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Abstract: Recently, Gohar et al. introduced a novel, local, and well-behaved fractional calculus. It possesses all 

the classical properties, and Its locality imposes simplicity and accuracy in modeling fractional order systems. 

In this article, we further develop the definitions and extend the classical properties of Gohar fractional 

calculus  to address some of the open problems in Calculus. The fractional Gronwall's integral inequality, 

Taylor power series expansion, and Laplace transform are defined and applied to overcome some of the 

limitations in the classical integer-order calculus. The fractional Laplace transform is applied to solve Bernoulli-

type logistic and Bertalanffy nonlinear fractional differential equations, and the criteria under which it can be 

applied to solve linear differential equations are investigated. 

Keywords: Gohar fractional calculus; Gohar fractional Laplace transform; Gohar fractional power series 

expansion; Left and right Gohar fractional derivatives; Left and right Gohar fractional integrals 

 

1. Introduction 

Over the last two decades, the impact of fractional calculus in both theoretical and practical 

domains of science and engineering has grown substantially [1–3]. The dynamical behaviors can be 

more precisely modeled and investigated within the framework of fractional calculus, as fractional-

order models of dynamical systems retain the memory of their earlier states [4], thereby offering a 

more accurate and realistic description of their dynamical behavior. Until recently, many real-world 

applications of fractional calculus have been confined to the well-known Riemann-Liouville and 

Caputo fractional derivatives [5]. While these fractional derivatives offer certain desirable 

advantages, such as memory storage and hereditary effects in natural phenomena, their "non-local" 

integral definitions, which involve weakly singular kernels, give rise to theoretical limitations and 

computational complexities. Among these limitations, we highlight their failure to satisfy some basic 

properties such as the product rule, quotient rule, and chain rule. In addition, they do not meet Rolle’s 

theorem or the mean value theorem.  

Beyond these limitations, A. A. Gohar et al. [6] have recently introduced a novel, simple, and 

well-behaved fractional calculus that preserves all the aforementioned basic properties and theorems, 

which makes it a promising mathematical tool for modeling fractional-order systems. Some functions 

are not differentiable in the classical sense, while others do not have Taylor power series expansions 

over the neighborhood of certain points. However, as we shall see, all of these constraints can be 

broken within the context of Gohar fractional calculus. In this article, we aim to develop new 

definitions and properties of Gohar fractional calculus to fill in some gaps in the integer-order 

Calculus and broaden its scope of application. 

The article is organized as follows: In Section 2, the left and right Gohar fractional derivatives 

and integrals of higher fractional orders ( 𝛼 > 1) are defined, the sequential fractional derivative is 

introduced, and the Gronwall integral inequality is extended into the Gohar fractional domain. 

Furthermore, the relationship between Gohar and Riemann-Liouville fractional integrals is 

examined, and the interaction between Gohar fractional derivatives and integrals is discussed. 

Finally, section 2 concludes with the partial Gohar fractional derivative of a function with several 

variables. In Section 3, the fractional power series expansion is defined, and the series expansions for 

some functions that do not have Taylor power series expansion in classical calculus are obtained. In 

Section 4, the Gohar fractional Laplace transform is defined and applied to solve the Bernoulli-type 

logistic and Bertalanffy nonlinear fractional differential equations. Furthermore, the Validity of 
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applying the Gohar fractional Laplace transform to solve linear fractional differential equations is 

investigated and discussed in detail. 

