cancel 
these terms. The proposed canonical transformation is (1 ≤ 𝑙 ≤ 𝑛):  𝑄௟ = 𝑞௟𝑃௟ = 𝑝௟ − 𝑚௟(𝑡, 𝒒) · 𝑓௟(𝑡, 𝒒)ൠ  (48) 

To prove that Eq. 48 is a canonical transformation the following matrix equation must be obeyed 
[17]: 𝑀 · 𝐽 · 𝑀் = 𝐽  (49) 

In Eq. 49, 𝑀 (𝑀் is the transposed matrix of 𝑀), and 𝐽 are the following 2𝑛𝑥2𝑛 dimensional 
matrices:  

𝐽 = ൤ 𝑂௡ 𝐼௡−𝐼௡ 𝑂௡൨  ;  𝑀 = ൦ቂడ𝑸డ𝒒ቃ௡௫௡ ቂడ𝑷డ𝒒ቃ௡௫௡ቂడ𝑸డ𝒑ቃ௡௫௡ ቂడ𝑷డ𝒒ቃ௡௫௡൪  (50) 

In Eq. 50 𝐼௡ is the 𝑛𝑥𝑛 identity matrix and 𝑂௡ is the 𝑛𝑥𝑛 null matrix. Taking into account Eq. 
48, the 𝑀 matrix and its transposed matrix 𝑀் become:  
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𝑀 = ൤ 𝐼௡ −𝐹௡𝑂௡ 𝐼௡ ൨  ;  𝑀் = ൤ 𝐼௡ 𝑂௡−𝐹௡் 𝐼௡ ൨  (51) 

Where in Eq. 51 ሾ𝐹௡ሿ௟௥ = డ൫௠೗(௧,𝒒)·௙೗(௧,𝒒)൯డ௤ೝ , 1 ≤ 𝑙, 𝑟 ≤ 𝑛 , and ሾ𝐹௡் ሿ௟௥ = డ൫௠ೝ(௧,𝒒)·௙ೝ(௧,𝒒)൯డ௤೗ , 1 ≤ 𝑙, 𝑟 ≤ 𝑛 . 

Then, the left hand side of Eq. 49 becomes:  𝑀 · 𝐽 · 𝑀் = ൤𝐹௡ − 𝐹௡் 𝐼௡−𝐼௡ 𝑂௡൨  (52) 

However, in Eq. 52, ሾ𝐹௡ሿ௟௥ − ሾ𝐹௡் ሿ௟௥ = డ൫௠೗(௧,𝒒)·௙೗(௧,𝒒)൯డ௤ೝ − డ൫௠ೝ(௧,𝒒)·௙ೝ(௧,𝒒)൯డ௤೗ , 1 ≤ 𝑙, 𝑟 ≤ 𝑛; but all these 

terms are zero due to Eq. 43. Therefore, Eq. 49 holds, and the proposed transformation in Eq. 48 is 
canonical, i.e., it preserves the Hamilton equations.  

In order to get the transformed Hamiltonian, 𝐾(𝑡, 𝑸, 𝑷) , from the previous Hamiltonian, 𝐻(𝑡, 𝒒, 𝒑), the generating function, 𝐺, is needed. The three functions are related by the following 
equations [17]:  𝑝௞ − ∑ డொ೗డ௤ೖ௡௟ୀଵ 𝑃௟ = డிడ௤ೖ    1 ≤ 𝑘 ≤ 𝑛  (53) 

− ∑ డொ೗డ௣ೖ௡௟ୀଵ 𝑃௟ = డிడ௣ೖ    1 ≤ 𝑘 ≤ 𝑛  (54) 

−𝐻 + 𝐾 − ∑ డொ೗డ௧௡௟ୀଵ 𝑃௟ = డிడ௧   (55) 

Taking into account Eq. 48, డொ೗డ௤ೖ = 𝛿௟௞, then, from Eq. 53: 𝑝௞ − 𝑃௞ = డிడ௤ೖ, i.e., 𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒) =డிడ௤ೖ. Besides, from Eq. 48 in Eq. 54: డிడ௣ೖ = 0, thus, 𝐹(𝑡, 𝒒, 𝒑) = 𝐹ଵ(𝑡, 𝒒), i.e., 𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒) = డிభ(௧,𝒒)డ௤ೖ , 

and also, from Eq. 48: డிభ(௧,𝑸)డொೖ = 𝑚௞(𝑡, 𝑸) · 𝑓௞(𝑡, 𝑸). In addition, from Eq. 48 in Eq. 55: 𝐾 = 𝐻 + డிడ௧ ; thus, 

taking (𝑸, 𝑷) as the independent variables, the primary constants in Hamiltonian of Eq. 44 become, 
by Eq. 48, 𝜙௝(𝑡, 𝒒, 𝒑) = 𝜑௝(𝑡, 𝑸, 𝑷) = 𝑃௝ − 𝑚௝(𝑡, 𝑸) · 𝑓௝(𝑡, 𝑸)  ( 1 ≤ 𝑘 ≤ 𝑛 ), and the transformed 
Hamiltonian, also taking into account Eq. 48, becomes: 𝐾(𝑡, 𝑸, 𝑷) = 𝐻(𝑡, 𝑸, 𝑷) + డி1(௧,𝑸)డ௧ =  

= ℎ(𝑡, 𝑸) + ∑ 1
2௠ೕ(௧,𝑸) ቀ𝑃௝ + 𝑚௝(𝑡, 𝑸) · 𝑓௝(𝑡, 𝑸)ቁ 𝜑௝(𝑡, 𝑸, 𝑷)௡௝ୀ1 + డி1(௧,𝑸)డ௧   

(56) 

Note in Eq. 56 that the term డிభ(௧,𝑸)డ௧  must be computed. To do this, note that from the above 

result that: డడொೖ ቀడிభ(௧,𝑸)డ௧ ቁ = డడ௧ ቀడிభ(௧,𝑸)డொೖ ቁ = డడ௧ ൫𝑚௞(𝑡, 𝑸) · 𝑓௞(𝑡, 𝑸)൯ . However, from Eqs. 44 and 48: డడ௧ ൫𝑚௞(𝑡, 𝑸) · 𝑓௞(𝑡, 𝑸)൯ = డడொೖ ൬− ଵଶ ℎ(𝑡, 𝑸)൰ ; then, comparing both results: డிభ(௧,𝑸)డ௧ = − ଵଶ ℎ(𝑡, 𝑸) . 

Therefore, the transformed Hamiltonian becomes:  

𝐾(𝑡, 𝑸, 𝑷) = 1
2 ℎ

(𝑡, 𝑸) + ෍ 1
2𝑚௝(𝑡, 𝑸) ቀ𝑃௝ + 𝑚௝(𝑡, 𝑸) · 𝑓௝(𝑡, 𝑸)ቁ 𝜑௝(𝑡, 𝑸, 𝑷)௡

௝ୀ1

= 

= ଵଶ ℎ(𝑡, 𝑸) + ଵଶ ∑ ௉ೕమ௠ೕ(௧,𝑸)௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝑡, 𝑸) · 𝑓௝ଶ(𝑡, 𝑸)௡௝ୀଵ   

(57) 

Observe that in this transformed Hamiltonian, the ℎ(𝑡, 𝑸) function obeys Eq. 44 due to the 
change in the dynamical variables is the identity, i.e., 𝑄௟ = 𝑞௟ (1 ≤ 𝑙 ≤ 𝑛). For the same reason, the 
same assertion can be done about the relationships of Eq. 43 that the abstract masses must obey.  

