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Abstract: The Mara River basin (MRB) has a world-famous ecosystem, but the vegetation has been damaged 

due to economic development in recent years, and there is little known about the area that will experience 

severe vegetation damage in the future. Based on the vegetation vulnerability system, principal component 

analysis, and three CMIP6 scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5), vegetation vulnerability was calculated in 

the base period (2010-2019), near-term period (2020-2059) and long-term period (2060-2099) in the MRB. The 

spatial cluster of vegetation vulnerability was revealed by spatial correlation analysis, and the transition of 

vegetation vulnerability of different periods was analyzed by stochastic matrix. The results showed that in all 

periods, the vulnerability showed a high-high cluster in the east, and a low-low cluster midstream and 

downstream. From the stochastic matrix, the area of high vulnerability increased the least under the SSP1-2.6, 

while it increased the most under the SSP5-8.5. The vegetation vulnerability upstream increased the most from 

the base period to the near-term period and long-term period in the MRB. By comparing the vegetation 

vulnerability under different scenarios, and pointing out the areas with the highest vulnerability increase, this 

study can better provide comprehensive decision-making for vegetation protection in the MRB. 

Keywords: Mara River basin; vegetation vulnerability; shared socio-economic pathways (SSPs); prediction; 

stochastic matrix 

 

1. Introduction 

The fierce global warming and human activities have had significant impacts on vegetation [1], 

and vegetation degradation is an important external expression of vulnerability [2]. Land use changes 

and intensified environmental pollution caused by human activities can both result in vegetation 

degradation [3,4] and further increase vegetation vulnerability. Also, continuous global warming can 

increase the vulnerability of 50% of vegetation on Earth [5]. In the 21st century, where climate change 

and human activities are more complex, vegetation vulnerability is more serious [6]. 

The concept of 'vulnerability' is defined as “the degree to which a system, sub-system, or system 

component is likely to experience harm due to exposure to a hazard, either a perturbation or a 

stress/stressor” [7]. The commonly used quantitative vulnerability assessment frameworks are the 

analytic hierarchy process [8] and principal component analysis [9]. Principal component analysis 

can achieve data transformation by transforming multiple high-correlation variables into minority 

low-correlation variables through orthogonal transformation and is more used in assessment 

frameworks with both natural factors and human factors [9]. With the development and application 

of GIS and RS technology, vulnerability assessment systems have become more objective, and visual 

expression makes vulnerability more intuitive [10]. Current researches on vegetation vulnerability 

are mostly based on the changes in net primary productivity (NPP) and gross primary productivity 
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(GPP) [11]. Few studies comprehensively assess vegetation vulnerability by constructing indicator 

systems. 

There have been many studies focusing on the impact of future climate change on vulnerability. 

These studies used assumed incremental scenarios (average temperature and precipitation increasing 

equidistant from baseline to the future) [12] and GCMs (general circulation models) [13] as the main 

input data. However, the spatiotemporal resolution of data in existing research is relatively rough. 

Most prediction models do not take the impact of human activities on vulnerability into consideration 

and only use a single climate change scenario, which increases the uncertainty of prediction. The 

CMIP6 dataset is currently the most accurate and high spatiotemporal resolution dataset for 

simulating future climate change, and SSP1-2.6, SSP2-4.5, and SSP5-8.5 are taken to be representatives 

of low-, medium-, and high-emission scenarios, respectively [14]. It can reflect the comprehensive 

effects of climate and socio-economic factors and has been widely used in predicting future land use 

patterns [15]. However, the CMIP6 dataset is barely applied to predict vegetation vulnerability. 