2. Definitions, theorems, and further properties 

2.1. Gohar Fractional Derivatives 

Definition 2.1.1. The “left” Gohar fractional derivative of a function 𝑓: [𝑎,∞) → ℝ of order 0 < 𝛼 ≤

1 denoted by 𝐺𝛼
𝑎𝑓(𝑥), is defined by 

𝑮𝜶
𝒂𝒇(𝒙) = 𝐥𝐢𝐦

𝚫𝒙→𝟎

𝟏

𝚫𝒙
[𝒇 (𝒙 + 𝒍𝒏 (𝟏 + 𝚫𝒙

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)−𝜶)

(𝒙−𝒂)

) − 𝒇(𝒙)], 
   

(2.1) 

 
and the “right” Gohar fractional derivative of 𝑓: (−∞, 𝑏] → ℝ  of order 0 < 𝛼 ≤ 1  denoted by 

𝐺𝛼
 𝑓(𝑥), 

𝑏  is defined by 

𝑮𝜶
 𝒇(𝒙) 

𝒃 = 𝐥𝐢𝐦
𝚫𝒙→𝟎

𝟏

𝚫𝒙
[𝒇 (𝒙 + 𝒍𝒏(𝟏 + 𝚫𝒙

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒃 − 𝒙)−𝜶)

(𝒃−𝒙)

) − 𝒇(𝒙)], 
   

(2.2) 

 

for  𝜂 ∈ ℝ+.  

If 𝑓: [𝑎,∞) → ℝ  is 𝐺𝛼𝑎 -differentiable on (𝑎,∞),  and lim
𝑥→𝑎+

𝐺𝛼
𝑎𝑓(𝑥)  exists, then 

𝐺𝛼
𝑎𝑓(𝑎) = lim

𝑥→𝑎+
𝐺𝛼
𝑎𝑓(𝑥). Similarly, If 𝑓: [−∞, 𝑏) → ℝ is 𝐺𝛼

 
 
𝑏 -differentiable on (−∞, 𝑏), and 

lim
𝑥→𝑏−

𝐺𝛼
 

 
𝑏 𝑓(𝑥) exists, then 𝐺𝛼

 
 
𝑏 𝑓(𝑏) = lim

𝑥→𝑏−
𝐺𝛼
 

 
𝑏 𝑓(𝑥).  

For 𝑎 = 0 we write 𝐺𝛼𝑓(𝑥) to denote the Gohar fractional derivative of 𝑓. 

Lemma 2.1.1. Let 𝑓: [𝑎,∞) → ℝ  and 𝑔: (−∞, 𝑏] → ℝ  be differentiable functions on (𝑎,∞)  and 

(−∞, 𝑏), respectively. Then we have 

𝑮𝜶
𝒂𝒇(𝒙) =

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶𝒇′(𝒙), 

𝑮𝜶
 

 
𝒃 𝒈(𝒙) = −

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒃 − 𝒙)𝟏−𝜶𝒈′(𝒙). 

 

   

(2.3) 

 

(2.4) 

Proof. With the aid of Maclaurin series expansion for the logarithmic function  

𝒍𝒏 (𝟏 + 𝚫𝒙
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)−𝜶)

 

= 𝚫𝒙
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)−𝜶 + 𝑶(𝚫𝒙𝟐), 

 

 

(2.5) 

we have 

𝑮𝜶
𝒂𝒇(𝒙) = 𝐥𝐢𝐦

𝚫𝒙→𝟎

𝟏

𝚫𝒙
[𝒇 (𝒙 + 𝚫𝒙

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶 + 𝑶(𝚫𝒙𝟐)) − 𝒇(𝒙)], 

 

 

 

 

and the result (2.3) is obtained with the substitution ℎ = Δ𝑥
Γ(𝜂)

Γ(𝜂−𝛼+1)
(𝑥 − 𝑎)1−𝛼 + 𝑂(Δ𝑥2).  The 

relation for the right derivative (2.4) can be obtained by following the same argument. 

