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Abstract: Proteins need to be located in appropriate spatiotemporal contexts to carry out their diverse 
biological functions. Mislocalized proteins may lead to a broad range of diseases, such as cancer and 
Alzheimer’s disease. Knowing where a target protein resides within a cell will give insights into tailored drug 
design for a disease. As the gold validation standard, the conventional wet lab uses fluorescent microscopy 
imaging, immunoelectron microscopy, and fluorescent biomarker tags for protein subcellular location 
identification. However, the booming era of proteomics and high-throughput sequencing generates tons of 
newly discovered proteins, making protein subcellular localization by wet-lab experiments a mission 
impossible. To tackle this concern, in the past decades, artificial intelligence (AI) and machine learning (ML), 
especially deep learning methods, have made significant progress in this research area. In this article, we 
review the latest advances in AI-based method development in three typical types of approaches, including 
sequence-based, knowledge-based, and image-based methods. We also elaborately discuss existing challenges 
and future directions in AI-based method development in this research field. 

Keywords: protein subcellular localization; machine learning; deep learning; artificial intelligence; 
Gene Ontology; Sequence Analysis 
 

1. Introduction 

Within a cell, mature proteins must reside in specific subcellular structures to properly perform 
their biological roles, as different cellular compartments provide distinct chemical environments (e.g., 
pH and redox conditions), potential interacting partners, or substrates for diverse functions [1,2]. 
Most cellular biological processes, such as the nucleocytosolic shuttling of transcription factors [3], 
the re-localization of mitochondrial proteins during apoptosis [4], and the endocytic uptake of cell-
surface cargo receptors, all rely on precise protein localization. Conversely, mislocalization is often 
associated with cellular dysfunction and diseases, such as cancer [5,6], neurodegenerative diseases 
[7,8], and metabolic disorders [9,10].  

Conventionally, identifying subcellular localization of proteins primarily relies on wet lab 
experimental methods. Fluorescence microscopy imaging, which apply fluorescent dyes or 
fluorescent protein tags to label target proteins, has commonly been used for observing their 
distribution within cells [11,12]. This method has become one of the preferred tools for studying 
protein subcellular localization due to its high resolution and real-time observation advantages [13]. 
By using labeled antibodies against target proteins, immunoelectron microscopy technique is 
regarded as a gold standard to provide the high resolution of electron microscopy [14]. Another 
method involves the use of fluorescent biomarker tags [15] like the protein A-GFP tag, which fuses a 
fluorescent protein with the target protein, allowing it to emit a fluorescent signal among different 
cell compartments [16]. These experimental methods yield high-resolution location of targeted 
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proteins for researchers, enabling direct observation to uncover biological processes and metabolic 
mechanisms. 

However, these wet lab experimental methods also have some significant drawbacks: they often 
require expensive equipment and time-consuming steps, making them costly for large-scale studies. 
These problems are exacerbated given that the number of newly discovered proteins has increased 
exponentially in the post-genomic era. Take the UniProt Database[17] as an example. The gap 
between the reviewed and unreviewed proteins has significantly expanded during the past decade 
(Figure 1A). Specifically, as shown in Figure 1B, In the latest 2024_01.version of UniProt, a notable 
majority of data entries are unreviewed proteins in TrEMBL. In this case, implementing wet lab 
experiments alone for subcellular localization determination for remarkably large amounts of data 
from different species (Figure 1C) becomes an impossible mission. Moreover, the rich collection of 
accurately annotated protein data in databases (Figure 1D) can facilitate the development of robust 
prediction methods. Computational models, especially AI-assisted approaches known for their 
proficiency in handling large-scale datasets, can be effectively applied in this context. 

  

Figure 1. Statistical analysis of UniProtKB [17] (2024_01.version). (A) The trend of protein number 
growth in TrEMBL (unreviewed proteins) and Swiss-Prot (reviewed proteins). The number of newly 
discovered unannotated proteins far exceeds that of newly added experimentally validated proteins. 
(B) The proportion of new-added protein counts between the two databases in the 2024_01.version. 
(C) Taxonomic distribution of protein sequences. (D) Number of proteins in the Top 10 subcellular 
locations. 

Recent decades have witnessed the booming of in-silico methods for protein subcellular location 
prediction. Based on features used for computational modeling, most of existing methods can be 
generally divided into three main categories: (1) sequence-based methods, which only use the amino 
acid sequence of the query protein as inputs; (2) knowledge-based methods, using protein 
annotations from multiple databases to correlate the information with their subcellular locations; (3) 
image-based methods, extracting subcellular location features from bioimages and then identify the 
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likelihood of proteins being located in various subcellular compartments. The primary sequence for 
a protein is much easier to obtain with existing sequencing technologies. With remarkable advances 
in machine learning and deep learning, coupled with an increasing number of proteins with 
experimentally determined localization information as well as functional annotations and imaging 
records in publicly available databases, accurate and efficient computational frameworks provide a 
promising way for protein subcellular localization.  

