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Abstract: This paper proposes a novel formulation of the fuzzy newsvendor problem for inventory
management applications. This new formulation allows the use of any profit function. A new
credibility estimation is proposed to explore the neighborhood around the most impactful demand
scenarios. Further, a simulation procedure was designed for the different demand scenarios, which
allows the comparison of the proposed approach with probabilistic demand curves. The fuzzy
newsvendor problem is solved using a modified genetic algorithm (GA), where an initialization
mechanism with null values is proposed. The new formulation of the fuzzy newsvendor problem
together with the modified GA have shown to improve the average profit up to 55% in problems
with low-budget scenarios.

Keywords: newsvendor problem; fuzzy newsvendor problem; inventory management; genetic
algorithms; credibility estimation

1. Introduction

Every day, a newsvendor needs to buy journals based on an uncertain demand. Assuming that
each journal has a fixed cost and selling price, if she/he asks for too many journals and the demand
is not enough, there is a reduction in the profit. On the other hand, if the demand is higher than the
number of journals ordered, potential sales do not occur, resulting in “lost profits” [1]. This dilemma
of buying more or less newspapers, which is know as the newsvendor problem, can be used to model
inventory management problems.

Several solutions can be found to solve several inventory management problems, [1–3]. When
multi–items are considered, one deals with the Multi-Item Newsvendor Problem (MINP). In this
problem it is important to consider the number of constraints and their type (cost, service level, etc.),
the decision-making policies (as e.g. optimize expected profit, service level, etc.). Often, solutions are
found using risk–averse techniques. Further, usually MINP use probability density functions to model
the uncertain demand [4–7].

However, the demanded probabilistic density functions are difficult to derive in real scenarios,
especially for innovative and disruptive products, where there is no sufficient data to accurately predict
the demand probability distribution. It is possible to mitigate these limitations by including additional
information from human expertise using e.g. fuzzy systems [8].

Fuzzy logic is a suitable tool to incorporate uncertain demands with a proven effectiveness in
solving MINP [8–10]. A fuzzy environment can use few data points to describe uncertainty through
meaningful membership functions. Furthermore, fuzzy logic offers an ideal environment to describe
the vagueness of human thinking through mathematical operations, defining linguistic terms such as
“the demand of a product is around 2000” [11].

The first fuzzy solution for an inventory management problem dates back to 1995 [12]. A year
later, Petrov proposed the first fuzzy solution for newsvendor problems [8]. Analytical analyses in a
fuzzy environment [8,13–16] are useful to specific cases, where it is possible to study a limited number
of items in a well isolated economic environment. Problems arise when the number of items and
their relations increase, leading to highly nonlinear problems, making analytical approaches hard to
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implement. Most of the recent fuzzy [17–19] and non-fuzzy [20–24] solutions focus on solving highly
complex single–item problems, lacking the generalization to multi–item problems.

Fuzzy MINP problems are usually solved recurring to metaheuristic algorithms [9,10]. Inspired by
real-world phenomena, metaheuristics use computational power to find solutions when the classical
methods cannot, due to time and complexity. However, metaheuristics do not always guarantee that
the solutions found are optimal. However, they can provide, at least, good results for highly complex
optimization problems [25,26].

Shao proposed a genetic algorithm [27,28], to solve the newsvendor problem with a fuzzy
environment [9]. This paper extended the fuzzy objective functions proposed in [8], with the adoption
of credibility theory concepts [29,30]. In [9], Shao used the concepts of possibility, necessity and
credibility of a fuzzy event, as well as the excepted value of a fuzzy variable [31] to derive objective
functions for different decision-making policies.

In 2011, Taleizadeh [10] studied a variety of metaheuristic algorithms to solve a fuzzy single-period
newsvendor problem and also proved the suitability of genetic algorithms for this problem.