In the past few decades, vegetation in sub-Saharan Africa has experienced extensive degradation 

[16]. The Mara River Basin (MRB) is one of the most serious vegetation degradation areas due to the 

intensive deforestation, tourism, and mining since the 1970s [17,18,19]. The rapid growth of the 

population in MRB has led to a soaring demand for agriculture and animal husbandry, which 

destroys much natural vegetation [20,21]. The vegetation degradation increases the vegetation 

vulnerability in the MBR. In addition, the terrain fluctuation exceeds 1000m in the MRB, and the huge 

terrain fluctuation makes vegetation habitats complex and more susceptible to climate change and 

human activities, posing a threat to vegetation vulnerability [9]. Considering the climate and human 

activities will be more complex in the 21st century [22], it is necessary to know the future vegetation 

vulnerability in advance to protect natural vegetation in MRB. 

The vulnerability threat caused by vegetation degradation has been studied in many regions, 

and RS and GIS are important methods for studying vegetation vulnerability in areas with limited 

data. The researches on vegetation in the MRB mainly focus on the mapping of vegetation types [23], 

the response of vegetation to climate change [24], and the calculation of vegetation ecological water 

demand [25], trying to understand the changes of vegetation under natural and socio-economic 

changes [26,27]. However, there are relatively few researches studying vegetation vulnerability. 

Therefore, taking 2010-2019 as the base period, evenly divided the remaining years of the 21st century 

as near-term period (2020-2059) and long-term period (2060-2099), vegetation vulnerability system, 

principal component analysis, and three CMIP6 scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) were used to 

assess vegetation vulnerability in the MRB. Then the spatial cluster of vegetation vulnerability was 

revealed by spatial correlation analysis, and the stochastic matrix was used to analyze the transition 

of vegetation vulnerability among the base period, near-term period, and long-term period. This 

study aims to provide a comprehensive understanding of vegetation vulnerability and point out the 

areas with severe vulnerability in the future to provide scientific support and comprehensive 

decision-making for vegetation protection in the MRB. 

2. Study Area 

The Mara River originates from the Mau Forest in Kenya, through the Masai Mara National 

Reserve, Serengeti National Reserve, and finally flows into Lake Victoria, with an area of 13750 km2 

(Figure 1). The upstream contains national forest reserve and agricultural reclamations. The 

midstream includes two national wildlife reserves, Masai Mara National Reserve (Kenya) and 

Serengeti National Reserve (Tanzania). The downstream is the Mara Wetland and other sparse 

grassland [28]. The vegetation distribution changes significantly from the upstream to the 

downstream in the MBR, from alpine forest, and scattered forest to cultivated land, and then to 

grassland, shrub, mixed shrub, and grassland. The main vegetation types are forest, crop, grassland, 

and shrub. The MRB is the home of many wild animals and has important ecological value. 
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Figure 1. The location of MRB. 

3. Methods and Data 

3.1. Methods  

The vegetation vulnerability analysis was constructed by principal component analysis based 

on natural and human factors. Then Moran's I was used to measure the spatial cluster of vegetation 

vulnerability in the base period, near-term period, and long-term period. Finally, the stochastic 

matrix was used to quantitatively analyze the transition of vegetation vulnerability from the base 

period to the near-term period and the long-term period. 

3.1.1. Scenario Assumptions 

Among the 5 shared socio-economic paths (SSP1-SSP5) in CMIP6, SSP1-2.6, SSP2-4.5, and SSP5-

8.5 are the representatives of low-, medium-, and high-emission scenarios [14]. This study used SSP1-

2.6, SSP2-4.5, and SSP5-8.5 to predict vegetation vulnerability and to explore the impact of emission 

on vegetation vulnerability in the near-term period and the long-term period in the MRB. 

3.1.2. Factors 

Vegetation vulnerability is impacted by both natural and human factors. Natural factors are the 

basis for vegetation growth and survival, including climate, terrain, and water [29]. Human factors 

mainly refer to the external pressure from socio-economic development [30]. Based on the problems 

faced by vegetation in the MRB, 4 natural factors and 2 human factors were selected to construct the 

vegetation vulnerability system for the base period, near-term period, and long-term period (Table 

1). 

Table 1. Vegetation vulnerability factors. 