In this review, we will first present some remarkable progress in in-silico models, including three 
major types of models mentioned above. In Section 2, we will introduce common features and 
algorithms used in sequence-based methods, and so for knowledge-based and image-based 
frameworks in Section 3 and Section 4, respectively. The simplified flowchart for the prediction 
frameworks mentioned is illustrated in Figure 2. Then, we will give an overview of location 
prediction models that are specially designed for different species for more accurate prediction with 
specific data inputs. Lastly, we will explore the existing challenges and future trajectories of this 
research domain and propose our expectations. 

 

Figure 2. The flowchart of three major types of AI-based prediction methods. The procedures 
include sequences or images as input, feature extraction, model prediction, and subcellular location 
output. (A) Key features extracted from sequences, annotations, and image inputs. Different 
classifiers extract composition information, encompassing AA order and frequency, physicochemical 
properties, and identifying signal peptide cleavage sites from sequence inputs. In addition to 
straightforward data, evolutionary profiles are also considered through homology alignment with 
the Position-Specific Scoring Matrix (PSSM) and the Position-Specific Frequency Matrix (PSFM). 
Knowledge-based methods involve the establishment of Gene Ontology (GO) vectors, derived from 
GO terms collected from specific databases with protein sequences or accession numbers as 
keywords. Other functional annotations, such as protein-protein interaction (PPI) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway information, can also be fused as input 
features. Imaging features mainly consist of morphological, haralick data and information from 
different channels, namely hand-crafted features, and deep features captured by deep learning 
algorithms. (B) Three types of algorithms used for prediction modules in computational models. (C) 
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Major subcellular locations in a plant cell as an example of potential outputs, for proteins with single 
or multiple locations. 

2. Sequence-Based Methods 

2.1. Sequence-Based Features 

In protein primary sequences, the 20 standard amino acids (AA) exert different biochemical 
properties such as hydrophobicity, hydrophilicity, side chain characters, etc. Sequence-based 
methods intend to make predictions out of the correlations between protein subcellular locations and 
the information embedded in amino acid sequences. There are three major types of features used for 
model construction: AA composition information, sorting signal information and evolutionary 
information. 

The composition-based features, which include AA occurrences and order in the query 
sequence, were commonly used in the earliest subcellular prediction methods. Moreover, previous 
studies have confirmed a better performance of the model by combining AA original sequence, 
gapped amino acid composition (GapAA) [18], and amino-acid pair composition (PairAA) [19]. Based 
on AA-composition features, Chou [20] proposed pseudo-amino-acid composition (PseAA) using the 
sequence-order correlation factor for more biomedical properties discovery when avoiding the high-
dimensional vector formation. The simplicity of composition features helps the generalization and 
interpretation of the computational models since they capture the most basic trends in protein 
sequences associated with their locations. However, they may not provide sufficient resolution for a 
high accuracy rate since there’s a loss of information about important sequences or structural motifs 
highly related to proteins’ subcellular location. 

The sorting signal sequences or signal peptides, including transit peptides like mitochondrial 
transit peptides (mTPs) and chloroplast transit peptides (cTPs) [21], are short and cleavable segment 
of amino acid sequences added to a newly synthesized proteins, determining their destination of the 
transportation process. These short peptides possess the directions mature proteins should be 
transported, reflecting the possible location event for one protein [22]. Available approaches with 
signal peptides for protein localization mainly refer to finding their cleavage sites [23]. As described 
in previous studies, sorting-signal sequences vary in length and composition but have similar 
structures: the N-terminal flanking region, also known as the n-region, the central hydrophobic 
region (h-region), and the C-terminal flanking region (c-region) [24]. The hydrophobicity in the h-
region and a large proportion of nonpolar residues in the c-region are used to label the cleavage sites 
by computational methods [25,26]. According to the location signal embedded in those short 
peptides, one can mimic the de facto information processing in cells and find the target spot of the 
test protein.  

In addition, based on the fact that homologous sequences are likely to share the same subcellular 
location, the unknown protein can be assigned the same subcellular location as its homologs 
generated from PSI-BLAST [27]. Moreover, the evolutionary similarity profiles extracted from the 
position-specific scoring matrix (PSSM) and position-specific frequency matrix (PSFM) derived from 
multiple sequences alignment results can contribute as classification features providing valuable 
information such as conserved motifs or targeting signals among different protein families. This 
representation can also be extended by integrating pseudo-analysis[28]. Once aligned with known 
homologs in the database, this method can achieve high accuracy. However, as one amino acid 
change can directly influence the characters of one protein sequence, this method is more likely to be 
one of the sources of feature basis of prediction models. 

2.2. Sequences-Based AI Approaches 

Most computational frameworks include three major steps: feature extraction, feature selection, 
and final classification. Considering common features discussed above, the complexity of the models 
developed also increases with the amount of data processed and the dimension of input features, 
from traditional machine learning classification to complex deep learning analytical models. Besides 
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the development of computational frameworks, we will also introduce techniques that are used to 
improve the algorithms dealing with multi-location proteins in the following.  

