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Abstract: The increasing availability of longitudinal data (repeated numerical observations of same 
units at different times) requires the development of flexible techniques to automatically detect 
common errors in such data. Besides obvious and easily identifiable cases, such as missing or out-
of-range data, large longitudinal dataset often present problems not easily traceable by the 
techniques used for generic datasets. In particular, elusive and baffling problems are i) inversion of 
one or more values from one unit to another; ii) anomalous jumps in the series of values, iii) errors 
in the timing of the values due to a recalculation operated by the data providers to compensate 
previous errors. This work proposes a statistical-mathematical approach based on a system of 
indicators that is able to capture the complexity of the described problems by working at the formal 
level, regardless of the specific meaning of the data. The proposed approach identifies suspect 
erroneous data and is applicable in a variety of contexts. We implement this approach in a relevant 
database of European Higher Education institutions (ETER) by analyzing Total academic staff, that 
is one of the most important variables, used in empirical analysis as proxy of size and also 
considered by policy makers at European level. 

Keywords: big data; information processing; information reconstruction; data quality: longitudinal 
data sequences 

 

1. Introduction 

In the context of an increasingly data-driven economy, data quality is of paramount importance 
for organizations of all types and sizes, and lack of attention to it can lead to several costs and 
inefficiencies. According to the quality framework of the Organisation for Economic Cooperation and 
Development (OECD) [1], data quality is defined as the “fitness for use” with respect to user needs. 
Data quality can be viewed as an overarching principle that must be kept into account when 
designing models of metrics [2]. Every technique developed to improve the data quality should 
consider that the very concept of data quality is not one-dimensional but multidimensional [3,4]. In 
particular, the following seven dimension are usually identified: accuracy, completeness, 
consistency, validity, timeliness, uniqueness, and integrity And even though the names of those 
dimensions may vary in literature, the same key concepts are widely recognized (mainly rooted in 
the seminal paper [5]).  

Due to the relevance of the issue, many authors have proposed methods or guidelines to assess 
problems on data quality [6–13]. However, few works focus on the problems that specifically regards 
the case of numerical data describing repeated observations of the same units over a period of time. 
This type of data are often called longitudinal data, or also panel data. If we restrict our attention to 
one single unit over the whole time period, then we obtain a single time-series. If on the contrary we 
consider all the different units but restrict our attention to one single time instant, then we obtain 
cross-sectional data. In recent years, longitudinal data have become more and more abundant, and 
researchers have been exploring the vast possibilities given by their study, typically by using 
advanced artificial intelligence techniques that are now able to deal with huge datasets. However, 
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one ubiquitous problem affecting almost all data-related applications is the presence of errors in the 
data. Unfortunately, longitudinal data make no exception in this. Thus, when data containing errors 
are used for some study, the results will contain a certain degree of unreliability. Or, in other words, 
when data contain errors, the problem that we solve is actually different form the real problem that 
was to be solved. 

The presence of errors in data may be due to several causes, and consequently there exist many 
types of data errors. The easiest identifiable cases are for example missing values or out-of-range 
values. Due to the spread of this problem, several techniques have been developed in different fields 
of science to cope with similar situations. There exist several imputation techniques for the 
reconstruction of missing or out-of-range values, see for example [14,15]. Some method for estimating 
measurement errors in Longitudinal Data are based on latent variable modelling [16,17]. Another 
technique, called the MultiTrait MultiError approach, is presented in [18] to estimate multiple types 
of errors concurrently using a combination of experimental design and latent variable modelling. 

Other methods are based on data integration, when the data under analysis are also contained 
or derivable from different sources [19,20]. 

However, in addition to the “usual” types of errors, large longitudinal dataset may contain 
peculiar types of errors that are not easily identifiable by the techniques used for finding and/or 
correcting errors into generic datasets. In the context of numerical longitudinal data obtained from 
several sources and assembled to form one database, the following situations can lead to some very 
typical errors: 
1) When the time series of the different units are written/stored one next to the other, one or more 

values from one unit A may be erroneously inserted in the space allowed to a contiguous unit B, 
and vice versa the corresponding values from B are inserted in the space of A. We call this 
situation inversion of values between units. This type of error is often not detectable by general 
error detection techniques. Moreover, even if the problem is detected, because for example a 
value vi is too high of too low for unit A, the generalist imputation techniques will probably try 
to reconstruct the correct value based on elaborations involving unit A, and ignoring that the 
correct values are already stored in the database but in the space of record B. Several problems 
may arise if this type of error is not fully recognized. 

