

Article

Not peer-reviewed version

Long-Term Effects of Different Tillage Systems and Their Impacts on Soil Properties and Crop Yields

[Vaida Steponavičienė](#) ^{*} , [Giedrius Žiūraitis](#) , [Aušra Rudinskienė](#) , [Vaclovas Bogužas](#)

Posted Date: 1 March 2024

doi: 10.20944/preprints202403.0015.v1

Keywords: Soil Organic Carbon; CO₂ Emissions; Soil Resilience; Crop Yield; Sustainable Agriculture

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Long-Term Effects of Different Tillage Systems and Their Impacts on Soil Properties and Crop Yields

Vaida Steponavicienė ^{*}, Giedrius Žiūraitis, Aušra Rudinskienė and Vaclovas Bogužas

¹ Bioeconomy Research Institute, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania;

² Department of Agroecosystems and Soil Sciences, Vytautas Magnus University, K. Donelaičio Street 58, 44248 Kaunas, Lithuania; ausra.rudinskiene@vdu.lt (A.R.); giedrius.ziuraitis@gmail.com (G.Ž.); vaclovas.boguzas@vdu.lt (V.B.)

^{*} Correspondence: vaida.steponaviciene@vdu.lt (V.S.); Tel.: +370 654 37370

Abstract: A comprehensive investigation was undertaken at Vytautas Magnus University Experimental Station, located at 54°52'50" N latitude and 23°49'41" E longitude on soil (*Epeutric Endocalcaric Planosol* – PLe-gln-w) since 1999, to understand the impacts of different agrotechnical measures on soil health and crop yield. Two primary factors were assessed. Factor A incorporated practices of straw removal versus straw chopping and spreading, while Factor B evaluated a spectrum of tillage techniques: conventional deep ploughing, shallow ploughing, ploughless tillage, single seedbed discing, and two no-tillage practices, one of which involved cover crops. Findings from this long-term study highlight the significant potential of specific farming systems in enhancing soil organic carbon. It has a positive effect on the release of CO₂ emissions from the soil, thus promoting soil resilience and increasing plant productivity. These insights are paramount in devising sustainable agricultural strategies to counter the challenges of climate change on agroecosystems. This research showcases the profound effects of combining residue management and tillage practices, setting a novel standard for sustainable soil management of climatic uncertainties.

Keywords: Soil Organic Carbon; CO₂ Emissions; Soil Resilience; Crop Yield; Sustainable Agriculture

1. Introduction

Agriculture, an ancient practice shaping landscapes and livelihoods, has evolved considerably, particularly in its interaction with soil ecosystems [1]. Soil, a critical component of the terrestrial ecosystem, is the foundation for plant growth and agricultural productivity [2]. However, traditional agricultural practices, particularly various tillage systems, have profound and diverse impacts on soil properties and crop yields [3–5]. The advent of sustainable agriculture necessitates a comprehensive understanding of these effects to inform practices that harmonize crop productivity with environmental stewardship [6].

The long-term effects of different tillage systems, focusing on conventional deep ploughing, shallow ploughing, ploughless tillage, single seedbed discing, and two distinct no-tillage practices, one of which incorporates cover crops [7]. These systems represent a spectrum of soil disturbance intensities, each with unique implications for soil structure, moisture, nutrient dynamics, and microbiological activity. Primarily centres on how soil tillage systems practices influence soil organic carbon (SOC) levels and subsequent carbon dioxide (CO₂) emissions, which are pivotal factors in both soil health and global carbon cycling [8–11].

Soil organic carbon is a key indicator of soil quality, influencing soil structure, nutrient availability, and water retention [12]. Enhanced SOC levels are generally associated with improved soil resilience, a crucial characteristic in the face of climate change and increasing environmental stressors. Moreover, soil acts as a significant carbon sink, and its management is integral in the discourse on greenhouse gas emissions and climate change mitigation. In this context, understanding the dynamics of SOC under different tillage regimes is vital [13,14]. The critical role of agriculture in

both contributing to and mitigating climate change is becoming increasingly evident. Central to this discussion is the understanding of how different farming systems impact soil characteristics, including the release of CO₂ emissions, soil resilience, and ultimately, plant productivity. Recent long-term studies have brought to light the significant potential of certain agricultural practices in enhancing soil health and function, with notable implications for carbon cycling and ecosystem sustainability [15–18].

Soil serves not only as a foundation for plant growth but also as a significant carbon reservoir. The dynamics of carbon storage and release in soil are influenced by various factors, including farming practices, soil management, and environmental conditions. Specific farming systems have been observed to have a profound impact on these dynamics, potentially leading to a reduction in CO₂ emissions from the soil [19]. This phenomenon is crucial, as soils can either release carbon into the atmosphere, exacerbating greenhouse gas effects or sequester it, thereby mitigating climate change [20–22].

The interplay between soil management practices and CO₂ emissions is a subject of growing interest. Practices such as no-till farming, cover cropping, crop rotation, and the use of organic amendments have been associated with increased soil organic carbon stocks and reduced CO₂ emission rates. These practices not only contribute to carbon sequestration but also enhance soil resilience — the ability of soil to maintain its functions in the face of external stresses like climate change and intensive agricultural activities [23–25].

Furthermore, there is a burgeoning recognition of the link between soil health and plant productivity. Healthy soils, rich in organic matter and with balanced nutrient cycling, provide a robust foundation for plant growth. This relationship is particularly vital in the context of global food security, as sustainable farming practices that enhance soil health can lead to more productive and resilient agricultural systems [26,27].

Crop yield is a fundamental measure of agricultural productivity and is inherently linked to soil health. The balance between maintaining high crop yields and ensuring sustainable soil management forms a critical nexus for agricultural research and policy [28–30].

The aim of this study is to elucidate the effects of various tillage practices on soil properties and crop yields. It seeks to highlight the significant potential of specific farming systems in enhancing soil organic carbon, thereby positively influencing CO₂ emissions from soil. This study contributes to the growing body of knowledge on sustainable agriculture, providing insights for farmers, agronomists, and policymakers in their quest to promote environmentally sound and productive agricultural systems.

2. Materials and Methods

2.1. Experimental Site and Management

In the Experimental Station of Vytautas Magnus University, Kaunas district, Lithuania, a long-term field experiment has been established since 1999. The soil of the experimental site is classified as *Epicutric Endocalcaric Planosol* (Endoclayic, Episiltic, Aric, Drainic, Endoraptic, Uterquic), according to the World Reference Base (WRB, 2022). The texture of the topsoil is sandy loam, and the agrochemical properties are the following: pH_{KCl} – 7.6 (slightly alkaline), plant-available potassium (K₂O) – 134 mg kg⁻¹ and phosphorus (P₂O₅) – 266 mg kg⁻¹ [31].

