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Abstract: Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse
biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and
Alzheimer’s disease. Knowing where a target protein resides within a cell will give insights into tailored drug
design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy
imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location
identification. However, the booming era of proteomics and high-throughput sequencing generates tons of
newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission
impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML),
especially deep learning methods, have made significant progress in this research area. In this article, we
review the latest advances in Al-based method development in three typical types of approaches, including
sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges
and future directions in Al-based method development in this research field.

Keywords: protein subcellular localization; machine learning; deep learning; artificial intelligence;
Gene Ontology; Sequence Analysis

1. Introduction

Within a cell, mature proteins must reside in specific subcellular structures to properly perform
their biological roles, as different cellular compartments provide distinct chemical environments (e.g.,
pH and redox conditions), potential interacting partners, or substrates for diverse functions [1,2].
Most cellular biological processes, such as the nucleocytosolic shuttling of transcription factors [3],
the re-localization of mitochondrial proteins during apoptosis [4], and the endocytic uptake of cell-
surface cargo receptors, all rely on precise protein localization. Conversely, mislocalization is often
associated with cellular dysfunction and diseases, such as cancer [5,6], neurodegenerative diseases
[7,8], and metabolic disorders [9,10].

Conventionally, identifying subcellular localization of proteins primarily relies on wet lab
experimental methods. Fluorescence microscopy imaging, which apply fluorescent dyes or
fluorescent protein tags to label target proteins, has commonly been used for observing their
distribution within cells [11,12]. This method has become one of the preferred tools for studying
protein subcellular localization due to its high resolution and real-time observation advantages [13].
By using labeled antibodies against target proteins, immunoelectron microscopy technique is
regarded as a gold standard to provide the high resolution of electron microscopy [14]. Another
method involves the use of fluorescent biomarker tags [15] like the protein A-GFP tag, which fuses a
fluorescent protein with the target protein, allowing it to emit a fluorescent signal among different
cell compartments [16]. These experimental methods yield high-resolution location of targeted
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proteins for researchers, enabling direct observation to uncover biological processes and metabolic
mechanisms.

However, these wet lab experimental methods also have some significant drawbacks: they often
require expensive equipment and time-consuming steps, making them costly for large-scale studies.
These problems are exacerbated given that the number of newly discovered proteins has increased
exponentially in the post-genomic era. Take the UniProt Database[17] as an example. The gap
between the reviewed and unreviewed proteins has significantly expanded during the past decade
(Figure 1A). Specifically, as shown in Figure 1B, In the latest 2024_01.version of UniProt, a notable
majority of data entries are unreviewed proteins in TrEMBL. In this case, implementing wet lab
experiments alone for subcellular localization determination for remarkably large amounts of data
from different species (Figure 1C) becomes an impossible mission. Moreover, the rich collection of
accurately annotated protein data in databases (Figure 1D) can facilitate the development of robust
prediction methods. Computational models, especially Al-assisted approaches known for their
proficiency in handling large-scale datasets, can be effectively applied in this context.
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Figure 1. Statistical analysis of UniProtKB [17] (2024_01.version). (A) The trend of protein number
growth in TTEMBL (unreviewed proteins) and Swiss-Prot (reviewed proteins). The number of newly
discovered unannotated proteins far exceeds that of newly added experimentally validated proteins.
(B) The proportion of new-added protein counts between the two databases in the 2024_01.version.
(C) Taxonomic distribution of protein sequences. (D) Number of proteins in the Top 10 subcellular
locations.

Recent decades have witnessed the booming of in-silico methods for protein subcellular location
prediction. Based on features used for computational modeling, most of existing methods can be
generally divided into three main categories: (1) sequence-based methods, which only use the amino
acid sequence of the query protein as inputs; (2) knowledge-based methods, using protein
annotations from multiple databases to correlate the information with their subcellular locations; (3)
image-based methods, extracting subcellular location features from bioimages and then identify the
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likelihood of proteins being located in various subcellular compartments. The primary sequence for
a protein is much easier to obtain with existing sequencing technologies. With remarkable advances
in machine learning and deep learning, coupled with an increasing number of proteins with
experimentally determined localization information as well as functional annotations and imaging
records in publicly available databases, accurate and efficient computational frameworks provide a
promising way for protein subcellular localization.

