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Abstract: The Mara River basin (MRB) has a world-famous ecosystem, but the vegetation has been damaged
due to economic development in recent years, and there is little known about the area that will experience
severe vegetation damage in the future. Based on the vegetation vulnerability system, principal component
analysis, and three CMIP6 scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), vegetation vulnerability was calculated in
the base period (2010-2019), near-term period (2020-2059) and long-term period (2060-2099) in the MRB. The
spatial cluster of vegetation vulnerability was revealed by spatial correlation analysis, and the transition of
vegetation vulnerability of different periods was analyzed by stochastic matrix. The results showed that in all
periods, the vulnerability showed a high-high cluster in the east, and a low-low cluster midstream and
downstream. From the stochastic matrix, the area of high vulnerability increased the least under the SSP1-2.6,
while it increased the most under the SSP5-8.5. The vegetation vulnerability upstream increased the most from
the base period to the near-term period and long-term period in the MRB. By comparing the vegetation
vulnerability under different scenarios, and pointing out the areas with the highest vulnerability increase, this
study can better provide comprehensive decision-making for vegetation protection in the MRB.

Keywords: Mara River basin; vegetation vulnerability; shared socio-economic pathways (SSPs); prediction;
stochastic matrix

1. Introduction

The fierce global warming and human activities have had significant impacts on vegetation [1],
and vegetation degradation is an important external expression of vulnerability [2]. Land use changes
and intensified environmental pollution caused by human activities can both result in vegetation
degradation [3,4] and further increase vegetation vulnerability. Also, continuous global warming can
increase the vulnerability of 50% of vegetation on Earth [5]. In the 21st century, where climate change
and human activities are more complex, vegetation vulnerability is more serious [6].

The concept of 'vulnerability' is defined as “the degree to which a system, sub-system, or system
component is likely to experience harm due to exposure to a hazard, either a perturbation or a
stress/stressor” [7]. The commonly used quantitative vulnerability assessment frameworks are the
analytic hierarchy process [8] and principal component analysis [9]. Principal component analysis
can achieve data transformation by transforming multiple high-correlation variables into minority
low-correlation variables through orthogonal transformation and is more used in assessment
frameworks with both natural factors and human factors [9]. With the development and application
of GIS and RS technology, vulnerability assessment systems have become more objective, and visual
expression makes vulnerability more intuitive [10]. Current researches on vegetation vulnerability
are mostly based on the changes in net primary productivity (NPP) and gross primary productivity
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(GPP) [11]. Few studies comprehensively assess vegetation vulnerability by constructing indicator
systems.

There have been many studies focusing on the impact of future climate change on vulnerability.
These studies used assumed incremental scenarios (average temperature and precipitation increasing
equidistant from baseline to the future) [12] and GCMs (general circulation models) [13] as the main
input data. However, the spatiotemporal resolution of data in existing research is relatively rough.
Most prediction models do not take the impact of human activities on vulnerability into consideration
and only use a single climate change scenario, which increases the uncertainty of prediction. The
CMIP6 dataset is currently the most accurate and high spatiotemporal resolution dataset for
simulating future climate change, and SSP1-2.6, SSP2-4.5, and SSP5-8.5 are taken to be representatives
of low-, medium-, and high-emission scenarios, respectively [14]. It can reflect the comprehensive
effects of climate and socio-economic factors and has been widely used in predicting future land use
patterns [15]. However, the CMIP6 dataset is barely applied to predict vegetation vulnerability.

In the past few decades, vegetation in sub-Saharan Africa has experienced extensive degradation
[16]. The Mara River Basin (MRB) is one of the most serious vegetation degradation areas due to the
intensive deforestation, tourism, and mining since the 1970s [17,18,19]. The rapid growth of the
population in MRB has led to a soaring demand for agriculture and animal husbandry, which
destroys much natural vegetation [20,21]. The vegetation degradation increases the vegetation
vulnerability in the MBR. In addition, the terrain fluctuation exceeds 1000m in the MRB, and the huge
terrain fluctuation makes vegetation habitats complex and more susceptible to climate change and
human activities, posing a threat to vegetation vulnerability [9]. Considering the climate and human
activities will be more complex in the 21st century [22], it is necessary to know the future vegetation
vulnerability in advance to protect natural vegetation in MRB.