This paper extends the formulation of the existing fuzzy newsvendor problem from single-item
to multi-item problems, allowing its application to inventory problems. The proposed formulation is
flexible, as it allows the use of any profit function. Further, this paper proposes the extension of the
genetic algorithm in [10] to solve the fuzzy multi-item newsvendor problem, enhancing the work of
[9] in both the generation and evaluation of solutions.

The paper is organized as follows. Section 2 describes classical and fuzzy multi-item newsvendor
problems. The optimization artchtiecture proposed in this paper is described in Section 3. In this
section, the optimization algorithm is described (which uses a genetic algorithm), and a novel method
to estimate the credibility is proposed. Further, novel problem-specific genetic mechanisms are also
proposed. The benchmark case studies are described in Section 4. A general simulation procedure,
which is necessary for addressing both classical and fuzzy multi-item newsvendor problems is
proposed in Section 5. Section 6 presents the obtained results, and the conclusions and future work are
presented in Section 7.

2. Multi-Item Newsvendor Problem

This section introduces a novel fuzzy formulation for the multi-item newsvendor problem.
Section 2.1 presents the classical approach with probabilistic demand curves. Section 2.2 explains the
fundamentals of the fuzzy multi-item newsvendor problem.

2.1. Classical Multi-Item Newsvendor Problem

The classical formulation suggested in [32] uses a modified form of the original model proposed
in 1964 [33]. This form minimizes the expected cost function, being this minimization equivalent
to maximize an“expected profit” function [32]. Also, the original model used the salvage value of
the leftover items instead of the environmental disposal cost. The model of the classical multi-item
newsvendor problem is as follows:

min E =
N

∑
i=1

[
cixi + hi

∫ xi

0
(xi − di) fi(di)d(di) + vi

∫ ∞

xi

(di − xi) fi(di)d(di)

]
, (1)

subject to
N

∑
i=1

cixi ≤ BG (2)

The list of variables used in the classical multi-item newsvendor problem, and their respective
description, which will be used throughout this paper are the following:
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n Total number of items
vi Cost of revenue loss per unit of item i
hi Cost incurred per item i for leftover
ci Cost per unit of item i
xi Ordering quantity of item i
di Demand of item i
fi(di) Demand probability density function of item i
E Expected cost function value
BG Available budget
R0 Profit target
G Total number of generations

2.2. Fuzzy Multi-Item Newsvendor Problem

This section describes the fuzzy multi-item newsvendor problem. Section 2.2.1 starts by presenting
the definitions of possibility, necessity, credibility and the expected value of a fuzzy demand. Then,
Section 2.2.2 explains how membership grades can be estimated. The estimation of possibility, necessity,
credibility is explained in Section 2.2.3. Finally, the estimation of the expected profit is described in
Section 2.2.4.

2.2.1. Definitions

The possibility, necessity and credibility of fuzzy event presented in [29,30] are used in this paper.
The concepts of possibility, necessity and credibility of a fuzzy event (ξ ≥ r) are defined as:

Pos{ξ ≥ r} = sup µ{u} , u ≥ r (3)

Nec{ξ ≥ r} = 1− sup µ{u} , u ≤ r (4)

Cr{ξ ≥ r} = 1
2
[Pos{ξ ≥ r}+ Nec{ξ ≥ r}] (5)

where ξ is the fuzzy demand with the membership function µ{u}, r is the profit value and u is the
generic demand. Considering (3), (4) and (5), the expected value of a fuzzy demand ξ is given by:

E[ξ] =
∫ ∞

0
Cr{ξ ≥ r} dr−

∫ 0

−∞
Cr{ξ ≤ r} dr. (6)

In [9,30] the concepts in (3), (4) and (5) are used to define objective functions that describe multiple
decision-making policies, particularly the maximization of the expected profit, which will be explained
in Section 2.2.4.

2.2.2. Membership grade estimation

In an MINP, the demand contain the proposed quantities for each item. Since each item has its
unique demand membership function, it is fundamental to find a way of estimating the grade of a
demand. This is the purpose of a conjunctive operator.