For conventional classification, Support Vector Machine (SVM) [29], K-Nearest Neighbor (KNN) 
[30], and Random Forest (RF) [31,32] are widely chosen classifiers for training. Their simplicity makes 
them easy to use for prediction protocols with fast speed and low computational cost, suitable for 
limited data and low-dimensional inputs. Combined with highly efficient feature extraction methods, 
these frameworks will work well in most cases [33]. For instance, Du et al. [34] proposed two novel 
feature extraction methods that utilize evolutionary information via the transition matrix of the 
consensus sequence (CTM) and PSSM before adopting SVM, which in the end reach an overall 
accuracy of 99.7% in CL317 dataset. A feature extraction-based hierarchical extreme learning machine 
(H-ELM) introduced by Zhang et al. [35] can handle high-dimension feature inputs directly without 
demanding dimension reduction for acceptable results. Alaa et al. [36] exploits an extended Markov 
chain to provide the latent feature vector, which records micro-similarities between the given 
sequence and their counterparts in reference models. These methods help extract more abundant 
features of query sequences and provide better performance.  

However, these conventional models may not perform well in complex scenarios [1], especially 
multi-locational protein prediction [28]. Though many proteins only stay in one subcellular space, 
studies have discovered many multi-location proteins that have special functions or are involved in 
crucial biological steps [37]. Moreover, rather than staying in one place, proteins move from one 
subcellular compartment to another or simultaneously reside at two locations and participate in 
different cellular processes [38]. Recent studies have also shown the remarkable significance of 
multilocation proteins in cell growth and development [39]. For instance, phosphorylation-related 
multilocation proteins can function as a “needle and thread” via protein-protein interactions (PPI), 
thus playing an important role in organelle communication and regulating plant growth [40]. Under 
these circumstances, there are mainly two ways for predicting multi-location proteins based on 
conventional classifiers: algorithm-adaption and problem transformation. The former method 
extends existing algorithms to deal with multi-label problems. Jiang et al. [41] considers weighted 
prior probabilities with a multi-label KNN algorithm to increase the model accuracy. Library of SVM 
(LIBSVM) toolbox [34,42], instead, uses a one-versus-one (OVO) strategy to solve multi-class 
classification problems. Customization of well-known algorithms enhances their ability for specific 
requirements, but there is a risk of overfitting and may require significant computational resources. 
The problem transformation approach focuses on transforming the original problem into a different 
representation or formulation that is solvable with existing algorithms [43] [44], such as converting a 
multi-location classification problem into multiple single-label classification problems [45]. Shen et 
al. [28] introduces multi-kernel SVM by training multiple independent SVM classifiers to solve single-
label problems before combining their results, one classifier for each class. Following this idea, an 
algorithm can be easily extended to solve multi-label classification. 

In summary, traditional machine learning algorithms can achieve fast training times and high 
accuracy in scenarios with well-organized feature spaces and clear decision boundaries, their 
performance may degrade quickly when faced with large-scale data inputs, even with tailored 
classifiers featuring more selected features. Dimension reduction [46] and parallel processing [47] can 
be applied to mitigate the challenges, allowing an improved computational method scalability. 

As multi-layered structure provides better performance compared to traditional approaches 
[31], more methods based on deep networks especially neural networks have become increasingly 
popular in protein subcellular localization research [48,49]. Starting as effective feature extractors 
which automatically obtain deep features embedded in sequences [50], convolutional neural network 
(CNN) is widely implanted in multi-locus protein localization framework. Mining deeper, Kaleel et 
al. [51] ensemble Deep N-to-1 Convolutional Neural Networks that predict the location of 
endomembrane system and secretory pathway versus all others and outperform many state-of-the-
art web servers. Cong et al. [52] proposed a self-evoluting deep convolutional neural network (DCNN) 
protocol to solve the difficulties in feature correlation between sites and avoid the impact of unknown 
data distribution while using the self-attention mechanism [53] and a customized loss function to 
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ensure the model performance. In addition, long short-term memory network (LSTM) which 
combines the previous states and current inputs is also commonly used [54,55], with Generative 
Adversarial Network (GAN) [56] and Synthetic Minority Over-sampling Technique (SMOTE) [57] 
used for synthesizing minority samples to deal with data imbalance. Developing data augmentation 
methods by deep learning algorithms has also made protein language model construction possible 
[58,59]. Through transfer learning [60], pre-trained models can be fine-tuned on different 
downstream tasks, reduces the need for large amounts of labeled data for training. For example, 
Heinzinger et al. [61] proposed Sequence-to-Vector (SeqVec) that embeds biophysical properties of 
protein sequences as continuous vectors by using the natural language processing model ELMo on 
unlabeled big data. This represents a way to speed up the prediction process independent of the size 
of inputs. Details of computational models mentioned above can be found in Table 1. 