In this study, winter oilseed rape (*Brassica napus* L.), winter wheat (*Triticum aestivum* L.), and spring barley (*Hordeum vulgare* L.) were selected for the crop rotation in the agroecosystem, as these are the predominant crops in Lithuania. The experiment, based on two factors, assessed the impact of straw management (Factor A) where in one section of the field straw was removed in spring barley (R), and in another, the straw was chopped and spread (S) at harvest time. The investigation also explored three tillage methods as subplots: (1) conventional deep ploughing (CP) in the autumn at 23–25 cm depth; (2) using cover crops for green manure without tillage (GMNT); and (3) abstaining from tillage (NT). These tillage methods were applied across both sections of the field, with and without straw management. The conventionally ploughed plots were tilled with disc implements

and ploughed deeply in the autumn. In the GMNT plots, white mustard (*Sinapis alba* L.) was sown as a green manure cover crop on stubble right after the harvest of winter wheat and spring barley.

In 2021, the crops were sown with a Väderstad pneumatic no-tillage machine; in autumn 2022, crops were sown with an Agrisem SLY BOSS no-tillage machine. Following the harvest of the preceding crop (excluding winter oilseed rape), straw was either removed from half of the experimental area (R) or chopped and spread across the other half (S). This methodology, along with the agricultural practices employed, has been elaborated upon in our prior publication.

2.2. Meteorological Conditions

In 2021, the average monthly temperatures (Table 1) during the growing season were below the historical averages, indicating a cooler year that could have affected the growth and development of crops. Additionally, the level of precipitation was unevenly distributed (Table 2), potentially influencing water availability and soil moisture conditions critical for plant growth.

In 2022, the temperatures at the start and the end of the growing season exceeded long-term averages, suggesting periods of higher heat that could have impacted crop development. Notably, June and August experienced significantly lower precipitation than usual, leading to a dry spell that likely hampered crop growth due to reduced water availability. During the growing season of 2023, the average monthly temperatures aligned closely with historical averages, indicating a return to normal climatic conditions. However, overall precipitation was slightly below the long-term average, suggesting a marginal decrease in precipitation but with relatively stable water conditions favourable for plant growth. These observations across different years highlight the fluctuation in weather conditions and their potential effects on agriculture. Notably, there has been a consistent trend of reduced precipitation during the growing seasons compared to long-term averages, which could have implications for soil moisture levels, water resources, and plant stress. Such conditions can influence crop yields, plant health, and the overall dynamics of agricultural systems.

The analysis underscores the importance of considering both climatic variations and their interactions with soil properties in understanding agricultural system dynamics and responses to changing weather patterns [32]. This comprehensive view is critical for assessing the impacts of climatic variability on agricultural productivity and sustainability.

Table 1. Average temperature (°C) and the sum of active temperatures (SAT) during the growing seasons of 2021, 2022, and 2023, measured at Kaunas Meteorological Station.

Year/Month	04	05	06	07	08	SAT
2021	6.1	12.3	15.6	17.6	16.6	1675.6
2022	7.1	11.4	15.4	17.4	20.3	1800.2
2023	9.1	13.0	19.8	17.1	18.1	1918.5
Long-term average, 1974–2023	6.9	13.2	16.1	18.7	17.3	-

SAT, sum of active temperatures (≥10 °C).

Table 2. Precipitation (mm) during the growing seasons of 2021, 2022, and 2023, measured at Kaunas Meteorological Station.

Year/Month	04	05	06	07	08	Sum
2021	56.5	63.8	45.9	118.5	67.2	351.9
2022	46.0	43.8	16.4	72.4	6.9	185.5
2023	0.6	29.9	49.4	60.1	68.2	208.2
Long-term average, 1974–2023	41.3	61.7	76.9	96.6	88.9	365.4

2.3. Sampling and Analysis

Soil agrochemical properties. Soil sampling for the evaluation of SOC was carried out after the harvest in the autumn, after the application of the investigated measures (2003 and 2023). Soil samples were taken in each plot at a 0–10 cm depth of the plough layer from 15 spots. Visible roots

and plant residues were removed from the soil samples by hand. Air-dried soil samples were crushed and sieved through a 2 mm sieve and homogeneously mixed. Humus and carbon contents (%) were measured using a Heraeus analyser. Soil organic carbon stocks were then calculated as follows:

$$(1) \text{ SOC stocks} = (\text{SOC content of the soil} \times \text{soil weight})/100,$$

where SOC stocks are measured in t ha^{-1} , SOC content – g kg^{-1} , soil weight – Mg ha^{-1} .

A special plot harvester (Wintersteiger AG, Ried im Innkreis, Austria) was used for pre-crop harvesting. Cereal grain yield was adjusted to 14% moisture and 100% grain mass purity.

2.4. Estimation and Computation of CO_2 Emissions

Soil CO_2 emissions were measured using an infrared gas analyser, obtaining measurements of the soil surface CO_2 efflux ($\mu\text{moL m}^{-2} \text{s}^{-1}$). A portable, automated soil gas flux LI-8100A system with an 8100-103 chamber analyser (LI-COR Inc. USA) was used. In each experimental plot, in spring, rings of 20 cm in diameter were installed into the soil, and three measurements were made in each plot. Soil CO_2 efflux was carried out three times during the growing seasons, at the same time of day (from 10 a.m. to 1 p.m.) and fixed locations in the plot. At the start of a measurement, the LI-8100 chamber was held open above the soil collar and the system measured the ambient soil CO_2 concentration ($\text{Cc}(0)$). When the chamber was closed on the soil collar, the soil CO_2 concentration in the chamber ($\text{Cc}(t)$) began to rise. Ignoring the dilution effect of water vapour, the rate of change in chamber soil CO_2 concentration with time ($\partial\text{Cc}/\partial t$) was given by:

$$(2) \frac{\partial\text{Cc}(t)}{\partial t} = A(\text{Cs} - \text{Cc}(t))$$

where Cs is the soil CO_2 concentration ($\mu\text{mol mol}^{-1}$) in the soil surface layers and A (s^{-1}) is a rate constant that is proportional to the CO_2 conductance at the soil surface and the surface-to-volume ratio of the chamber. If A and Cs are constant, then integration with respect to time gives:

$$(3) \text{Cc}(t) = \text{Cs} + (\text{Cc}(0) - \text{Cs})e^{-At}$$

In the LI-8100 system, the chamber soil CO_2 concentrations $\text{Cc}(t)$ versus time data were fitted with an exponential function of the form given in Equation (2), yielding values for the parameters A and Cs . Soil CO_2 flux was then obtained by calculating the initial slope ($\partial\text{Cc}(t)/\partial t$) from equation (1) at time zero when the chamber touched down and $\text{Cc}(0)$ = ambient. A complete description of the equations used in the LI-8100 system, including details of dilution corrections due to water vapour, is given in the LI-8100 Instruction Manual.