Let one assumes that uk = (u1k, u2k, . . . , unk) is a demand vector of n items. The estimated
membership grade of the demand vector is given by:

µ(uk) = µ(u1k) ∩ µ(u2k) ∩ ...∩ µ(unk) =

min(µ(u1k), µ(u2k), ...µ(unk))
(7)

µ(uk) = µ1(u1k) ∩ µ2(u2k) ∩ ...∩ µm(unk) =

min(µ1(u1k), µ2(u2k), ...µm(unk))
(8)

where µ(uk) is the estimated membership grade, and µ(unk) is the membership grade associated with
each ordering quantity.
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2.2.3. Possibility, necessity and credibility estimation

The possibility and necessity estimations of multi-item solutions from the demand vectors uk are
computed, respectively, in the following way:

P̃os{R(x, ξ) ≥ R0} = max
1≤k≤U

{µ(uk)|R(x, uk) ≥ R0} (9)

Ñec{R(x, ξ) ≥ R0} = 1− max
1≤k≤U

{µ(uk)|R(x, uk) ≤ R0} (10)

where R(x, uk) is the profit function, U is the total number of random demand vectors and R0 is a
profit target.

The estimation of the credibility is based on the previous estimations of possibility and necessity
as follows:

C̃r{R(x, ξ) ≥ R0} =
1
2
[P̃os{R(x, ξ) ≥ R0}+

Ñec{R(x, ξ) ≥ R0}]
(11)

2.2.4. Expected profit estimation

To estimate the expected profit of a solution x, with x = (x1, x2, . . . , xn), it is possible to use
credibility estimations for a high enough number of profit targets. To focus resources on plausible
values, theses profit targets should be extracted from the interval defined by:[

−
N

∑
i=1

cixi,
N

∑
i=1

(vi − ci)xi

]
(12)

On the one hand, the interval lower limit corresponds to the scenario where no sales are made. On the
other hand, the upper limit corresponds to the scenario where all purchased items are sold.

Assuming that the total number of profit targets is given by Scr, the profit targets are equally
distributed and the set of profit targets is defined by r = (r1, r2, . . . , rScr ), where r1 < r2 < . . . < rScr .
Equations (13), (14) and (15) describe the steps to estimate the expected profit Eof a solution x:

E1 = −∑ C̃r{R(x, uk) ≤ rj}, i f rj < 0 (13)

E2 = E1 + ∑ C̃r{R(x, uk) ≥ rj}, i f rj ≥ 0 (14)

E = E2 ×
(rScr − r1)

Scr
+ max(0, r1) + min(0, rScr ) (15)

The number of credibility samples Scr is a crucial variable to this estimation. This variable must be
studied to obtain the best possible trade-off between computational time and accuracy.

3. Proposed optimization architecture

The formulation of the fuzzy newsvendor problem is extended in this paper from single-item
to multi-item problems, allowing its application to inventory problems. This is accomplished with
an optimization architecture that combines a modified genetic algorithm and the expected profit
estimation introduced in Section 2.2.4. Along with the common mechanisms of a genetic algorithm,
crossover, mutation and selection [27], two novel components are added: a credibility estimation
procedure, which is introduced in Section 3.1 and novel problem-specific genetic mechanisms, which
are described in Section 3.2.

The proposed optimization architecture finds the solution with the highest expected profit,
according to the fundamentals previously introduced in Section 2. Algorithm 1 details the proposed
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genetic algorithm to maximize the expected profit. This algorithm needs to estimate the credibility C̃r,
which is explained in detail in Section 3.1 and Algorithm 2.

Algorithm 1 Proposed genetic algorithm.