Factors Index Unit Property 

Natural factors 

Precipitation mm - 

Temperature ℃ - 

Terrain m + 

Vegetation ecological water m3 - 
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Human factors 
Population density person/km2 + 

Land use % + 

The land use degree reflects the degree of land utilization, it can also reflect the pressure of 

human activities on land. The land use degree can be calculated by formula (1) [31]: 

𝐿 = 100 × ∑ 𝐴𝑖𝑃𝑖/𝐴𝑇

𝑛

𝑖=1
 (1) 

Where L is the land use degree. n is the number of land use types, and it was 4 in this study. 𝐴𝑖 is 

the area of i land use type. 𝐴𝑇 is the total area of the study area. 𝑃𝑖 is the parameter for land use 

degree, it can reflect the intensity and characteristics of human activities. Delphi scoring method and 

Leopold matrix method were combined to determine the parameter of land use degree (𝑃𝑖) by taking 

the mean value of the two methods (Table 2) [31]. 

Table 2. Land use degree parameters (𝑃𝑖) for different land use types in the MRB. 

Farmland Forest Grass Shrub 

0.71 0.17 0.29 0.29 

3.1.3. Vegetation Vulnerability 

1. Data standardization 

Due to the units and properties being different, the original data were standardized for easier 

subsequent calculations. The positive indexes (2) and negative indexes (3) were calculated by 

different standardized calculation formulas: 

𝑍𝑖 =
𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

 (2) 

𝑍𝑖 =
𝑋𝑚𝑎𝑥 − 𝑋𝑖

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (3) 

Where 𝑍𝑖 is the standardized value of the index i. 𝑋𝑖 is the original value i. 𝑋𝑚𝑎𝑥 is the maximum 

value of i, and 𝑋𝑚𝑖𝑛 is the minimum value. 

2. Vegetation vulnerability  

Principal component analysis can maximize the retention of information reflected by multiple 

variables, it was used to calculate vegetation vulnerability. The vegetation vulnerability was 

calculated by: 

𝐸𝑉𝐼 = 𝑎1𝐹1 + 𝑎2𝐹2 + ⋯ + 𝑎𝑛𝐹𝑛    (4) 

Where EVI is the vegetation vulnerability, 𝑎𝑖 is the importance of index I and 𝐹𝑖 is the index i. 

3. Spatial cluster of vegetation vulnerability 

To analyze the spatial cluster of vegetation vulnerability in the MRB, global Moran's I was used 

to measure whether there was a spatial cluster of vegetation vulnerability, and local Moran's I was 

used to measure the spatial cluster pattern of vegetation vulnerability. 

Global Moran's I can be calculated as: 

𝐼𝑔 =
∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)(𝑥𝑗 − 𝑥̅)𝑛

𝑗=1
𝑛
𝑖=1

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)2𝑛
𝑗=1

𝑛
𝑖=1

 (5) 

Local Moran's I can be calculated as: 

𝐼𝑙 =
(𝑥𝑖 − 𝑥̅)

𝑆2
∑ 𝑤𝑖𝑗(𝑥𝑗 − 𝑥̅)

𝑛

𝑗=1
 (6) 

Where 𝑥𝑖 and 𝑥𝑗 are the vulnerability values of the i and j regions, 𝑥̅ is the average vulnerability 

value of all regions. 𝑤𝑖𝑗 is the spatial weight matrix. S is the sum of the elements of the spatial weight 

matrix. n is the number of regions. A Local Indicators of Spatial Association (LISA) of vegetation 
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vulnerability can be obtained by clustering the local Moran's I. The LISA has five cluster patterns, 

namely high-high cluster (H-H), high-low outlier (H-L), low-high outlier (L-H), low-low cluster (L-

L), and not significant. 