2.5. Statistical Analysis

Experimental data were analysed using a two-factor analysis of variance (ANOVA) based on the methodology in [33] using the SYSTAT statistical software package, version 12 (SPSS Inc., Chicago, IL, USA). The significance of differences among the treatments was determined using the least significant difference (LSD) test. The inter-causality of the tested variables was estimated through the correlation-regression analysis method using STAT ENG software [34]. The probability levels indicating significant differences between specific treatments and the control treatment are denoted as follows: *—when $0.010 < p \leq 0.050$ (significant at the 95% probability level); **—when $0.001 < p \leq 0.010$ (significant at the 99% probability level); and ***—when $p \leq 0.001$ (significant at the 99.99% probability level).

3. Results

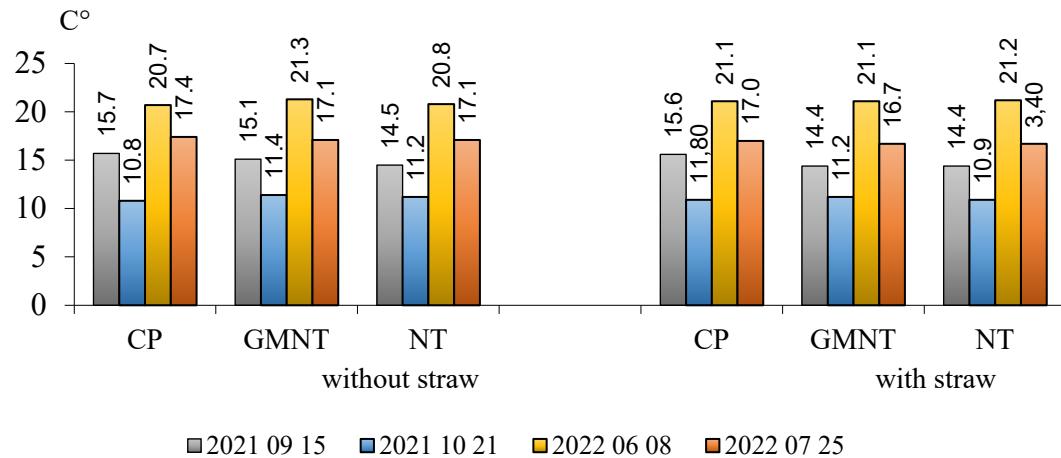
3.1. Studies on Soil CO_2 Emissions, Moisture and Temperature

Studies on soil CO_2 emissions are abundant around the world, but the results are highly controversial. Some authors find similar CO_2 emissions from direct sowing, no-till and conventional tillage, others find higher CO_2 emissions from direct sowing on untilled land, while others argue that

direct sowing on untilled land only results in higher CO₂ emissions in certain periods and lower CO₂ emissions in other periods [35,36]. Some researchers argue that CO₂ emissions from the soils of direct sowing are generally lower compared to conventionally ploughed soils for a short period after cultivation [37].


Measurements taken 1 month after sowing winter oilseed rape (15.09.2021) showed that CO₂ emissions were significantly lower on uncultivated land with cover crops and uncultivated land with no cover crops (Figure 1). Compared to conventional deep ploughing, CO₂ emissions were 29% and 28%, and 24% and 23% lower in both fields without straw and with straw, respectively. However, subsequent measurements at the beginning, middle and end of the winter oilseed rape growing season (21.10.2021, 8.10.2022 and 25.7.2022) did not reveal any significant differences in CO₂ emissions from the soil. At that time, neither the tillage systems investigated nor the use of straw had any effect.

Figure 1. Soil CO₂ emissions after tillage at the beginning, middle and end of the winter oilseed rape growing season 2021-2022. Notes. Significant differences at *P ≤ 0.05 > 0.01; **P ≤ 0.010 > 0.001; ***P ≤ 0.001; Fisher LSD test vs. control. Factor A: R - straw removed (control), S – straw chopped and spread. Factor B: CP - conventional deep ploughing (control), GMNT – cover cropping for green manure with no-till, NT - no-till, direct drilling.


In winter wheat (Figure 2), the same trends were observed at the beginning, middle and end of the growing season as in winter oilseed rape.

Our results are in line with those of other authors [38,39]. Between tillage and sowing, before the soil is covered with new plants, tillage can have a significant impact on CO₂ emissions from the soil. More intensive loosening and mixing tillage practices significantly increase CO₂ emissions from the soil in the first 2 weeks compared to no-till.

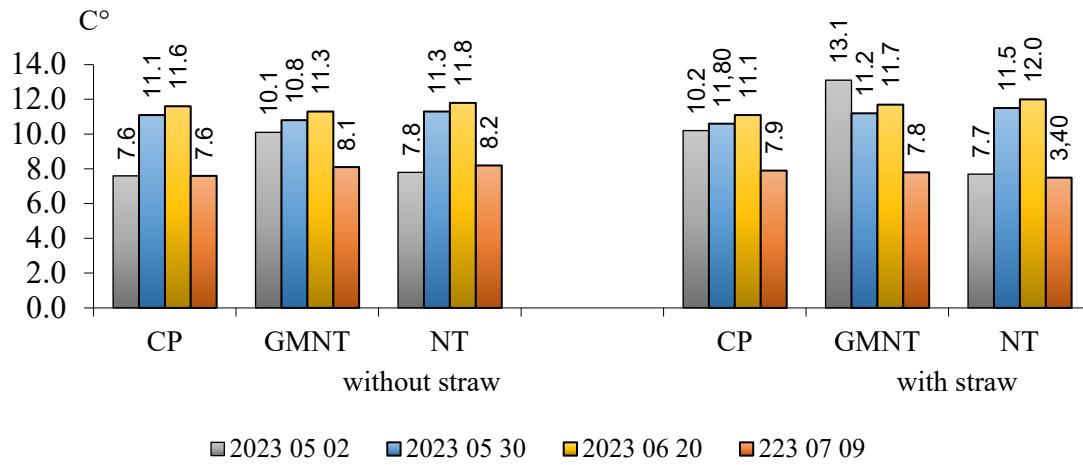


Figure 2. Soil CO₂ emissions after tillage at the beginning, middle and end of the winter wheat growing season in 2023. Notes. Significant differences at * $P \leq 0.05 > 0.01$; ** $P \leq 0.010 > 0.001$; Fisher LSD test vs. control. Other explanations as in Figure 1.

The thermal exchange process in the soil depends on meteorological conditions, the thermal conductivity of the soil, the thermal capacity, the water content of the soil and other soil properties. One of the main factors influencing the thermal process of the soil is tillage and the covering of the soil surface with various plants or their residues. However, in our field experiment, the temperature of the topsoil was not significantly influenced by the tillage system studied or using straw (Figures 3 and 4).