The vulnerability threat caused by vegetation degradation has been studied in many regions,
and RS and GIS are important methods for studying vegetation vulnerability in areas with limited
data. The researches on vegetation in the MRB mainly focus on the mapping of vegetation types [23],
the response of vegetation to climate change [24], and the calculation of vegetation ecological water
demand [25], trying to understand the changes of vegetation under natural and socio-economic
changes [26,27]. However, there are relatively few researches studying vegetation vulnerability.
Therefore, taking 2010-2019 as the base period, evenly divided the remaining years of the 21st century
as near-term period (2020-2059) and long-term period (2060-2099), vegetation vulnerability system,
principal component analysis, and three CMIP6 scenarios (S5P1-2.6, SSP2-4.5, SSP5-8.5) were used to
assess vegetation vulnerability in the MRB. Then the spatial cluster of vegetation vulnerability was
revealed by spatial correlation analysis, and the stochastic matrix was used to analyze the transition
of vegetation vulnerability among the base period, near-term period, and long-term period. This
study aims to provide a comprehensive understanding of vegetation vulnerability and point out the
areas with severe vulnerability in the future to provide scientific support and comprehensive
decision-making for vegetation protection in the MRB.

2. Study Area

The Mara River originates from the Mau Forest in Kenya, through the Masai Mara National
Reserve, Serengeti National Reserve, and finally flows into Lake Victoria, with an area of 13750 km2
(Figure 1). The upstream contains national forest reserve and agricultural reclamations. The
midstream includes two national wildlife reserves, Masai Mara National Reserve (Kenya) and
Serengeti National Reserve (Tanzania). The downstream is the Mara Wetland and other sparse
grassland [28]. The vegetation distribution changes significantly from the upstream to the
downstream in the MBR, from alpine forest, and scattered forest to cultivated land, and then to
grassland, shrub, mixed shrub, and grassland. The main vegetation types are forest, crop, grassland,
and shrub. The MRB is the home of many wild animals and has important ecological value.
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Figure 1. The location of MRB.
3. Methods and Data

3.1. Methods

The vegetation vulnerability analysis was constructed by principal component analysis based
on natural and human factors. Then Moran's I was used to measure the spatial cluster of vegetation
vulnerability in the base period, near-term period, and long-term period. Finally, the stochastic
matrix was used to quantitatively analyze the transition of vegetation vulnerability from the base
period to the near-term period and the long-term period.

3.1.1. Scenario Assumptions

Among the 5 shared socio-economic paths (SSP1-SSP5) in CMIP6, SSP1-2.6, SSP2-4.5, and SSP5-
8.5 are the representatives of low-, medium-, and high-emission scenarios [14]. This study used SSP1-
2.6, SSP2-4.5, and SSP5-8.5 to predict vegetation vulnerability and to explore the impact of emission
on vegetation vulnerability in the near-term period and the long-term period in the MRB.

3.1.2. Factors

Vegetation vulnerability is impacted by both natural and human factors. Natural factors are the
basis for vegetation growth and survival, including climate, terrain, and water [29]. Human factors
mainly refer to the external pressure from socio-economic development [30]. Based on the problems
faced by vegetation in the MRB, 4 natural factors and 2 human factors were selected to construct the

vegetation vulnerability system for the base period, near-term period, and long-term period (Table
1).

Table 1. Vegetation vulnerability factors.

Factors Index Unit Property
Precipitation mm -
Temperature c -

Natural factors .
Terrain m +

Vegetation ecological water m? -
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+

Population density person/km?

Human factors
Land use % +

The land use degree reflects the degree of land utilization, it can also reflect the pressure of
human activities on land. The land use degree can be calculated by formula (1) [31]:

n
L =100 x Z AP/ Ay (1)
i=1

Where L is the land use degree. n is the number of land use types, and it was 4 in this study. 4; is
the area of i land use type. Ay is the total area of the study area. P; is the parameter for land use
degree, it can reflect the intensity and characteristics of human activities. Delphi scoring method and
Leopold matrix method were combined to determine the parameter of land use degree (P;) by taking
the mean value of the two methods (Table 2) [31].

Table 2. Land use degree parameters (P;) for different land use types in the MRB.