Require: G; i← 0
1: while i < G do
2: for each individual x of generation i do
3: Compute profit interval using (12)
4: Compute all profit targets rj by equally sample profit interval
5: Compute the credibility C̃r{R(x, ξ) ≥ rj} for all j using Algorithm 2
6: Compute expected profit E[R(x, ξ)] using (13), (14) and (15)7: Compute next population using the problem specific mechanisms Section 3.2
8: i← i + 19: Select the individual x with the highest E[R(x, ξ)]

3.1. Proposed credibility estimation

This section describes the proposed credibility estimation, which is presented in Algorithm 2. The
main objective of this approach is estimate the credibility of a solution x generating a profit higher
than a profit target R0. It repeats the estimation K times until it finds it. Estimations for different
profit targets R0 are further used to estimate the expected profit of the solution x, as it was previously
described in Section 2.2.4.

The demand vector is randomly generated, and considered quantities that have a membership
grade higher than a αcut, which are defined by 10% quantiles, and as so can have the following values:

αcut ∈ T(αcut) = [1.0−5, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] (16)

Further, the αcut is always equal or greater than the minimum value between the highest membership
grades found for both possibility and necessity. The αcut progressively increases the minimal
membership grade of the random demand vectors generated.

This is useful because the possibility estimation requires to find the demand vector with the
highest membership grade that generates a profit higher than the profit target R0, as defined in (9).
And, the necessity estimation requires to find the demand vector with the highest membership grade
that generates a profit lower than the profit target R0, as defined in (10).

Note also that sometimes, due to the random generation, for low credibility solutions, the necessity
estimation can be higher than the possibility estimation. Those results are impossible due to the nature
of the problem, and therefore are automatically rejected by the algorithm.

3.2. Novel problem-specific genetic mechanisms

This section describes problem-specific mechanisms, which are implemented in the architecture
proposed in Algorithm 1. These methods enhance the set of solutions by 1) discarding materials in
the initial population, 2) scaling chromosomes according to the available budget, and 3) introduce
a problem-specific context to the crossover operator. This section proposed thus the chromosomes
initialization, the solution resizing and the chromosome normalization, which are described in the
next three sections.

3.2.1. Initialization with zero quantities

The initialization with zero quantities initializes chromosomes with a single non-zero ordering
quantity xi. After selecting a random item i for the non-zero ordering quantity, the chromosome is
resized as explained in Section 3.2.2 to scale xi to reach the available budget. If i is a profitable item,
the chromosome is selected because the expected profit is higher than chromosomes containing less
profitable items. This mechanism aims to select (and further combine) only the most profitable items.
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Algorithm 2 Credibility estimation.

Require: x; R0; R(x, uk); T(αcut); K
αcut ← T(αcut)
P̃os← 0 ; Ñec← 0 ; n← 0 ; stop← False
while stop = False do

Compute random uk with min(µ(u1k), . . . , µ(unk)) ≥ αcutCompute µ(uk) using (7)
====== Possibility and Necessity Update ======
if R(x, uk) > R0 and µ(uk) > P̃os then

P̃os← µ(uk)
else if R(x, uk) < R0 and µ(uk) > Ñec then

Ñec← µ(uk)
===========Threshold Update ==========
if min(P̃os, Ñec) > αcut then

αcut ← min(P̃os, Ñec) (soft threshold update)
else if n ≥ K and αcut ≥ max(T(αcut)) then

Assign stop← True (finish execution)
else if n ≥ K then

αcut ← min(T(αcut) > αcut) (hard threshold update)
n← 0

else
n← n + 1=========== Finish Execution ==========

Ñec← 1− Ñec
if P̃os > Ñec then

Compute C̃r{R(x, ξ) ≥ R0} using (11)
elsẽ

Cr{R(x, ξ) ≥ R0} = 0 (solution rejected)

3.2.2. Solution resizing

The solution resizing mechanism scales the chromosome ordering quantities xi to use all the
available budget. It scales the quantities up or down without changing the relative proportions
between them. On the one hand, this mechanism can transform over-budget solutions into feasible
solutions by scaling them down. On the other hand, it can scale up under-budget solutions to use all
the available budget. To apply this mechanism, the ordering quantities xi are resized to quantities xri
by multiplying it by a resizing ratio, as follows:

xri = xi ×
BG

∑N
i=1 cixi

(17)