In this review, we will first present some remarkable progress in in-silico models, including three
major types of models mentioned above. In Section 2, we will introduce common features and
algorithms used in sequence-based methods, and so for knowledge-based and image-based
frameworks in Section 3 and Section 4, respectively. The simplified flowchart for the prediction
frameworks mentioned is illustrated in Figure 2. Then, we will give an overview of location
prediction models that are specially designed for different species for more accurate prediction with
specific data inputs. Lastly, we will explore the existing challenges and future trajectories of this
research domain and propose our expectations.
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Figure 2. The flowchart of three major types of Al-based prediction methods. The procedures
include sequences or images as input, feature extraction, model prediction, and subcellular location
output. (A) Key features extracted from sequences, annotations, and image inputs. Different
classifiers extract composition information, encompassing AA order and frequency, physicochemical
properties, and identifying signal peptide cleavage sites from sequence inputs. In addition to
straightforward data, evolutionary profiles are also considered through homology alignment with
the Position-Specific Scoring Matrix (PSSM) and the Position-Specific Frequency Matrix (PSFM).
Knowledge-based methods involve the establishment of Gene Ontology (GO) vectors, derived from
GO terms collected from specific databases with protein sequences or accession numbers as
keywords. Other functional annotations, such as protein-protein interaction (PPI) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway information, can also be fused as input
features. Imaging features mainly consist of morphological, haralick data and information from
different channels, namely hand-crafted features, and deep features captured by deep learning
algorithms. (B) Three types of algorithms used for prediction modules in computational models. (C)
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Major subcellular locations in a plant cell as an example of potential outputs, for proteins with single
or multiple locations.

2. Sequence-Based Methods

2.1. Sequence-Based Features

In protein primary sequences, the 20 standard amino acids (AA) exert different biochemical
properties such as hydrophobicity, hydrophilicity, side chain characters, etc. Sequence-based
methods intend to make predictions out of the correlations between protein subcellular locations and
the information embedded in amino acid sequences. There are three major types of features used for
model construction: AA composition information, sorting signal information and evolutionary
information.

The composition-based features, which include AA occurrences and order in the query
sequence, were commonly used in the earliest subcellular prediction methods. Moreover, previous
studies have confirmed a better performance of the model by combining AA original sequence,
gapped amino acid composition (GapAA) [18], and amino-acid pair composition (PairAA) [19]. Based
on AA-composition features, Chou [20] proposed pseudo-amino-acid composition (PseAA) using the
sequence-order correlation factor for more biomedical properties discovery when avoiding the high-
dimensional vector formation. The simplicity of composition features helps the generalization and
interpretation of the computational models since they capture the most basic trends in protein
sequences associated with their locations. However, they may not provide sufficient resolution for a
high accuracy rate since there’s a loss of information about important sequences or structural motifs
highly related to proteins’ subcellular location.

The sorting signal sequences or signal peptides, including transit peptides like mitochondrial
transit peptides (mTPs) and chloroplast transit peptides (cTPs) [21], are short and cleavable segment
of amino acid sequences added to a newly synthesized proteins, determining their destination of the
transportation process. These short peptides possess the directions mature proteins should be
transported, reflecting the possible location event for one protein [22]. Available approaches with
signal peptides for protein localization mainly refer to finding their cleavage sites [23]. As described
in previous studies, sorting-signal sequences vary in length and composition but have similar
structures: the N-terminal flanking region, also known as the n-region, the central hydrophobic
region (h-region), and the C-terminal flanking region (c-region) [24]. The hydrophobicity in the h-
region and a large proportion of nonpolar residues in the c-region are used to label the cleavage sites
by computational methods [25,26]. According to the location signal embedded in those short
peptides, one can mimic the de facto information processing in cells and find the target spot of the
test protein.

In addition, based on the fact that homologous sequences are likely to share the same subcellular
location, the unknown protein can be assigned the same subcellular location as its homologs
generated from PSI-BLAST [27]. Moreover, the evolutionary similarity profiles extracted from the
position-specific scoring matrix (PSSM) and position-specific frequency matrix (PSFM) derived from
multiple sequences alignment results can contribute as classification features providing valuable
information such as conserved motifs or targeting signals among different protein families. This
representation can also be extended by integrating pseudo-analysis[28]. Once aligned with known
homologs in the database, this method can achieve high accuracy. However, as one amino acid
change can directly influence the characters of one protein sequence, this method is more likely to be
one of the sources of feature basis of prediction models.

2.2. Sequences-Based Al Approaches

Most computational frameworks include three major steps: feature extraction, feature selection,
and final classification. Considering common features discussed above, the complexity of the models
developed also increases with the amount of data processed and the dimension of input features,
from traditional machine learning classification to complex deep learning analytical models. Besides
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the development of computational frameworks, we will also introduce techniques that are used to
improve the algorithms dealing with multi-location proteins in the following.