3.1.4. Transition of Vegetation Vulnerability 

The stochastic matrix was used to better reflect the transition of vegetation vulnerability of 

different periods in the MRB. The stochastic matrix can be calculated by: 

𝑆𝑖𝑗 = [
𝑆11 ⋯ 𝑆1𝑛

⋮ ⋱ ⋮
𝑆𝑛1 ⋯ 𝑆𝑛𝑛

] (7) 

where n is the vegetation vulnerability. 𝑆𝑖𝑗 (i, j=1,2,3,..., n) is the transition area that transfers from 

the vulnerability i at the beginning to the vulnerability j at the end (unit: km2). The i=j indicates that 

the vulnerability has not changed during the period. 

3.2. Data 

The data used include climate, terrain, population, land use, and vegetation ecological water. 

The terrain data was from STRM. The rest data includes two parts, the details are as follows. All data 

was resampled to resolution of 1km by bilinear interpolation method 

1. Climate. The temperature and precipitation data in the base period were obtained from ERA5-

Land monthly average reanalysis data. Due to the study area is not large and the data needed for 

predicting future vegetation ecological water should include radiation, temperature, precipitation, 

wind speed, and humidity, the CNRM-CM6-1-HR model in the CMIP6 dataset under SSP1-2.6, SSP2-

4.5, and SSP5-8.5 was chosen for including all the above elements and having a relatively small spatial 

resolution. 

2. Land use. The land use data for the base period were obtained from the European Space 

Agency, the land type accounted for the largest proportion in a grid was taken as the land use type 

for that grid. The land use data for the near-term period and long-term period under SSP1-2.6, SSP2-

4.5, and SSP5-8.5 were from Land Use Harmonization 2 (LUH2).  

3. Population. The population data in the base period was sourced from the WorldPop 

population density dataset. According to Our World in Data, the population growth rate in Kenya 

from 2020 to 3030 is about 2.0%, from 2030 to 2059 is about 1.3%, and from 2060 to 2099 is about 0.3%. 

The population growth rate in Tanzania from 2020 to 3030 is about 2.8%, from 2030 to 2059 is about 

2.1%, and from 2060 to 2099 is about 1.0%. The average population growth rate of Kenya and Tanzania 

was taken as the population growth rate of MRB. Therefore, the population growth rate of the MRB 

from 2020 to 3030 is about 2.4%, from 2030 to 2059 is about 1.7%, from 2060 to 2099 is about 0.7%, and 

the population density was shown in Table 3. 

Table 3. Population density of near-term period and long-term period in MRB. 

 2019 2020-2059 2060-2099 

Population density/person •km-2 121.17 197.79 261.45 

4. Vegetation ecological water. The vegetation ecological water of the base period was from the 

research results [25]. The vegetation ecological water under SSP1-2.6, SSP2-4.5, and SSP5-8.5 of the 

near-term period and long-term period were calculated by the RF algorithm with terrain and CMIP6 

data. The minimum R2 in all scenarios is 0.74, indicating good results (Figure 2). 
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Figure 2. Vegetation ecological water (unit:1010m3) of near-term period and long-term period in MRB. 

4. Results 

4.1. Factor Scores 

The scores of natural and human factors were shown in Table 4, the factor scores varied greatly 

in different periods. Natural factors scored higher than human factors in all periods, and temperature 

got the biggest negative score, land use got the biggest positive score. From the low to high emission 

scenarios, the score of population increased rapidly, and the score of vegetation decreased. 

Table 4. Natural and human factor scores of different periods in MRB. 

Factors Base period 
Near-term period Long-term period 

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5 

Precipitation -0.67 -0.69 -0.62 -0.56 -0.69 -0.65 -0.60 

Temperature -0.79 -0.85 -0.80 -0.75 -0.86 -0.84 -0.79 

Terrain 0.77 0.81 0.80 0.83 0.82 0.81 0.87 

Vegetation -0.61 -0.63 -0.60 -0.50 -0.66 -0.62 -0.51 

Population 0.60 0.59 0.70 0.83 0.68 0.78 0.89 

Landuse 0.78 0.64 0.70 0.72 0.74 0.80 0.87 

In the base period, temperature got the biggest negative score, and land use and terrain got the 

biggest positive score. Precipitation and temperature were factors that contributed significantly to 

vegetation vulnerability in the near-term period and long-term period. From low to high emission 

scenarios, in the near-term period, the scores of precipitation, temperature, and vegetation decreased, 

while the scores of land use and population increased. The situation was the same in the long-term 

period. 