From now on, for the sake of simplicity, the expressions of the dynamical velocities and of the 
canonical moments are recovered for the, i.e., 𝑃௝  𝑝௝, 𝑄௝  𝑞௝, and also for the expression of the 
Hamiltonian, 𝐾(𝑡, 𝑸, 𝑷)  𝐻(𝑡, 𝒒, 𝒑). Therefore, Eq. 46 is rewritten as:  
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𝐻(𝑡, 𝒒, 𝒑) = 12 ℎ(𝑡, 𝒒) + ෍ 12𝑚௝(𝑡, 𝒒) ቀ𝑝௝ + 𝑚௝(𝑡, 𝒒) · 𝑓௝(𝑡, 𝒒)ቁ 𝜑௝(𝑡, 𝒒, 𝒑)௡
௝ୀଵ = 

= ଵଶ ℎ(𝑡, 𝒒) + ଵଶ ∑ ௣ೕమ௠ೕ(௧,𝒒)௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ   

(58) 

Here, the fact that Eqs. 43 and 44 must be held in this last Hamiltonian is emphasized. However, 
if the abstract dynamical system of Eq. 1 is autonomous, the abstract masses can be chosen, by Eq. 43, 
as time-independent, and ℎ(𝑡, 𝒒) = 0  by Eq. 44, as it has been pointed out above. Then, the 
Hamiltonian of Eq. 58 becomes a time-conserved magnitude, which, as in the physical context, is 
called here as energy and represented by 𝐸. Its expression form Eq. 57 is therefore:  𝐸 = ଵଶ ∑ ௣ೕమ௠ೕ(𝒒)௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝒒) · 𝑓௝ଶ(𝒒)௡௝ୀଵ   (59) 

Also, the Hamilton-Jacobi equation corresponding to the Hamiltonian of Eq. 58 is: பୗ(௧,𝒒)డ௧ + ଵଶ ∑ ଵ௠ೕ(௧,𝒒) ൬பୗ(௧,𝒒)డ௤ೕ ൰ଶ௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ + ଵଶ ℎ(𝑡, 𝒒) = 0  (60) 

In addition, taking into account that the transformed primary constraints are zero outside the 
Hamiltonian of Eq. 58, i.e., 𝜑௝(𝑡, 𝒒, 𝒑) = 𝑝௝ − 𝑚௝(𝑡, 𝒒) · 𝑓௝(𝑡, 𝒒) = 0 ( 1 ≤ 𝑗 ≤ 𝑛 ), the corresponding 
Hamilton equations of this Hamiltonian are (1 ≤ 𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = డுడ௣ೖ = ௣ೖା௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)ଶ௠ೖ(௧,𝒒)   (61) 

𝑝ሶ௞(𝑡) = − డுడ௤ೖ = − ଵଶ డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕା௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ଶ௠ೕ(௧,𝒒) డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ   (62) 

To end this section, the proof that the second order version (Eq. 29) of original Eq. 1 is recovered 
from Eqs. 61 and 62, is provided. Isolating 𝑝௞ from Eq. 61 and taking the time derivative, it can be 
equalled to Eq. 62, by also using Eq. 44, that is (1 ≤ 𝑘 ≤ 𝑛):  ௗௗ௧ ൫2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞ − 𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒)൯ =   

= ଵଶ డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ ௣ೕା௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ଶ௠ೕ(௧,𝒒) డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ   

(63) 

And after handling Eq. 63, taking into account Eq. 61 (1 ≤ 𝑘 ≤ 𝑛):  𝑑𝑑𝑡 (2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞) = 

= ௗௗ௧ ൫𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒)൯ + డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ 𝑞ሶ௝ డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ   

(64) 

Note in Eq. 64 that the first and second terms of the right hand equation are the same by 
expanding the total time derivative of the first term, therefore: 

ௗௗ௧ (2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞) = 2 డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + 2 ∑ 𝑞ሶ௝ డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ   (65) 

Dropping the term 2 in Eq. 65, Eq. 29 is recovered. This deduction is important to be compared 
with the deduction made in the following section. There, the quantum potential (obtained from the 
second order Schrödinger equation) changes significantly Eq. 29, and also the original Eq. 1.  

5. Second Order Schrödinger Equation 

As “second order”, this section is referred to the second order partial derivatives respect the 
dynamical variables of the Schrödinger equation. They arise by applying the quantization rules [16] 
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to the canonical moments of the Hamiltonian of Eq. 58, once the primary constants are substituted 
(that is, the second equality of Eq. 58), taking into account that in Eq. 58 the canonical moments are 
now second order. Therefore, if 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) is the quantum operator corresponding to the Hamiltonian 
of Eq. 58 (its second equality), the Schrödinger equation is written again as: 𝑖𝜎 డஏ(௧,𝒒)డ௧ = 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) Ψ(𝑡, 𝒒)  (66) 

In Eq. 66 Ψ(𝑡, 𝒒) is the wave function, where σ represents again the system Planck constant, 
with the same sense commented in Section 2. In addition, following the quantization rules provided 
by the Copenhagen formalism of the quantum theory [16], 𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) is an operator that acts on the 
wave function as:  𝐻෡(𝑡, 𝒒ෝ, 𝒑ෝ) Ψ(𝑡, 𝒒) = ଵଶ ∑ ଵଶ ൬ ଵ௠ೕ(௧,𝒒ෝ) 𝑝̂௝ଶ + 𝑝̂௝ଶ ଵ௠ೕ(௧,𝒒ෝ)൰௡௝ୀଵ  Ψ(𝑡, 𝒒) +  

+ ቀ− ଵଶ ∑ 𝑚௝(𝑡, 𝒒ෝ) · 𝑓௝ଶ(𝑡, 𝒒ෝ) + ଵଶ ℎ(𝑡, 𝒒ෝ)௡௝ୀଵ ቁ  Ψ(𝑡, 𝒒)  
(67) 

Such that in Eq. 67: ቀ− ଵଶ ∑ 𝑚௝(𝑡, 𝒒ෝ) · 𝑓௝ଶ(𝑡, 𝒒ෝ)௡௝ୀଵ ቁ  Ψ(𝑡, 𝒒) = ቀ− ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ ቁ  Ψ(𝑡, 𝒒) , ଵଶ ℎ(𝑡, 𝒒ෝ)Ψ(𝑡, 𝒒) = ଵଶ ℎ(𝑡, 𝒒) · Ψ(𝑡, 𝒒) and 𝑝̂௝ Ψ(𝑡, 𝒒) = −𝑖𝜎 பஏ(௧,𝒒)డ௤ೕ . Note that the term ଵଶ ∑ ൬ ଵ௠ೕ(௧,𝒒ෝ) 𝑝̂௝ଶ +௡௝ୀଵ𝑝̂௝ଶ ଵ௠ೕ(௧,𝒒ෝ)൰  Ψ(𝑡, 𝒒) provides that the Hamiltonian is a self-adjoint operator (see [18] for this case, which 

is not dealt in [16]). In fact, by making explicit this operator in Eq. 67, and subsequently in Eq. 66, the 
second order Schrödinger equation arises: 𝑖𝜎 డஏ(௧,𝒒)డ௧ =  

− ଵଶ ఙమଶ ቆ∑ ଵ௠ೕ(௧,𝒒) డమஏ(௧,𝒒)డ௤ೕమ௡௝ୀଵ + ∑ డమడ௤ೕమ ቆ ଵ௠ೕ(௧,𝒒) Ψ(𝑡, 𝒒)ቇ௡௝ୀଵ ቇ −  

− ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ · Ψ(𝑡, 𝒒)  + ଵଶ ℎ(𝑡, 𝒒) · Ψ(𝑡, 𝒒)  

(68) 

If the abstract dynamical system of Eq. 1 is autonomous, the abstract masses can be chosen, by 
Eq. 43, as time-independent, and ℎ(𝑡, 𝒒) = 0 by Eq. 44, as it has been pointed out in Section 4. 
Therefore, the time-independent second order Schrödinger equation corresponding to Eq. 68 can be 

found by the current substitution Ψ(𝑡, 𝒒) = ℮ି௜ಶ഑௧ · 𝜓(𝐪), where 𝐸 corresponds to the system energy 
of Eq. 59, that is:  𝐸 · 𝜓(𝐪) =  − ଵଶ ఙమଶ ቆ∑ ଵ௠ೕ(𝒒) డమట(𝐪)డ௤ೕమ௡௝ୀଵ + ∑ డమడ௤ೕమ ቆ ଵ௠ೕ(𝒒) 𝜓(𝐪)ቇ௡௝ୀଵ ቇ −  

− ଵଶ ∑ 𝑚௝(𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ · 𝜓(𝐪)   

(69) 