For conventional classification, Support Vector Machine (SVM) [29], K-Nearest Neighbor (KNN)
[30], and Random Forest (RF) [31,32] are widely chosen classifiers for training. Their simplicity makes
them easy to use for prediction protocols with fast speed and low computational cost, suitable for
limited data and low-dimensional inputs. Combined with highly efficient feature extraction methods,
these frameworks will work well in most cases [33]. For instance, Du et al. [34] proposed two novel
feature extraction methods that utilize evolutionary information via the transition matrix of the
consensus sequence (CTM) and PSSM before adopting SVM, which in the end reach an overall
accuracy of 99.7% in CL317 dataset. A feature extraction-based hierarchical extreme learning machine
(H-ELM) introduced by Zhang et al. [35] can handle high-dimension feature inputs directly without
demanding dimension reduction for acceptable results. Alaa et al. [36] exploits an extended Markov
chain to provide the latent feature vector, which records micro-similarities between the given
sequence and their counterparts in reference models. These methods help extract more abundant
features of query sequences and provide better performance.

However, these conventional models may not perform well in complex scenarios [1], especially
multi-locational protein prediction [28]. Though many proteins only stay in one subcellular space,
studies have discovered many multi-location proteins that have special functions or are involved in
crucial biological steps [37]. Moreover, rather than staying in one place, proteins move from one
subcellular compartment to another or simultaneously reside at two locations and participate in
different cellular processes [38]. Recent studies have also shown the remarkable significance of
multilocation proteins in cell growth and development [39]. For instance, phosphorylation-related
multilocation proteins can function as a “needle and thread” via protein-protein interactions (PPI),
thus playing an important role in organelle communication and regulating plant growth [40]. Under
these circumstances, there are mainly two ways for predicting multi-location proteins based on
conventional classifiers: algorithm-adaption and problem transformation. The former method
extends existing algorithms to deal with multi-label problems. Jiang et al. [41] considers weighted
prior probabilities with a multi-label KNN algorithm to increase the model accuracy. Library of SVM
(LIBSVM) toolbox [34,42], instead, uses a one-versus-one (OVO) strategy to solve multi-class
classification problems. Customization of well-known algorithms enhances their ability for specific
requirements, but there is a risk of overfitting and may require significant computational resources.
The problem transformation approach focuses on transforming the original problem into a different
representation or formulation that is solvable with existing algorithms [43] [44], such as converting a
multi-location classification problem into multiple single-label classification problems [45]. Shen et
al. [28] introduces multi-kernel SVM by training multiple independent SVM classifiers to solve single-
label problems before combining their results, one classifier for each class. Following this idea, an
algorithm can be easily extended to solve multi-label classification.

In summary, traditional machine learning algorithms can achieve fast training times and high
accuracy in scenarios with well-organized feature spaces and clear decision boundaries, their
performance may degrade quickly when faced with large-scale data inputs, even with tailored
classifiers featuring more selected features. Dimension reduction [46] and parallel processing [47] can
be applied to mitigate the challenges, allowing an improved computational method scalability.

As multi-layered structure provides better performance compared to traditional approaches
[31], more methods based on deep networks especially neural networks have become increasingly
popular in protein subcellular localization research [48,49]. Starting as effective feature extractors
which automatically obtain deep features embedded in sequences [50], convolutional neural network
(CNN) is widely implanted in multi-locus protein localization framework. Mining deeper, Kaleel et
al. [51] ensemble Deep N-to-1 Convolutional Neural Networks that predict the location of
endomembrane system and secretory pathway versus all others and outperform many state-of-the-
art web servers. Cong et al. [52] proposed a self-evoluting deep convolutional neural network (DCNN)
protocol to solve the difficulties in feature correlation between sites and avoid the impact of unknown
data distribution while using the self-attention mechanism [53] and a customized loss function to
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ensure the model performance. In addition, long short-term memory network (LSTM) which
combines the previous states and current inputs is also commonly used [54,55], with Generative
Adversarial Network (GAN) [56] and Synthetic Minority Over-sampling Technique (SMOTE) [57]
used for synthesizing minority samples to deal with data imbalance. Developing data augmentation
methods by deep learning algorithms has also made protein language model construction possible
[58,59]. Through transfer learning [60], pre-trained models can be fine-tuned on different
downstream tasks, reduces the need for large amounts of labeled data for training. For example,
Heinzinger et al. [61] proposed Sequence-to-Vector (SeqVec) that embeds biophysical properties of
protein sequences as continuous vectors by using the natural language processing model ELMo on
unlabeled big data. This represents a way to speed up the prediction process independent of the size
of inputs. Details of computational models mentioned above can be found in Table 1.

Deep learning will demonstrate exceptional outcomes dealing with high-dimensional inputs
with deep feature extraction, eliminating the need for manual feature engineering and capturing
intricate patterns in sequences. However, large, labeled, and high-quality datasets are still needed for
original model training, which results in too many hyper-parameters and makes it hard to interpret
the model itself [31].

