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Abstract: Direct and indirect effects after mine operations cease must ideally be subject to perpetual
monitoring routines in order to detect possible risks or avoid adverse effects on the surrounding
ecosystems at an early stage. In this contribution, mining subsidence lakes created inside the nature
reserve Kirchheller Heide and Hilsfeld Forest are subjected to analysis for a long-term monitoring
scheme. For this purpose, we employ high-resolution unmanned aerial system (UAS)-based
multispectral and thermal mapping tools to provide a fast, non-invasive and multitemporal
environmental monitoring method. Specifically, we propose to monitor vegetation evolution
through multispectral analysis, biotypes identification using machine learning algorithms, and
water surface extent detection, together with their thermal behavior. The aim of this contribution is
to present the proposed workflow and first results to establish a baseline for future analyses and
subsequent surveys for longterm multi-temporal monitoring

Keywords: geomonitoring; post-mining; UAV

1. Introduction

Mining activities have a strong impact on the surrounding environment even many years after
the cessation of mining [1,2]. Kratzsch [3] points out the impact of mining operations on soil, water
and air. Increasingly, land subsidence can be observed as a result of previous mining activities,
creating sinkholes or subsidence basins, among other things. Research work on this issue has been
carried out since around the second half of the 19t century [4]. This has resulted in a number of
theories aimed at providing a method of predicting the impact of underground mining on the surface:
Keinhorst [5], Bals [6], Lehmann et al. [7], Awiershin [8], Sann [9], Knothe [10], Litwiszyn [11], Berry
[12], Sashurin [13], Bush [14-16], Suchowerska Iwaniec et al. [17] and Xia et al. [18,19]. At present,
radar interferometry, among other methods, is used to monitor the Earth's movements. Numerous
research papers have documented land subsidence processes in mining areas using radar
interferometry in countries such as China [20-24], the Czech Republic [25,26], Ethiopia [34], Germany
[27-30,33,35], Iran [31], Poland [36-44], Republic of South Africa [45] and Russia [32]. It is noteworthy
that the European Ground Motion Service [46] provides all users with access to analyses based on
radar images from the Sentinel-1 space mission.

As Wojcik [47] points out, the mining activity only directly affects the lithosphere. However, it
results in interconnected impacts and reveals changes in other areas of the Earth's crust. Observation
of the water environment is a key aspect of geo-monitoring deterioration processes, as water
resources, whether groundwater, surface water, flowing water or standing water, have an impact on
the surrounding environment: animal habitats, plants, soils, as well as the landscape and climate [1].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2024 d0i:10.20944/preprints202403.0104.v1

Through land subsidence, floodplains can be created [35]. An important issue described in Melchers
et al. [48] and also in the article by Westermann et al. [49] is the rise in groundwater levels after the
cessation of mining operations, which has a significant impact on water management in the area. It
is possible to observe the effects of mining operations on the atmosphere, as spontaneous combustion
occurs within the deposited mine tailings on the hillsides, causing pollution and releasing gases into
the atmosphere. Spreckels et al. [1] points to the necessity of continuous environmental monitoring
in mining areas during and after the cessation of mining activities. Kretschmann [2] refers to the
monitoring of mining activities as a perpetual task due to the long-term nature of the issue. The
literature describes the effects of land subsidence in mining areas from: Belgium [52,53], Columbia
[51], China [54,55], Czech Republic [56], United Kingdom [50,51], Netherlands [57], Germany
[33,48,50,51,58-60], Poland [61-63] and Republic of South Africa [50].