2) Data contain one or more large “jumps” in the values of the time series corresponding to one 
unit. For example, given a unit A, imagine that the values of one of its variables are 100, 120, 280, 
130, 120, 150. The third value is far from the others, so we may suspect some problem. However, 
if we discover that such a variable has a high volatility, the situation can also be normal after all. 
We call this situation anomalous jump. In this case, we need to identify some threshold above 
which the values should be considered erroneous. This is a very delicate issue, and standard 
error detection techniques are often insufficient in this case. 

3) A time series is composed of values produced by a data provider (for example an agent or an 
organization) at every given interval of time (for example, every year). In this case, it may 
happen that the data provider computes a value vt for a given time t, and later discovers that vt 
was incorrect, because some units should have been added to vt but they were not considered, 
so vt should actually be increased by δt, or because some units counted in vt are actually 
belonging to the next time interval, so vt should be decreased by -δt. In this case, if it is too late 
to modify vt, the data provider often tries to compensate the error by modifying the next value 
produced vt+1, providing vt+1 + δt in the first case, and vt+1 – δt in the second. We call this situation 
recalculation operated by the data provider. Clearly, this type of problem is hardly detectable 
by general error detection techniques, and again several problems may arise if this type of error 
is not fully recognized. 
This work proposes a statistical-mathematical approach based on a system of indicators that 

define a rational process to assess and improve the quality of data (as suggested by [21]. In particular, 
the proposed approach is able to identify suspect erroneous data suffering from the described 
problems by working at the formal level, regardless of the specific meaning of the data. Therefore, it 
is applicable in a variety of contexts. Moreover, our approach contains a certain degree of flexibility, 
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because it is based on a number of mathematical conditions that can be slightly changed to adapt to 
different cases and take into account different realities. 

We implement this approach in a large and relevant database of European Higher Education 
institutions (ETER) by analyzing the variable “Total academic staff”. This is one of the most important 
variables, used in empirical analysis as a proxy of the size of the institutions and also considered by 
the policy makers at European level. 

2. Materials and Methods 

As explained in Section 1, in large numerical longitudinal databases we identify the following 
three main consistency problems that are specific to the case of longitudinal data and are difficult to 
treat with standard error detection and correction techniques: 
1. Inversion of values between units; 
2. Anomalous jump; 
3. Recalculation operated by the data provider. 

The proposed methodology aims to the identification of possible errors by raising check flags 
(which can later be examined by database managers) on suspect data. The method consists of several 
steps for each of the above three problems, detailed in Sections 2.1, 2.2 and 2.3. As materials, we 
conducted our experiments on the ETER database, described in section 2.4. 

2.1. Inversion Problem 

To identify inversion problem between two units A and B, we evaluate two types of conditions 
that we call here H1 and H2. The first type (H1) consists in assessing, for each possible couple of units 
A and B, whether there are possible systematic exchanges between the values of A and B over one or 
more time instants through the evaluation of the differences (called Δ) between each pair of 
temporally consecutive values of the same variable. In more detail, the generic condition H1 is 
evaluated by executing the following steps. 
H1.a. Denote by i the index of the generic unit (a row in the dataset), with i=1...m = U. Unit i has 

values of a variable (or attribute) v over several time instants t=1...n=S. Define now Δvi(t,t+1) as the 
difference (delta) between the two values assumed by unit i in two consecutive time instants t, 
t+1 for variable v, that is: 

Δvi (t,t+1)  =  vit - vi t+1  (1) 

Those deltas are computed for each period of the dataset and for each unit (and for each variable 
if there is more than one variable in the dataset). Obviously, for the last period n the Δvi(n,n+1) is not 
computable. The generic value Δvi(t,t+1) can take on a negative or a positive value. We define as P the 
set of the indices t for which Δvi(t,t+1) is positive, and as N the set of the same indices for which Δvi(t,t+1) 
is negative. 
H1.b. Compute a for each unit i the value DVi defined as the modulus of the product between the 

sums of the positive deltas and the sum of negative deltas: 