Corollary 2.1.1. Assume that 𝑓, 𝜑: [𝑎,∞) → ℝ  are 𝐺𝛼
𝑎 -differentiable functions on (𝑎,∞).  If 𝑓  is 

differentiable and 

             𝑮𝜶
𝒂𝒇(𝒙) =

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶𝝋(𝒙),                

 

(2.6) 

 

then 𝜑(𝑥) = 𝑓′(𝑥), ∀𝑥 > 𝑎. 
Proof. The result is a direct consequence of (2.3). 
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We define the “left” nth-sequential Gohar fractional derivative of order 0 < 𝛼 ≤ 1  as 

 

             𝑮𝜶
𝒂(𝒏)𝒇(𝒙) = 𝑮𝜶

𝒂𝑮𝜶
𝒂𝑮𝜶

𝒂 …𝑮𝜶
𝒂⏟        

𝒏−𝒕𝒊𝒎𝒆𝒔

𝒇(𝒙),                 

 

(2.7) 

 
and the “right” nth-sequential Gohar fractional derivative of order 0 < 𝛼 ≤ 1 as 

 

𝑮𝜶
(𝒏)

 
          𝒃 𝒇(𝒙) = 𝑮𝜶

 
 
𝒃 𝑮𝜶

 
 
𝒃 𝑮𝜶

 
 
𝒃 … 𝑮𝜶

 
 
𝒃⏟            

𝒏−𝒕𝒊𝒎𝒆𝒔

𝒇(𝒙).           

 

(2.8) 

 
Definition 2.1.2. For 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+and 𝛽 = 𝛼 − 𝑛. The “left” Gohar fractional derivative of 

the 𝑛 times differentiable function 𝑓: [𝑎,∞) → ℝ of order 𝛼, denoted by 𝑮𝛼
𝑎𝑓(𝑥), is defined by 

     𝑮𝜶
𝒂𝒇(𝒙) = 𝑮𝜷

𝒂𝒇(𝒏)(𝒙), (2.9) 
and the “right” Gohar fractional derivative of the n times differentiable function 𝑓: [−∞, 𝑏) → ℝ of 

order 𝛼, denoted by 𝑮𝛼
 

 
𝑏 𝑓(𝑥), is defined by 

    𝑮𝜶
 

 
𝒃 𝒇(𝒙) = (−𝟏)𝒏+𝟏 𝑮𝜷

 𝒇(𝒏)(𝒙) 
𝒃 . (2.10) 

If 𝑓: [𝑎,∞) → ℝ  is 𝑮𝛼𝑎 -differentiable on (𝑎,∞),  and lim
𝑥→𝑎+

𝑮𝛼
𝑎𝑓(𝑥)  exists, then 

𝑮𝛼
𝑎𝑓(𝑎) = lim

𝑥→𝑎+
𝑮𝛼
𝑎𝑓(𝑥). Similarly, If 𝑓: [−∞, 𝑏) → ℝ is 𝑮𝛼

 
 
𝑏 -differentiable on (−∞, 𝑏), and 

lim
𝑥→𝑏−

𝑮𝛼
 

 
𝑏 𝑓(𝑥) exists, then 𝑮𝛼

 
 
𝑏 𝑓(𝑏) = lim

𝑥→𝑏−
𝑮𝛼
 

 
𝑏 𝑓(𝑥).  

Now, let us extend Lemma 2.1.1 for 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+. 

Lemma 2.1.2. Let 𝑓: [𝑎,∞) → ℝ  and 𝑔: [−∞, 𝑏) → ℝ  be differentiable functions on (𝑎,∞)  and 

(−∞, 𝑏), respectively. Then for 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+and 𝛽 = 𝛼 − 𝑛 we have 

𝑮𝜶
𝒂𝒇(𝒙) =

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝒏 + 𝟏)
(𝒙 − 𝒂)𝒏+𝟏−𝜶𝒇(𝒏+𝟏)(𝒙), 

𝑮𝜶
 

 
𝒃 𝒈(𝒙) = (−𝟏)𝒏

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝒏 + 𝟏)
(𝒃 − 𝒙)𝒏+𝟏−𝜶𝒈(𝒏+𝟏)(𝒙). 

 

 

(2.11) 

 

(2.12) 

Proof. The results are obtained by substituting (2.3) and (2.4) into (2.9) and (2.10), respectively. 