A prime example is subsidence, which can cause extensive damage to the environment and
human activity: damage to streets, telecommunication, gas, water, sewage, electricity networks and
buildings (Figure 1). Subsidence lakes are one of the consequences of mining activities, resulting from
long-term subsidence of the ground surface. It is worth noting, however, that the groundwater level
does not change over a given period of time, which is why, first, waterlogging occurs and finally
water reservoirs are formed (Figure 2) [64]. The complexity of the post-mining processes results in
the use of innovative, state-of-the-art research methods and instruments. Pawlik et al. [65] and
Rudolph et al. [66] present various methods for geomonitoring of post-mining processes in use: 3D
geological structure modelling, multispectral satellite imagery, multispectral drone imagery, earth
movement data, mobile GIS, weather data and expert knowledge. In this paper, research will be
carried out based on the use of UAV (Unmanned Aerial Vehicle). So far, the data acquired with the
UAV have made it possible to study the state of soils [67-70] and to pore over the moisture content
of the state of soils with the results of multispectral analyses using vegetation indices [71]. As shown
by Pawlik et al. [72], the multispectral camera of the DJI Phantom 4 Multispectral drone has similar
characteristics to the sensor placed on the space mission satellites, Sentinel-2. Therefore, drones with
a multispectral camera can be used to calculate vegetation indices. A review and description of these
cues, which can be used to observe post-mining processes, was performed by Pawlik et al. [73]. A
thermal imaging camera can be used to search for fire [74-77], to monitor post-mining dumps [78]
and for the inspection of oil, gas and mining industry [79-83]. A review of the use of UAVs for
monitoring mining areas was performed by Ren et al. [84].

Figure 1. Examples of mining-related damage: Gregor School in Bottrop-Kirchhellen (left), repairs to
a cracked wall surface, Langer Weg, scarred road surface (right). Source: [60].
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Figure 2. Mining influences on the environment based on the example of subsidence lakes: before

mining operation (left), after mining operation (right).
2. Materials and Methods

2.1. Research Area

The research area is located in the Ruhr region of western Germany (Figure 3), on the site of the
closed Prosper-Haniel coal mine. Coordinates of the extent: upper left: 6.8543345 E 51.5880290N and
down right: 6.8613088 E 51.5847676 N. Mining operations under the Kirchheller Heide area began in
1976 [85]. However, the main mining activity was in the 1990s and lasted until 2018 [86]. Operations
at the Prosper-Haniel mine ceased in December 2018 [85]. There are forms of nature conservation in
the study area, for example protected natural areas and also bird protection areas. It is a forested area,
with the Schwarzbach and Elsbach streams running through the central part of the area, as well as
the established subsidence lakes Weihnachtssee and Pfingstssee. Pawlik et al. [87] observed on the
basis of a spatio-temporal analysis of satellite images based on vegetation indices that vegetation

changes occurred between 2002 and 2012.
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Figure 3. Location of research area. Source: [65].

2.2. Materials
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This subsection will present the research instruments used.

2.2.1. DJI Phantom 4 Multispectral

The drone produced by DJI enables a drone flight lasting up to 27 minutes on one battery [88].
It has six camera sensors: One RGB camera and five lenses dedicated to different spectral bands (Table
1). Due to its weight of 1.5 kg, a remote pilot license of competency is required to fly the drone in the
European Union [89-91]. The built-in solar sensor allows the detection of solar radiation,
“maximizing the accuracy and consistency of data collection at different times of the day” [88]. With
the implemented RTK (Real Time Kinematic) module, centimeter-accuracy images can be obtained,
because this module acquires location corrections from satellite positioning in real time.

Table 1. Characteristics of DJI Phantom 4 Multispectral.

Spectral bands Wavelength (nm)
Blue 434-466
Green 544-576
Red 634-666
Red-Edge 714-746
Near-Infrared 814-866

Multispectral analysis of images obtained by drone flights is based on spectral band analysis.
Before performing a multispectral analysis, the characteristics of the multispectral camera sensor in
question should be known. Unmanned Aerial Vehicles (UAVs), commonly known as drones or
copters, have evolved into unmanned aerial vehicles equipped with various sensors (e.g., GNSS
receivers and cameras). By using UAVs, it is possible to flexibly and cost-effectively capture image
data of small to medium size (up to 10 ha) [92].