4.2. Vegetation Vulnerability and Spatial Cluster in the Base Period in MRB 

Figure 3a showed the spatial distribution of vegetation vulnerability in the base period in MRB. 

The natural breakpoint method was used to divide the vegetation vulnerability into four categories, 

namely mild vulnerability, moderate vulnerability, severe vulnerability, and extreme vulnerability. 

In the base period, extreme vulnerability was in the east part of MRB, and mild vulnerability was in 

the downstream. There was a decreasing trend in vegetation vulnerability from east to west in the 

MRB. 
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Figure 3. Spatial distribution of vegetation vulnerability (a), and LISA cluster (b) in the base period in 

the MRB. 

The global Moran's I of vegetation vulnerability in the base period was 0.7868, the Z-value was 

26.1325, the variance was 0.0009, and the P-value was less than 0.01, indicating significant results at 

the 99% level. This indicated a strong positive correlation between vegetation vulnerability and 

geographical location (Figure 3b). Specifically, severe vulnerability and extreme vulnerability were 

mostly in the high-high cluster, while mild vulnerability was almost in the low-low cluster. 

4.3. Vegetation Vulnerability in the Near-Term and Long-Term Period in MRB 

The vegetation vulnerability in the near-term period and long-term period showed a decreasing 

trend from the upstream to the downstream, with the center being the smallest (Figure 4). In the near-

term period, from low to high emission scenarios, the area of mild vulnerability and moderate 

vulnerability decreased about 6%, the area of extreme vulnerability increased by about 8%. In the 

long-term period, from low to high emission scenarios, the area of mild vulnerability decreased by 

about 50%, and the area of severe vulnerability increased by about 20%. 

 

Figure 4. Spatial distribution of vegetation vulnerability in the near-term period and the long-term 

period in the MRB. 

From the near-term period to the long-term period, under the SSP1-2.6, the area of severe 

vulnerability increased by about 6%, and the area of extreme and mild vulnerability decreased by 

about 16% and 12% respectively. Under the SSP2-4.5, the area of mild vulnerability decreased by 

about 56%, and the area of extreme vulnerability increased by about 33%. Under the SSP5-8.5, the 
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area of mild vulnerability decreased by 50%, and the area of severe vulnerability and extreme 

vulnerability increased by 20% and 40%, respectively. The vegetation vulnerability increased faster 

under higher emission scenarios from the near-term period to the long-term period. 

4.4. Spatial Cluster of Vegetation Vulnerability in the Near-Term Period and the Long-Term Period in the 

MRB 

4.4.1. Global Moran’s I 

Table 5 showed the results of global Moran's I of vegetation vulnerability in the MRB in the near-

term period and long-term period. The Moran's I was positive in all scenarios, fluctuating between 

0.41 and 0.68. The P-values were less than 0.01, indicating significant results at the 99% level. This 

indicated a strong positive correlation between vegetation vulnerability and geographical location in 

the MRB in the near-term period and long-term period. 

Table 5. Global Moran's I. 

Period Scenario Global Moran's I P-value Z-value Variance 

Near term 

period 

SSP1-2.6 0.5963 P<0.01 12.9971 0.0021 

SSP2-4.5 0.6077 P<0.01 13.4134 0.0021 

SSP5-8.5 0.6028 P<0.01 11.2632 0.0029 

Long-term 

period 

SSP1-2.6 0.5024 P<0.01 11.0596 0.0021 

SSP2-4.5 0.4108 P<0.01 8.8842 0.0021 

SSP5-8.5 0.4811 P<0.01 10.7101 0.0020 

4.4.2. Local Moran's I 

The LISA cluster of vegetation vulnerability in the near-term period and long-term period in the 