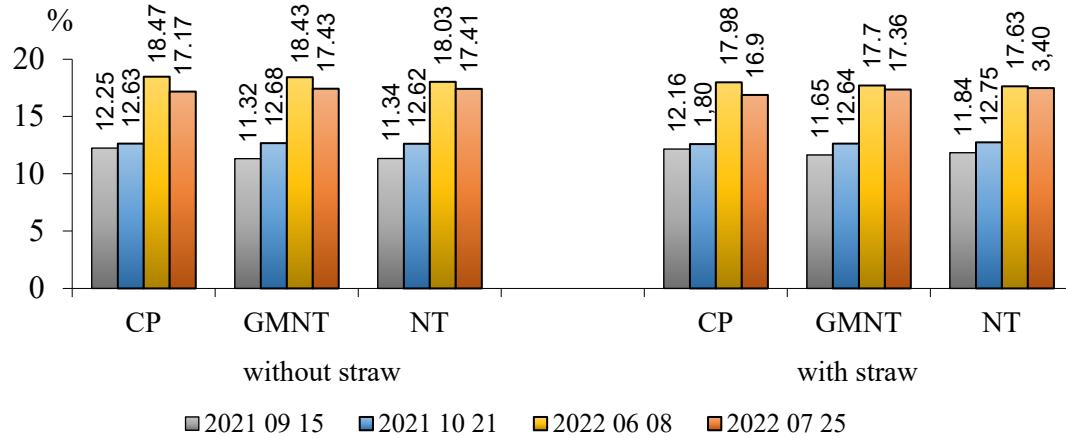


Figure 3. Soil temperature in winter oilseed rape after tillage, at the beginning, middle and end of the growing season, 2021-2022. Notes. No significant differences at $P > 0.05$; Fisher LSD test vs. control. Other explanations as in Figure 1.

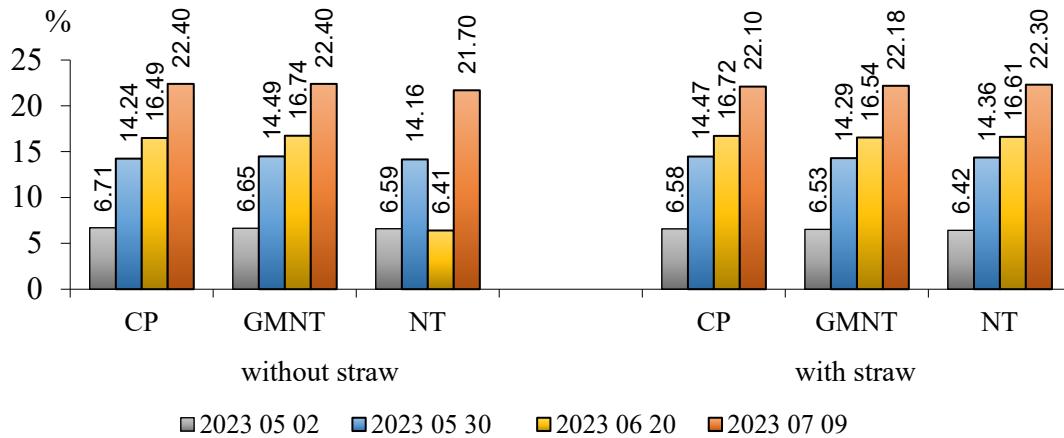


Figure 4. Soil temperature of winter wheat after tillage, at the beginning, middle and end of the growing season, 2023. Notes. No significant differences at $P > 0.05$; Fisher LSD test vs. control. Other explanations as in Figure 1.

Soil moisture conservation is becoming increasingly important in a changing climate. Under dry conditions, direct sowing into uncultivated land allows better moisture retention in the 0–10 cm soil layer and is considered a moisture-saving measure [40]. However, under the 2022–2023 meteorological conditions, neither the tillage systems studied nor the use of straw had a significant impact on the soil moisture content in the surface layer (Figures 5 and 6).

Figure 5. Soil moisture content after tillage at the beginning, middle and end of the winter oilseed rape growing season 2021-2022. Notes. No significant differences at $P > 0.05$; Fisher LSD test vs. control. Other explanations as in Figure 1.

Figure 6. Soil moisture content after tillage at the beginning, middle and end of the winter wheat growing season in 2023. Notes. No significant differences at $P > 0.05$; Fisher LSD test vs. control. Other explanations as in Figure 1.

Changes in soil CO₂ emissions, temperature and moisture under different tillage systems and the use of straw in winter oilseed rape and winter wheat production. The results show that CO₂ emissions from the soil may vary depending on the tillage technology, but that these differences are not constant and may change throughout the plant growing season.

Direct sowing on uncultivated land, both with and without cover crops, immediately after tillage reduces CO₂ emissions from the soil compared to conventional tillage. However, in subsequent measurements during the growing season, no significant differences in CO₂ emissions were found between the different tillage systems, indicating that the initial effect of the tillage method evens out over time.

Soil temperature was not found to be significantly influenced by tillage system or straw application. This suggests that soil temperature is more dependent on other factors, such as meteorological conditions, rather than directly on the tillage method.

A very important aspect is soil moisture retention, which is particularly important in arid conditions. Although direct sowing on uncultivated land has traditionally been considered a moisture conserving measure, this study found that, under specific meteorological conditions, the use of different tillage systems or straw did not have a significant impact on soil moisture content.

In summary, the results of the study reveal a complex interaction between tillage and plant growth on soil CO₂ emissions, temperature, and moisture. Although in some cases direct sowing on uncultivated land can reduce CO₂ emissions and help to conserve soil moisture, these effects are not the same at all stages of plant growth or under different environmental conditions. It is therefore important to consider complex factors when designing tillage strategies and applying practices that focus on sustainability and environmental protection.

3.2. Soil Organic Carbon Stocks

Soil organic carbon (SOC) stocks in 2003 and 2023 across two soil depths (0–10 cm and 10–25 cm) and under various straw management and tillage practices reveal significant trends in SOC accumulation over 20 years (Table 3). The experimental setup included two main variables: straw management, with one practice involving the removal of straw (R) and the other involving spreading chopped straw (S), and tillage methods, which comprised conventional ploughing (CP), using cover crops for green manure without tillage (GMNT), and no-tillage (NT).