Farmland Forest Grass Shrub
0.71 0.17 0.29 0.29

3.1.3. Vegetation Vulnerability

1. Data standardization

Due to the units and properties being different, the original data were standardized for easier
subsequent calculations. The positive indexes (2) and negative indexes (3) were calculated by
different standardized calculation formulas:

Xi _Xmin

i S L. 2
' Xmax - Xmin ( )
X - X;
Zi — max i (3)
Xmax - Xmin

Where Z; is the standardized value of the index i. X; is the original value i. X4, is the maximum
value of i, and X,,;,, is the minimum value.
2. Vegetation vulnerability

Principal component analysis can maximize the retention of information reflected by multiple
variables, it was used to calculate vegetation vulnerability. The vegetation vulnerability was
calculated by:

EVI=a1F1+a2F2+"'+anFn (4)

Where EVI is the vegetation vulnerability, a; is the importance of index I and F; is the index i.
3. Spatial cluster of vegetation vulnerability
To analyze the spatial cluster of vegetation vulnerability in the MRB, global Moran's I was used
to measure whether there was a spatial cluster of vegetation vulnerability, and local Moran's I was
used to measure the spatial cluster pattern of vegetation vulnerability.
Global Moran's I can be calculated as:
g X Wi (g — X) (%) — %)

I, = = 5
g Y wy (g — %) ©)

Local Moran's I can be calculated as:

I = (xl_x)z Wi (©6)

Where x; and x; are the vulnerability values of the i and j regions, X is the average vulnerability
value of all regions. w;; is the spatial weight matrix. S is the sum of the elements of the spatial weight
matrix. n is the number of regions. A Local Indicators of Spatial Association (LISA) of vegetation
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vulnerability can be obtained by clustering the local Moran's I. The LISA has five cluster patterns,
namely high-high cluster (H-H), high-low outlier (H-L), low-high outlier (L-H), low-low cluster (L-
L), and not significant.

3.1.4. Transition of Vegetation Vulnerability

The stochastic matrix was used to better reflect the transition of vegetation vulnerability of
different periods in the MRB. The stochastic matrix can be calculated by:

S11 v Sin
SU-=[% l ?)

Snl Snn

where 7 is the vegetation vulnerability. S;; (i, j=1,2,3,..., n) is the transition area that transfers from
the vulnerability i at the beginning to the vulnerability j at the end (unit: km?). The i=j indicates that
the vulnerability has not changed during the period.

3.2. Data

The data used include climate, terrain, population, land use, and vegetation ecological water.
The terrain data was from STRM. The rest data includes two parts, the details are as follows. All data
was resampled to resolution of 1km by bilinear interpolation method

1. Climate. The temperature and precipitation data in the base period were obtained from ERA5-
Land monthly average reanalysis data. Due to the study area is not large and the data needed for
predicting future vegetation ecological water should include radiation, temperature, precipitation,
wind speed, and humidity, the CNRM-CM6-1-HR model in the CMIP6 dataset under SSP1-2.6, SSP2-
4.5, and SSP5-8.5 was chosen for including all the above elements and having a relatively small spatial
resolution.

2. Land use. The land use data for the base period were obtained from the European Space
Agency, the land type accounted for the largest proportion in a grid was taken as the land use type
for that grid. The land use data for the near-term period and long-term period under SSP1-2.6, SSP2-
4.5, and SSP5-8.5 were from Land Use Harmonization 2 (LUH2).

3. Population. The population data in the base period was sourced from the WorldPop
population density dataset. According to Our World in Data, the population growth rate in Kenya
from 2020 to 3030 is about 2.0%, from 2030 to 2059 is about 1.3%, and from 2060 to 2099 is about 0.3%.
The population growth rate in Tanzania from 2020 to 3030 is about 2.8%, from 2030 to 2059 is about
2.1%, and from 2060 to 2099 is about 1.0%. The average population growth rate of Kenya and Tanzania
was taken as the population growth rate of MRB. Therefore, the population growth rate of the MRB
from 2020 to 3030 is about 2.4%, from 2030 to 2059 is about 1.7%, from 2060 to 2099 is about 0.7%, and
the population density was shown in Table 3.

Table 3. Population density of near-term period and long-term period in MRB.