MRB was shown in Figure 5. The cluster pattern of vegetation vulnerability was a high-high cluster 

upstream, low-low cluster downstream, not significant midstream in the near-term period and long-

term period in the MRB. There were no high-low outlier and low-high outlier, which indicated that 

the cluster of vegetation vulnerability was extremely concentrated in the near-term period and long-

term period in the MRB. Specifically, the high vegetation vulnerability was in the high-high cluster 

upstream, the low vulnerability was in the low-low cluster downstream. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2024                   doi:10.20944/preprints202403.0044.v1



 9 

 

Figure 5. LISA cluster of vegetation vulnerability in the near-term period and long-term period in the 

MRB. 

From low to high emission scenarios, the area of high-high cluster increased, and the area of 

low-low cluster decreased. This changing trend was more obvious in the long-term period. Under 

the SSP1-2.6, from the near-term period to the long-term period, the area of the high-high cluster 

decreased upstream, and the low-low cluster increased downstream. The situation was similar under 

the SSP2-4.5, but the changing areas were larger than the SSP1-2.6. Under the SSP5-8.5, from the near-

term period to the long-term period, the area of high-high cluster and low-low cluster were both 

increased. This indicated that from the near-term period to the long-term period, the vegetation 

vulnerability could be reduced under a low-emission scenario. 

4.5. Transition of Vegetation Vulnerability during Different Periods in the MRB 

Table 6 showed the transition of vegetation vulnerability during different periods. From the base 

period to the near-term period, under the SSP1-2.6, the mild vulnerability, moderate vulnerability, 

and severe vulnerability had the largest transition area into moderate vulnerability, severe 

vulnerability, and extreme vulnerability respectively, with the area all over 1200 km2. The transition 

area from extreme vulnerability to severe vulnerability was twice the area where extreme 

vulnerability remained unchanged. Under the SSP2-4.5, the mild vulnerability, moderate 

vulnerability, and severe vulnerability still had the largest transition area into moderate vulnerability, 

severe vulnerability, and extreme vulnerability respectively, but the transition area increased 100 km2 

compared to the SSP1-2.6. The transition area of extreme vulnerability to severe vulnerability 

decreased by 50 km2 compared to the SSP1-2.6. Under the SSP5-8.5, the transition area of mild 

vulnerability, moderate vulnerability to severe vulnerability, and extreme vulnerability increased 

more rapidly compared to the SSP1-2.6 and SSP2-4.5. The area of extreme vulnerability remained 

unchanged was the largest compared to the SSP1-2.6 and SSP2-4.5. 

Table 6. Stochastic matrix of vegetation vulnerability of different periods in MRB. 

 
Base period 

mild  moderate  severe  extreme  

Near-term 

SSP1-2.6 

mild 1427.61 1057.06 73.70 0.08 

moderate 1676.52 1379.37 503.02 86.39 

severe 22.74 1289.47 464.29 954.46 

extreme 0.00 106.47 1559.48 455.86 

Near-term 

SSP2-4.5 

mild 1351.47 1024.37 73.73 0.13 

moderate 1752.05 1041.04 415.79 102.43 

severe 24.24 1496.44 424.03 901.02 

extreme 0.00 170.01 1687.06 493.15 

Near-term 

SSP5-8.5 

mild 1338.22 979.58 68.75 0.05 

moderate 1752.92 959.38 309.23 73.93 

severe 36.71 1413.57 544.01 795.42 

extreme 0.00 379.88 1678.56 625.36 

Long-term 

SSP1-2.6 

mild 1459.88 1094.89 76.52 0.13 

moderate 1660.31 1041.00 513.20 86.40 

severe 7.25 1410.49 585.67 836.62 

extreme 0.00 187.05 1425.16 573.64 

Long-term mild 577.33 480.51 28.75 0.00 
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SSP2-4.5 moderate 2535.59 1406.58 445.61 35.13 