2.2.2. DJI Mavic 2 Enterprise Advance Thermal

DJI Mavic 2 Enterprise Advance Thermal allows you to fly the drone about 28 minutes [93]. Its
weight is 909g [Ibidem], which means that drone licenses are required to fly the drone [89-91]. In this
version, the drone has two cameras: RGB and thermal. The RGB camera is characterized by a %2”
CMOS sensor with a resolution of 48MP. The accuracy of the thermal camera is +2°C [93]. Also, as in
the case of the DJI P4 MS drone, an RTK module is implemented.

2.3. Methodology

This subchapter will present and describe the steps that are performed when drone flight (Figure
4).

Preparation for drone
flights, establishment of a Drone flights, use of
GNSS base station and observers to extend the
ground control points visual line-of-sight (VLOS)
(GCP)

Pre-planning of the
flights, checking location
and weather, obtaining

required approvals

post-processing of the Integration and analysis
acquired data of the results obtained

Figure 4. Methodology of research.
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2.3.1. Pre-Planning of the Flights

Since UAV surveying is nowadays an accepted and much used method, the pre-planning will
not be overly discussed in this article. After reviewing the platforms, sensors, resolutions and
accuracies used for the desired monitoring results, these must be checked against the conditions on
site. This includes, for example, local topography, aviation obstructions, and possible restrictions on
flight operations, such as airfields or residential development. The applicable regulations of the
respective country apply here; Germany follows the EU Rules for Unmanned Aircraft Systems [94]
in this regard. The legal basis at national level (LuftVG! , LuftVO? , LuftVZO? ) has been adapted by
the "Act on the Adaptation of National Regulations to the Commission Implementing Regulation
(EU) 2019/947 of May 24, 2019 on the Rules and Procedures for the Operation of Unmanned Aerial
Vehicles" [95].

2.3.2. Preparation of Drone Flights

Directly before the flight, it is still necessary to check whether any short-term NOTAMs (NOtice
To AirMan) are available [96]. These are notices to airspace users informing them of special features
in the region, such as a music festival or the holding of military exercises, which in turn may result
in an airspace closure, also for UAVs. In addition to the legal framework conditions, the flight
weather must also be checked before each flight. For this purpose, there are, for example, various
apps and online offers (e.g. UAV Forecast) [97] in which you can directly insert the parameters of the
UAV manufacturer (e.g. maximum wind strength). The actual conditions on site must be checked
again directly before the flight (portable anemometer, thermometer, also barometer). To ensure
correct georeferencing of UAV images, there are two methods [98]: Direct georeferencing (viaa GNSS
module linked to the camera) and indirect georeferencing via pre-measured and marked ground
control points (GCP). The use of a Positioning RTK [99] module can improve the accuracy of the
GNSS chips typically installed in all UAVs from several meters to a few centimeters. Most
professionally used drones now have RTK either on board as standard (e.g. the DJI Phantom 4
Multispectral used here) or available as an optional module (e.g. the DJI Mavic 2 Enterprise
Advanced used here). Although both methods lead to good georeferencing, in particular the
combination of RTK and GCP use produces the best results [100]. Due to the remote location of the
study area and the resulting lack of mobile Internet access (Figure 6), it was not possible to use the
RTK network "Satellite Positioning Service SAPOS", which is freely available in North-Rhine
Westphalia [101]. The wide distribution of GCP was rejected due to the large area, poor visibility
from the air, as well as lengthy surveying traverses, attributed to the impossibility of RTK-GNSS
measurements. As a solution, a dedicated RTK base station (Figure 5) was established on a previously
highly accurate surveyed point at the edge of the survey area. A Trimble R12 GNSS rover was
reconfigured accordingly for this purpose and was able to send its own correction data via a WiFi
connection as an NTRIP (Networked Transport of RTCM via Internet Protocol) caster to the controller
of the UAVs, which in turn passed it on directly to the drones. A few previously measured GCP then
served to verify the georeferencing of the later results. The accuracy in the centimeter range could be
confirmed with this solution and costly corrections in post-processing could be avoided.