2019 2020-2059 2060-2099
Population density/person ®km- 121.17 197.79 261.45

4. Vegetation ecological water. The vegetation ecological water of the base period was from the
research results [25]. The vegetation ecological water under SSP1-2.6, SSP2-4.5, and SSP5-8.5 of the
near-term period and long-term period were calculated by the RF algorithm with terrain and CMIP6
data. The minimum R? in all scenarios is 0.74, indicating good results (Figure 2).
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Near-term period SSP1-2.6 Near-term period SSP2-4.5 Near-term period SSP5-8.5
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Figure 2. Vegetation ecological water (unit:10'°'m?) of near-term period and long-term period in MRB.

4. Results

4.1. Factor Scores

The scores of natural and human factors were shown in Table 4, the factor scores varied greatly
in different periods. Natural factors scored higher than human factors in all periods, and temperature
got the biggest negative score, land use got the biggest positive score. From the low to high emission
scenarios, the score of population increased rapidly, and the score of vegetation decreased.

Table 4. Natural and human factor scores of different periods in MRB.

Factors Base period Near-term period Long-term period
SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-45 SSP5-8.5

Precipitation -0.67 -0.69 -0.62 -0.56 -0.69 -0.65 -0.60
Temperature -0.79 -0.85 -0.80 -0.75 -0.86 -0.84 -0.79
Terrain 0.77 0.81 0.80 0.83 0.82 0.81 0.87
Vegetation -0.61 -0.63 -0.60 -0.50 -0.66 -0.62 -0.51
Population 0.60 0.59 0.70 0.83 0.68 0.78 0.89
Landuse 0.78 0.64 0.70 0.72 0.74 0.80 0.87

In the base period, temperature got the biggest negative score, and land use and terrain got the
biggest positive score. Precipitation and temperature were factors that contributed significantly to
vegetation vulnerability in the near-term period and long-term period. From low to high emission
scenarios, in the near-term period, the scores of precipitation, temperature, and vegetation decreased,
while the scores of land use and population increased. The situation was the same in the long-term

period.

4.2. Vegetation Vulnerability and Spatial Cluster in the Base Period in MRB

Figure 3a showed the spatial distribution of vegetation vulnerability in the base period in MRB.
The natural breakpoint method was used to divide the vegetation vulnerability into four categories,
namely mild vulnerability, moderate vulnerability, severe vulnerability, and extreme vulnerability.
In the base period, extreme vulnerability was in the east part of MRB, and mild vulnerability was in
the downstream. There was a decreasing trend in vegetation vulnerability from east to west in the

MRB.
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Figure 3. Spatial distribution of vegetation vulnerability (a), and LISA cluster (b) in the base period in
the MRB.

The global Moran's I of vegetation vulnerability in the base period was 0.7868, the Z-value was
26.1325, the variance was 0.0009, and the P-value was less than 0.01, indicating significant results at
the 99% level. This indicated a strong positive correlation between vegetation vulnerability and
geographical location (Figure 3b). Specifically, severe vulnerability and extreme vulnerability were
mostly in the high-high cluster, while mild vulnerability was almost in the low-low cluster.

4.3. Vegetation Vulnerability in the Near-Term and Long-Term Period in MRB

The vegetation vulnerability in the near-term period and long-term period showed a decreasing
trend from the upstream to the downstream, with the center being the smallest (Figure 4). In the near-
term period, from low to high emission scenarios, the area of mild vulnerability and moderate
vulnerability decreased about 6%, the area of extreme vulnerability increased by about 8%. In the
long-term period, from low to high emission scenarios, the area of mild vulnerability decreased by
about 50%, and the area of severe vulnerability increased by about 20%.

Near-term period SSP5-8.5 !
2

Near-term period SSP1-2.6
A3
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Y
w
|-..r
o
o
Jt

Long-term period SSP2-4.5

Long-term period SSP5-8.5

s

N
0 50 km
= mild vulnerability =umoderate vulnerability == severe vulnerability mmextreme vulnerability A

Figure 4. Spatial distribution of vegetation vulnerability in the near-term period and the long-term
period in the MRB.

From the near-term period to the long-term period, under the SSP1-2.6, the area of severe
vulnerability increased by about 6%, and the area of extreme and mild vulnerability decreased by
about 16% and 12% respectively. Under the SSP2-4.5, the area of mild vulnerability decreased by
about 56%, and the area of extreme vulnerability increased by about 33%. Under the SSP5-8.5, the
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area of mild vulnerability decreased by 50%, and the area of severe vulnerability and extreme
vulnerability increased by 20% and 40%, respectively. The vegetation vulnerability increased faster
under higher emission scenarios from the near-term period to the long-term period.