Deep learning will demonstrate exceptional outcomes dealing with high-dimensional inputs 
with deep feature extraction, eliminating the need for manual feature engineering and capturing 
intricate patterns in sequences. However, large, labeled, and high-quality datasets are still needed for 
original model training, which results in too many hyper-parameters and makes it hard to interpret 
the model itself [31]. 

Table 1. A summary of state-of-the-art sequence-based protein subcellular localization 
frameworks. S: Single-Location, M: Multi-location, GAN: Generative Adversarial Network, CNN: 
Convolutional Neural Network, LM: Language Model, SP: Signal Peptide, PSSM: Protein-Specific 
Scoring Matrix, LSTM: Long Short-Term Memory, AAC: Amino Acid Composition, LDA: Linear 
Discriminant Analysis, PseAA: Pseudo Amino Acid, PseAAC: Pseudo Amino Acid Composition, 
PPWM: Protein Position Weight Matrix, DNN: Deep Neural Network. KNN: K-Nearest Neighbor. 
SVM: Support Vector Machine. 

Method Features Algorithm 
Single-
/Multi-

Location
Species AvailabilityYear 

DaDL-SChlo 
Handcrafted 

Features, Deep 
Features 

ProtBERT, GAN, 
CNN 

M Plants [62] 2023 

DeepLoc – 
2.0 

Masked-LM 
Objective  

Multilayer 
Perceptron, Protein 

LM 
M Eukaryote [63] 2022 

SignalP – 6.0 SP 
Transformer Protein 

LM 
M 

Archaea, Gram-
positive Bacteria, 
Gram-negative 

Bacteria and 
Eukarya 

[26] 2022 

MULocDeep 
Physico-chemical 
Properties, PSSM 

LSTM M 
Viridiplantae, 

Metazoa, Fungi 
[64] 2021 

SCLpred-
EMS 

AA Frequency Deep N-to-1 CNN S Eukaryote [65] 2020 

CTM-
AECA-

PSSM-LDA 
PSSM, LDA SVM S 

Apoptosis Proteins 
on CL317 & ZW225 

datasets 
[34] 2020 

TargetP – 
2.0 

SP LSTM S 
Plants and Non-

plants 
[25] 2019 
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3. Knowledge-based Methods 

3.1. Legitimacy of Using Gene Ontology (GO) Features 

Knowledge-based methods tend to dig into the correlation between the annotation of one 
protein and its subcellular location to establish predictors. Compared to Swiss-Prot keywords [69,70] 
or PubMed abstracts [71,72], Gene Ontology (GO) terms-based methods are more attractive for the 
following reasons. 

GO terms describe reviewed knowledge of the biological domain in from three aspects: (1) 
Molecular Function, representing activities that can be performed by individual or by assembled 
complexes of gene products at the molecular level; (2) Cellular Component, labeling locations relative 
to cellular compartments; (3) Biological Process, describing the events achieved by one or more 
ordered assemblies of molecular functions. These well-organized information can be used for protein 
subcellular localization because (1) Instead of table-lookup, which is dependent on cellular 
component GO terms, they perform deeper mining into items to accumulate every related GO 
category to improve prediction results, (2) The methods outperform previous sequence-based 
methods without compromising either inputs or outputs [73]. Mining deeper, the GO term itself is 
structurally organized but loosely hierarchical consisting of cellular components, biological 
processes, and molecular functions of gene products. The relationship between GO terms can be 
“part-of” (part and whole), which may embed some similarity information, and “is-a” (parent and 
child), which may result in more than one parent term. Starting from semantic similarity 
measurement, SS-Loc [74] incorporates a richer source of homologs and generates more features for 
prediction. Make use of the loosely hierarchical structure, relevance similarity (RS) consider the 
“distance” between the parent and child nodes. Take HybridGO-Loc [2] for example, it combines the 
frequency of occurrences of GO terms and semantic similarity between extracted GO terms to form 
a hybridized vector as input features, giving outstanding performance.  

Mapping AA entries of query protein or accession number (AC) of its homologous to the GO 
database [75] will result in a list of GO items representing the possible functions and biological 
metabolism process this protein is involved in. For further computational methods implementation, 
reorganizing and transferring the list of data into numerical vectors is of high significance. Gneg-
mPLoc [76], Euk-PLoc [77], and Hum-PLoc [78] consider GO terms as the basis of forming an 
Euclidean space, which only consists of 0 or 1 for coordinates. ProLoc-GO [43] on the other hand, 
represented the hit of annotated GO terms mined from Gene Ontology Annotation (GOA) with a n-
dimensional binary feature vector. The constructed GO vectors are used for the following training.  