Over the two decades, SOC stocks increased across all treatments and depths, demonstrating the soil's enhanced carbon stock potential under both improved straw management and reduced tillage practices. Specifically, the spread of chopped straw (S) resulted in higher SOC accumulation

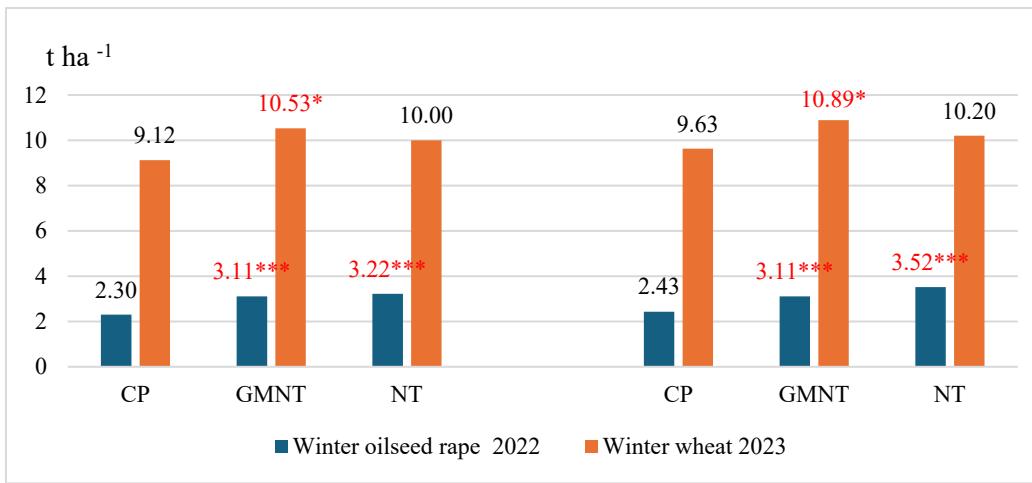
than straw removal (R), indicating the beneficial impact of straw retention on soil carbon levels. In terms of tillage, the no-tillage (NT) and green manure no-tillage (GMNT) practices showed the most significant increase in SOC stocks, surpassing conventional ploughing (CP), especially in the upper soil layer (0–10 cm). This suggests that minimising soil disturbance and incorporating green manure are highly effective strategies for enhancing SOC.

Table 3. Soil organic carbon stocks in the upper and bottom plough layers, 2003 and 2023.

Factors		2003	2023	2003	2023
		0–10 cm depth, t ha ⁻¹		10–25 cm depth, t ha ⁻¹	
A	R	20.67	32.34	21.30	31.08
	S	22.17	35.06*	23.00	31.87
B	CP	18.63	27.43	20.87	28.87
	GMNT	23.53*	36.49***	24.85**	33.84***
	NT	25.57***	37.17***	25.42**	31.71**

Notes. Significant differences at *P ≤ 0.05 > 0.01; **P ≤ 0.010 > 0.001; *** P ≤ 0.001; Fisher LSD test vs. control. Other explanations as in Figure 1.

After 20 years, the increase in SOC was most pronounced under the no-tillage (NT) and green manure no-tillage (GMNT) methods, with the NT method showing the highest increase in the upper soil layer (from an initial 25.57 t ha⁻¹ to 37.17 t ha⁻¹). Similarly, the GMNT method demonstrated a substantial increase, reaching 36.49 t ha⁻¹ from an initial 23.53 t ha⁻¹ in the upper soil layer. These changes underscore the critical role of tillage management in soil carbon dynamics and highlight the potential of conservation agriculture practices for sustainable soil health and carbon sequestration.


The correlation regression analysis showed strong correlations. In 2023, a linear very strong positive and statistically significant correlation was found in the straw-removed fields with no-till between the CO₂ release from the soil (12.05.2023) $r = 0.99$, $y = -2.464 + 2.22x$, $P < 0.05$ and the soil organic carbon stock in the 0–10 cm soil layer.

3.3. Crop Yields for Winter Oilseed Rape and Wheat

The experimental data examines the impact of straw management and tillage methods on the productivity of winter oilseed rape in 2022 and winter wheat in 2023.

In winter oilseed rape in 2022 (Figure 7), the use of green manure and no-tillage (GMNT) method yielded the highest productivity regardless of straw management, with a peak productivity of 3.52 t ha⁻¹ when the straw was incorporated. This suggests a synergistic effect of green manure and conservation tillage practices on oilseed rape yield. In contrast, traditional deep ploughing (CP) had the lowest yield when straw was removed, although yields substantially improved with the incorporation of straw.

For winter wheat in 2023, the trends were slightly different. The highest yields were observed with the GMNT method without straw and with the CP method when straw was incorporated. This indicates that while green manure and no-tillage practices are generally beneficial, the incorporation of straw can offset the lower yields associated with traditional ploughing, possibly due to the added organic matter and nutrients.

Figure 7. Yields for winter rapeseed in 2022 and winter wheat in 2023 **Notes.** Significant differences at $*P \leq 0.05 > 0.01$; $**P \leq 0.010 > 0.001$; $***P \leq 0.001$; Fisher LSD test vs. control. Other explanations as in Figure 1.

The data suggests that integrating green manure with no-tillage is generally the most productive practice for both crops, with straw incorporation offering additional benefits in certain cases. However, the variation in response between the two crops suggests that the effectiveness of these methods is crop-specific and may depend on other environmental and management factors not detailed in the experiment. The results underscore the importance of adopting tailored agronomic practices for different crops to optimize yield and potentially enhance sustainability.

The yield of winter wheat depended on the organic carbon stock. Correlation regression analysis showed a moderate correlation. In the topsoil layer (0-10 cm), there was a linear very strong positive and statistically significant relationship between organic carbon stocks and the yield in 2023. $r = 0.71$; $P = \leq 0.05$.

4. Discussion

The increase in greenhouse gases (GHGs) in the atmosphere is primarily attributable to human activities, with agriculture playing an important role. The sector has contributed to 20% of the global greenhouse effect and, according to the IPCC, this figure has increased [41]. The significant emissions from agriculture are mainly due to practices such as the expansion of new agricultural land, and the use of fossil fuels and synthetic fertilisers in conjunction with soil cultivation. As a result, much research has focused on how farming practices contribute to the increase of GHGs, especially carbon dioxide (CO_2), in the atmosphere [42–45]. Like ours, studies started 20 years ago using different tillage systems to demonstrate the reduction of GHGs and the increase of organic carbon in soil.

Soil acts as a source of CO_2 through biochemical processes related to the activity of microorganisms and plant root respiration, which are mainly influenced by soil temperature and moisture [46–48]. The movement of CO_2 in the soil and from the soil to the atmosphere is facilitated by diffusion and mass flux, which are influenced by soil texture, structure, and moisture [48–50]. It is therefore essential to select and manage agricultural systems in a way that increases soil carbon stocks and reduces CO_2 emissions from soils [51–54]. The results of this study reveal the complex interactions between tillage and plant growth and soil CO_2 emissions, temperature, and moisture. Although in some cases direct sowing on uncultivated land can reduce CO_2 emissions and help to conserve soil moisture, these effects are not the same at all stages of plant growth or under different environmental conditions, as in our study where no-tillage was applied from the start of the experimental set-up, the organic carbon stocks increased significantly. Studies by other researchers also suggest that the widespread adoption of low-carbon farming practices could reverse the upward trend in land-use emissions, which could substantially offset global annual emissions as projected [55–57].