For 𝛼 = 𝑛 + 1,  (2.11) and (2.12) reduce to 𝑮𝛼𝑎𝑓(𝑥) = 𝑓(𝑛+1)(𝑥)  and 𝑮𝛼
 

 
𝑏 𝑔(𝑥) =

(−1)𝑛𝑔(𝑛+1)(𝑥), respectively.  
Theorem 2.1.1. Let 𝑓, 𝑔: [𝑎,∞) → ℝ be 𝐺𝛼

𝑎-differentiable functions on (𝑎,∞). Then for 𝑥 > 𝑎, 𝑔(𝑥) ≠ 0 

we have 

𝑮𝜶
𝒂(𝒇 ∘ 𝒈)(𝒙) =

𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
[(𝒈(𝒙) − 𝒂)𝜶−𝟏𝑮𝜶

𝒂𝒇(𝒈(𝒙))𝑮𝜶
𝒂𝒈(𝒙)]. 

 

(2.13) 
Proof. Since 𝑓 𝑎𝑛𝑑 𝑔  are 𝐺𝛼

𝑎 -differentiable functions on (𝑎,∞). Then their composition 𝑓 ∘ 𝑔  is 

𝐺𝛼
𝑎-differentiable on (𝑎,∞) and its left Gohar fractional derivative is given by 

 

      𝑮𝜶
𝒂(𝒇 ∘ 𝒈)(𝒙) = 𝐥𝐢𝐦

𝚫𝒙→𝟎

𝟏

𝚫𝒙
[(𝒇 ∘ 𝒈)(𝒙 + 𝒍𝒏(𝟏 + 𝚫𝒙

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)−𝜶)

(𝒙−𝒂)

)

− (𝒇 ∘ 𝒈)(𝒙)]

= 𝐥𝐢𝐦
𝚫𝒙→𝟎

𝟏

𝚫𝒙
[(𝒇 ∘ 𝒈) (𝒙 + 𝚫𝒙

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)−𝜶 +𝑶(𝚫𝒙𝟐))

− (𝒇 ∘ 𝒈)(𝒙)], 

where we used the Maclaurin series expansion of the logarithmic function (5). 
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By taking 𝝃 = 𝒙 + 𝚫𝒙
𝚪(𝜼)

𝚪(𝜼−𝜶+𝟏)
(𝒙 − 𝒂)−𝜶 +𝑶(𝚫𝒙𝟐), with the aid of the continuity of 𝒈, 

we proceed as follows 

 

𝑮𝜶
𝒂(𝒇 ∘ 𝒈)(𝒙) =

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶 (𝐥𝐢𝐦

𝝃→𝒙

𝒇(𝒈(𝝃)) − 𝒇(𝒈(𝒙))

𝝃 − 𝒙
) 

                          

=
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶 ( 𝐥𝐢𝐦

𝒈(𝝃)→𝒈(𝒙)

𝒇(𝒈(𝝃)) − 𝒇(𝒈(𝒙))

𝒈(𝝃) − 𝒈(𝒙)
)(𝐥𝐢𝐦

𝝃→𝒙

𝒈(𝝃) − 𝒈(𝒙)

𝝃 − 𝒙
) 

                          =
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∙ (𝒈(𝒙) − 𝒂)𝜶−𝟏

∙ (
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒈(𝒙) − 𝒂)𝟏−𝜶 𝐥𝐢𝐦

𝒈(𝝃)→𝒈(𝒙)

𝒇(𝒈(𝝃)) − 𝒇(𝒈(𝒙))

𝒈(𝝃) → 𝒈(𝒙)
)

∙ (
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶𝐥𝐢𝐦

𝝃→𝒙

𝒈(𝝃) → 𝒈(𝒙)

𝝃 − 𝒙
) 

                          =
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
[(𝒈(𝒙) − 𝒂)𝜶−𝟏𝑮𝜶

𝒂𝒇(𝒈(𝒙))𝑮𝜶
𝒂𝒈(𝒙)]. 