DVi  =  | ∑
t∈P

 Δvi(t,t+1)   ∑
 t∈N

 Δvi(t,t+1) |.  (2) 

This is somehow a measure of the intrinsic variability of the unit i. Indeed, in practical cases, this 
measures the fact that some units will be “changing” their values more than others. In case any of the 
∑

t∈P 
Δvi(t,t+1) or ∑

 t∈N
 Δvi(t,t+1) is equal to zero, its value is changed to 1 to avoid all collapsing to zero 

when the intrinsic variability of a unit must be nonnegative. Note that this is one of the customizable 
aspects, depending on the practical case under study. 
H1.c. Compute the DMi value for each unit i as the ratio between DVi and the arithmetic mean of 

all DVs in the entire dataset considered: 
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𝐷𝑀୧ = 𝐷𝑉୧∑୧∈୙ 𝐷𝑉୧/𝑚 (3) 

This value represents a normalization of the above measure of intrinsic variability. The 
normalization should be conducted over some homogeneous set of units to which unit i belongs. 
Thus, depending on the context, such homogeneous set must be identified. For example, in the case 
presented in Section 3, there is strong heterogeneity in data from different national contexts (i.e., 
different countries). For this reason, the DVi is averaged by the mean of DVi over the country to which 
the unit belongs. 
H1.d. The numerical values of the above DMi may still vary greatly. To avoid numerical 

instability, we compress their scale by computing the cubic root, obtaining values called RQi 
representing the compressed normalized intrinsic variability of the unit. 𝑅𝑄௜ = ඥ𝐷𝑀௜య  (4) 

H1.e. Compute the value GMi as the geometric mean of all the deltas in module of unit i. This 
value represents an evaluation of the size of the unit. If some of the deltas are zero, then they can 
again be replaced with 1 to avoid all collapsing to zero when this is not acceptable. 

H1.f. Now, to compute a reasonably upper limit on the delta values that unit i could attain, we 
multiply the compressed normalized intrinsic variability by the measure of the size of the unit, 
obtaining the following threshold Ti: 

Ti  =  GMi RQi (5) 

H1.g. Now, to finally recognize the situation of inversion of a value between two consecutive 
units A and B by computing H1, we need that four conditions are verified at the same time: unit 
A has two consecutive deltas larger (in modulus) than the threshold TA and with opposite signs 
(w.l.o.g, the first is positive and the second is negative), and unit B for the same time instants has 
again two consecutive deltas larger (in modulus) than the threshold TB but with signs reversed 
with respect to A (the first is negative and the second is positive). In practice, condition H1 is 
given by the following boolean expression: 

H1(A,B)t: {[(ΔvA(t-1,t) > 0  ∧  ΔvA(t,t+1) < 0) ∧ (ΔvB(t,t+1) < 0  ∧  ΔvB(t,t+1) > 0)] ∨  
[(ΔvA(t-1,t) < 0  ∧  ΔvA(t,t+1) > 0) ∧ (ΔvB(t-1,t) > 0  ∧  ΔvB(t,t+1) < 0)]} ∧  

(|ΔvA(t-1,t)| > TA  ∧  |ΔvA(t,t+1)|> TA  ∧  |ΔvB(t-1,t)|> TB  ∧  | ΔvB(t,t+1)|> TB) 
(6) 

If H1(A,B)t is true, then to have a probable swap problem we also need a corresponding condition 
H2(A,B)t to be true. The generic condition H2 is evaluated by the following steps. 
H2.a. For each unit i, we define Iit as the distance of the value vit at time t from the mean value of 

v over time without the value at time t: 

Iit  =  vit – (∑
k∈S/t

  vik)/n-1 (7) 

H2.b.  We define now Nit as the distance of the value vit at time t from the mean value of v over 
time without the value at time t, but this time taking the values of the subsequent unit i+1 (the 
one with which the values could have been exchanged): 

Nit  =  vit – (∑
k∈S/t

  vi+1k)/n-1 (8) 

H2.c. Finally, we define Fit as the minimum between the modulus of the two above values: In 
practice, we are comparing the distance between value vit and all the other values of unit i, and 
between vit and all the other values of unit i+1. If vit is closer to the values of unit i+1, that means 
the minimum is |Nit|, then inversion is probable. 