The introduction of no-tillage systems is presented as a viable solution to reduce GHG emissions from agricultural activities [58–61]. Although no-till farming conserves soil and water reserves and reduces production costs, its soil organic carbon sequestration sub-target depends on local conditions [62]. Soil organic carbon storage depends on many factors, including soil structure, drainage system, land use and cultivation, agroecosystems, and climatic conditions. A study of soil organic carbon (SOC) accumulation over 20 years under different straw management and tillage practices revealed significant trends in SOC accumulation. Practices that minimise soil disturbance and incorporate organic matter, such as no-tillage and using cover crops for green manure without tillage, were shown to significantly increase SOC stocks, especially in the topsoil layer. This highlights the role of tillage management in enhancing soil carbon sequestration and shows that conservation agriculture practices can play an important role in sustainable soil health.

No-till is identified as a sustainable agricultural practice that increases soil carbon soon after its introduction [63,64], contributing to a 0.4% increase in carbon stocks over two decades, which is in line with the strategy proposed by the United Nations [65].

The benefits of no-tillage cultivation go beyond carbon sequestration and include ecosystem benefits such as improved water and carbon storage in the soil, better biodiversity habitats and improved nutrient availability through crop rotation and legumes, which also help to control pests and diseases and make more efficient use of water for irrigation, as well as for fertility [66,67]. Our research has shown that tillage, straw management, and plant growth interact with soil CO₂ emissions, temperature, and moisture. Although certain practices, such as direct sowing into uncultivated soil, show direct benefits in CO₂ emissions and moisture retention, these effects are not consistent across all stages of plant growth or under all environmental conditions. The significant increase in SOC with no-till and green manure no-till techniques highlights the potential of conservation agriculture for sustainable soil health and carbon sequestration [68–70]. Moreover, the specific plant responses to these techniques highlight the importance of adapted agronomic strategies to optimise yield and sustainability.

The research contributes to the knowledge base for sustainable agriculture by providing insights into practices that improve soil health and crop productivity. Finally, it contributes to the development of ecologically sustainable and productive agricultural systems, in line with the objectives of promoting organic farming and positive management of soil CO₂ emissions.

5. Conclusions

Tillage and straw management practices have a significant impact on soil CO₂ emissions, and direct sowing into uncultivated soil initially reduced CO₂ emissions. However, this initial benefit diminishes over the growth cycle of the plant, indicating that the effectiveness of reduced tillage on soil CO₂ emissions varies over time. It is noteworthy that the application of no-tillage and using cover crops for green manure without tillage significantly increased soil organic carbon stocks over 20 years, indicating that these measures contribute to better carbon sequestration and promote sustainable soil health. Soil temperature and moisture content appeared to be more influenced by external environmental factors than by tillage or straw management practices. In terms of crop productivity, the integration of green manure with non-agricultural practices resulted in the highest productivity in winter oilseed rape and winter wheat, although the productivity of individual crops varied and may have been influenced by other unexplored factors.

Certain farming systems can, however, increase the organic carbon content of the soil and thus have a positive effect on soil CO₂ emissions. It highlights the importance of adapted agronomic practices that consider the complex interactions between tillage practices, soil properties and plant growth to optimise yield and sustainability. The conclusions provide valuable insights for farmers, agronomists and policymakers seeking to promote ecological and productive agricultural systems, thus making a significant contribution to the body of knowledge on sustainable agriculture.

Author Contributions: V.S. and V.B. designed the research framework and contributed to the application of the study methodology and the analysis of the results. A.R., G.Ž. and V.S. played an active role in writing, reviewing, and editing the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgements Authors dedicates article to European Joint Programme (EJP) Soil and Ministry of Agriculture of the Republic of Lithuania funded project SOMPACS.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mueller, L.; Eulenstein, F.; Dronin, N.M.; Mirschel, W.; McKenzie, B.M.; Antrop, M.; Poulton, P. Agricultural Landscapes: History, Status, and Challenges. *Explor. Optim. Agric. Landscapes.* **2021**, *3*, 3–54.
2. Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Khan, M.L. Soil Microbiome: A Key Player for Conservation of Soil Health Under Changing Climate. *Biodivers. Conserv.* **2019**, *28*, 2405–2429. DOI:10.1007/s10531-019-01802-8.
3. Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The Effect of Organic and Conventional Farming Systems with Different Tillage on Soil Properties and Enzymatic Activity. *Agronomy.* **2020**, *10*, 1809. DOI:10.3390/agronomy10111809.
4. Obour, A.K.; Holman, J. D.; Simon, L.M.; Schlegel, A.J. Strategic Tillage Effects on Crop Yields, Soil Properties, and Weeds in Dryland No-Tillage Systems. *Agronomy.* **2021**, *11*, 662. DOI:10.3390/agronomy11040662.
5. Naeem, M.; Mehbob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth Under Conventional and Conservation Tillage Systems. *Agronomy.* **2020**, *11*, 8. DOI:10.3390/agronomy11010008.
6. Siankwilimba, E.; Mumba, C.; Hang'ombe, B.M.; Munkombwe, J.; Hiddlestone-Mumford, J.; Dzvimbo, M.A.; Hoque, M.E. Bioecosystems Towards Sustainable Agricultural Extension Delivery: Effects of Various Factors. *Environ. Dev. Sustain.* **2023**, *1*–43. DOI:10.1007/s10668-022-02598-0.
7. Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-Term Effects of Conventional and Reduced Tillage on Soil Structure, Soil Ecological and Soil Hydraulic Properties. *Geoderma.* **2018**, *332*, 10–19. DOI:10.1016/j.geoderma.2018.07.014.
8. Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Cerdà, A. A Review of Soil Carbon Dynamics Resulting from Agricultural Practices. *J. Environ. Manage.* **2020**, *268*, 110319. DOI:10.1016/j.jenvman.2020.110319.
9. Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; El-Esawi, M.A. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. *Plants.* **2021**, *10*, 2001. DOI:10.3390/plants10102001.
10. Kan, Z.R.; Liu, W.X.; Liu, W.S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Mechanisms of Soil Organic Carbon Stability and Its Response to No-Till: A Global Synthesis and Perspective. *Glob. Change Biol.* **2022**, *28*, 693–710. DOI:10.1111/gcb.15942.
11. Plaza-Bonilla, D.; Arrué, J.L.; Cantero-Martínez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon Management in Dryland Agricultural Systems. *Agron. Sustain. Dev.* **2015**, *35*, 1319–1334. DOI:10.1007/s13593-015-0328-1.
12. Ghorai, P.S.; Biswas, S.; Purakayastha, T.J.; Ahmed, N.; Das, T.K.; Prasanna, R.; Das, S. Indicators of Soil Quality and Crop Productivity Assessment at a Long-Term Experiment Site in the Lower Indo-Gangetic Plains. *Soil Use Manag.* **2023**, *39*, 503–520. DOI:10.1111/sum.12782.
13. Babu, S.; Singh, R.; Avasthe, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Petrosillo, I. Soil Carbon Dynamics Under Organic Farming: Impact of Tillage and Cropping Diversity. *Ecol. Indic.* **2023**, *147*, 109940. DOI:10.1016/j.ecolind.2021.109940.
14. Ferreira, C.D.R.; Neto, E.C.D.S.; Pereira, M.G.; do Nascimento Guedes, J.; Rosset, J.S.; Anjos, D.L.H.C. Dynamics of Soil Aggregation and Organic Carbon Fractions Over 23 Years of No-Till Management. *Soil Till. Res.* **2020**, *198*, 104533. DOI:10.1016/j.still.2020.104533.