! LuftVG - Luftverkehrsgesetz
2 LuftVO - Luftverkehrs-Ordnung
3 LuftVZO - Luftverkehrs-Zulassungs-Ordnung
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Figure 5. GNSS RTK base station with start/land location.
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Figure 6. Cellular phone coverage. Source: [102].

2.3.3. Drone Flights

The drone flight begins with selecting the planned area of the flight, then the flight parameters

are important (Table 2).
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Table 2. Drone flight parameters.

Drone flight

rameters Description Reference
paramete

The maximum flight height is 120 meters above the earth’s

surface. It depends on whether the National Aviation

Authority imposes a geographical zone with a lower limit in

the area where you are flying.

“The amount of overlap between frames in the forward and

lateral direction from the perspective of the platform’s

direction of movement — must be properly handled to create

Frontal and Side = seamless mosaics that represent the location of the features in

overlap the image. To produce accurate terrain models, a minimum
forward overlap of 80 percent and a minimum side overlap of
75 percent are recommended to maximize the number of
observations of landscape features.”
Waypoints Number of images taken.
Time required to carry out a drone raid. The value is needed to
estimate the number of inter-landings and take-offs.

Altitude of flight

[103]

[104]

Estimated time

Figure 7 shows the drone flight planning in the DJI GSP application. All listed flight parameters
enable the assumed accuracy of the final results to be achieved. During the flight, the operator is
obliged to maintain visual contact with the drone and monitor the weather (e.g. wind speed). Of
course, the drone operator should monitor the situation on an ongoing basis and, in the event of an
emergency, land it immediately.
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Figure 7. Drone flight planning in DJI GSP.

2.3.4. Post-Processing

For the processing of the raw data from the UAVs, the software Agisoft Metashape was used.
However, the procedure of the photogrammetric analysis (Figure 8) used here is basically the same
for most comparable commercial (e.g. ArcGIS Drone2Map) or free (e.g. OpenDroneMap) software
products. Usually, only the names, parameters and implementations of the different work steps
change.
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Figure 8. Example sequence of a photogrammetric analysis of UAV images to the final orthophoto.
Own representation after [105].

The advantage of Metashape over comparable products is that the work steps can be carried out
individually one after the other. This makes it easy to optimize the parameters in the intermediate
steps and gives you much better control over the overall result. Thus, for the creation of a 3D model,
it makes sense to generate a high-resolution 3D mesh, while for an orthophoto, a lower-resolution,
2.5D DEM (Digital Elevation Modell) is also sufficient.

Multispectral

For the processing of the multispectral data, these were assessed according to the workflow with
regard to their basic quality, sorted and loaded into the program. As an additional step, the data was
then radiometrically calibrated to obtain a result that is as independent as possible of external
conditions (position of the sun, cloud cover). For this purpose, the images were reflectance calibrated
using the sun sensor permanently installed in the DJI Phantom 4 Multispectral used and an additional
calibration panel with which images were taken before and after [106].The reflectance values of the
panel were determined in the laboratory for all wavelengths from 250 to 950 nm, so that a radiometric
correction value for the spectral ranges used (red, green, blue, RedEdge, NIR) could be calculated and
applied under the given lighting conditions on the basis of these images [107]:

F;, = $ (Formula 1)

where Fi is the reflection calibration factor for band I, pi is the average reflectance of the calibration
panel for the i-th band (from the provided calibration data of the panel) and avg(Li) is the average value
of radiance for the pixels within the panel for band i.