3.2.3. Chromosome normalization

This normalization makes the crossover independent of the absolute values in x, by normalizing
them according to the items with most expected demand value µi. In this paper, the most expected
demand value comes from the item with the probabilistic density function fi(Di), but it could also be
the fuzzy value with the highest grade. To apply the chromosome normalization, first the ordering
quantities xi must be normalized by applying the transformation:

xni =
xi
µi

(18)

where xi is the ordering quantity of item i, µi is the expected demand value of the probabilistic
distribution of item i, and xni is the normalized ordering quantity of item i. After the crossover has
been applied, all normalized ordering quantities xni must be de-normalized by multiplying them by
µi.

4. Case Studies

The two benchmark case studies used in this paper have been presented in [32,34]. The
optimization method presented in these papers is a Generic Iterative Method (GIM) with two different
use cases: one with exponential demand distributions, which is described in Section 4.1, and the other
with normal demand distributions, described in Section 4.2.
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4.1. Case Study 1: Exponential demand distribution

The first case study was proposed in [32], where the item demand is exponentially distributed.
An exponential distribution for demand di with a mean value µi is described in (19) and (20), defining
its probability density function and cumulative distribution function, respectively.

fi(di, µi) =

0, di < µi

1
µi

e−
di
µi , di ≥ µi

(19)

Fi(di, µi) =

0, di < µi

1− e−
di
µi , di ≥ µ

(20)

In [32], the exponential demand distribution considered a problem with six items, as presented in
Table 1, and a budget of 3500 currency units (CU).

Table 1. Data for Case study 1: revenue loss per unit, cost for leftover, cost per unit, and mean of
demand for the six items.

Item vi (CU) hi (CU) ci (CU) µi

1 7 1 4 200
2 12 2 8 225
3 30 4 20 112.5
4 30 4 10 100
5 40 2 13 75
6 45 5 15 30

The GIM proposed in [32] solved this optimization problem by relaxing the problem constraint,
applying the Leibniz Rule and using a Lagrangian optimization with a Lagrangian multiplier. The
obtained solution with the ordering quantities per item is presented in Table 2.

Table 2. Case Study 1: benchmark solution with ordering quantities per item.

Item 1 2 3 4 5 6

xi 78.41 58.16 30.06 81.74 70.91 25.29

4.2. Case Study 2: Normal demand distribution

The second case study was proposed in [34] , and considers a normal distribution for demand
di. A demand distribution di has the mean value µi and the standard deviation σi, see (21) and (22),
defining its probability density function and cumulative distribution function, respectively.

fi(di, µi) ==
1

σi
√

2π
e−

1
2 (

di−µi
σi

)2
(21)

Fi(di, µi) ==
1
2

[
1 + er f

(
di − µi√

2σi

)]
(22)

where:
er f (x) =

1√
π

∫ x

−x
e−t2

dt (23)

This case study includes 17 items, as shown in Table 3, and the available budget of 2500 CU.
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Table 3. Data for Case study 2: revenue loss per unit, cost for leftover, cost per unit, mean and standard
deviation of demand for the 17 items.

Item vi (CU) hi (CU) ci (CU) µi σi

1 7 1 4 102 51
2 12 2 8 73 18.3
3 30 4 19 123 30.8
4 30 4 17 95 23.8
5 40 2 23 62 15.5
6 45 5 15 129 43
7 16 1 10 69 34.5
8 21 2 10 83 41,5
9 42 3 40 120 30

10 34 5 20 89 22.3
11 20 3 10 115 38.3
12 15 5 7 91 30.3
13 10 3 4 52 17.3
14 20 3 12 76 38
15 47 2 33 66 16.5
16 35 4 21 147 36.8
17 22 1 11 104 34.7

The expected profit-maximizing solution proposed in [34] is presented in Table 4.