In order to find out if some quantum potential arises from the second order Schrödinger 
equation (Eq. 68), then, as in Eq. 24, the wave function split in its amplitude A(𝑡, 𝒒) and its phase B(𝑡, 𝒒) is done: Ψ(𝑡, 𝒒) = A(𝑡, 𝒒) ℮௜ా(೟,𝒒)഑   (70) 

Such as it has been done in Section 3, the substitution of Eq. 70 in Eq. 68 provides an equation 
for the real part and another equation for the imaginary part (after some operations and cancelling 

the term ℮௜ా(೟,𝒒)഑ ): 
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−A(𝑡, 𝒒) ப୆(௧,𝒒)డ௧ = − ఙమଶ ∑ ଵ௠ೕ(𝒒) பమ୅(௧,𝒒)డ௤ೕమ௡௝ୀଵ + ୅(௧,𝒒)ଶ ∑ ଵ௠ೕ(𝒒) ൬ப୆(௧,𝒒)డ௤ೕ ൰ଶ௡௝ୀଵ −  

− ఙమଶ ∑ డడ௤ೕ ൬ ଵ௠ೕ(𝒒)൰ ப୅(௧,𝒒)డ௤ೕ௡௝ୀଵ − A(𝑡, 𝒒) ఙమସ ∑ డమడ௤ೕమ ൬ ଵ௠ೕ(𝒒)൰௡௝ୀଵ −  

− ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ · A(𝑡, 𝒒)  + ଵଶ ℎ(𝑡, 𝒒) · A(𝑡, 𝒒)  

(71) 

𝜎 ப୅(௧,𝒒)డ௧ = −𝜎 ∑ ப୅(௧,𝒒)డ௤ೕ ப୆(௧,𝒒)డ௤ೕ௡௝ୀଵ −  

− ఙଶ A(𝑡, 𝒒) ∑ ଵ௠ೕ(𝒒) பమ୆(௧,𝒒)డ௤ೕమ௡௝ୀଵ − ఙଶ A(𝑡, 𝒒) ∑ డడ௤ೕ ൬ ଵ௠ೕ(𝒒)൰ ப୆(௧,𝒒)డ௤ೕ௡௝ୀଵ   
(72) 

Dividing the first one by A(𝑡, 𝒒)  and dividing the second one by 𝜎  and subsequently 
multiplying it by 2A(𝑡, 𝒒):  ப୆(௧,𝒒)డ௧ + ଵଶ ∑ ଵ௠ೕ(௧,𝒒) ൬ப୆(௧,𝒒)డ௤ೕ ൰ଶ௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ + ଵଶ ℎ(𝑡, 𝒒) + 𝑉௤(𝑡, 𝒒) = 0  (73) 

ப୅మ(௧,𝒒)డ௧ + ∑ ቆ ଵ௠ೕ(௧,𝒒) ப୆(௧,𝒒)డ௤ೕ Aଶ(𝑡, 𝒒)ቇ௡௝ୀଵ = 0  (74) 

In Eq. 73, 𝑉௤(𝑡, 𝒒) is the quantum potential, whose expression is: 𝑉௤(𝑡, 𝒒) = − ఙమସ ∑ డమడ௤ೕమ ൬ ଵ௠ೕ(௧,𝒒)൰௡௝ୀଵ − ఙమଶ஺(௧,𝒒) ∑ డడ௤ೕ ൬ ଵ௠ೕ(௧,𝒒) డ஺(௧,𝒒)డ௤ೕ ൰௡௝ୀଵ   (75) 

Therefore, Eq. 73 represents the quantum Hamilton-Jacobi equation [14], due to the difference 
with the Hamilton-Jacobi equation of Eq. 60 is the quantum potential of Eq. 75. In addition, Eq. 74 
represents the conservation of the probability density provided by Aଶ(𝑡, 𝒒) , being the vector of 
coordinates ଵ௠ೕ(௧,𝒒) ப୆(௧,𝒒)డ௤ೕ  (1 ≤ 𝑗 ≤ 𝑛) the current density. 

6. The Quantum Hamilton Equations and the Quantum Formulation of the Abstract Dynamical 
Systems 

By comparing the Hamilton-Jacobi equation of Eq. 60 and that corresponding to the wave 
equation phase of Eq. 73, the difference is the quantum potential 𝑉௤(𝑡, 𝒒). Then, following Bohm and 
Hiley’s interpretation of quantum mechanics [14], a quantum version of the Hamiltonian can be 
found out, 𝐻௤(𝑡, 𝒒, 𝒑), differenced from the Hamiltonian of Eq. 58 by the quantum potential, that is:  𝐻௤(𝑡, 𝒒, 𝒑) = 𝐻(𝑡, 𝒒, 𝒑) + 𝑉௤(𝑡, 𝒒) = = ଵଶ ℎ(𝑡, 𝒒) + ∑ ଵଶ௠ೕ(௧,𝒒) ቀ𝑝௝ + 𝑚௝(𝑡, 𝒒) · 𝑓௝(𝑡, 𝒒)ቁ 𝜑௝(𝑡, 𝒒, 𝒑)௡௝ୀଵ + 𝑉௤(𝑡, 𝒒)   

= ଵଶ ∑ ௣ೕమ௠ೕ(௧,𝒒)௡௝ୀଵ − ଵଶ ∑ 𝑚௝(𝑡, 𝒒) · 𝑓௝ଶ(𝑡, 𝒒)௡௝ୀଵ + ଵଶ ℎ(𝑡, 𝒒) + 𝑉௤(𝑡, 𝒒)  

(76) 

In Eq. 76 𝑉௤(𝑡, 𝒒) is the quantum potential of Eq. 75. Therefore, taking into account that the 
transformed primary constraints are zero outside the Hamiltonian of Eq. 76 ( 𝜑௝(𝑡, 𝒒, 𝒑) = 𝑝௝ −𝑚௝(𝑡, 𝒒) · 𝑓௝(𝑡, 𝒒) = 0, 1 ≤ 𝑗 ≤ 𝑛), the quantum Hamilton equations corresponding to the quantum 
Hamiltonian of Eq. 76 are (1 ≤ 𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = డு೜డ௣ೖ = ௣ೖା௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)ଶ௠ೖ(௧,𝒒)   (77) 

𝑝ሶ௞(𝑡) = − డு೜డ௤ೖ = − ଵଶ డ௛(௧,𝒒)డ௤ೖ + ∑ ௣ೕା௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ଶ௠ೕ(௧,𝒒) డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ − డ௏೜(௧,𝒒)డ௤ೖ   (78) 
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The second order version of the abstract dynamical system corresponding to the quantum 
Hamilton equations, Eqs. 77 and 78, is also obtained by following the method to obtain Eq. 65 from 
Eqs. 61 and 62: isolating 𝑝௞ from Eq. 77 and taking the time derivative, it can be equalled to Eq. 78, 
by also using Eq. 44, that is (1 ≤ 𝑘 ≤ 𝑛):  ௗௗ௧ ൫2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞ − 𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒)൯ =  

= ଵଶ డ൫ଶ௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ ௣ೕା௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ଶ௠ೕ(௧,𝒒) డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ − డ௏೜(௧,𝒒)డ௤ೖ௡௝ୀଵ   

(79) 

And after handling Eq. 79, taking into account Eq. 77 (1 ≤ 𝑘 ≤ 𝑛):  𝑑𝑑𝑡 (2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞) = 

= ௗௗ௧ ൫𝑚௞(𝑡, 𝒒) · 𝑓௞(𝑡, 𝒒)൯ + డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + ∑ 𝑞ሶ௝ డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ − డ௏೜(௧,𝒒)డ௤ೖ   

(80) 

Note in Eq. 80 that the first and second terms of the right hand equation are the same by 
expanding the total time derivative of the first term, therefore: 

ௗௗ௧ (2𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞) = 2 డ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯డ௧ + 2 ∑ 𝑞ሶ௝ డቀ௠ೕ(௧,𝒒)·௙ೕ(௧,𝒒)ቁడ௤ೖ௡௝ୀଵ − డ௏೜(௧,𝒒)డ௤ೖ   (81) 

Dividing by 2 in Eq. 81, Eq. 29 is recovered, now with the additional quantum term − ଵଶ డ௏೜(௧,𝒒)డ௤ೖ . 