3.2. Knowledge-Based AI Approaches 

Originally, most machine learning methods used GO terms as the only input sources in simple 
classification model [79,80]. Given the growing richness of comprehensive protein annotation like 
related metabolism pathways and structural information, the integration of various input sources, 
including annotations, interaction networks, and pathway enrichment knowledge, contributes to a 

Javed and 
Hayat 

PseAA KNN M Bacteria, Virus [33] 2019 

MU-LOC 
AAC, PPWM, 

Functional 
Features 

DNN, SVM S 
Plants 

(Mitochondrian) 
[66] 2018 

MultiP-
SChlo 

PseAAC  SVM M 
Plants 

(Subchloroplast) 
[67] 2015 

SLocX 
AA Order, Gene 

Expression Profile 
SVM S Plants [68] 2011 
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multi-view foundation for model improvement [81–83]. Applying deep learning algorithms enables 
a more comprehensive understanding of these high-dimensional and complex features, and further 
the combination of sequence and knowledge as input sources. According to the number of input 
sources, the methods can be roughly divided into GO terms only and fusion methods. 

For single input source, mGOASVM [84] introduces a new decision scheme in SVM multi-class 
classifiers to collect all the positive decisions, enabling both single and multi-label localization. AD-
SVM [85] enhances the binary relevance methods by integrating an adaptive decision scheme, 
thereby transforming the linear SVMs into piecewise linear SVMs, reducing the over-prediction 
instances. By using the frequency of the appearance of one protein in different places, Euk-mPLoc 2.0 
[86] creates a virtual sample counting the appearance of protein to separate the total sequences input 
and the number of locations. However, a large number of proteins especially new discovered proteins 
have not been functionally annotated yet, and directly using homologs cannot guarantee the 
availability of enough GO terms to be found in the GOA Database. Moreover, the GO is not related 
to the representation of dynamics or pathway dependencies for protein, which will result in the risk 
of noise and overestimation of the novel proteins [87]. More details of the methods mentioned can be 
found in Table 2. 

To improve the interpretability of the proposed model, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways is also considered as functional annotation that can be incorporate in the 
computational approaches [88]. Since in vivo protein interaction is likely to reside within the same 
subcellular locations, it is possible to reveal protein subcellular localization with protein-protein 
interaction (PPI) network [89–91], which is sensitive to mis-localization events [92].  

The fusion methods can basically be divided into two categories: feature-level fusion[93–95] and 
decision-level fusion [96]. Feature level fusion is mostly based on average pooling, weighted 
combination [97], serial combination or concatenation of selected values. Liu et al. [95] utilized the 
latent semantic index method to represent multi-label information, while Yu et al. [47] constructed a 
novel parallel framework of attribute fusion to avoid the impact of duplicated information. This 
fusion level enhances the information from multiple sources and allows flexibility in fusion 
techniques, such as early integration, intermediate integration, and late integration [98]. But low data 
quality and difficulty in feature selection will affect building one efficient computational model. At 
the decision level, basic classifiers are used for different data sources first for selecting the suitable 
ones, then the results of each chosen method are ensembled as part of the determination protocol [99], 
as for the decision voting process [96]. Though the integration strategy is simple, this method can 
help create various decision-making systems that lead to more robust and accurate predictors. For 
instance, multi-view model like ML-FGAT [100], incorporates most of the feature types (e.g., 
sequence, evolutionary information, physicochemical property, etc.), which minimizes the 
perturbation of extraneous data in predictive tasks while concurrently enhancing the descriptive 
capability.  

Table 2. A summary of state-of-the-art knowledge-based and fusion models for protein subcellular 
localization prediction. S: Single-Location, M: Multi-Location. PSSM: Position-Specific Scoring 
Matrix, PsePSSM: Pseudo Position-Specific Scoring Matrix, PC: Physicochemical Properties, KNN: K-
Nearest Neighbor, NN: Nearest Neighbor, RF: Random Forest, CDD: Conserved Functional Domain, 
PseAAC: Pseudo Amino Acid Composition, PPI: Protein-Protein Interaction Network, KEGG: KEGG 
(Kyoto Encyclopedia of Genes and Genomes) Pathway, SVM: Support Vector Machine, EBGW: OET-
KNN: Optimized Evidence-Theoretic K nearest neighbor. 

Method Features Algorithm 
Single-
/Multi-

Location 
Species Availability Year 

ML-FGAT 
GO terms, Sequence 

Information, PsePSSM, PC 
KNN M 

Human, 
Virus, Gram-

negative 
bacteria, 

[101] 2024 
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plant, SARS-
CoV-2 