4.4. Spatial Cluster of Vegetation Vulnerability in the Near-Term Period and the Long-Term Period in the
MRB

4.4.1. Global Moran’s I

Table 5 showed the results of global Moran's I of vegetation vulnerability in the MRB in the near-
term period and long-term period. The Moran's I was positive in all scenarios, fluctuating between
0.41 and 0.68. The P-values were less than 0.01, indicating significant results at the 99% level. This
indicated a strong positive correlation between vegetation vulnerability and geographical location in
the MRB in the near-term period and long-term period.

Table 5. Global Moran's I.

Period Scenario Global Moran's I P-value Z-value Variance
Near term SSP1-2.6 0.5963 P<0.01 12.9971 0.0021
eriod SSP2-4.5 0.6077 P<0.01 13.4134 0.0021
p SSP5-8.5 0.6028 P<0.01 11.2632 0.0029
Long-term SSP1-2.6 0.5024 P<0.01 11.0596 0.0021
period SSP2-4.5 0.4108 P<0.01 8.8842 0.0021
SSP5-8.5 0.4811 P<0.01 10.7101 0.0020

4.4.2. Local Moran's I

The LISA cluster of vegetation vulnerability in the near-term period and long-term period in the
MRB was shown in Figure 5. The cluster pattern of vegetation vulnerability was a high-high cluster
upstream, low-low cluster downstream, not significant midstream in the near-term period and long-
term period in the MRB. There were no high-low outlier and low-high outlier, which indicated that
the cluster of vegetation vulnerability was extremely concentrated in the near-term period and long-
term period in the MRB. Specifically, the high vegetation vulnerability was in the high-high cluster
upstream, the low vulnerability was in the low-low cluster downstream.

Near-term period SSP1-2.6 Near-term period SSP2-4.5 Near-term period SSP5-8.5

Long-term period SSP1-2.6 Long-term period SSP2-4.5 Long-term period SSP5-8.5

0 50 ki
Not Significant High-High Cluster mHigh-Low Outlier ™ Low-High Outlier © Low-Low Cluster "
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Figure 5. LISA cluster of vegetation vulnerability in the near-term period and long-term period in the
MRB.

From low to high emission scenarios, the area of high-high cluster increased, and the area of
low-low cluster decreased. This changing trend was more obvious in the long-term period. Under
the SSP1-2.6, from the near-term period to the long-term period, the area of the high-high cluster
decreased upstream, and the low-low cluster increased downstream. The situation was similar under
the SSP2-4.5, but the changing areas were larger than the SSP1-2.6. Under the SSP5-8.5, from the near-
term period to the long-term period, the area of high-high cluster and low-low cluster were both
increased. This indicated that from the near-term period to the long-term period, the vegetation
vulnerability could be reduced under a low-emission scenario.

4.5. Transition of Vegetation Vulnerability during Different Periods in the MRB

Table 6 showed the transition of vegetation vulnerability during different periods. From the base
period to the near-term period, under the SSP1-2.6, the mild vulnerability, moderate vulnerability,
and severe vulnerability had the largest transition area into moderate vulnerability, severe
vulnerability, and extreme vulnerability respectively, with the area all over 1200 km?. The transition
area from extreme vulnerability to severe vulnerability was twice the area where extreme
vulnerability remained unchanged. Under the SSP2-4.5, the mild vulnerability, moderate
vulnerability, and severe vulnerability still had the largest transition area into moderate vulnerability,
severe vulnerability, and extreme vulnerability respectively, but the transition area increased 100 km?
compared to the SSP1-2.6. The transition area of extreme vulnerability to severe vulnerability
decreased by 50 km? compared to the SSP1-2.6. Under the SSP5-8.5, the transition area of mild
vulnerability, moderate vulnerability to severe vulnerability, and extreme vulnerability increased
more rapidly compared to the SSP1-2.6 and SSP2-4.5. The area of extreme vulnerability remained
unchanged was the largest compared to the SSP1-2.6 and SSP2-4.5.

Table 6. Stochastic matrix of vegetation vulnerability of different periods in MRB.