However, trying to recover the original Eq. 1, Eq. 81 can be rewritten more simplified as: ௗௗ௧ (𝑚௞(𝑡, 𝒒) · 𝑞ሶ௞) = ௗ൫௠ೖ(௧,𝒒)·௙ೖ(௧,𝒒)൯ௗ௧ − ଵଶ డ௏೜(௧,𝒒)డ௤ೖ   (82) 

Taking now the time integral in Eq. 82 and subsequently dividing by 𝑚௞(𝑡, 𝒒) (1 ≤ 𝑘 ≤ 𝑛), the 
quantum version of Eq. 1 is obtained, that is (1 ≤ 𝑘 ≤ 𝑛):  𝑞ሶ௞(𝑡) = 𝑓௞(𝑡, 𝒒) − ଵଶ௠ೖ(௧,𝒒) ׬ డ௏೜డ௤ೖ ൫𝑠, 𝒒(𝑠)൯௧௧బ 𝑑𝑠  (83) 

Note in Eq. 83 that the quantum potential 𝑉௤(𝑡, 𝒒) is provided by Eq. 75, taking into account that 𝐴(𝑡, 𝒒) = |Ψ(𝑡, 𝒒)| = ඥΨ(𝑡, 𝒒) · Ψ∗(𝑡, 𝒒), after being solved the second order Schrödinger equation 
(Eq. 68) for the wave function Ψ(𝑡, 𝒒), or its time-independent version (Eq. 69) for the autonomous 

case for the wave function 𝜓(𝐪), such that Ψ(𝑡, 𝒒) = ℮ି௜ಶ഑௧ · 𝜓(𝐪). In this last case, 𝐴(𝒒) = |Ψ(𝑡, 𝒒)| =|𝜓(𝐪)|. 
In addition, if the second order Schrödinger equation of Eq. 68 (or its time-independent version 

of Eq. 69 for the autonomous case) provides quantized wave functions depending on an integer n, Ψ௡(𝑡, 𝒒), base of a Hilbert space, this quantization can be translated to quantum formulation of Eq. 
83.  

However, Eq. 83 can be presented as a 2n-dimensional system by defining the additional 
dynamical variables 𝑥௞(𝑡) = ׬ డ௏೜డ௤ೖ ൫𝑠, 𝒒(𝑠)൯௧௧బ 𝑑𝑠 (1 ≤ 𝑘 ≤ 𝑛). Therefore, Eq. 83 becomes (1 ≤ 𝑘 ≤ 𝑛): 𝑞ሶ௞(𝑡) = 𝑓௞(𝑡, 𝒒) − ௫ೖଶ௠ೖ(௧,𝒒)𝑥ሶ௞(𝑡) = డ௏೜(௧,𝒒)డ௤ೖ ቑ  (84) 

Note that, in order to compute the quantum dynamics by Eq. 84, the initial values are needed: if 𝑡 = 𝑡଴ ≥ 0 is the initial time, then 𝑞௞(𝑡଴) = 𝑞௞(଴) (1 ≤ 𝑘 ≤ 𝑛) must be known, and 𝑥௞(𝑡଴) = 0 (1 ≤ 𝑘 ≤𝑛), following the above integral definition of 𝑥௞(𝑡). 
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7. The Autonomous One-Dimensional Case: The Logistic Function Dynamics 

To better support the formalism provided and its limitations, an application case is presented: 
the one-dimensional case particularized to the logistic function dynamics. Then, Eq. 1 can be written 
as: 𝑞ሶ (𝑡) = 𝑓(𝑞) = 𝑎 · 𝑞 − 𝑏 · 𝑞ଶ𝑞(𝑡଴) = 𝑞଴ ൠ  (85) 

Eq. 85 can describe a population dynamics with parameter 𝑏 > 0, which avoids an infinite 
population growth. Parameter 𝑎 can be positive or negative, and represents the population growth 
rate (if positive) or population decay rate (if negative). If 𝑎 > 0, the 𝑞 = 0 value is a repulsor from 
which the dynamics escapes, and the 𝑞 = 𝑐 = 𝑎/𝑏 value is a saturation population or attractor to 
which the dynamics tends asymptotically (growing toward 𝑞 = 𝑐 if the initial value is 𝑞଴ < 𝑐, and 
decaying toward 𝑞 = 𝑐 if the initial value is 𝑞଴ > 𝑐). If 𝑎 < 0, the 𝑞 = 𝑐 value is a repulsor from 
which the dynamics escapes, and the value 𝑞 = 0  is an attractor to which the dynamics tends 
asymptotically (decaying toward 𝑞 = 0 if the initial value is 𝑞଴ < 𝑐, and infinitely growing if the 
initial value is 𝑞଴ > 𝑐).  

For the application case the following values are taken: 𝑡଴ = 0.0 𝑞଴ = 2.0, 𝑎 = 0.01, and 𝑏 =0.001 , thus 𝑐 = ௔௕ = 10.0 . Therefore, the dynamics represents the case of an asymptotic growth 
toward 𝑞 = 𝑐 = ௔௕ = 10.0. In addition, to compute the classical logistic dynamics given by Eq. 85, the 
integration of the equation differential provides: 𝑞(𝑡) = ௖ଵାቀ ೎೜బିଵቁ·℮షೌ(೟ష೟బ)  (86) 

It must be highlighted that all figures and computations have been obtained with the 
MATHEMATICA software except for the quantized energies, which have been obtained by a C++ 
program.  

First of all, Eq. 86 provides Figure 1 for the classical logistic dynamics with the above values 
chosen. Note that for a long time term of 𝑡 = 1000.0 time units the dynamics tends to the attractor 𝑐 = ௔௕ = 10.0.  

 

Figure 1. Classical logistic dynamics by Eq. 86, solution of Eq. 85, with the particular values provided 
(𝑡଴ = 0.0 𝑞଴ = 2.0, 𝑎 = 0.01, and 𝑏 = 0.001), with 𝑡 = 1000.0 time units. The dotted straiht line 
value represents the saturation value 𝑐 = ௔௕ = 10.0 and the dot dashed curve the classical logistic 
dynamics. 

Figure 1 is important to be presented because it is compared along all section with the quantum 
dynamics provided by the corresponding formulation of Eq. 84. Note that being the case one-
dimensional, the corresponding abstrac mass can be taken equal to the unit (𝑚(𝑞) = 1). Then, Eq. 84 
becomes for this case as (𝑡଴ = 0.0 𝑞଴ = 2.0, 𝑎 = 0.01, and 𝑏 = 0.001):  
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𝑞ሶ (𝑡) = 𝑓(𝑞) − ௫ଶ = 𝑎 · 𝑞 − 𝑏 · 𝑞ଶ − ௫ଶ𝑥ሶ (𝑡) = 𝑉௤ᇱ(𝑞)𝑞(𝑡଴) = 𝑞଴𝑥(𝑡଴) = 0 ⎭⎪⎬
⎪⎫

  (87) 

Note that the q-derivative of the quantum potential 𝑉௤ᇱ(𝑞) contains already the abstract Planck 
system 𝜎 (see Eq. 75). Then, its value should be here provided. However, it is provided above for the 
reasons there explained. In addition, to obtain this quantum potential 𝑉௤(𝑞) and its q-derivative 𝑉௤ᇱ(𝑞), the corresponding time-independent Schrödinger equation of Eq. 69 must be solved. After 
some manipulations it becomes (note that 𝑚(𝑞) = 1):  𝜓ᇱᇱ(𝑞) + ቀ௙మ(୯)ఙమ + ଶாఙమቁ 𝜓(𝑞) = 0  (88) 

Note in Eq. 88 that 𝑓(𝑞) = 𝑎 · 𝑞 − 𝑏 · 𝑞ଶ. The way to solve it has two differenced steps. In the first 
step the approach is analytical, and it is inspired in the method provided in [19] (concretely in that of 
the IV section called as transformation-group method) to reduce a differential equation that models a 
forced time-dependent oscillator to an autonomous differential equation. The second step is a 
numerical approach. 