Table 1. A summary of state-of-the-art sequence-based protein subcellular localization
frameworks. S: Single-Location, M: Multi-location, GAN: Generative Adversarial Network, CNN:
Convolutional Neural Network, LM: Language Model, SP: Signal Peptide, PSSM: Protein-Specific
Scoring Matrix, LSTM: Long Short-Term Memory, AAC: Amino Acid Composition, LDA: Linear
Discriminant Analysis, PseAA: Pseudo Amino Acid, PseAAC: Pseudo Amino Acid Composition,
PPWM: Protein Position Weight Matrix, DNN: Deep Neural Network. KNN: K-Nearest Neighbor.
SVM: Support Vector Machine.

Single-
Method Features Algorithm /Multi- Species AvailabilityYear
Location
Handcrafted
ProtBERT, GA
DaDL-SChlo Features, Deep rotBERT, GAN, M Plants [62] 2023
CNN
Features
Multilayer
DeepLoc-  Masked-LM
eepioc as. N . Perceptron, Protein M Eukaryote [63] 2022
2.0 Objective
LM
Archaea, Gram-
. positive Bacteria,
SignalP - 6.0 Sp Transformer Protein /- " negative [26] 2022
LM .
Bacteria and
Eukarya
Physico-chemical Viridiplantae,
MULocDeep Properties, PSSM LSTM M Metazoa, Fungi [64] 2021
L -
SCElsgd AATFrequency  DeepN-to-1CNN S Eukaryote [65] 2020
CIM- Apoptosis Proteins
AECA- PSSM, LDA SVM S onCL317 & ZW225 [34] 2020
PSSM-LDA datasets
TargetP - Sp LSTM S Plants and Non- [25] 2019

2.0 plants
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Javed and PseAA KNN M Bacteria, Virus [33] 2019
Hayat
AAC, PPWM,
) Plants
MU-LOC  Functional DNN, SVM S . , [66] 2018
(Mitochondrian)
Features
MultiP- Plants
PseAA VM 71 201
SChlo SeAAC 5 M (Subchloroplast) (671 015
SLocx A Order, Gene SVM S Plants [68] 2011

Expression Profile

3. Knowledge-based Methods

3.1. Legitimacy of Using Gene Ontology (GO) Features

Knowledge-based methods tend to dig into the correlation between the annotation of one
protein and its subcellular location to establish predictors. Compared to Swiss-Prot keywords [69,70]
or PubMed abstracts [71,72], Gene Ontology (GO) terms-based methods are more attractive for the
following reasons.

GO terms describe reviewed knowledge of the biological domain in from three aspects: (1)
Molecular Function, representing activities that can be performed by individual or by assembled
complexes of gene products at the molecular level; (2) Cellular Component, labeling locations relative
to cellular compartments; (3) Biological Process, describing the events achieved by one or more
ordered assemblies of molecular functions. These well-organized information can be used for protein
subcellular localization because (1) Instead of table-lookup, which is dependent on cellular
component GO terms, they perform deeper mining into items to accumulate every related GO
category to improve prediction results, (2) The methods outperform previous sequence-based
methods without compromising either inputs or outputs [73]. Mining deeper, the GO term itself is
structurally organized but loosely hierarchical consisting of cellular components, biological
processes, and molecular functions of gene products. The relationship between GO terms can be
“part-of” (part and whole), which may embed some similarity information, and “is-a” (parent and
child), which may result in more than one parent term. Starting from semantic similarity
measurement, SS-Loc [74] incorporates a richer source of homologs and generates more features for
prediction. Make use of the loosely hierarchical structure, relevance similarity (RS) consider the
“distance” between the parent and child nodes. Take HybridGO-Loc [2] for example, it combines the
frequency of occurrences of GO terms and semantic similarity between extracted GO terms to form
a hybridized vector as input features, giving outstanding performance.

Mapping AA entries of query protein or accession number (AC) of its homologous to the GO
database [75] will result in a list of GO items representing the possible functions and biological
metabolism process this protein is involved in. For further computational methods implementation,
reorganizing and transferring the list of data into numerical vectors is of high significance. Gneg-
mPLoc [76], Euk-PLoc [77], and Hum-PLoc [78] consider GO terms as the basis of forming an
Euclidean space, which only consists of 0 or 1 for coordinates. ProLoc-GO [43] on the other hand,
represented the hit of annotated GO terms mined from Gene Ontology Annotation (GOA) with a n-
dimensional binary feature vector. The constructed GO vectors are used for the following training.

3.2. Knowledge-Based Al Approaches

Originally, most machine learning methods used GO terms as the only input sources in simple
classification model [79,80]. Given the growing richness of comprehensive protein annotation like
related metabolism pathways and structural information, the integration of various input sources,
including annotations, interaction networks, and pathway enrichment knowledge, contributes to a
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multi-view foundation for model improvement [81-83]. Applying deep learning algorithms enables
a more comprehensive understanding of these high-dimensional and complex features, and further
the combination of sequence and knowledge as input sources. According to the number of input
sources, the methods can be roughly divided into GO terms only and fusion methods.