 

Theorem 2.1.2. Let 𝑓: [𝑎,∞) → ℝ be a non-constant two times differentiable function on (𝑎,∞) and 𝛼, 𝛽 ∈

(0,1] such that 𝛼 + 𝛽 ∈ (1,2]. Then 

 

𝑮𝜶
𝒂𝑮𝜷

𝒂𝒇(𝒙) =
𝚪(𝜼)

𝚪(𝜼 − 𝜷 + 𝟏)
[
𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

𝚪(𝜼 − 𝜶 + 𝟏)
𝑮𝜶+𝜷
𝒂 𝒇(𝒙)

+ (𝟏 − 𝜷)(𝒙 − 𝒂)−𝜷𝑮𝜶
𝒂𝒇(𝒙)]. 

 

 

(2.14) 

Proof. With the aid of (2.3) and the Gohar fractional product rule in [9], we have 

           𝑮𝜶
𝒂𝑮𝜷

𝒂𝒇(𝒙) = 𝑮𝜶
𝒂 (

𝚪(𝜼)

𝚪(𝜼 − 𝜷 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜷𝒇′(𝒙))

=
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)𝚪(𝜼 − 𝜷 + 𝟏)
(𝒙

− 𝒂)𝟏−𝜶
𝒅

𝒅𝒙
{

𝚪(𝜼)

𝚪(𝜼 − 𝜷 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜷𝒇′(𝒙)}       

            =
[𝚪(𝜼)]𝟐

𝚪(𝜼 − 𝜶 + 𝟏)𝚪(𝜼 − 𝜷 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶[(𝒙 − 𝒂)𝟏−𝜷𝒇′′(𝒙)

+ (𝟏 − 𝜷)(𝒙 − 𝒂)−𝜷𝒇′(𝒙)] 

   =
𝚪(𝜼)𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

𝚪(𝜼 − 𝜶 + 𝟏)𝚪(𝜼 − 𝜷 + 𝟏)
(

𝚪(𝜼)

𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)
(𝒙 − 𝒂)𝟐−(𝜶+𝜷)𝒇′′(𝒙))

+
𝚪(𝜼)

𝚪(𝜼 − 𝜷 + 𝟏)
(𝟏 − 𝜷)(𝒙 − 𝒂)−𝜷 (

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶𝒇′(𝒙)) 

   =
𝚪(𝜼)

𝚪(𝜼 − 𝜷 + 𝟏)
[
𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

𝚪(𝜼 − 𝜶 + 𝟏)
𝑮𝜶+𝜷
𝒂 𝒇(𝒙) + (𝟏 − 𝜷)(𝒙 − 𝒂)−𝜷𝑮𝜶

𝒂𝒇(𝒙)].            

 

 

 

Theorem 2.1.2. reveals the non-commutativity of the Gohar fractional operator for 𝛼 ≠ 𝛽, as we can obviously 

see that 
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𝐺𝛽
𝑎𝐺𝛼

𝑎𝑓(𝑥) =
Γ(𝜂)

Γ(𝜂 − 𝛼 + 1)
[
Γ(𝜂 − (𝛼 + 𝛽) + 2)

Γ(𝜂 − 𝛽 + 1)
𝑮𝛼+𝛽
𝑎 𝑓(𝑥) + (1 − 𝛼)(𝑥 − 𝑎)−𝛼𝐺𝛽

𝑎𝑓(𝑥)]

≠ 𝐺𝛼
𝑎𝐺𝛽

𝑎𝑓(𝑥). 

Also, it is obvious that  𝐺𝛼𝑎𝐺𝛽
𝑎𝑓(𝑥) ≠ 𝑮𝛼+𝛽

𝑎 𝑓(𝑥) for 𝛼, 𝛽 ∈ (0,1] and the equality holds for 
0 < 𝛼 ≤ 1, 𝛽 = 1.  