The first step consists in two consecutive changes: first on the dependent variable, 𝜓(𝑞) =℮ఏ(௤)Ω(𝑞) , and second on the independent variable 𝑧 = z(𝑞) , then 𝑤(𝑧) = Ω൫𝑞(𝑧)൯ . After some 
calculations, including the ℮ఏ(௤) cancellation, both changes provide: ൫zᇱ(𝑞)൯ଶ𝑤ᇱᇱ(𝑧) + zᇱ(𝑞)൫zᇱᇱ(𝑞) + 2𝜃ᇱ(𝑞)൯𝑤ᇱ(𝑧) + + ቀ𝜃ᇱᇱ(𝑞) + ൫θᇱ(𝑞)൯ଶ + ௙మ(୯)ఙమ + ଶாఙమቁ 𝑤(𝑧) = 0  

(89) 

In Eq. 89 the term multiplying 𝑤ᇱ(𝑧) can be vanished if zᇱᇱ(𝑞) + 2 · 𝜃ᇱ(𝑞) = 0, i.e., if zᇱ(𝑞) =−2𝜃(𝑞) or z(𝑞) = −2 ׬ 𝜃(𝑦) 𝑑𝑦௤௤బ , being 𝑞଴ an arbitrary value. Then, Eq. 89 becomes:  4θଶ(𝑞) · 𝑤ᇱᇱ(𝑧) + ቀ𝜃ᇱᇱ(𝑞) + ൫θᇱ(𝑞)൯ଶ + ௙మ(୯)ఙమ + ଶாఙమቁ 𝑤(𝑧) = 0  (90) 

Now, Eq. 90 is forced to hold that: 𝜃ᇱᇱ(𝑞) + ൫θᇱ(𝑞)൯ଶ + ௙మ(୯)ఙమ + ଶாఙమ = 𝑘ଶ · 4θଶ(𝑞)  (91) 

In Eq. 91 the constant 𝑘ଶ ≠ 0. Then, Eq. 90 becomes: 𝑤ᇱᇱ(𝑧) + 𝑘ଶ · 𝑤(𝑧) = 0  (92) 

The solution of Eq. 92 is then trivial: 𝑤(𝑧) = 𝐶 · 𝑠𝑖𝑛(𝑘 · 𝑧 + 𝛾)  (93) 

In Eq. 93 𝐶  and 𝛾  are two arbitrary constants. Undoing now the proposed changes, the 
analytical solution of Eq. 88 is:  𝜓(𝑞) = 𝐶 · ℮ఏ(௤)𝑠𝑖𝑛 ቀ−2𝑘 ׬ 𝜃(𝑦) 𝑑𝑦௤௤బ + 𝛾ቁ  (94) 

Some additional considerations about the solution 𝜓(𝑞) of Eq. 94 must be done. The first one is 
choice of the 𝑘 value. Note that in the neighbouring of the points 𝑞 ≅ 0 and 𝑞 ≅ c = a/b, 𝑓(𝑞) ≅ 0, 
then, Eq. 91 becomes approximately: 𝜃ᇱᇱ(𝑞) + ൫θᇱ(𝑞)൯ଶ + ଶாఙమ ≅ 4𝑘ଶθଶ(𝑞)  (95) 

A solution of Eq. 95 is an arbitrary constant 𝜃(𝑞) = 𝑅, then θᇱ(𝑞) = 𝜃ᇱᇱ(𝑞) = 0 and 𝑘 = ± √ଶாଶோఙ. 
Note that the energy must positive, 𝐸 > 0. In addition, in the neighbouring of the critical points of 𝑓(𝑞) (𝑓(𝑞) ≅ 0), the Eq. 94 solution becomes:  
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𝜓(𝑞) ≅ 𝐶 · ℮ோ𝑠𝑖𝑛 ቀ∓ √ଶாோఙ ׬ 𝑅 𝑑𝑦௤௤బ + 𝛾ቁ = 𝐶 · ℮ோ𝑠𝑖𝑛 ቀ∓ √ଶாఙ (𝑞 − 𝑞଴) + 𝛾ቁ  (96) 

In Eq. 96, the sign of ∓ √ଶாఙ  can be chosen taking into account that, also in the neighbouring of 
the critical points of 𝑓(𝑞) (𝑓(𝑞) ≅ 0), Eq. 88 becomes: 𝜓ᇱᇱ(𝑞) + ଶாఙమ 𝜓(𝑞) ≅ 0  (97) 

Being the Eq. 97 solution (with 𝐸 > 0): 𝜓(𝑞) ≅ 𝐷 · 𝑠𝑖𝑛 ቀ√ଶாఙ 𝑞 + 𝛿ቁ  (98) 

Comparing Eqs. 96 and 98, the conclusions are that the sign considered in Eq. 96 must be 
positive, i.e., + √ଶாఙ  and, in addition, the respective constants are related as 𝐷 = 𝐶 · ℮ோ  and − √ଶாఙ 𝑞଴ + 𝛾 = 𝛿 . Therefore, 𝑘 = − √ଶாଶோఙ , and in Eq. 94: −2𝑘 = √ଶாோఙ . The 𝑅  constant value can be 
arbitrary and it has been considered as 𝑅 = 1. Therefore, Eq. 94 can be rewritten as: 𝜓(𝑞) = 𝐶 · ℮ఏ(௤)𝑠𝑖𝑛 ቀ√ଶாఙ ׬ 𝜃(𝑦) 𝑑𝑦௤௤బ + 𝛾ቁ  (99) 

And, in addition, Eq. 91 becomes: 𝜃ᇱᇱ(𝑞) + ൫θᇱ(𝑞)൯ଶ + ௙మ(୯)ఙమ = ଶாఙమ (θଶ(𝑞) − 1)  (100)

This author’s paper has not been able to find the analytical solution of Eq. 100. Therefore, at this 
point the numerical approach is necessary to be taken. This numerical approach needs of the system 
Planck constant value 𝜎 and of the boundary conditions. Several numerical essays with different 𝐸 > 0 values provide an adequate 𝜎 = 10 value, although strangely it can look like a big value. 
Besides, the boundary conditions considered have been: 𝜃(0) = −1, trying to obtain a negative 
domain for 𝜃(𝑞), and 𝜃ᇱ(0) = 0, trying that 𝑞 = 0 be a maximum, and that 𝜃(𝑞) → −∞ as 𝑞 → ±∞. 
Therefore, in Eq. 99, 𝜓(𝑞) → 0 , as 𝑞 → ±∞ . These assumptions are confirmed below with the 
numerical solutions of Eqs. 99 and 100. 

In addition, under the hypothesis that the wave function cancels in the two critical points of 𝑓(𝑞), the wave function becomes quantized. On the one hand, if 𝜓(0) = 0:  √ଶாఙ ׬ 𝜃(𝑦) 𝑑𝑦଴௤బ + 𝛾 = 𝜋 · 𝑛ଵ   ;    𝑛ଵ ∈ ℤ  (101)

On the other hand, if 𝜓(𝑐) = 0: √ଶாఙ ׬ 𝜃(𝑦) 𝑑𝑦௖௤బ + 𝛾 = 𝜋 · 𝑛ଶ  ;    𝑛ଶ ∈ ℤ  (102)

Subtracting Eq. 102 minus Eq. 101, the condition of quantization arises: ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௖଴ = 𝜋(𝑛ଶ − 𝑛ଵ) = 𝜋 · 𝑛   ;   𝑛 = 𝑛ଶ − 𝑛ଵ ∈ ℤழ଴  (103)

Note in Eq. 103 that 𝑛 = 𝑛ଶ − 𝑛ଵ < 0  due to ׬ 𝜃௡(𝑦) 𝑑𝑦௖଴ < 0 , under the 𝜃௡(𝑞)  above 
assumptions and below confirmed. Therefore, in order to compute the 𝐸௡ energies, with 𝑛 < 0, Eq. 
103 must be considered jointly the quantized version of Eq. 100 (the boundary conditions are now 
added): 𝜃௡ᇱᇱ(𝑞) + ൫𝜃௡ᇱ (𝑞)൯ଶ + ௙మ(୯)ఙమ = ଶா೙ఙమ (𝜃௡ଶ(𝑞) − 1)𝜃௡(0) = −1𝜃௡ᇱ (0) = 0 ൢ   ;   𝑛 ∈ ℤழ଴  (104)