PMPSL-GRAKEL GO terms RF M 
Human, 
Bacteria, 
animal 

[102] 2024 

Wang et al. 
GO Terms, CDD, PseAAC, 

PSSM 
NN M Human [83] 2023 

Zhang et al. 
PPI, KEGG features, 

Functional GO 
RF, SVM M Human [94] 2022 

ML-locMLFE GO terms, PseAAC, PSSM MLFE M 
Bacteria, 

Plant, Virus 
[103] 2021 

Chen et al. GO, KEGG, PPI 
RF, SVM, 
KNN, DT 

S Human [88] 2021 

Gpos-ECC-mPLoc GO terms SVM M 
Gram-

positive 
Bacteria 

[104] 2015 

mGOASVM GO terms SVM M Virus, Plant [105] 2012 

iLoc-Euk GO terms KNN M Eukaryote [106] 2011 

Gneg-mPLoc 
GO terms, Functional 
Domain, Evolutional 

Information 
OET-KNN M 

Gram-
negative bact

eria 
[107] 2010 

PSORTb 3.0 Swissprot Annotation SVM S Prokaryotes [108] 2010 

4. Bioimage-based Methods 

4.1. Bioimage-Based Features 

Compared to amino acid sequences, representing proteins with 2D images is more interpretable 
and concise when determining the subcellular localization. With the rapid improvement in 
microscopic imaging technology, scientists have paid more attention to bioimage-based methods. 
Computer hardware improvement, especially in graphics processing units (GPUs) makes it possible 
to deal with more complex calculation problems. The development of neural network structure also 
accelerates deep learning algorithm architecture improvement for image analysis significantly. For 
high equality data, with the mission of mapping all human proteins in cells, tissues and organs, the 
human protein atlas (HPA) program [109] was initialized in 2003 as an open-access database that 
consists of imaging, mass spectrometry-based proteomics, transcriptomics, etc. The subcellular 
section of HPA shows detailed expression and spatial distribution conditions of proteins encoded by 
13147 genes. As recently updated to version 23, it is the most powerful training data source for 
computational method development [110,111]. 

The subcellular location features (SLF) collected can be divided into two categories, namely, 
global features and local features [112]. Composed of DNA distribution information and global 
textures, the global features such as morphological features, local binary patterns (LBP) [113] and 
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Zernike features [114] mainly describe the spatial structure of the whole image. The Haralick [115] 
texture feature, which obtains statistical features including contrast, correlation, and entropy from 
the gray-level co-occurrence matrix of input images, is one well-known global image descriptor in 
pattern recognition. Local features, instead, can describe the micro-patterns ignored in global 
features. Take scale-invariant feature transform (SIFT) [116] as an example. SIFT was originally used 
for salient points detection and is suitable for fluorescence object description, which guarantees good 
performance in fluorescence image studies, especially when combined with global features. 

4.2. Bioimage-Based AI Methods 

Image-related methods can be roughly organized into three phases based on the algorithms and 
the number of data types used, namely conventional or traditional machine learning methods, deep 
learning methods, and complex fusion methods, respectively. Figure 3 shows the development of 
these models from simple to complicated. 

Traditional machine learning methods construct the prediction models with the aforementioned 
hand-crafted features for classification [117–119]. For instance, Li et al. [120] extended a logistic 
regression algorithm with structured latent variables for underlying components in different image 
regions for further classification. With two-layer deep learned feature selection, Ulah et al. [121] 
established a SVM model based on both radial basis function and linear kernel for location prediction. 
However, these convolutional methods can be sensitive to noise and variability of imaging data 
collected, resulting in decreased model robustness. Spatial relationships that embedded in images 
are rarely detected as well, due to manual feature engineering. As deep learning predictors employed 
and have achieved high performance on various image-based tasks, recent advances in protein 
subcellular location rely more on deep learning methods [117].  

 
Figure 3. Three primary categories of computational methodologies for processing imaging data. 
The red arrow depicts the progressive complexity of prediction models, reflecting advancements 
toward more sophisticated computational frameworks. Blue rectangle: Features used for model 
training; Green rectangle: Algorithms for location prediction. (A) Conventional Machine Learning 
Methods. Hand-crafted figures representing global and local information of images are extracted and 
trained for simple models. (B) Deep Learning Methods. Coupled with hand-crafted features, deep 
image features are obtained by deep neuro networks. (C) Complex Fusion Models. This method 
integrates multi-modality data like sequence, annotation texts and imaging data as model inputs to 
gain a more comprehensive and interpretable model for protein subcellular localization. SVM: 
Support Vector Machine. KNN: K-Nearest Neighbor. RF: Random Forest. LASSO: Least Absolute 
Shrinkage and Selection Operator. CNN: Convolutional Neural Network. DNN: Deep Neural 
Network. GAN: Generative Adversarial Network. LSTM: Long Short-Term Memory. 
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Deep neural network implementation is the starting point, which increases the inner feature 
extraction power and the model’s learning ability for large and complicated datasets. In addition to 
selecting and integrating key features during the image preprocessing steps, most of the deep neural 
networks consider processed image segmentation as inputs for multi-layer convolutional neural 
networks (ML-CNN) [122]. Moreover, some predictors can integrate both low and high-level features 
embedded in bioimages for a more in-depth view. For multi-label prediction, traditional CNN is 
extended with a criterion learning strategy to leverage label-attribute relevancy and label-label 
relevancy to determine the final location [123,124]. To be more specific, the diversity in input data 
types across various dimensions contributes to shaping the complexity of the entire model. From 
image datasets, DeepPSL automatically learn meaningful features and their correlations for 
prediction improvement [125]. Xue et al. [126] unmixed the IHC images into protein and DNA 
channels for representation construction while segmenting the images into patches for fine-tuning 
network training. Ding et al. [127] ensemble different classification models using different depth of 
feature vectors constructed from images as inputs to achieve high accuracy outputs. By collecting 
different imaging types, Wei et al. [128] built another parallel integrative deep network for label-free 
cell optical images. More details about the models can be found in Table 3. Though further techniques 
can be applied during the pretraining step [129–133], image-only methods still lack generalization 
capability and external validation. When incorporating more modality of data which are not directly 
observable from imaging alone but related to protein subcellular localization during model 
establishment will take more contextual information into consideration and overcome the limitations 
in model performance.  