For single input source, mMGOASVM [84] introduces a new decision scheme in SVM multi-class
classifiers to collect all the positive decisions, enabling both single and multi-label localization. AD-
SVM [85] enhances the binary relevance methods by integrating an adaptive decision scheme,
thereby transforming the linear SVMs into piecewise linear SVMs, reducing the over-prediction
instances. By using the frequency of the appearance of one protein in different places, Euk-mPLoc 2.0
[86] creates a virtual sample counting the appearance of protein to separate the total sequences input
and the number of locations. However, a large number of proteins especially new discovered proteins
have not been functionally annotated yet, and directly using homologs cannot guarantee the
availability of enough GO terms to be found in the GOA Database. Moreover, the GO is not related
to the representation of dynamics or pathway dependencies for protein, which will result in the risk
of noise and overestimation of the novel proteins [87]. More details of the methods mentioned can be
found in Table 2.

To improve the interpretability of the proposed model, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways is also considered as functional annotation that can be incorporate in the
computational approaches [88]. Since in vivo protein interaction is likely to reside within the same
subcellular locations, it is possible to reveal protein subcellular localization with protein-protein
interaction (PPI) network [89-91], which is sensitive to mis-localization events [92].

The fusion methods can basically be divided into two categories: feature-level fusion[93-95] and
decision-level fusion [96]. Feature level fusion is mostly based on average pooling, weighted
combination [97], serial combination or concatenation of selected values. Liu et al. [95] utilized the
latent semantic index method to represent multi-label information, while Yu et al. [47] constructed a
novel parallel framework of attribute fusion to avoid the impact of duplicated information. This
fusion level enhances the information from multiple sources and allows flexibility in fusion
techniques, such as early integration, intermediate integration, and late integration [98]. But low data
quality and difficulty in feature selection will affect building one efficient computational model. At
the decision level, basic classifiers are used for different data sources first for selecting the suitable
ones, then the results of each chosen method are ensembled as part of the determination protocol [99],
as for the decision voting process [96]. Though the integration strategy is simple, this method can
help create various decision-making systems that lead to more robust and accurate predictors. For
instance, multi-view model like ML-FGAT [100], incorporates most of the feature types (e.g.,
sequence, evolutionary information, physicochemical property, etc.), which minimizes the
perturbation of extraneous data in predictive tasks while concurrently enhancing the descriptive
capability.

Table 2. A summary of state-of-the-art knowledge-based and fusion models for protein subcellular
localization prediction. S: Single-Location, M: Multi-Location. PSSM: Position-Specific Scoring
Matrix, PsePSSM: Pseudo Position-Specific Scoring Matrix, PC: Physicochemical Properties, KNN: K-
Nearest Neighbor, NN: Nearest Neighbor, RF: Random Forest, CDD: Conserved Functional Domain,
PseAAC: Pseudo Amino Acid Composition, PPI: Protein-Protein Interaction Network, KEGG: KEGG
(Kyoto Encyclopedia of Genes and Genomes) Pathway, SVM: Support Vector Machine, EBGW: OET-
KNN: Optimized Evidence-Theoretic K nearest neighbor.

Single-
Method Features Algorithm /Multi- Species Availability Year
Location
Human,
GO terms, Sequence Virus, Gram-
L-FGAT K 101 2024
ML-FG Information, PsePSSM, PC NN M negative [101] 0

bacteria,
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plant, SARS-
CoV-2
Human,
PMPSL-GRAKEL GO terms RF M Bacteria, [102] 2024
animal
GO Terms, CDD, PseAAC,
Wang et al. PSSM NN M Human [83] 2023
PPI, KEGG features,
Zhang et al. Functional GO RF, SVM M Human [94] 2022
ML-locMLFE GO terms, PseAAC, PSSM  MLFE M Bacteria, [103] 2021
Plant, Virus
RF, SVM,
Chen et al. GO, KEGG, PPI KNN, DT S Human [88] 2021
Gram-
Gpos-ECC-mPLoc GO terms SVM M positive [104] 2015
Bacteria
mGOASVM GO terms SVM M Virus, Plant [105] 2012
iLoc-Euk GO terms KNN M Eukaryote [106] 2011
GO terms, Functional Gram-
Gneg-mPLoc Domain, Evolutional OET-KNN M negative bact [107] 2010
Information eria
PSORTD 3.0 Swissprot Annotation SVM S Prokaryotes [108] 2010

4. Bioimage-based Methods

4.1. Bioimage-Based Features

Compared to amino acid sequences, representing proteins with 2D images is more interpretable
and concise when determining the subcellular localization. With the rapid improvement in
microscopic imaging technology, scientists have paid more attention to bioimage-based methods.
Computer hardware improvement, especially in graphics processing units (GPUs) makes it possible
to deal with more complex calculation problems. The development of neural network structure also
accelerates deep learning algorithm architecture improvement for image analysis significantly. For
high equality data, with the mission of mapping all human proteins in cells, tissues and organs, the
human protein atlas (HPA) program [109] was initialized in 2003 as an open-access database that
consists of imaging, mass spectrometry-based proteomics, transcriptomics, etc. The subcellular
section of HPA shows detailed expression and spatial distribution conditions of proteins encoded by
13147 genes. As recently updated to version 23, it is the most powerful training data source for
computational method development [110,111].