Once the 𝐸௡  energies are obtained, from Eq. 102: 𝛾 = 𝜋 · 𝑛ଵ + √ଶாఙ ׬ 𝜃(𝑦) 𝑑𝑦௤బ଴ = 𝜋(𝑛ଶ − 𝑛) +√ଶாఙ ׬ 𝜃(𝑦) 𝑑𝑦௤బ଴ . However, 𝜋 · 𝑛ଶ can be removed due to this term influence does not provide further 
mathematical information. The substitution in Eq. 99 provides the quantized wave functions: 
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𝜓௡(𝑞) = 𝐶௡ · ℮ఏ೙(௤)𝑠𝑖𝑛 ൬ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴ − 𝜋 · 𝑛൰  (105)

Note that the 𝐶௡ must be positive as a consequence that the set ቄΨ௡(𝑡, 𝑞) = ℮ି௜ಶ೙഑ ௧𝜓௡(𝑞)ቅ௡ୀିଵିஶ
 

be orthonormal, for the scalar product ׬ Ψ௠∗ (𝑡, 𝑞) · Ψ௡(𝑡, 𝑞) 𝑑𝑞ାஶିஶ = ׬ 𝜓௠(𝑞) · Ψ௡(𝑡, 𝑞) 𝑑𝑞ାஶିஶ < +∞. In 
other words: ׬ Ψ௠∗ (𝑡, 𝑞) · Ψ௡(𝑡, 𝑞) 𝑑𝑞ାஶିஶ = ׬ 𝜓௠(𝑞) · Ψ௡(𝑡, 𝑞) 𝑑𝑞ାஶିஶ = 𝐶௡ · 𝐶௠ · 𝛿௡௠ . Therefore, Ψ௡(𝑡, 𝑞) ∈ 𝐿ଶ(ℝ)  ∀𝑛 ∈ ℤழ଴ , such as it is numerically showed below for the first three negative 
integers.  

In order to compute the quantum dynamics by Eq. 87, the quantum potential must be computed. 
First of all the modulus of the wave function becomes quantized, that is: 𝐴௡(𝑞) = |Ψ௡(𝑡, 𝑞)| = 𝐵௡℮ఏ೙(௤) ฬ𝑠𝑖𝑛 ൬ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴ − 𝜋 · 𝑛൰ฬ  (106)

Note in Eq. 105 that the absolute value vanishes due to the quantum potential computation is 
finally divided by 𝐴௡(𝑞). Effectively, from Eq. 75 for the present application case:  𝑉௤(௡)(𝑞) = − 𝜎ଶ2𝐴௡(𝑞) 𝑑ଶ𝐴௡(𝑞)𝑑𝑞ଶ = 

= ௙మ(୯)ଶ + 𝐸௡ − ఙమଶ ඥଶா೙ఙ 𝜃௡ᇱ (𝑞)(2𝜃௡(𝑞) + 1)𝑐𝑜𝑡𝑔 ൬ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴ − 𝜋 · 𝑛൰  
(107)

In the Eq. 107 derivation, the quantized differential equation of Eq. 104 has been taken into 
account to simplify it. Then, the q-derivative of 𝑉௤(௡)(𝑞) becomes: 𝑑𝑉௤(௡)(𝑞)𝑑𝑞 = 𝑓(q) · 𝑓ᇱ(𝑞) − 

− 𝜎ඥ2𝐸௡2 ቀ𝜃௡ᇱᇱ(𝑞)(2𝜃௡(𝑞) + 1) + 2൫𝜃௡ᇱ (𝑞)൯ଶቁ 𝑐𝑜𝑡𝑔 ቌඥ2𝐸௡𝜎 න 𝜃௡(𝑦) 𝑑𝑦௤
଴ − 𝜋 · 𝑛ቍ + 

+𝐸௡ ఏ೙(௤)·ఏ೙ᇲ (௤)(ଶఏ೙(௤)ାଵ)௦௜௡మቆඥమಶ೙഑ ׬ ఏ೙(௬) ௗ௬೜బ ିగ·௡ቇ  

(108)

Taking into account Eq. 108, Eq. 87 to compute the quantum depending on the any integer 𝑛 <0 becomes:  𝑞ሶ௡(𝑡) = 0.01 · 𝑞௡ − 0.001 · 𝑞௡ଶ − ௫೙ଶ𝑥ሶ௡(𝑡) = ௗ௏೜(೙)(௤)ௗ௤𝑞௡(0) = 2𝑥௡(0) = 0 ⎭⎪⎬
⎪⎫

  (109)

Let now present the results. First, the quantized energies have been computed by setting up a 

C++ program for Eq. 103 plus the phase 𝜑௡(𝑞) = ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴  of Eq. 105, due to the energies are 
involved in both equations. This program has used the 4th order Runge-Kutta method to solve the 
differential equations, such that 𝜑௡(𝑞) is rewritten as a differential equation as 𝜑௡ᇱ (𝑞) = 𝜃௡(𝑞) with 𝜑௡(0) = 0 . The C++ program includes the condition that the energies 𝐸௡  must hold 𝜑௡(𝑐) =ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴ = 𝜋 · 𝑛, with an error bound of 10-3, for each 𝑛 < 0 considered. The energy outcomes 
are presented in Table 1 for the 10 first negative integers. 

Table 1. Quantized energies. 

n -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 𝑬𝒏 4.838 19.350 43.538 77.401 120.939 174.153 237.041 309.604 391.843 483.757 
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The numerical results for 𝑛 = −1 , 𝜃ଵ(𝑞)  of Eq. 104, and the corresponding 𝜑ଵ(𝑞) =ඥଶாభఙ ׬ 𝜃ଵ(𝑦) 𝑑𝑦௤଴ , are presented in Figure 2, for the interval 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ. Note 
that 𝜃ଵ(𝑞) < 0 and that 𝜃ଵ(𝑞) → −∞ as 𝑞 → ±∞, which implies that, by Eq. 105, Ψଵ(𝑡, 𝑞) → 0 as 𝑞 → ±∞. In addition, as it is showed below numerically, ׬ Ψଵ(𝑡, 𝑞)ାஶିஶ < ∞, therefore Ψଵ(𝑡, 𝑞) ∈ 𝐿ଶ(ℝ). 

  

Figure 2. 𝜃ଵ(𝑞) (left) and the corresponding 𝜑ଵ(𝑞) = ඥଶாభఙ ׬ 𝜃ଵ(𝑦) 𝑑𝑦௤଴  funtion (right) for the interval 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ. 
Similar patterns to those of Figure 2 present 𝜃௡(𝑞) and 𝜑௡(𝑞) for the subsequent negative 

integers. Therefore, from now on, the attention is focused in the wave functions of Eq. 105 and the 
quantum dynamics provided by Eq. 109 for the three first negative integers. All the results have been 
obtained from the previous results of 𝜃௡(𝑞)  and 𝜑௡(𝑞) = ඥ2𝐸𝑛𝜎 ׬ 𝜃𝑛(𝑦) 𝑑𝑦𝑞0  in the interval 𝑞 ∈ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ. Note that the q-derivative of the quantum potential of Eq. 108 present 

singularities when ඥଶா೙ఙ ׬ 𝜃௡(𝑦) 𝑑𝑦௤଴ − 𝜋 · 𝑛 = 0 . These singularities represent the fundamental 
difference between the classical dynamics given by Eq. 1 and the quantum dynamics given by Eq. 
109. The way that these singularities are overcome is explained below. To do this, both the wave 
function and the corresponding quantum dynamics are presented in the following three figures in 
the same interval 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ. 