Table 4. Case Study 2: solution showing the ordering quantities per item.

Item xi Item xi

1 0 10 0
2 0 11 15.58
3 0 12 42.2
4 0 13 34.56
5 0 14 0
6 106.86 15 0
7 0 16 0
8 14.02 17 15.23
9 0

5. Simulation procedure

This section presents a general simulation procedure for addressing both classical and fuzzy
multi-item newsvendor problems. Studies on the fuzzy multi-item newsvendor problem [9,10,35]
have been focusing on evaluating the performance of the solutions solely based on maximizing a
fuzzy objective function. This approach raises questions, such as: “Is the objective function a good
representation of reality?” or “Will the solution generate the expected results in a real scenario?”.

To address these issues, we propose the Algorithm 3, which uses demand vectors u, based on
each item’s demand Di, to evaluate solutions, both fuzzy and non-fuzzy. The procedure simulates real
scenarios by using a diverse range of demand vectors u, with a greater emphasis on probable vectors
while still accounting for less likely ones. By computing the profit for each demand vector u with a
given solution x, the average profit and profit standard deviation across all vectors can be determined.

Algorithm 3 Simulation procedure.

Require: n (number of demands vectors to generate)
Derive n demand vectors di using the open-source library in Python NumPy, where each vector
element i comes from the demand probability density functions fi(di).For each demand vector di, calculate the profit R.
Compute the average profit and the profit standard deviation across all demand vectors di.
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6. Results

This section presents the results using the proposed optimization architecture proposed in
Section 3. The results are compared with previous classical and fuzzy newsvendor problems. The case
studies presented in Section4 are used to asses the performance of the proposed intelligent framework.
These comparisons intend to understand if a more flexible framework — with the ability to incorporate
complex profit functions and human expertise — can obtain better results in some sense than previous
classical and fuzzy approaches that lack this kind of flexibility.

6.1. Impact of the novel problem-specific mechanisms

This section evaluates the impact of specific features on the performance of the intelligent
framework. Each of the introduced problem-specific generic mechanisms presented in Section 3.2,
namely: initialization with zero quantities, solution resizing and chromosome normalization are
analysed separately.

First, Table 5 presents the influence of the initialization with zero quantities, introduced in
Section 3.2.1, is only advantageous for case study 2. Therefore, it must be always tested for different
instances.

Table 5. Results using the initialization with zero quantities

Case study Init. with zero quantities Fitness Simulated profit

1 Yes 4167.9 2860.3
1 No 4940.9 2853.0

2 Yes 3741.9 3797.3
2 No 2229.9 2446.6

The effect of the solution resizing feature, presented in Section 3.2.2, is shown in Table 6. It has
a clear positive effect by eliminating unfeasible solutions and improving the profit. Therefore, this
feature is always used in genetic algorithm.

Table 6. Results using solution resizing.

Case study Sol. resizing Fitness Unfeasible sol. Simulated profit

1 Yes 4167.9 0 2860.3
1 No 3945.1 250.4 2293.2

2 Yes 3741.9 0 3797.3
2 No 2208.8 122.2 2305.6

The effect of normalizing the chromosome described in Section 3.2.3 is presented in Table 7. It
can be seen the performance in terms of fitness and simulated profit is very slightly affected. Therefore,
it is advantageous to try this mechnism in different instances.

Table 7. Results using chromosome normalization.

Case study Chromosome normalization Fitness Simulated profit

1 Yes 4889.5 2827.4
1 No 4940.9 2853.0

2 Yes 3713.7 3755.7
2 No 3741.9 3797.3
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6.2. Main Results

In this section, we present the main results of our study, which compares the performance of three
different methods for solving the case studies in Section 4. The first method is the classical approach,
introduced in Section 2.1, the second methods is the fuzzy genetic algorithm proposed in [9] and the
third the fuzzy optimization architecture proposed in this paper, see Section 3.