With the calibrated data, the subsequent processes up to the creation of the orthophoto could be
carried out. Since no 3D model was needed, the images were only aligned, a rough, georeferenced mesh
was created, and from this, a DEM and finally a multispectral orthophoto were derived. Using these
products as a foundation, additional derivatives can be generated in ArcGIS Pro (e.g., DTM - Digital
Terrain Model, vegetation indices), and a selection of these is presented in Chapter 3.

Thermal Infrared and RGB

The used DJI Mavic 2 Enterprise Advanced has two cameras, capturing a high-resolution RGB
image and a slightly lower-resolution thermal infrared image at each trigger point. Both receive the
same image coordinate via the modular RTK module. First, the RGB and thermal images must be
sorted, as they are processed separately. The RGB images can be used without further pre-processing
to create high resolution RGB orthophotos, DEMs and DTMs. The thermal images are in gray values by
default, where each gray value within the image represents an absolute temperature value. These can
be analyzed with special software (DJI Thermal Analysis Tool) based on the environmental parameters
(ambient temperature, humidity, shooting distance). Since the scaling of the gray values changes
slightly from dark = cold to light = warm from shot to shot, the absolute temperature values are
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inevitably lost during orthophoto generation and the associated color balancing. However, the
information about the relative temperature differences is retained and allows conclusions to be drawn
about various monitoring aspects, for example for the identification of water surfaces and coastline.
After the processing steps described above, a gray-scale image with relative temperatures is obtained
as an orthophoto, which can be colored differently depending on the purpose (cf. Figure 8).

3. Results

After the flight has been carried out, all data and measurement points are implemented in the
software to achieve the originally intended goals. The results of drone flight development are:
- individual images,
- orthophoto map,
- calculated vegetation indices on the basis of multispectral drone flights,
- thermal orthophoto map,
- digital terrain model (DTM),
- digital surface model (DSM).

The first result obtained was an orthophoto map (Figure 9), which makes it possible to visualize
the area with a better spatial resolution than satellite images, as well as a first visual assessment and
interpretation.

0 75 150 300 Meters. 0 75 150 300 Meters.

F + | ; + d Technische
Hochschule Hochschule
Georg Agricola Georg Agricola

Created by Research Center of Post-Mining (THGA Bochum) Created by Research Center of Post-Mining (THGA Bochum)
On the basis of drone flight with DJI Phantom 4 Multispectral on 28.03.2023. On the basis of satellite data from Sentinel-2 on 18.03.2023
Coordinate system: ETRS 1989 UTM 32N Coordinate system: ETRS 1989 UTM 32N

Figure 9. Comparison of UAV data with Sentinel 2 satellite data.

The results presented can be used for analysis and data interpretation by implementing other data
into the computational process. In this chapter, the authors aim to present the key possibilities of UAV
use for the geo-monitoring of post-mining processes.

3.1. Updating and Revising Land Classifications

For the state of North Rhine-Westphalia (NRW), a land use classification is available on the Open-
NRW geoportal website via the Web Map Service (WMS). It is worth noting that the classification is
based on the acquired satellite images of the Sentinel-2 mission and the study is valid 01.04.2022. In the
study area, there are different classes:

- Vegetation,
- QGrass,
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- Shrub,
- Hardwood,
- Street,
- Water.

Thanks to the use of drone flights, better spatial resolution and interpretability of the results
obtained from the drone flights can be achieved. Figure 10 shows a summary of the received
orthophotomap dated 28.03.2023 and the WMS Landbedeckung service from the OpenNRW portal.
The combination enables a detailed analysis of the vegetation condition and verification of its
conformity with the class presented by the WMS service. For the classification, a support vector machine
(SVM) has been applied over the multispectral dataset. A supervised machine learning algorithm is
applied using a training dataset created from a small area of pixels used as training data. The SVM'’s
duty is to detect a separating hyperplane (defined as the class boundary) that segregates the features
space into two classes with the largest margin for each class [108]. An optimization problem is solved
by structural risk minimization for identifying the aforementioned hyperplane. Only the samples that
are closest to the class boundaries are required to train the classifier, the so-called support vectors.
Essentially, the localization of the hyperplane in the feature space is largely influenced by those training
samples. Therefore, the classification results of the support vector machine can achieve high accuracy
even when only a small number of training samples are available [108,109]. Figure 10 (left side)
demonstrates the classification result using 500 number of samples to define each class, such a number
is recommended when the inputs are non-segmented rasters, as for the multispectral dataset.