The subcellular location features (SLF) collected can be divided into two categories, namely,
global features and local features [112]. Composed of DNA distribution information and global
textures, the global features such as morphological features, local binary patterns (LBP) [113] and
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Zernike features [114] mainly describe the spatial structure of the whole image. The Haralick [115]
texture feature, which obtains statistical features including contrast, correlation, and entropy from
the gray-level co-occurrence matrix of input images, is one well-known global image descriptor in
pattern recognition. Local features, instead, can describe the micro-patterns ignored in global
features. Take scale-invariant feature transform (SIFT) [116] as an example. SIFT was originally used
for salient points detection and is suitable for fluorescence object description, which guarantees good
performance in fluorescence image studies, especially when combined with global features.

4.2. Bioimage-Based Al Methods

Image-related methods can be roughly organized into three phases based on the algorithms and
the number of data types used, namely conventional or traditional machine learning methods, deep
learning methods, and complex fusion methods, respectively. Figure 3 shows the development of
these models from simple to complicated.

Traditional machine learning methods construct the prediction models with the aforementioned
hand-crafted features for classification [117-119]. For instance, Li et al. [120] extended a logistic
regression algorithm with structured latent variables for underlying components in different image
regions for further classification. With two-layer deep learned feature selection, Ulah et al. [121]
established a SVM model based on both radial basis function and linear kernel for location prediction.
However, these convolutional methods can be sensitive to noise and variability of imaging data
collected, resulting in decreased model robustness. Spatial relationships that embedded in images
are rarely detected as well, due to manual feature engineering. As deep learning predictors employed
and have achieved high performance on various image-based tasks, recent advances in protein
subcellular location rely more on deep learning methods [117].

Simple Complex
| M | \ . \
1 ! I
A I ! : g
1 Hand-crafted Features 1 B Hand-crafted Features | | !
| 1 I | | Imaging 1
1 Global features 1 " Global Features | I s 1
1 Haralick features | 1 Local Features 1 1 equence 1
| DNA features : 1 1 | Annotations 1
: Zernike features I : Deep Image Features | 1 :
. ! 1
1 Convgntlonal Local features : 1 Deep Feature Correlations 1 1 Complex !
1 Machine Object features 1 Learnin Spatial Relationships | 1 Model :
1 Learning SURF features 1 : 9 : 1 1
| Method SIFT features : I I : Multi-modal, 1
! ! CNN, DNN, o Multi-view :
|
| : I GAN, | : Integration I
1 1
! SVM,KNNRF, ! L2, Lo Ensemble learning |
i LASSO | X Attention Mechanism " | |
1
1 : | I I !
L & o e ____ ] N e e e e e e e e 2 1

Figure 3. Three primary categories of computational methodologies for processing imaging data.
The red arrow depicts the progressive complexity of prediction models, reflecting advancements
toward more sophisticated computational frameworks. Blue rectangle: Features used for model
training; Green rectangle: Algorithms for location prediction. (A) Conventional Machine Learning
Methods. Hand-crafted figures representing global and local information of images are extracted and
trained for simple models. (B) Deep Learning Methods. Coupled with hand-crafted features, deep
image features are obtained by deep neuro networks. (C) Complex Fusion Models. This method
integrates multi-modality data like sequence, annotation texts and imaging data as model inputs to
gain a more comprehensive and interpretable model for protein subcellular localization. SVM:
Support Vector Machine. KNN: K-Nearest Neighbor. RF: Random Forest. LASSO: Least Absolute
Shrinkage and Selection Operator. CNN: Convolutional Neural Network. DNN: Deep Neural
Network. GAN: Generative Adversarial Network. LSTM: Long Short-Term Memory.
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Deep neural network implementation is the starting point, which increases the inner feature
extraction power and the model’s learning ability for large and complicated datasets. In addition to
selecting and integrating key features during the image preprocessing steps, most of the deep neural
networks consider processed image segmentation as inputs for multi-layer convolutional neural
networks (ML-CNN) [122]. Moreover, some predictors can integrate both low and high-level features
embedded in bioimages for a more in-depth view. For multi-label prediction, traditional CNN is
extended with a criterion learning strategy to leverage label-attribute relevancy and label-label
relevancy to determine the final location [123,124]. To be more specific, the diversity in input data
types across various dimensions contributes to shaping the complexity of the entire model. From
image datasets, DeepPSL automatically learn meaningful features and their correlations for
prediction improvement [125]. Xue et al. [126] unmixed the IHC images into protein and DNA
channels for representation construction while segmenting the images into patches for fine-tuning
network training. Ding et al. [127] ensemble different classification models using different depth of
feature vectors constructed from images as inputs to achieve high accuracy outputs. By collecting
different imaging types, Wei et al. [128] built another parallel integrative deep network for label-free
cell optical images. More details about the models can be found in Table 3. Though further techniques
can be applied during the pretraining step [129-133], image-only methods still lack generalization
capability and external validation. When incorporating more modality of data which are not directly
observable from imaging alone but related to protein subcellular localization during model
establishment will take more contextual information into consideration and overcome the limitations
in model performance.