Fit = min (|Iit|, |Nit|) (9) 
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Hence, condition H2 for units A and B is evaluated as follows: 

H2(A,B)t:Fit  ≠  |Iit | (10) 

Conditions H1 and H2 are computed and checked for every couple of units A and B and every 
time instant t. If H1(A,B)t is true and H2(A,B)t is also true, a possible swapping error flag is raised for units 
A and B at time instant t, otherwise no flag is raised. Note that this error may even affect more than 
one time instant of the same two units. 

Example 1. We provide an example of the check for the inversion problem for two units (called unit 
1 and unit 2) on a variable v of a longitudinal dataset with t=5. The data of the units are shown in 
Table 1. We first compute the deltas for each unit, see Table 1. For instance, unit 1 has v1 2 = 18 and v1 

3 = 130, hence Δv1 (2,3) = 18 - 130 = -112. After this, DV is equal to: |(-112-10)(107+10)| = 14274 for unit 1 
and |(-129)(120+5+5)| = 16770 for unit 2. Subsequently, the value of the geometric mean GM is 33.09 
for unit 1 and 24.94 for unit 2; DM is 0.92 for unit 1 and 1.08 for unit 2, and RQ is 0.97 for unit 1 and 
1.03 for unit 2. Consequently, the thresholds T is 32.17 for unit 1 and 25.59 for unit 2. 

Now we find H1(1,2)t. Considering that for unit 1 Δv1 (1,2) > 0 and Δv1 (2,3) < 0, and for unit 2, Δv2 (1,2) 
< 0 and Δv2 (2,3) > 0, the first part of the H1 condition is verified. Additionally, all those Δv exceed the 
respective thresholds T. Therefore, H1(1,2)2 is true. 

Table 1. Values v and Δ of the Inversion problem example. 

  v1 v2 v3 v4 v5 Δ (1,2) Δ (2,3) Δ (3,4) Δ (4,5) 

Unit 1 125 18 130 120 130 107 -112 10 -10 

Unit 2 21 150 30 25 20 -129 120 5 5 

To evaluate H2(1,2)2, we compute I12 and N12 for unit 1 and time 2. 
We have value I12: = 18 - (125+18+130+120+130-18)/4 = -108.25. 
Value N12 = 18 - (21+150+30+25+20-150)/4 = -6. 
Since -6 has the smallest modulus value, F12 = 6, thus F12 ≠ I12 and H2(1,2)2 is true. As both conditions 

are true, a probable inversion error flag is reported for the period t=2. 

2.2. Anomalous Jump Problem 

To identify anomalous jumps, we now compute for each unit i a ‘threshold with tolerance’ TTi 
larger that before, obtained as follows. After the computation of the threshold Ti described in Section 
2.1, we execute the following steps. 
a. Calculate the value LGMi as the natural logarithm of the GMi value presented in Section 2.1. This 

logarithm of the size represents a compressed measure of the size of the unit. 
b. Compute VIi as the integer upper part of the value LGMi plus a constant c representing another 

element of customization of the procedure. This value can be determined either with a priori 
reasoning or even derived from the data itself. 

VIi  =  LGMi  + c  

c. Compute GMTi as the sum of GMi + Ti. In practice, we are summing size and threshold for unit 
i, obtaining a kind of deformation of the threshold by its size. 

d. Finally, identify the threshold with tolerance TTi as the largest between the two size-derived 
values described above. This is used as an upper bound on the reasonable jumps observed in 
the values of the unit. 

TTi  =  max(VIi, GMTi).  
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Now, an anomalous jump flag is raised for a unit i in a time t, t+1 for variable v if the module of 
Δvi(t,t+1) is greater than the threshold TTi. 

Example 2. We provide an example of anomalous jump problem. Consider a unit (called unit 3) with 
variable v of a longitudinal dataset with t=5. The data and the deltas of the unit are shown in Table 2. 
We compute the threshold T = 101.66, as already seen in the previous example. Then, we find LGM = 
4.32, VI = 13 and GMT =177.15. By considering c = 8 and the mean of deltas = 10, the resulting threshold 
with tolerance TT value is 177.15. 