severe 16.63 1435.84 496.37 780.14 

extreme 0.00 407.28 1628.81 679.34 

Long-term 

SSP5-8.5 

mild 506.43 502.26 40.70 0.00 

moderate 2604.85 983.15 293.66 15.30 

severe 18.47 1584.28 493.95 373.88 

extreme 0.00 660.82 1771.22 1108.06 

From the base period to the long-term period, under the SSP1-2.6, the area of mild vulnerability 

transformed into moderate vulnerability unchanged was almost the same as the area of unchanged 

mild vulnerability. Similarly, the area of moderate vulnerability transformed into mild vulnerability 

was almost the same as the area of unchanged moderate vulnerability, but smaller than the area that 

moderate vulnerability transformed into severe vulnerability. Compared with the base period to the 

near-term period, the transition area of severe vulnerability to extreme vulnerability was much less, 

and the transition area of extreme vulnerability to severe vulnerability was a little less. Under the 

SSP2-4.5, compared with the base period to the near-term period, the transition area of mild 

vulnerability to moderate vulnerability increased by about 800 km2. The area transformed from 

moderate vulnerability to mild vulnerability decreased obviously, but the area from moderate 

vulnerability transformed to extreme vulnerability increased by 139.41%. The area of unchanged 

extreme vulnerability increased by 37.73%. Under the SSP5-8.5, the vegetation vulnerability 

transition was similar to the SSP2-4.5. Compared with the base period to the near-term period, the 

area of mild vulnerability, moderate vulnerability, and severe vulnerability transformed to moderate 

vulnerability, severe vulnerability, and extreme vulnerability all increased by about 100 km2. In 

addition, the area of unchanged extreme vulnerability increased by 77.28% compared with the base 

period to the near-term period. 

Under all scenarios, from the base period to the near-term period or to the long-term period, 

there was no transition between mild vulnerability and extreme vulnerability. From low to high 

emission scenarios, the area of unchanged vulnerability or less vulnerability gradually decreased, 

and the area transformed into higher vulnerability increased. From the near-term period to the long-

term period, the transition to higher vulnerability became much more obvious, and the transition 

increased fast under a high emission scenario. 

5. Discussion 

5.1. Effects of Factors on Vegetation Vulnerability in the MRB 

Mara River Basin is a vegetation vulnerability area in East Africa, and the balance between social 

development and vegetation protection is not good [23]. The Mau Forest in the upstream was severe 

vulnerability in the base period and was extreme vulnerability in the near-term period and long-term 

period. In recent years, the Mau Forest has been extensively cultivated into farmland for agricultural 

development [17], increasing the vegetation vulnerability of the forest. Therefore, under the SSP5-8.5, 

which is the most significant scenario for human activities, so the vegetation vulnerability increased 

the most upstream of the MRB. There are many protected areas midstream and human activities are 

relatively less [32], but as the emission increased, the area of mild vulnerability decreased obviously 

in the near-term period and long-term period, indicating that even in areas with good protection, an 

increasing emission can still cause significant damage to the vegetation [22]. The vegetation 

vulnerability downstream increased from the base period to the near-term period and long-term 

period. There is Mara Mine downstream in MRB, and mining activities often grab the vegetation 

water [26], leading to insufficient vegetation water demand, and increasing vegetation vulnerability. 

The terrain of the MRB is a gradual decrease from upstream to downstream, high altitude is not 

conducive to water aggregation [33], so the vegetation vulnerability decreased from upstream to 

downstream in all periods. The high temperature and little precipitation in tropical regions are highly 
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likely to increase the impact of drought on vegetation. Drought has an important impact on the 

vulnerability in the Masai Mara [34]. Also, an arid environment can reduce the growth rate of 

vegetation, this phenomenon can become more obvious when the emission increases [35]. Under the 

SSP5-8.5, regions that are already arid may become universally drought-stricken by the late 21st 

century [36], and the vegetation vulnerability will become much more intense. 