Figure 3 presents the normalized wave function 𝜓ଵ(𝑞) of Eq. 105 jointly the corresponding 
quantum dynamics 𝑞ଵ(𝑡) for 𝑡 ∈ ሾ0,1000ሿ of Eq. 109, plotted jointly the Figure 1 classical dynamics. 
On the one hand, note that, such as announced above, 𝜓ଵ(𝑞) → 0, as 𝑞 → ±∞. The 𝐶ଵ constant is 
computed, as usual, as 𝐶ଵଶ = ׬ 𝜓ଵଶ(𝑞) 𝑑𝑞ାஶିஶ ≅ ׬ 𝜓ଵଶ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ = 7.348 . On the other hand, no 
singularity arises in the quantum dynamics 𝑞ଵ(𝑡), at least in the interval 𝑡 ∈ ሾ0,1000ሿ. Therefore, the 
quantum dynamics 𝑞ଵ(𝑡) represents a correction of the classical logistics dynamics of Figure 1 that 
should be taken into account for empirical studies. However, some singularities do arise in the 
following two cases. 

  

Figure 3. Normalized wave function 𝜓ଵ(𝑞)  for 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ  (left) and the 
corresponding quantum dynamics 𝑞ଵ(𝑡)  for 𝑡 ∈ ሾ0,1000ሿ  (right). The quantum dynamics 
corresponds to the continous curve, while the dotted straiht line value represents the saturation value 𝑐 = ௔௕ = 10.0 and the dot dashed curve the classical logistic dynamics. 
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Figure 4 presents the normalized wave function 𝜓ଶ(𝑞) of Eq. 105 jointly the corresponding 
quantum dynamics 𝑞ଶ(𝑡) for 𝑡 ∈ ሾ0,1000ሿ of Eq. 109, plotted jointly the Figure 1 classical dynamics. 
On the one hand note that, such as announced above, 𝜓ଶ(𝑞) → 0, as 𝑞 → ±∞. The 𝐶ଶ constant is 
computed, as usual, as 𝐶ଶଶ = ׬ 𝜓ଶଶ(𝑞) 𝑑𝑞ାஶିஶ ≅ ׬ 𝜓ଶଶ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ = 10.345 . On the other hand, a 
singularity arises in the quantum dynamics 𝑞ଶ(𝑡) in the time 𝑡 ≅ 136.53, corresponding to 𝑞 ≅5.050 . It is represented in Figure 4 with a vertical line. The solution to represent the quantum 
dynamics in all the overall interval 𝑡 ∈ ሾ0,1000ሿ has been to consider the characteristic time interval ∆𝜏 ≅ ఙ|ாభିாమ| = 0.689, provided in [16]. This time represents an approximation for the Energy-Time 

uncertainty relation, and then it can be interpreted as a time interval for which no information about 
the quantum dynamics is known. Then, the quantum dynamics is computed first in the interval 𝑡 ∈ቂ0, 136.53 − ∆ఛଶ ቃ with the same initial conditions, and in a second interval 𝑡 ∈ ቂ136.53 + ∆ఛଶ , 1000ቃ 

with 𝑞 ቀ136.53 + ∆ఛଶ ቁ = 5.1  and 𝑥 ቀ136.53 + ∆ఛଶ ቁ = 0.0 . Avoiding like this the singularity, the 
quantum dynamics 𝑞ଶ(𝑡) represents again a correction of the classical logistics dynamics of Figure 1 
that should be taken into account for empirical studies. 

  
Figure 4. Normalized wave function 𝜓ଶ(𝑞)  for 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ  (left) and the 
corresponding quantum dynamics 𝑞ଶ(𝑡)  for 𝑡 ∈ ሾ0,1000ሿ  (right). The quantum dynamics 
corresponds to the continous curve, where the vertical line in 𝑡 ≅ 136.53 represents the singularity, 
while the dotted straiht line value represents the saturation value 𝑐 = ௔௕ = 10.0 and the dot dashed 
curve the classical logistic dynamics. 

Figure 5 presents the normalized wave function 𝜓ଷ(𝑞) of Eq. 105 jointly the corresponding 
quantum dynamics 𝑞ଷ(𝑡)  for 𝑡 ∈ ሾ0,1000ሿ  of Eq. 109, represented jointly the Figure 1 classical 
dynamics. Again, such as announced above, 𝜓ଷ(𝑞) → 0, as 𝑞 → ±∞. The 𝐶ଷ constant is computed, 
as usual, as 𝐶ଷଶ = ׬ 𝜓ଷଶ(𝑞) 𝑑𝑞ାஶିஶ ≅ ׬ 𝜓ଷଶ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ = 14.492. On the other hand, also a singularity 
arises in the quantum dynamics 𝑞ଷ(𝑡)  in the time 𝑡 ≅ 63.81 , corresponding to 𝑞 ≅ 3.367 . It is 
represented in Figure 5 with a vertical line. The solution to represent the quantum dynamics in all 
the overall interval 𝑡 ∈ ሾ0,1000ሿ  has been to consider again the characteristic time interval ∆𝜏 ≅ఙ|ாభିாమ| = 0.689, provided in [16], with the meaning mentioned above in the context of Figure 4. Then, 

the quantum dynamics is computed first in the interval 𝑡 ∈ ቂ0, 63.81 − ∆ఛଶ ቃ with the same initial 

conditions, and in a second interval 𝑡 ∈ ቂ63.81 + ∆ఛଶ , 1000ቃ with 𝑞 ቀ63.81 + ∆ఛଶ ቁ = 3.4 and 𝑥 ቀ63.81 +∆ఛଶ ቁ = 0.0. Avoiding like this the singularity, the quantum dynamics 𝑞ଷ(𝑡) represents now a very 
different periodic kind-pattern, not a correction of the classical logistics dynamics of Figure 1, which 
also could be taken into account for empirical studies. 
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Figure 5. Normalized wave function 𝜓ଷ(𝑞)  for 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ  (left) and the 
corresponding quantum dynamics 𝑞ଷ(𝑡)  for 𝑡 ∈ ሾ0,1000ሿ  (right). The quantum dynamics 
corresponds to the continous curve, where the vertical line in 𝑡 ≅ 63.81 represents the singularity, 
while the dotted straiht line value represents the saturation value 𝑐 = ௔௕ = 10.0 and the dot dashed 
curve the classical logistic dynamics. 

To complete the results presented, note that ׬ 𝜓ଵ(𝑞) · 𝜓ଶ(𝑞) 𝑑𝑞ାஶିஶ ≅ ׬ 𝜓ଵ(𝑞) · 𝜓ଶ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ ≅0.00003 ׬ , 𝜓ଵ(𝑞) · 𝜓ଷ(𝑞) 𝑑𝑞ାஶିஶ ≅ ׬ 𝜓ଵ(𝑞) · 𝜓ଷ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ ≅ −0.00001 and ׬ 𝜓ଶ(𝑞) · 𝜓ଷ(𝑞) 𝑑𝑞ାஶିஶ ׬≅ 𝜓ଶ(𝑞) · 𝜓ଷ(𝑞) 𝑑𝑞ାଵହ·௖ିଵହ·௖ ≅ 0.003. These outcomes point out that, numerically, it can be asserted that 

the set ቄΨ௡(𝑡, 𝑞) = ℮ି௜ಶ೙഑ ௧𝜓௡(𝑞)ቅ௡ୀିଵିஶ
 is orthonormal. However, the approximation to the zero value 

is lesser in the third integral than for the other two first integrals. Note that this outcome is related 
with density of curves in the same interval 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ, and then with the 
number of zeros, of the wave function 𝜓ଷ(𝑞) in Figure 5, versus 𝜓ଶ(𝑞) in Figure 4 and 𝜓ଵ(𝑞) in 
Figure 3. In fact, subsequent results not here presented support this trend: the density of curves in 
the same interval 𝑞 ∈ ሾ−15 · 𝑐, 15 · 𝑐ሿ = ሾ−150, 150ሿ, and then the number of zeros, increase as the 
quantum integer becomes more negative. 

That pattern indicates that, as the quantum integer becomes more negative, the number of 
singularities increases for the quantum dynamics of Eq. 109. For instance, for 𝑛 = −4, a singularity 
arises at 𝑡 ≅ 24.82, becoming also periodical the dynamics after the singularity; and for 𝑛 = −5 a 
first singularity arises at 𝑡 ≅ 0.53 and a second one at 𝑡 ≅ 72.61. For this last case, the pattern 
between the first and second singularity is of growing-kind, while the pattern after the second 
singularity is also periodical, similar to that of Figure 5. 