As | Δv3 (2,3) |= 280 > 177.15 and |Δv3 (3,4)|= 290 > 177.15, we report an anomalous jump flag for the 
period t=2,3 and for the period t=3,4. The data manager will have to check the values of t=2, t=3 and 
t=4 to understand the reasons for this anomalous jump. 

Table 2. Values and Δ of the unit considered for the Anomalous Jump example. 

  v1 v2 v3 v4 v5 Δ (1,2) Δ (2,3) Δ (3,4) Δ (4,5) 

Unit 3 200 220 500 210 230 -20 -280 290 -20 

2.3. Recalculation Problem 

To identify a recalculation operated by the data provider we use the above threshold with 
tolerance TTi. We suspect a recalculation problem on unit i if two contiguous deltas of opposite sign 
are both above the threshold TTi in modulus: 

[(Δvi(t-1,t) > 0  ∧  Δvi(t,t+1) < 0) ∨ (Δvi(t-1,t) < 0  ∧  Δvi(t-1,t) > 0)]  ∧  (|Δvi(t-1,t)| > 
TTi  ∧  |Δvi(t,t+1)| > TTi) (9) 

If this condition is true, a possible recalculation flag is raised. 

Example 3. We provide an example of recalculation problem. Consider a unit (called unit 4) with 
variable v of a longitudinal dataset with t=5. The data and the deltas of the unit are shown in Table 3. 
Following the steps described above, after computing the threshold T = 39.40, we find LGM = 3.80, VI 
= 12 and GMT = 84.24. The resulting TT value for the unit is 84.24. A flag of possible recalculation 
error is raised for period t=3 since Δv4 (2,3) > 0 and Δv4 (3,4) < 0, while simultaneously |Δv4 (2,3)| = 87 > 
84.24 and |Δv4 (3,4)| = 155 > 84.24. 

Table 3. Values and Δ of the unit considered for the Recalculation example. 

 v1 v2 v3 v4 v5 Δ (1,2) Δ (2,3) Δ (3,4) Δ (4,5) 
Unit 4 163 167 80 235 160 -4 87 -155 75 

All the described operations are available in the Microsoft Excel file contained in [22]. This file 
can be used to operate the described checks with any data, by simply pasting them in the sheet “Main 
Table”. Each row must represent a single unit of analysis. The excel file is also adaptable to use units 
with variable number of time instants. The minimum number of time instants must be inserted in cell 
MIN OSS in the sheet “Threshold Calculation”. 

2.4. Data 

The European Tertiary Education Register (ETER) [23] is a key initiative for understanding the 
higher education landscape in Europe developed after the successful AQUAMETH project [24,25]. 
This database provides a reference list of Higher Education Institutions (HEIs) and institutional data 
on their activities and achievements, including students, graduates, staff and finances. It thus 
complements national and regional education statistics provided by EUROSTAT [26]. 

As of March 2024, ETER includes 41 European countries and provides data from 2011 to 2020, 
with a total of over 3,500 HEIs. ETER collects a wide range of data on HEIs, including: institutional 
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characteristics (type, size, specialization), student information (enrolment, graduates, mobility), staff 
(lecturers, researchers, administrative staff), finances (income, expenditure, investment) and research 
and development activities. ETER complies extensively with statistical regulations and manuals, in 
particular the UOE Manual on Data Collection on Formal Education and the OECD Frascati Manual 
on Research and Experimental Development Statistics. This ensures the comparability of data with 
other international sources. 

Collaboration with a network of experts and data providers in all participating countries ensures 
that information is collected from reliable and consistent sources. Established methodologies are used 
to define variables and indicators, enabling the re-use of collected data for statistical purposes and 
comparability with other sources. Data undergo rigorous quality control and validation to identify 
and correct errors or inconsistencies, as described in [27]. However, as described in Section 3, the 
proposed techniques were able to locate several cases of the specific longitudinal data problems 
described above. 