Table 3. A summary of state-of-the-art image-based methods for protein subcellular localization
prediction. S: Single-Location, M: Multi-Location. PSSM: Position-Specific Scoring Matrix, PseACC:
Pseudo Amino Acid Composition, PC: Physicochemical Properties, LASSO: Least Absolute Shrinkage
and Selection Operator, CNN: Convolutional Neural Network, DNN: Deep Neural Network, ResNet:
Residual Network, DenseNet: Dense Convolutional Network, SRS: Stimulated Raman Scattering,
MPENet: Multiple parallel Fusion Network, DCF: Deep-cascade Forest, IF: Immunofluorescence

Microscopic.
Single-
Method Features Algorithm /Multi- Species Availability Year
Location
Haralick, LBP, PSSM,
Zou et al. PseAAC, PC LASSO S Human [119] 2023
CNN,
ST-Net Image Features Transformer- S Human [134] 2023
networks
D H f
HCPL eep, Handcrafted DNN M Human [135] 2023
Features of images
. Abstract Features with
Ding et al. Different Depth DNN M Yeast [127] 2023
. ResNet,
Mutl—task Features Generated from DenseNet, M Human [129] 2022
Learning Strategy ResNet or DenseNet CNN

MPFnetwork SRS images MPFNet S Human [128] 2022
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PScL-DDCFPred CloPal & Local Features, 1y o M Human [136] 2022
Integrative Features

PLCNN Raw F luorescence CNN M Human, [137] 2022
Microscopy Yeast

SIFLoc IF images ResNet18 M Human [131] 2022

Haralick Zernik
Deep-Yeast aralick, Gabor, Zernike ) M Yeast [122] 2017
Features

5. Protein Subcellular Localization in Different Species

Analyzing species separately allows a more accurate model generalization, since specific
proteins and their subcellular localization patterns may differ in various cell organizations and
organelle structures. Multi-species database Compartments [138], fungal database FunSecKB2 [139],
plant database PlantSecKB [140], human and animal database MetazSecKB [141] mostly obtained and
arranged from UniProt provide efficient search for each organism and high-quality protein
subcellular location annotation datasets across species.

Take bacteria as an example. As prokaryotes, they exhibit significant structural differences from
eukaryotic organisms, like lacking common cellular organelles such as mitochondria, endoplasmic
reticulum, and Golgi apparatus. However, within bacteria, a notable class of self-assembling
microstructures, known as bacterial microcompartments (BMCs), consist of a protein shell
encapsulating an enzymatic core [142,143], creating an internally enclosed space for protein resides.
Furthermore, bacteria possess special cell walls that can be classified as Gram-positive and Gram-
negative bacteria [144], which closely associated with different protein localization modes. For real-
world application [145], the subcellular localization changes in host cells like plants that need precise
localization after viral infection can give insights into the interactions of host cells and viruses, which
helps in genetic resistance target identification [146]. Many models have specially designed for
distinct species (e.g., iLoc-Euk [147], iLoc-Virus [148] and iLoc-Plant [149], mPLR-Loc [150]. As for
knowledge-based, Gram-LocEN [151] is a predictor for large-scale dataset of both single and multi-
location proteins in bacteria. It created two databases called ProSeq and ProSeq-GO for query protein
from Swiss-Prot and GOA databases [152], respectively, to guarantee the effectiveness and decrease
storage complexity. After defining GO space and constructing GO vectors, the model demonstrated
elastic net (EN) to enable automatic feature selection and further classification.