Base period

mild moderate severe extreme

mild 1427.61 1057.06 73.70 0.08

Near-term moderate 1676.52 1379.37 503.02 86.39
SSP1-2.6 severe 22.74 1289.47 464.29 954.46
extreme 0.00 106.47 1559.48 455.86

mild 1351.47 1024.37 73.73 0.13
Near-term moderate 1752.05 1041.04 415.79 102.43
SSP2-4.5 severe 24.24 1496.44 424.03 901.02
extreme 0.00 170.01 1687.06 493.15

mild 1338.22 979.58 68.75 0.05

Near-term moderate 1752.92 959.38 309.23 73.93
SSP5-8.5 severe 36.71 1413.57 544.01 795.42
extreme 0.00 379.88 1678.56 625.36

mild 1459.88 1094.89 76.52 0.13

Long-term moderate 1660.31 1041.00 513.20 86.40
SSP1-2.6 severe 7.25 1410.49 585.67 836.62
extreme 0.00 187.05 1425.16 573.64

Long-term mild 577.33 480.51 28.75 0.00
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SSP2-4.5 moderate 2535.59 1406.58 445.61 35.13
severe 16.63 1435.84 496.37 780.14

extreme 0.00 407.28 1628.81 679.34

mild 506.43 502.26 40.70 0.00

Long-term moderate 2604.85 983.15 293.66 15.30
SSP5-8.5 severe 18.47 1584.28 493.95 373.88
extreme 0.00 660.82 1771.22 1108.06

From the base period to the long-term period, under the SSP1-2.6, the area of mild vulnerability
transformed into moderate vulnerability unchanged was almost the same as the area of unchanged
mild vulnerability. Similarly, the area of moderate vulnerability transformed into mild vulnerability
was almost the same as the area of unchanged moderate vulnerability, but smaller than the area that
moderate vulnerability transformed into severe vulnerability. Compared with the base period to the
near-term period, the transition area of severe vulnerability to extreme vulnerability was much less,
and the transition area of extreme vulnerability to severe vulnerability was a little less. Under the
SSP2-4.5, compared with the base period to the near-term period, the transition area of mild
vulnerability to moderate vulnerability increased by about 800 km?2. The area transformed from
moderate vulnerability to mild vulnerability decreased obviously, but the area from moderate
vulnerability transformed to extreme vulnerability increased by 139.41%. The area of unchanged
extreme vulnerability increased by 37.73%. Under the SSP5-8.5, the vegetation vulnerability
transition was similar to the SSP2-4.5. Compared with the base period to the near-term period, the
area of mild vulnerability, moderate vulnerability, and severe vulnerability transformed to moderate
vulnerability, severe vulnerability, and extreme vulnerability all increased by about 100 km2 In
addition, the area of unchanged extreme vulnerability increased by 77.28% compared with the base
period to the near-term period.

Under all scenarios, from the base period to the near-term period or to the long-term period,
there was no transition between mild vulnerability and extreme vulnerability. From low to high
emission scenarios, the area of unchanged vulnerability or less vulnerability gradually decreased,
and the area transformed into higher vulnerability increased. From the near-term period to the long-
term period, the transition to higher vulnerability became much more obvious, and the transition
increased fast under a high emission scenario.

5. Discussion

5.1. Effects of Factors on Vegetation Vulnerability in the MRB

Mara River Basin is a vegetation vulnerability area in East Africa, and the balance between social
development and vegetation protection is not good [23]. The Mau Forest in the upstream was severe
vulnerability in the base period and was extreme vulnerability in the near-term period and long-term
period. In recent years, the Mau Forest has been extensively cultivated into farmland for agricultural
development [17], increasing the vegetation vulnerability of the forest. Therefore, under the SSP5-8.5,
which is the most significant scenario for human activities, so the vegetation vulnerability increased
the most upstream of the MRB. There are many protected areas midstream and human activities are
relatively less [32], but as the emission increased, the area of mild vulnerability decreased obviously
in the near-term period and long-term period, indicating that even in areas with good protection, an
increasing emission can still cause significant damage to the vegetation [22]. The vegetation
vulnerability downstream increased from the base period to the near-term period and long-term
period. There is Mara Mine downstream in MRB, and mining activities often grab the vegetation
water [26], leading to insufficient vegetation water demand, and increasing vegetation vulnerability.