ETER provides comprehensive documentation of the methodologies used and the data 
collection processes, ensuring transparency and replicability. ETER contributes to a better 
understanding of the higher education landscape and is a valuable resource for researchers, policy 
makers and stakeholders in European higher education. Within ETER, we selected the case of the 
variable Total academic personnel in headcount (HC) because it is widely used in empirical 
analysis and by policy makers as a proxy for the size of the universities. Therefore, it is one of 
the most important variables, and it is of paramount importance to detect any possible errors on 
that. Total academic personnel in HC, according to the ETER manual, includes 
i) the number of academic staff whose primary assignment is instruction, research or public 

service, 
ii) staff who hold an academic rank, like professor, assistant professor, lecturer or an equivalent 

title, 
iii) staff with other titles (like dean, head of department, etc.) if their principal activity is instruction 

or research, and 
iv) PhD students employed for teaching assistance or research. 

We report our experiments on the largest EU countries present in ETER, i.e., Germany, France, 
Italy, Spain, Poland and Portugal, for a total of 1587 HEIs, in the time period from 2011 to 2020. Table 
4 shows the subdivision by country. Table 5 reports the number of HEIs having complete data for 
each year. 

Table 4. Number of HEIs available in ETER for each country in the period 2011-2020. 

HEIs available in ETER 
Italy 219 
Germany 424 
Spain 84 
France 417 
Poland 314 
Portugal 129 

Table 5. Number of HEIs with the variable total academic staff (HC) available in ETER for each 
country and year in the period 2011-2020. 

  2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total 
Italy 115 115 115 114 114 114 114 114 114 114 1143 
Germany 365 378 383 385 385 383 400 400 396 399 3874 
Spain 77 80 80 81 81 80 82 83 83 84 811 
France 131 132 130 129 126  0 123 123 119 111 1124 
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Poland 0 0 0 0 0 0 247 243 241 237 968 
Portugal 113 106 94 91 90 95 90 90 89 92 950 

3. Results 

All the computations described in Section 2 have been implemented in Microsoft Excel, and run 
directly from a spreadsheet. Those controls have been applied to the described ETER database, 
considering the case of the variable Total academic personnel in headcount. All HEIs from 
Germany, France, Italy, Spain, Poland and Portugal with available values for that variable were 
considered, for a total of 1587 HEIs. In the computation of DVi and GMi, if some factor is zero, it was 
replaced with 1 to avoid all collapsing to zero. In the computation of VIi the constant c was set at 8 by 
means of an experimental fine tuning. Table 6 reports, for each Country, the total number of flags 
raised by the described techniques. In particular, we indicate H1 and H2 flags separately, and then, 
when both are true, the number of inversion flags. The values in the brackets show the ratio between 
the number of flags and the sum of all universities with available data on academic staff in the period 
2011-2020 (i.e., the column Total in Table 5). Tables 7–9 report the years over which the error flags 
were raised. 

As observable, the procedures were able to detect the described problems in every Country, 
notwithstanding the great care taken in obtaining correct data from the different data providers. The 
values are higher for Germany mainly because that Country has a much larger number of HEIs. If 
we consider the same values divided by the number of HEIs in the Country, we obtain a much more 
uniform distribution of the errors. 

The results show a strong presence of jump anomalies in the dataset. This type of problem is 
strongly conditioned by the data collection method carried out by ETER, which recomputes the 
values every year and may change from year to year in some of its definitions. Furthermore, one piece 
of information that unfortunately cannot be evaluated by only looking at ETER, concerns the various 
reforms of contractual forms that have taken place over the years in the different countries, and the 
role conventions in the institutions (for example, in some countries like Italy, teaching assistants have 
been phased out as a contractual form). 

Table 6. Total number of flags raised for variable total academic staff by countries. 

  
# of H1 flags # of H2 flags 

#of inversions 
flags 

# of jumps flags 
# of 
recalculation 
flags 

Italy 159 (0.14) 287 (0.25) 40 (0.03) 396 (0.35) 58 (0.05) 
Germany 314 (0.08) 398 (0.10) 34 (0.01) 1059 (0.27) 32 (0.01) 
Spain 24 (0.03) 81 (0.10) 4 (0.005) 249 (0.31) 21 (0.03) 
France 18 (0.02) 20 (0.02) 1 (0.00) 160 (0.14) 5 (0.004) 
Poland 79 (0.08) 71 (0.07) 12 (0.01) 9 (0.01) 18 (0.02) 
Portugal 50 (0.05) 131 (0.14) 7 (0.01) 236 (0.25) 32 (0.03) 

Table 7. Number of inversion flags raised by country and by year (2011-2020). 