The general conclusions of this section can be summarized as: 

1. The system energy is positive and it becomes quantized as a function of the non-zero negative 
integers, over the hypotheses that the quantum wave vanishes in the critical points of the 
logistic function. Table 1 shows these energy outcomes. 

2. The set of quantized wave functions given by Eqs. 104 and 105, ൜Ψ௡(𝑡, 𝑞) = ℮ି௜ಶ೙഑ ௧𝜓௡(𝑞)ൠ௡ୀି1

ି∞
, 

define an orthonormal set of functions, i.e., ׬ Ψ௠∗ (𝑡, 𝑞) ·Ψ௡(𝑡, 𝑞) 𝑑𝑞ା∞ି∞ = 𝐶௡ · 𝐶௠ · 𝛿௡௠. 
3. It is expectable that, as the quantum integer becomes more negative, the density of curves of 𝜓௡(𝑞) by Eq. 105 increases in the all the domain 𝑞 ∈ (−∞, +∞), as well as the number of zeros 

in the same interval. 
4. As a consequence of item 3, it is also expectable that, as the quantum integer becomes more 

negative, the number of singularities will increase in the time interval of prediction for the 
quantum dynamics given by Eq. 109. 
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5. As a consequence of item 4, the conception of quantum trajectory given by Eq. 109 becomes 
radically different from the classical trajectory given by Eq. 85. The growth of singularities as 
the negative integers become more negative seems to be the key point of this radical difference. 

In addition, a general conclusion is that a fundamental objective of research must be to study if 
the singularities can be avoided. Avoiding the singularities will allow a better comparing between 
classical and quantum dynamics, such as Figure 3 provides. However, on the other hand, the 
singularities could be unavoidable under the quantization hypotheses stated and other quantization 
hypotheses should be instead stated. Note that these quantization hypotheses provided in Eqs. 99 
and 100 have been 𝜓(0) = 0  and 𝜓(𝑐) = 0 , but other hypotheses could provide a quantum 
dynamics that avoids the singularities. Besides, although the quantization hypotheses 𝜓(0) = 0 and 𝜓(𝑐) = 0  maintain, the boundary conditions 𝜃௡(0) = −1  and 𝜃௡ᇱ (0) = 0  in Eq. 104 could be 
different, in order to avoid the singularities. 

Finally, the assumption of the system Planck constant as 𝜎 = 10 has been chosen by numerical 
computations’ convenience. However, finding the way to relate the system Planck constant with 
other significant constants of other formalisms could be necessary. For instance, in the work [20], 
Feigenbaum provides significant constants in the context of the logistic dynamics and similar 
functions. Then, could the system Planck constant be related with those constants? And, in addition, 
if the singularities discovered were unavoidable, could they represent also a route to chaos as the 
integers of the quantum approach become more negative? 

Therefore, only in the context of this section, the future research is enormous and it has to be 
gone on. 

8. Discussion and Conclusions 

A first discussion and the corresponding conclusions have been presented in the final 
paragraphs of Section 7. It is unavoidable to present them in the context of Section 7 because the 
formalism presented has been put in practice for the application case of this section. Therefore, for 
concrete discussion and conclusions about the quantum dynamics of the logistic function, Section 7 
must be addressed. 

However, on the other hand, the application case of Section 7 can also enlighten the general 
discussion and conclusions paper. A first question that any researcher of General Systems Theory or 
of mathematical-physics could wonder is if there exists a need of such formalism. The answer is 
positive in the sense that an understanding of the world complexity needs of new formalisms such 
as here presented. However, this is only an epistemological assumption, and only future empirical 
supports could provide the formalism validity. 

Besides, from a mathematical point of view, note that Dirac’s work [7] was what allowed to 
obtain his equation for fermionic quantum fields [21]. That equation is also first order in the partial 
derivatives, such the first order Schrödinger equation of Eq. 23. However, Eq. 23 is non-relativistic 
unlike Dirac’s equation. However, a magnitude such as the information speed, similarly to the light 
speed, has never been defined in the context of abstract dynamical systems. If this magnitude could 
be discovered and empirically supported, may be a kind of Dirac’s equation could be developed. In 
this context, the 𝐹௟௞(𝑡, 𝒒) (𝑘, 𝑙 = 1,2, … , 𝑛) of Eq. 14 could play the role of the electromagnetic field 
and the 𝑔௟(𝑡, 𝒒) (𝑙 = 1,2, … , 𝑛) and the ℎ(𝑡, 𝒒) could play the role of, respectively, its vector potential 
and its scalar potential. However, that theoretical advance has not been produced and, in addition, 
the first order Schrödinger equation of Eq. 23 presented in Section 3 no further information provides 
to the dynamics of abstract dynamical systems. 

The last disappointing conclusion is what motivates the second order formulation presented 
from Section 4 until Section 7. It must be highlighted that both Hamiltonians of Section 4, those 
corresponding to Eqs. 47 and 58, could provide significant information besides its use to obtain a 
second order Schrödinger equation in Section 5. For instance, the energy conservation of autonomous 
systems for both Hamiltonians, could help us to better understand the classical dynamics of the 
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abstract dynamical systems? This point should be also investigated. In addition, could there be a 
universal way to define the abstract masses? The answer has been provided also in Section 4: the 
abstract masses could be defined as 𝑚௞(𝑡, 𝒒) = ఓೖ௙ೖ(௧,𝒒) (𝑘 = 1,2, … , 𝑛), being 𝜇௞  constants with the 

suitable dimensions. In this case, Eq. 43 holds identically, and it can be also considered that ℎ(𝑡, 𝒒) =0. Therefore, the application case of Section 7 could have been presented like this, i.e., as 𝑚(𝑞) = ఓ௙(௤) 
instead 𝑚(𝑞) = 1. Then, the conclusions of the application case could be different. This hypothesis 
must also be investigated. 

However, the most important contribution of this paper is, in Section 5, the second order 
Schrödinger equation of Eq. 68 or tis time-independent version of Eq. 69 for autonomous systems; 
and besides, in Section 6, the quantum formulation of the abstract dynamical systems of Eq. 84. Note 
that more application cases must be developed besides that of Section 7. 

On the one hand, similar theoretical contributions to that of Section 7 must be developed trying 
to discover if the abstract masses choice can be universal, such as discussed above, or their choice can 
be arbitrary (while they hold Eqs. 43 and 44). On the other hand, the formalism needs of a great 
amount of empirical supports. The systems that could support all the formalism presented can be of 
different nature. For instance, population dynamics or chemical reaction dynamics can provide a 
great amount of empirical data to support the formalism, basically because both kind of dynamical 
systems are modelled by systems of first order differential equations. 

A question that must also be studied in a future research is the stochastic formulation of Eq. 84. 
This question was highlighted by Bohm and Hiley in [14]. In fact, in that work, the deterministic and 
the stochastic approaches are considered. The stochastic approach can provide reliable quantum 
dynamics, i.e., outcomes with confidence intervals, which are not possible with a deterministic 
approach. To support this possible approach, note that the wave functions of Eq. 105 are probability 
densities. In addition, the stochasticity consideration could provide a quantum dynamics similar to 
those of physical systems, such as the dynamics of an electron around the proton in a hydrogen atom 
[16]. However, the stochastic approach must take part of a subsequent phase of research, after having 
found better theoretical and empirical support for the formalism presented. 

Finally, this paper’s author is conscious that the system Planck constant is, conceptually, a 
challenger magnitude. Its inclusion in the formalism causes epistemological and mathematical 
questions difficult to be explained without previous empirical or theoretical evidences. Some ways 
to support its existence and its value for a particular abstract dynamical system have been discussed 
in the Section 7 conclusions. However, from a theoretical approach, the system Planck constant arises 
with the translation of the quantum formalism to the abstract dynamical systems, such as it has been 
showed throughout this paper. However, as in all new proposed theories, the existence of the system 
Planck constant, as well as all the formalism background, take part of a hypothetical proposal that 
must be supported in a future by empirical evidences. 
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