Table 8 presents these results. It is clear for both case studies that the proposed approach clearly
outperform the other two approaches in terms of profit for both case studies. It is however slightly
worse in terms of standard deviation than the other two approaches for case study 2.

Table 8. Simulation results in terms of average profit and standard deviation of the profit.

Case Study Method Average Profit Profit St. Dev.

1 Classical approach 2877.1 2.0
1 Fuzzy GA from [9] 2889.8 1.2
1 Proposed approach 2914.7 1.5

2 Classical approach 3869.4 0.5
2 Fuzzy GA (as in [9]) 2833.6 0.2
2 Proposed approach 3878.7 0.8

7. Conclusions

A novel formulation of the fuzzy newsvendor problem for inventory management applications
was proposed. The designed framework implemented a fuzzy formulation to solve cases where there
is insufficient data to predict the demand distributions and it is necessary to integrate human-expertise
knowledge. One of the main contributions of this work is the redesign of the credibility estimation
procedure, introducing a dynamic adjustment of a alphacut threshold to generate meaningful demand
vectors, instead of using a purely random vector generation.

The proposed fuzzy optimization genetic algorithm is compared in two benchmark case studies.
The proposed approach slightly outperform the classical approach. However, it clearly outperform the
previous fuzzy approach. In the most complex case, case study 2, it improves the profit in 55%. The
performance increase is the result of introducing a new initialization with null values that proved to be
a valuable mechanism in low-budget scenarios, where there is the need for rejecting less profitable
items.

The main advantage of this algorithm it is its flexibility. Despite using fixed costs to prove
effectiveness against analytical approaches, this solution can work with nonlinear pricing models.
To perform this, one only needs to integrate the pricing information when calculating profits in the
credibility estimation. This is suggested for future work. Moreover, there is the possibility of changing
performance measures. Profit was used to prove the effectiveness against analytical approaches, but
the algorithm could prioritize the solutions that most satisfied possible costumer demand, by replacing
the profit calculation with a service-level calculation.

Additionally, the proposed algorithm can also be implemented using parallel computing in a
cloud environment, which drastically reduces execution time and makes the solution applicable in a
real scenario.

Acknowledgments: This work was financed by national funds from the FCT (Foundation for Science and
Technology), I.P., through IDMEC under LAETA, project UIDB/50022/2020.

References

1. Choi, T.M. Handbook of Newsvendor Problems. International Series in Operations Research & Management
Science.; Springer, 2012. doi:10.1007/978-1-4614-3600-3.

2. Wilson, E.B. The Mathematical Theory of Investment. Science 1888, 42, 248–249.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 February 2024                   doi:10.20944/preprints202402.1745.v1



11 of 12

3. Mu, M.; Chen, J.; Yang, Y.; Guo, J. The Multi–product Newsvendor Problem : Review and Extensions. 2019
6th International Conference on Behavioral, Economic and Socio-Cultural Computing 2019, pp. 6–9.

4. Lau, H.S.; Lau, A.H.L. The multi-product multi-constraint newsboy problem: Applications, formulation
and solution. Journal of Operations Management 1995, 13, 153–162. doi:10.1016/0272-6963(95)00019-O.

5. Lau, H.S.; Lau, A.H.L. The newsstand problem: A capacitated multiple-product single-period inventory
problem. European Journal of Operational Research 1996, 94, 29–42. doi:10.1016/0377-2217(95)00192-1.

6. Shi, J.; Zhang, G.; Sha, J. Jointly pricing and ordering for a multi–product multi–constraint newsvendor
problem with supplier quantity discounts. Applied Mathematical Modelling 2011, 35, 3001–3011.
doi:10.1016/j.apm.2010.12.018.

7. Shi, J.; Bao, Y. Multiproduct multiperiod newsvendor problem with dynamic market efforts. Discrete
Dynamics in Nature and Society 2016, 2016. doi:10.1155/2016/7674027.
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