Table 3. A summary of state-of-the-art image-based methods for protein subcellular localization 
prediction. S: Single-Location, M: Multi-Location. PSSM: Position-Specific Scoring Matrix, PseACC: 
Pseudo Amino Acid Composition, PC: Physicochemical Properties, LASSO: Least Absolute Shrinkage 
and Selection Operator, CNN: Convolutional Neural Network, DNN: Deep Neural Network, ResNet: 
Residual Network, DenseNet: Dense Convolutional Network, SRS: Stimulated Raman Scattering, 
MPFNet: Multiple parallel Fusion Network, DCF: Deep-cascade Forest, IF: Immunofluorescence 
Microscopic. 

Method Features Algorithm 
Single-
/Multi-

Location 
Species Availability Year 

Zou et al. 
Haralick, LBP, PSSM, 

PseAAC, PC 
LASSO S Human [119] 2023 

ST-Net Image Features 
CNN, 

Transformer-
networks 

S Human [134] 2023 

HCPL 
Deep, Handcrafted 
Features of images 

DNN M Human [135] 2023 

Ding et al. 
Abstract Features with 

Different Depth 
DNN M Yeast [127] 2023 

Muti-task 
Learning Strategy 

Features Generated from 
ResNet or DenseNet 

ResNet, 
DenseNet, 

CNN 
M Human [129] 2022 

MPFnetwork SRS images MPFNet S Human [128] 2022 
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PScL-DDCFPred 
Global & Local Features, 

Integrative Features 
DNN, DCF M Human [136] 2022 

PLCNN 
Raw Fluorescence 

Microscopy 
CNN M 

Human, 
Yeast 

[137] 2022 

SIFLoc IF images ResNet18 M Human [131] 2022 

Deep-Yeast 
Haralick, Gabor, Zernike 

Features 
DNN M Yeast [122] 2017 

5. Protein Subcellular Localization in Different Species 

Analyzing species separately allows a more accurate model generalization, since specific 
proteins and their subcellular localization patterns may differ in various cell organizations and 
organelle structures. Multi-species database Compartments [138], fungal database FunSecKB2 [139], 
plant database PlantSecKB [140], human and animal database MetazSecKB [141] mostly obtained and 
arranged from UniProt provide efficient search for each organism and high-quality protein 
subcellular location annotation datasets across species.  

Take bacteria as an example. As prokaryotes, they exhibit significant structural differences from 
eukaryotic organisms, like lacking common cellular organelles such as mitochondria, endoplasmic 
reticulum, and Golgi apparatus. However, within bacteria, a notable class of self-assembling 
microstructures, known as bacterial microcompartments (BMCs), consist of a protein shell 
encapsulating an enzymatic core [142,143], creating an internally enclosed space for protein resides. 
Furthermore, bacteria possess special cell walls that can be classified as Gram-positive and Gram-
negative bacteria [144], which closely associated with different protein localization modes. For real-
world application [145], the subcellular localization changes in host cells like plants that need precise 
localization after viral infection can give insights into the interactions of host cells and viruses, which 
helps in genetic resistance target identification [146]. Many models have specially designed for 
distinct species (e.g., iLoc-Euk [147], iLoc-Virus [148] and iLoc-Plant [149], mPLR-Loc [150]. As for 
knowledge-based, Gram-LocEN [151] is a predictor for large-scale dataset of both single and multi-
location proteins in bacteria. It created two databases called ProSeq and ProSeq-GO for query protein 
from Swiss-Prot and GOA databases [152], respectively, to guarantee the effectiveness and decrease 
storage complexity. After defining GO space and constructing GO vectors, the model demonstrated 
elastic net (EN) to enable automatic feature selection and further classification. 