5.2. Transition of Vegetation Vulnerability under Different Scenarios in the MRB 

The stochastic matrix was used to quantitatively analyze the transition of vegetation 

vulnerability of different periods in the MRB. To our knowledge, it is the first time that the stochastic 

matrix has been used in vegetation vulnerability research. A Stochastic matrix was chosen because it 

can reflect the transition simply and directly [37]. 

Under the SSP1-2.6, the impact of human factors on vegetation vulnerability in MRB decreased 

and was less than the impact of natural factors. The climate will become warmer and wetter, making 

it more suitable for vegetation growth under the SSP1-2.6 [38], and the vegetation vulnerability will 

be the lowest [39]. Therefore, the vegetation vulnerability in the MRB increased a little from the base 

period to the near-term period, but slightly decreased from the near-term period to the long-term 

period. 

Under the SSP2-4.5, the impact of natural and human factors on vegetation vulnerability in the 

near-term period was similar to the factors impact in the base period, but the impact of human factors 

on vegetation vulnerability in the long-term period increased by 14% compared to the base period in 

the MRB. Under the SSP2-4.5 scenario, moderate warming would lead to a slight drought [40], 

underdeveloped countries will face pressure from low education, high population growth, and 

intensified land use, including reduced forest and grassland [14]. For the MRB which is a low-

developed area, the conflict environment of reduced vegetation, increased population, and regional 

competitions will make the increasing vegetation vulnerability. 

Under the SSP5-8.5, the impact of human factors on vulnerability was 1.4 times greater than 

natural factors in the long-term period. The vegetation vulnerability in the long-term period 

increased by 950.00% compared to the base period, which was the highest vulnerability increase 

under all scenario assumptions. Under the SSP5-8.5 scenario, the population at risk of drought is 

projected to increase by 45.40 % in the 2050s, this will increase vulnerability in 80% of global land 

areas [41], resulting in severe vegetation damage. For the MRB which relies on agriculture and 

tourism to develop, increased vegetation vulnerability and damaged vegetation severely can 

seriously hinder further economic development. 

The transition of vegetation vulnerability varied greatly under different scenarios. Under the 

sustainable SSP1-2.6, the increase in vegetation vulnerability was the smallest from the base period 

to the near-term period, and to the long-term period, the long-term vulnerability was 1.83 times that 

of the base period. Under the SSP5-8.5, vegetation vulnerability increased the most from the base 

period to the near-term period and to the long-term period, the long-term vulnerability was 9.5 times 

that of the base period. Therefore, sustainable development is of great significance for vegetation 

protection [42]. In the MRB where vegetation has been damaged due to socio-economic development, 

taking a low-emission development is an effective method to protect the vegetation environment.  

6. Conclusion 

This study assessed the vegetation vulnerability in the base period (2010-2019), near-term period 

(2020-2059), and long-term period (2060-2099) in the MRB, and then analyzed the transition of the 

vegetation vulnerability of different periods by stochastic matrix to point out the high vegetation 

vulnerability areas. The conclusions are as follows. 

(1) The vegetation vulnerability in MRB in the base period showed a decreasing trend from east 

to west. The high-high cluster was with high vulnerability, the low-low cluster was with low 

vulnerability.  
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(2) In the near-term period and long-term period, vegetation vulnerability was highest upstream, 

followed by the downstream, and the lowest midstream. The vegetation vulnerability showed a high-

high cluster in the east, while a low-low cluster in the midstream and downstream. 

(3) The upstream of the MRB will experience the highest vegetation vulnerability increase due 

to intense human activity and less protection. The vegetation vulnerability decreased only under the 

SSP1-2.6, therefore, the MRB should control population growth, actively respond to climate change, 

and take the sustainable development path with low-emission to promote the sustainable vegetation 

in the MRB. 

6. Patents 

This section is not mandatory but may be added if there are patents resulting from the work 

reported in this manuscript. 
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