Legend:

Building construction
Underground construction
Solid rock

Loose material

Grass

Bulrush

Grain, plants, ferns
Hardwood

softwood

Woody plants

Shrub

Sea

Inland water flowing

Inland water standing

JRRRRRRRONOEA0N

Ice

Figure 10. Comparison of the result of SVM-supervised classification (left) with land use classes from
the satellite classification result (right). Source of basemap: Digital Topographic Map 1:10000 Data
License Germany 2.0, Open NRW (WMS Survey: Landbedeckung NW).

3.2. Identification of Water Surfaces and Coastline

In the geo-monitoring of post-mining processes, the observation of water bodies and also of
potential sites that could become floodplains plays an important role. In this study, a vegetation index
was used to identify water surfaces: the normalized difference vegetation index - NDVI, which was
developed in 1973 by Rouse et al. [110]. This index is based on two spectral bands (Formula 2):

NDVI = pNIR _ pRED

pNIR |- oRED (Formula 2)

This indicator makes it possible to observe the state of the vegetation. Kuechly et al. [111] in their
paper presented a classification of the indicator, which is shown in Table 3.
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Table 3. Classification of NDVI.

Values of the NDVI Land cover types Color
<0,1 Waters, soils, rocks, sand or snow Red
02t00,3 Vegetation of low vitality Yellow
0,3t0 0,6 Medium to dense vegetation cover Light green
>0,6 Very dense vegetation of high vitality Dark green

Using the above classification, the water surface, according to the NDVI indicator, has values from
-1 to 0.1. It is worth noting that soil, sand and snow also show similar spectral band characteristics to
water, so they can also be found in the values. Figure 12 shows the results of the search presenting the
water surfaces and shorelines of the Weihnachtssee and Pfingstssee reservoirs. Due to the forest
remains in the subsidence lakes concerned, there are also tree stumps, which make the surface area of
the entire lake not uniform (Figure 11).
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Figure 11. Normalized Difference Vegetation Index (NDVI) derived from the multispectral data.
Source: [112].
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Figure 12. Water surfaces and coastline after masking water pixels from NDVI results.

3.3. Identification of Flowing Water on the Basis Thermal Orthophoto

An important aspect of post-mining process monitoring is the study of water quality [48,49,113].
Sedano-Cibrian et al. [114] and Koparan et al. [115,116] indicate that water quality can be assessed
by, among other things, temperature. lezzi and Todisco [117] note that water temperature can be
influenced by natural and anthropological factors. Various measurement techniques can be used to
measure water temperature, primarily based on probing and measuring points [Ibidem] as well as
modern methods based on the use of thermal infrared techniques [118] and also unmanned aerial
vehicles [114]. A thermal orthophotomap makes it possible to know the temperature of the land
surface and water, as any object that has a temperature greater than absolute zero is a source of
infrared radiation [119]. Figure 13 shows a thermal orthophotomap of the surface of the
Weihnachtssee reservoir.
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Figure 13. Thermal orthophoto calculated from the captured thermal infrared data. Source: [112].