6. Current Challenges and Future Directions 

6.1. Challenges 

Despite the significant advances, challenges still exist for AI-based method development in 
protein subcellular localization field. The interpretability of the model will be one of the big concerns. 
As deep learning algorithms have complicated training process that generates high dimensional deep 
features for prediction, it is of great importance to interpret the decision-making procedures of the 
model for a better understanding of the essential factors that influence protein localization. SHAP 
[153], DeepExplainer [154] based on DeepLift [155] and other methodologies major in capturing the 
importance of features for overall prediction tasks are implemented in recent studies for increasing 
model interpretability. Luo et al. [156] have also reduced the dimensionality of feature vectors by 
constructing autoencoders to obtain a better feature representation for downstream analysis. In ML-
FGAT [100], the interpretability is strengthened by analyzing the attention weight parameters. 
Explainable and understandable frameworks will give more reliable predictions that benefits further 
studies from biological perspective. 
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Moreover, protein subcellular location is influenced by multiple factors. AI-based methods 
mostly rely on original sequences or images as inputs, which lack the information after protein 
biosynthesis. There is also a chance that the prediction model provides the same subcellular location 
when the mutant protein resides in a different place [146]. Post-translational modifications (PTMs), 
which refer to amino acid side chain modification after the synthesis of some proteins, can contribute 
significant changes to their subcellular location [157]. There are many kinds of PTMs, such as 
phosphorylation, glycosylation, and acetylation, which dynamically regulate the protein within the 
cell simultaneously [158], resulting in sparse and incomplete experimental data for model training. 
As more post-translational positions are discovered [158], AI-based prediction proteins that consider 
PTMs as key features can also be further investigated [158,159]. 

Establishing models to leverage both annotated and unannotated proteins for localization can 
also be a challenge, with a large proportion of unreviewed data reported each year (Figure 1A-B). 
Though data augmentation methods like SMOTE and GAN are widely used to handle data 
imbalance, semi-supervised learning can also be established to solve the problem [133,160]. To be 
more specific, EnTrans-Chlo [161] incorporates multi-modal features and converts them into sample-
to-sample similarity features with assigned weights, for feeding a high-efficient learning model. LNP-
Chlo [162] extended the previous approach by adopting a quadratic programming algorithm to 
optimize the weights of nearest neighbors. These semi-supervised models remarkably outperformed 
state-of-the-art supervised methods, while integrating different data modalities and dimensionalities 
with less requirement of sufficient labeled data. 

6.2. Future Directions 

Currently, cutting-edge research directions in subcellular localization mainly lie in spatial 
proteomics [9], and RNA subcellular localization.  

With the blooming of single-cell research, it is possible to gain a full understanding of disease 
from cell and tissue heterogeneity. Since the exact location of proteins at the subcellular, cellular, or 
tissue levels directly links to their functions, it is essential for protein localization with a single-cell 
and spatial resolution [163]. Zhu et al. [164] have created cell-based methods with a pseudo-label 
assignment to discover protein subcellular localization results across distinct cells with heterogeneity 
among single cells. Husain et al. [135] presents the Hybrid subCellular Protein Localiser (HCPL) that 
robustly localizes single-cell subcellular protein patterns. Wang’s work with mass spectrometry (MS)-
based spatial proteomics [165] shows the possibility of larger dimensional feature maps and higher 
learning ability of computational models.  

System-wide studies of RNA subcellular localization (e.g., mRNA [166]) have also paved the 
way for a more comprehensive analysis of the cellular dynamics [167,168], as proteins are usually 
transcribed by RNA molecules. Moreover, except for RNA transcripts for protein, other RNAs, like 
long non-coding RNAs (lncRNAs), may also be involved in many biological functions [169]. 
Predicting their subcellular locations with AI-based methods [169] can significantly reduce costs and 
time expenditure, enabling the investigation of their functionalities with limited data [167]. 
Moreover, common [170] and rare cellular-compartment-specific prediction models can be further 
explored [171]. 

7. Conclusion 

In this review, we have reviewed three types of computational methods using machine learning 
or deep learning models to construct predictors for protein subcellular localization. For different 
kinds of inputs such as protein sequence, GO terms or IHC images, the predictors will first convey 
the biological data to numerical or mathematical representations of essential features embedded in 
the source and apply widely used classifiers for single or multi-class tasks. When low-dimension data 
like sequence and texture the performance become more reliable. Traditional machine learning 
methods can combine various features and manage the high dimensional data by dimensionality 
reduction techniques like random projection [172] to avoid the curse of dimensionality and achieve 
interpretable outcomes under large data scales. Alternatively, they can combine the results of 
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different classifiers, which run the calculation parallelly, to improve the overall performance. Deep 
learning methods that are mostly based on neural networks will learn and extract high-level features 
and their correlations from the inputs before the classification. When dealing with large-scale 
datasets, prediction with a language model is also available with deep learning. For future direction, 
in addition to faster and more effective algorithm development, we also assume that the localization 
prediction will incorporate more biochemical interactions like protein-protein interaction networks 
(PPI), metabolic networks, gene co-expression interaction, etc., into consideration, since proteins 
intricately engage in complex physiological reactions within the cellular space. Above all, we are 
confident that the computational methods will raise more and more attention for (1) for systematic 
research like proteomics and metabolomics, (2) to provide dynamic insights into cells, and to see what 
the influence will be when the target protein is muted; (3) to assist the experimental side with data 
analysis, experimental design and so on. In the long run, this research area will benefit clinical drug 
development and contribute to disease detection, diagnosis, prognosis, and treatment. 
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