The terrain of the MRB is a gradual decrease from upstream to downstream, high altitude is not
conducive to water aggregation [33], so the vegetation vulnerability decreased from upstream to
downstream in all periods. The high temperature and little precipitation in tropical regions are highly
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likely to increase the impact of drought on vegetation. Drought has an important impact on the
vulnerability in the Masai Mara [34]. Also, an arid environment can reduce the growth rate of
vegetation, this phenomenon can become more obvious when the emission increases [35]. Under the
S5P5-8.5, regions that are already arid may become universally drought-stricken by the late 21st
century [36], and the vegetation vulnerability will become much more intense.

5.2. Transition of Vegetation Vulnerability under Different Scenarios in the MRB

The stochastic matrix was used to quantitatively analyze the transition of vegetation
vulnerability of different periods in the MRB. To our knowledge, it is the first time that the stochastic
matrix has been used in vegetation vulnerability research. A Stochastic matrix was chosen because it
can reflect the transition simply and directly [37].

Under the SSP1-2.6, the impact of human factors on vegetation vulnerability in MRB decreased
and was less than the impact of natural factors. The climate will become warmer and wetter, making
it more suitable for vegetation growth under the SSP1-2.6 [38], and the vegetation vulnerability will
be the lowest [39]. Therefore, the vegetation vulnerability in the MRB increased a little from the base
period to the near-term period, but slightly decreased from the near-term period to the long-term
period.

Under the SSP2-4.5, the impact of natural and human factors on vegetation vulnerability in the
near-term period was similar to the factors impact in the base period, but the impact of human factors
on vegetation vulnerability in the long-term period increased by 14% compared to the base period in
the MRB. Under the SSP2-4.5 scenario, moderate warming would lead to a slight drought [40],
underdeveloped countries will face pressure from low education, high population growth, and
intensified land use, including reduced forest and grassland [14]. For the MRB which is a low-
developed area, the conflict environment of reduced vegetation, increased population, and regional
competitions will make the increasing vegetation vulnerability.

Under the SSP5-8.5, the impact of human factors on vulnerability was 1.4 times greater than
natural factors in the long-term period. The vegetation vulnerability in the long-term period
increased by 950.00% compared to the base period, which was the highest vulnerability increase
under all scenario assumptions. Under the SSP5-8.5 scenario, the population at risk of drought is
projected to increase by 45.40 % in the 2050s, this will increase vulnerability in 80% of global land
areas [41], resulting in severe vegetation damage. For the MRB which relies on agriculture and
tourism to develop, increased vegetation vulnerability and damaged vegetation severely can
seriously hinder further economic development.

The transition of vegetation vulnerability varied greatly under different scenarios. Under the
sustainable SSP1-2.6, the increase in vegetation vulnerability was the smallest from the base period
to the near-term period, and to the long-term period, the long-term vulnerability was 1.83 times that
of the base period. Under the SSP5-8.5, vegetation vulnerability increased the most from the base
period to the near-term period and to the long-term period, the long-term vulnerability was 9.5 times
that of the base period. Therefore, sustainable development is of great significance for vegetation
protection [42]. In the MRB where vegetation has been damaged due to socio-economic development,
taking a low-emission development is an effective method to protect the vegetation environment.

6. Conclusion

This study assessed the vegetation vulnerability in the base period (2010-2019), near-term period
(2020-2059), and long-term period (2060-2099) in the MRB, and then analyzed the transition of the
vegetation vulnerability of different periods by stochastic matrix to point out the high vegetation
vulnerability areas. The conclusions are as follows.

(1) The vegetation vulnerability in MRB in the base period showed a decreasing trend from east
to west. The high-high cluster was with high vulnerability, the low-low cluster was with low
vulnerability.
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(2) In the near-term period and long-term period, vegetation vulnerability was highest upstream,
followed by the downstream, and the lowest midstream. The vegetation vulnerability showed a high-
high cluster in the east, while a low-low cluster in the midstream and downstream.

(3) The upstream of the MRB will experience the highest vegetation vulnerability increase due
to intense human activity and less protection. The vegetation vulnerability decreased only under the
SSP1-2.6, therefore, the MRB should control population growth, actively respond to climate change,
and take the sustainable development path with low-emission to promote the sustainable vegetation
in the MRB.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the work
reported in this manuscript.
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