  2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total 
Italy 5 1 0 0 2 3 4 4 5 16 40 
Germany 9 1 1 0 2 2 1 3 2 13 34 
Spain 4 0 0 0 0 0 0 0 0 0 4 
France 0 0 0 0 0 0 0 0 0 1 1 
Poland 0 0 0 0 0 0 0 9 2 1 12 
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Portugal 2 0 0 0 2 0 0 2 0 1 7 

Table 8. Number of anomalous jump flags raised by country and by delta. 

  

Δ201

1- 

2012 

Δ2012- 

2013 

Δ2013- 

2014 

Δ2014- 

2015 

Δ2015- 

2016 

Δ2016- 

2017 

Δ2017- 

2018 

Δ2018- 

2019 

Δ2019- 

2020 Total 

Italy 42 52 53 42 39 40 38 42 48 396 

Germany 132 144 106 111 115 110 112 101 128 1059 

Spain 26 21 15 58 31 30 19 26 23 249 

France 102 5 6 16 0 0 12 10 9 160 

Poland 1 1 1 1 1 1 1 1 1 9 

Portugal 31 28 25 30 34 17 20 32 19 236 

Table 9. Number of recalculation flags raised by country and by year (2011-2020). 

  2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total 
Italy N.A. 5 9 13 6 5 5 9 6 N.A. 58 
Germany N.A. 0 2 0 6 8 3 6 7 N.A. 32 
Spain N.A. 3 0 3 4 4 2 2 3 N.A. 21 
France N.A. 2 1 0 0 0 0 1 1 N.A. 5 
Poland N.A. 0 0 0 0 0 0 18 0 N.A. 18 
Portugal N.A. 0 2 0 6 8 3 6 7 N.A. 32 

4. Discussion 

The issues addressed in this work arise from the analysis of large numerical longitudinal 
databases. This type of data is becoming more and more accessible, and they are now used for many 
important analyses. Unfortunately, they may contain errors, like almost any other type of data. In 
addition to the generic errors commonly found in other types of data, longitudinal datasets often 
harbor subtle problems that generic techniques fail to trace. We have identified the following 
problems: i) inversion of one or more values from one unit to another; ii) anomalous jumps in the 
series of values, iii) errors in the timing of the values due to a recalculation operated by the data 
providers to compensate previous errors. This list could even be extended in future studies. We 
devised techniques to identify the potential errors, based on a system of indicators. These techniques 
were wanted to possess the following features: be computationally viable even for large datasets; 
work at the formal level, regardless of the meaning of the data, to be used in several contexts; be 
flexible to adapt to different situations. These techniques have been implemented in a Microsoft Excel 
spreadsheet, publicly available in [23] from the Mendeley Data repository, to favor transparency and 
replicability of our experiments, and to provide an easily accessible tool for anybody interested in 
using the proposed techniques on other datasets. We applied these techniques on an important 
example of large longitudinal database, the ETER database, gathered from the different European 
countries and obtained by means of several passages. In this case, notwithstanding the great care 
spent in improving the quality of the data, several cases of the described problems were still found 
by the proposed techniques. Thus, thanks to the described approach, the data quality of the dataset 
could be further improved. 
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5. Conclusions 

When dealing with large numerical longitudinal databases, there exist errors specific for this 
type of datasets that are not recognized by standard error detection and correction techniques. This 
work proposes a statistical-mathematical approach based on a system of indicators that is able to 
capture the complexity of the described problems by working at the formal level, regardless of the 
specific meaning of the data. The techniques to detect such errors were implemented in MS Excel and 
applied to the important database of European Higher Education institutions (ETER) by analyzing 
Total academic staff. This variable is one of the most important and delicate ones, it is often used in 
empirical analysis as a proxy of the size of the institutions, and it is also one of the main variables 
considered by policy makers at the European and national level. Empirical results show the 
effectiveness of the proposed techniques and the computational viability of the approach. The 
implementation of the approach in Microsoft Excel makes it easy to use for researchers and 
functionaries working with large longitudinal databases. Moreover, it ensures the replicability of the 
approach and its applicability in other contexts. 
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