15. Leal Filho, W.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the Impacts of Climate Change on Soil Biodiversity. *Sci. Total Environ.* **2023**, *869*, 161671. DOI:10.1016/j.scitotenv.2020.161671.
16. Paul, C.; Bartkowiak, B.; Dönmez, C.; Don, A.; Mayer, S.; Steffens, M.; Helming, K. Carbon Farming: Are Soil Carbon Certificates a Suitable Tool for Climate Change Mitigation?. *J. Environ. Manage.* **2023**, *330*, 117142. DOI:10.1016/j.jenvman.2021.117142.
17. Bogužas, V., Sinkevičienė, A., Romaneckas, K., Steponavičienė, V., Butkevičienė L. M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO₂ efflux in maize and spring barley cultivation. *Zemdirbyste=Agric.* **2018**, *105*(4).
18. Nath, C.P.; Kumar, N.; Dutta, A.; Hazra, K.K.; Praharaj, C.S.; Singh, S.S.; Das, K. Pulse Crop and Organic Amendments in Cropping System Improve Soil Quality in Rice Ecology: Evidence from a Long-Term Experiment of 16 Years. *Geoderma.* **2023**, *430*, 116334. DOI:10.1016/j.geoderma.2021.116334.
19. Naorem, A.; Jayaraman, S.; Dalal, R.C.; Patra, A.; Rao, C.S.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. *Agriculture.* **2022**, *12*, 1256. DOI:10.3390/agriculture12081256.
20. Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. *Soil Syst.* **2023**, *7*, 64. DOI:10.3390/soilsystems7030064.
21. Purakayastha, T.J.; Bhaduri, D.; Singh, P. “Role of Biochar on Greenhouse Gas Emissions and Carbon Sequestration in Soil: Opportunities for Mitigating Climate Change. In Soil Science: Fundamentals to Recent Advances; 2021; pp 237–260.
22. Ussiri, D.A.; Lal, R. Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer International Publishing: Cham, Switzerland, 2017; pp 287–325.
23. Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil Organic Carbon is Affected by Organic Amendments, Conservation Tillage, and Cover Cropping in Organic Farming Systems: A Meta-Analysis. *Agric. Ecosyst. Environ.* **2021**, *312*, 107356. DOI:10.1016/j.agee.2021.107356.
24. Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Steffens, M. Reduced Tillage in Organic Farming Affects Soil Organic Carbon Stocks in Temperate Europe. *Soil Tillage Res.* **2022**, *216*, 105262. DOI:10.1016/j.still.2021.105262.
25. Krauss, M.; Ruser, R.; Müller, T.; Hansen, S.; Mäder, P.; Gattinger, A. Impact of Reduced Tillage on Greenhouse Gas Emissions and Soil Carbon Stocks in an Organic Grass-Clover Ley-Winter Wheat Cropping Sequence. *Agric. Ecosyst. Environ.* **2017**, *239*, 324–333. DOI:10.1016/j.agee.2017.01.031.
26. Hoffland, E.; Kuyper, T.W.; Comans, R.N.; Creamer, R.E. “Eco-Functionality of Organic Matter in Soils. *Plant Soil.* **2020**, *455*, 1–22. DOI:10.1007/s11104-020-04568-9.
27. Williams, H.; Colombi, T.; Keller, T. The Influence of Soil Management on Soil Health: An On-Farm Study in Southern Sweden. *Geoderma.* **2020**, *360*, 114010. DOI:10.1016/j.geoderma.2019.114010.
28. Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. *Sustainability.* **2020**, *12*, 4859. DOI:10.3390/su12124859.
29. Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. *Int. Soil Water Conserv. Res.* **2022**, *10*, 343—354. DOI:10.1016/j.iswcr.2022.03.002.
30. Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil Health Assessment: Past Accomplishments, Current Activities, and Future Opportunities. *Soil Tillage Res.* **2019**, *195*, 104365. DOI:10.1016/j.still.2019.104365.
31. Bogužas, V.; Mikučionienė, R.; Šlepeliene, A.; Sinkevičienė, A.; Feiza, V.; Steponavičienė, V. Long-Term Effect of Tillage Systems, Straw and Green Manure Combinations on Soil Organic Matter. *Zemdirb. Agric.* **2015**, *102*, 243–250.
32. Steponavičienė, V.; Rudinskienė, A.; Žiūraitis, G.; Bogužas, V. The Impact of Tillage and Crop Residue Incorporation Systems on Agrophysical Soil Properties. *Plants.* **2023**, *12*, 3386. DOI:10.3390/plants12193386.
33. Raudonius, S. Application of Statistics in Plant and Crop Research: Important Issues. *Zemdirb. Agric.* **2017**, *104*, 377–382.
34. Tarakanovas, P.; Raudonius, S. Statistical Analysis of Agronomic Data Using Computer Programs ANOVA, STAT, SPLIT-PLOT from the SELECTION Package and IRRISTAT. Lithuanian University of Agriculture: Akademija, Lithuania, 2003; pp. 57.

35. Gangopadhyay, S.; Chowdhuri, I.; Das, N.; Pal, S.C.; Mandal, S. The Effects of No-Tillage and Conventional Tillage on Greenhouse Gas Emissions from Paddy Fields with Various Rice Varieties. *Soil Tillage Res.* **2023**, *232*, 105772. DOI:10.1016/j.still.2021.105772.

36. Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N. E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A Global Meta-Analysis of Greenhouse Gases Emission and Crop Yield Under No-Tillage as Compared to Conventional Tillage. *Sci. Total Environ.* **2021**, *750*, 142299. DOI:10.1016/j.scitotenv.2020.142299.

37. Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjögersten, S. Short-Term Impacts of Different Tillage Practices and Plant Residue Retention on Soil Physical Properties and Greenhouse Gas Emissions. *Soil Tillage Res.* **2021**, *206*, 104803. DOI:10.1016/j.still.2021.104803.

38. Scala L.J.N.; Bolonhezi, D.; Pereira, G.T. Short-Term Soil CO₂ Emission After Conventional and Reduced Tillage of a No-Till Sugar Cane Area in Southern Brazil. *Soil Tillage Res.* **2006**, *91*, 244–248. DOI:10.1016/j.still.2005.11.012.

39. Guo, Y.; Yin, W.; Chai, Q.; Fan, Z.; Hu, F.; Fan, H.; Coulter, J.A. No Tillage with Previous Plastic Covering Increases Water Harvesting and Decreases Soil CO₂ Emissions of Wheat in Dry Regions. *Soil Tillage Res.* **2021**, *208*, 104883. DOI:10.1016/j.still.2021.104883.