4. Discussion

The use of drones provides a detailed and reliable source of data for the study of post-mining
processes, making it possible to analysis and interpret post-operation phenomena. UAV platforms
allow the incorporation of various sensors (e.g. multispectral, hyperspectral, thermal, LiDAR - light
detection and ranging), which significantly increases the possibilities of UAVs. The software used in
the controllers allows the planning and execution of flight mission parameters, so that results can be
obtained with the quality and accuracy assumed before the flight. This paper presents the results of
using multispectral and thermal cameras. Drone aircraft with multispectral cameras enable the
acquisition of certain spectral bands, associated with vegetation health. By interpreting the processed
aerial data, land-use classes can be verified, which are generally available on the Open NRW website.
The use of machine learning algorithms makes it possible to classify land use (Figure 10). Therefore,
it is possible to identify vegetation biotypes. One of the research methods implemented in this paper
was the use of vegetation indicators. These indicators are based on mathematical formulas that take
into account at least two spectral bands in their calculation. This makes it possible to study the state
of the vegetation in a given area, but also, as shown in Figures 11 and 12, to identify water surfaces
and coastlines. Monitoring aquatic environments using optical remote sensing has some limitations
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due to the need for direct visibility. Vegetation in the vicinity of water bodies and tree crowns can be

an obstacle to correctly interpreting the shoreline of water bodies, and it is possible to take images

from different angles to solve the problem [120]. However, scheduling a drone flight outside the

growing season, as was done in this study, allows the previously mentioned problem to be solved.

The resulting imagery can be used to calculate a numerical terrain model (Figure 14), enabling

visualization of the terrain contours and derived products, such as:

- Slope map, which illustrates the terrain's slope, can be utilized to calculate rainfall-runoff,
aiding in the development of flood control programs,

- Exposure map, facilitating the examination of sunlight impact in specific areas,

- Visibility map, applicable in constructing observation towers for forestry and tourism, serving
as viewpoints.

The result of the use of an unmanned aerial vehicle equipped with a thermal camera is shown
in Figure 13. It allows to present the temperature of water reservoirs in the form of a map. When
flying a drone with a thermal camera, the position of the sun during the flight must be taken into
consideration, as sunlight can cause shadows, which can distort the result. Figure 13 enables to see
how the gradient in temperature characterized the SE-NW course. In the case of lakes Weihnachtsee
and Pfingstsee, higher temperature were observed in the southern parts of the reservoirs, which may
be caused by the rivers Schwarzbach and Elsbach flowing through them. The conducted research
showed the monitoring with the use of UAVs makes it possible to provide reliable spatial information
regarding a given research area. The analysis of the natural environment's condition involves
observing changes occurring within it and studying the range and temperature of water surfaces.
UAYV monitoring is one of many methods of geo-monitoring and in order to fully understand the
post-mining processes, the obtained results should be verified using other sources and research
methods.
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Hachschule

0 20 40 80 Meters On the basis of drone flight on 28.03.2023
; T T Georg Agricola

Coordinate System: DHHN 2016

Created by Research Center of Post-Mininig @

Figure 14. Digital Elevation Modell in 2.5D visualization.

5. Conclusions

The aim of this article was to present the possibility of using drone flights as a method of geo-
monitoring post-mining processes, using the example of the closed Prosper-Haniel mine in the Ruhr
region. Monitoring the environment using unmanned aerial vehicles makes it possible to obtain data
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with high spatial resolution. The use of various sensors placed on drones, in this case a multispectral
camera (D]JI Phantom 4 Multispectral) and a thermal camera (DJI Mavic 2 Enterprise Advance
Thermal) enables a comprehensive study of the state of the natural environment:
- State of vitality and changes of vegetation, using vegetation indicators based on data obtained
from a multispectral camera
o Verification and identification of vegetation types using machine learning algorithms -
supervised classification
- Identification of water surfaces and detection coastline of water reservoirs
- Identification of the temperature of water surfaces and terrain using a thermal camera
- Creating digital terrain models to visualize the research area
The research methods presented above can be used in long-term monitoring of post-mining
processes, which will enable the performance of time-spatial analyzes documenting the course of
changes taking place in the environment. It is worth noting that only the integration of all possible
data on the research area allows for understanding the phenomena and processes taking place in it.
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