6. Current Challenges and Future Directions

6.1. Challenges

Despite the significant advances, challenges still exist for Al-based method development in
protein subcellular localization field. The interpretability of the model will be one of the big concerns.
As deep learning algorithms have complicated training process that generates high dimensional deep
features for prediction, it is of great importance to interpret the decision-making procedures of the
model for a better understanding of the essential factors that influence protein localization. SHAP
[153], DeepExplainer [154] based on DeepLift [155] and other methodologies major in capturing the
importance of features for overall prediction tasks are implemented in recent studies for increasing
model interpretability. Luo et al. [156] have also reduced the dimensionality of feature vectors by
constructing autoencoders to obtain a better feature representation for downstream analysis. In ML-
FGAT [100], the interpretability is strengthened by analyzing the attention weight parameters.
Explainable and understandable frameworks will give more reliable predictions that benefits further
studies from biological perspective.
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Moreover, protein subcellular location is influenced by multiple factors. Al-based methods
mostly rely on original sequences or images as inputs, which lack the information after protein
biosynthesis. There is also a chance that the prediction model provides the same subcellular location
when the mutant protein resides in a different place [146]. Post-translational modifications (PTMs),
which refer to amino acid side chain modification after the synthesis of some proteins, can contribute
significant changes to their subcellular location [157]. There are many kinds of PTMs, such as
phosphorylation, glycosylation, and acetylation, which dynamically regulate the protein within the
cell simultaneously [158], resulting in sparse and incomplete experimental data for model training.
As more post-translational positions are discovered [158], Al-based prediction proteins that consider
PTMs as key features can also be further investigated [158,159].

Establishing models to leverage both annotated and unannotated proteins for localization can
also be a challenge, with a large proportion of unreviewed data reported each year (Figure 1A-B).
Though data augmentation methods like SMOTE and GAN are widely used to handle data
imbalance, semi-supervised learning can also be established to solve the problem [133,160]. To be
more specific, EnTrans-Chlo [161] incorporates multi-modal features and converts them into sample-
to-sample similarity features with assigned weights, for feeding a high-efficient learning model. LNP-
Chlo [162] extended the previous approach by adopting a quadratic programming algorithm to
optimize the weights of nearest neighbors. These semi-supervised models remarkably outperformed
state-of-the-art supervised methods, while integrating different data modalities and dimensionalities
with less requirement of sufficient labeled data.

6.2. Future Directions

Currently, cutting-edge research directions in subcellular localization mainly lie in spatial
proteomics [9], and RNA subcellular localization.

With the blooming of single-cell research, it is possible to gain a full understanding of disease
from cell and tissue heterogeneity. Since the exact location of proteins at the subcellular, cellular, or
tissue levels directly links to their functions, it is essential for protein localization with a single-cell
and spatial resolution [163]. Zhu et al. [164] have created cell-based methods with a pseudo-label
assignment to discover protein subcellular localization results across distinct cells with heterogeneity
among single cells. Husain et al. [135] presents the Hybrid subCellular Protein Localiser (HCPL) that
robustly localizes single-cell subcellular protein patterns. Wang’s work with mass spectrometry (MS)-
based spatial proteomics [165] shows the possibility of larger dimensional feature maps and higher
learning ability of computational models.

System-wide studies of RNA subcellular localization (e.g., mRNA [166]) have also paved the
way for a more comprehensive analysis of the cellular dynamics [167,168], as proteins are usually
transcribed by RNA molecules. Moreover, except for RNA transcripts for protein, other RNAs, like
long non-coding RNAs (IncRNAs), may also be involved in many biological functions [169].
Predicting their subcellular locations with Al-based methods [169] can significantly reduce costs and
time expenditure, enabling the investigation of their functionalities with limited data [167].
Moreover, common [170] and rare cellular-compartment-specific prediction models can be further
explored [171].

7. Conclusion

In this review, we have reviewed three types of computational methods using machine learning
or deep learning models to construct predictors for protein subcellular localization. For different
kinds of inputs such as protein sequence, GO terms or IHC images, the predictors will first convey
the biological data to numerical or mathematical representations of essential features embedded in
the source and apply widely used classifiers for single or multi-class tasks. When low-dimension data
like sequence and texture the performance become more reliable. Traditional machine learning
methods can combine various features and manage the high dimensional data by dimensionality
reduction techniques like random projection [172] to avoid the curse of dimensionality and achieve
interpretable outcomes under large data scales. Alternatively, they can combine the results of
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different classifiers, which run the calculation parallelly, to improve the overall performance. Deep
learning methods that are mostly based on neural networks will learn and extract high-level features
and their correlations from the inputs before the classification. When dealing with large-scale
datasets, prediction with a language model is also available with deep learning. For future direction,
in addition to faster and more effective algorithm development, we also assume that the localization
prediction will incorporate more biochemical interactions like protein-protein interaction networks
(PPI), metabolic networks, gene co-expression interaction, etc., into consideration, since proteins
intricately engage in complex physiological reactions within the cellular space. Above all, we are
confident that the computational methods will raise more and more attention for (1) for systematic
research like proteomics and metabolomics, (2) to provide dynamic insights into cells, and to see what
the influence will be when the target protein is muted; (3) to assist the experimental side with data
analysis, experimental design and so on. In the long run, this research area will benefit clinical drug
development and contribute to disease detection, diagnosis, prognosis, and treatment.
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