40. Feizienė, D.; Kadžienė, G. The Influence of Soil Organic Carbon, Moisture and Temperature on Soil Surface CO₂ Emission in the 10th Year of Different Tillage-Fertilisation Management. *Zemdirbyste-Agriculture*. **2008**, *95*, 29–45.

41. Das, A.K.; Sharma, A. Climate Change and the Energy Sector. In *Advancement in Oxygenated Fuels for Sustainable Development*; Elsevier: 2023; pp 1–6.

42. Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture's Contribution to Climate Change and Role in Mitigation is Distinct from Predominantly Fossil CO₂-Emitting Sectors. *Front. Sustain. Food Syst.* **2021**, *4*, 518039. DOI:10.3389/fsufs.2020.518039.

43. Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Jiang, Y. Greenhouse Gas Emissions and Mitigation in Rice Agriculture. *Nat. Rev. Earth Environ.* **2023**, *4*, 716–732. DOI:10.1038/s43017-023-00315-5.

44. Shakoor, A.; Dar, A.A.; Arif, M. S.; Farooq, T.H.; Yasmeen, T.; Shahzad, S.M.; Ashraf, M. Do Soil Conservation Practices Exceed Their Relevance as a Countermeasure to Greenhouse Gases Emissions and Increase Crop Productivity in Agriculture? *Sci. Total Environ.* **2022**, *805*, 150337. DOI:10.1016/j.scitotenv.2021.150337.

45. Stavi, I.; Lal, R. Agriculture and Greenhouse Gases, a Common Tragedy. A Review. *Agron. Sustain. Dev.* **2013**, *33*, 275–289. DOI:10.1007/s13593-012-0106-6.

46. Almagro, M.; López, J.; Querejeta, J.I.; Martínez-Mena, M. Temperature dependence of soil CO₂ efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. *Soil Biol. Biochem.* **2009**, *41*, 594–605.

47. Barnard, R.L.; Blazewicz, S.J.; Firestone, M.K. Rewetting of soil: revisiting the origin of soil CO₂ emissions. *Soil Soil Biol. Biochem.* **2020**, *147*, 107819.

48. Ferdush, J.; Paul, V. A review on the possible factors influencing soil inorganic carbon under elevated CO₂. *Catena*, **2021**, *204*, 105434.

49. Bezyk, Y.; Dorodnikov, M.; Górką, M.; Sówka, I.; Sawiński, T. Temperature and soil moisture control CO₂ flux and CH₄ oxidation in urban ecosystems. *Geochim.* **2023**, *83*, 125989.

50. Fairbairn, L.; Rezanezhad, F.; Gharasoo, M.; Parsons, C.T.; Macrae, M.L.; Slowinski, S.; Cappellen, V.P. Relationship between soil CO₂ fluxes and soil moisture: Anaerobic sources explain fluxes at high water content. *Geoderma*, **2023**, *434*, 116493.

51. Feiza, V.; Feizienė, D.; Sinkevičienė, A.; Bogužas, V.; Putramentaitė, A.; Lazauskas, S.; Steponavičienė, V.; Pranaitienė, S. Soil water capacity, pore-size distribution and CO₂ e-flux in different soils after long-term no-till management. *Zemdirb. Agric.* **2015**, *102*, 3–14.

52. Lal, R. Soil management for carbon sequestration. *S. Afr. J. Plant Soil.* **2021**, *38*, 231–237.

53. Bateni, C.; Ventura, M.; Tonon, G.; Pisanello, A. Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics. *Agrofor. Syst.* **2021**, *95*, 951–961.

54. Khan, N.; Jhariya, M.K.; Raj, A.; Banerjee, A.; Meena, R.S. Soil Carbon Stock and Sequestration: Implications for Climate Change Adaptation and Mitigation. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) *Ecological Intensification of Natural Resources for Sustainable Agriculture*. Springer, Singapore, 2021, pp. 461–489. https://doi.org/10.1007/978-981-33-4203-3_13

55. Lal, R. Farming systems to return land for nature: It's all about soil health and re-carbonization of the terrestrial biosphere. *Agric. Syst.* **2023**, *1*, 100002.
56. Tariq, S.; Mubeen, M.; Hammad, H.M.; Jatoi, W.N.; Hussain, S.; Farid, H.U. et al. Mitigation of Climate Change Through Carbon Farming. In: Climate Change Impacts on Agriculture: Concepts, Issues and Policies for Developing Countries. Cham: Springer International Publishing, 2023. pp. 381–391.
57. Jebari, A.; Pereyra-Goday, F.; Kumar, A.; Collins, A.L.; Rivero, M.J.; McAuliffe, G.A. Feasibility of mitigation measures for agricultural greenhouse gas emissions in the UK. A systematic review. *Agron. Sustain. Dev.* **2024**, *44*, 2.
58. Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. *J. Soils Water Conserv.* **2015**, *70*, 55A–62A.
59. Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. *Int. Soil Water Conserv. Res.* **2015**, *3*, 119–129.
60. Maia, S.M.F.; Medeiros A.D.S.; Santos, D.T.C.; Lyra, G.B.; Lal, R.; Assad, E.D.; Cerri, C.E.P. Potential of no-till agriculture as a nature-based solution for climate-change mitigation in Brazil. *Soil Tillage Res.* **2022**, *220*, 105368.
61. Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X. et al. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. *Agric. Ecosyst. Environ.* **2018**, *268*, 144–153.
62. Blanco-Canqui, H. No-till technology has limited potential to store carbon: How can we enhance such potential? *Agric. Ecosyst. Environ.* **2021**, *313*, 107352.
63. Bienes, R.; Marques, M.J.; Sastre, B.; García-Díaz, A.; Esparza, I.; Antón, O. et al. Tracking changes on soil structure and organic carbon sequestration after 30 years of different tillage and management practices. *Agronomy* **2021**, *11*, 291.
64. Kan, Z.R.; Liu, W.X.; Liu, W.S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. *Glob. Change Biol.* **2022**, *28*, 693–710.
65. Lal, R. The Future of No-Till Farming Systems for Sustainable Agriculture and Food Security. No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities, 2020, pp. 633–647.
66. Frasier, I.; Noellemyer, E.; Figuerola, E.; Erijman, L.; Permingeat, H.; Quiroga, A. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. *Glob. Ecol. Conserv.* **2016**, *6*, 242–256.
67. Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. *Sci. Total Environ.* **2022**, *815*, 152928.
68. Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H. et al. (Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. *Sci. Total Environ.* **2022**, *826*, 154161.
69. Parihar, C.M.; Singh, A.K.; Jat, S.L.; Dey, A.; Nayak, H.S.; Mandal, B.N. et al. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. *Soil Tillage Res.* **2020**, *202*, 104653.
70. Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: principles, processes, practices and policy options. *Soil Systems* **2023**, *7*, 17.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.