In the following definition, we introduce the partial derivative of a function of several variables 

in the Gohar fractional sense; such a derivative is useful for modeling a wide variety of physical 

phenomena via partial fractional differential equations  

Definition 2.1.3. Let 𝑓:ℝ𝑛 → ℝ  be a function of 𝑛  variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 . The partial Gohar 

fractional derivative of 𝑓 of order 0 < 𝛼 ≤ 1 with respect to the variable 𝑥𝑘 , denoted by 𝐺𝛼;𝑥𝑘𝑓, is 

defined by  

𝑮𝜶;𝒙𝒌𝒇 = 𝐥𝐢𝐦𝒉→𝟎

𝟏

𝒉
[𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌−𝟏, 𝒙𝒌

+ 𝒍𝒏(𝟏 + 𝒉
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
𝒙𝒌
−𝜶)

𝒙𝒌

, 𝒙𝒌+𝟏, … , 𝒙𝒏) − 𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)], 

 

 

(2.15) 

where 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ ℕ; 𝜂 ∈ ℝ+. 
Lemma 2.1.3. Let 𝑓:ℝ𝑛 → ℝ  be a function of 𝑛  variables 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  whose first partial 

derivative 
𝜕𝑓

𝜕𝑥𝑘
, 1 ≤ 𝑘 ≤ 𝑛 exists and continuous over 𝐷 ⊂ ℝ𝑛. Then 

𝑮𝜶;𝒙𝒌𝒇(𝒙𝟏, 𝒙𝟐, … 𝒙𝒌, … , 𝒙𝒏) =
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
𝒙𝒌

𝟏−𝜶
𝝏

𝝏𝒙𝒌
𝒇(𝒙𝟏, 𝒙𝟐, … 𝒙𝒌, … , 𝒙𝒏). 

 

(2.16) 

 
Proof. With the aid of Maclaurin series expansion for the logarithmic function (5), we have 

𝑮𝜶;𝒙𝒌𝒇 = 𝐥𝐢𝐦𝒉→𝟎

𝟏

𝒉
[𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌−𝟏, 𝒙𝒌 + 𝒉

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
𝒙𝒌
𝟏−𝜶 +𝑶(𝒉𝟐), 𝒙𝒌+𝟏, … , 𝒙𝒏)

− 𝒇(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏)], 

 

 

 

and the result follows directly by taking 𝜀 = ℎ Γ(𝜂)

Γ(𝜂−𝛼+1)
𝑥𝑘
1−𝛼 + 𝑂(ℎ2). 

2.2. Gohar Fractional Integrals 

Definition 2.2.1. The “left” Gohar fractional integral of a function 𝑓: [𝑎,∞) → ℝ of order 0 < 𝛼 ≤ 1, 

denoted by 𝔗𝑎
𝛼𝑓(𝑥), is defined by 

              𝕿𝒂
𝜶𝒇(𝒙) =

𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

, 𝜼 ∈ ℝ+, 
 

      

   

   
 

 

(2.17) 

 

and the “right” Gohar fractional integral of 𝑓: [−∞, 𝑏) → ℝ of order 0 < 𝛼 ≤ 1, denoted by 𝔗 
𝛼

𝑏
 𝑓(𝑥), 

is defined by 

𝕿 
𝜶

𝒃
 𝒇(𝒙) =

𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒃 − 𝒕)𝟏−𝜶

𝒃

𝒙

, 𝜼 ∈ ℝ+. 

 

(2.18) 

Theorem 2.2.1 (Fundamental theorem of Gohar fractional calculus). Let 𝑓: [𝑎,∞) → ℝ be a continuous 

function. Then for 𝑥 > 𝑎 we have 

𝑮𝜶
𝒂𝕿𝒂

𝜶𝒇(𝒙) = 𝒇(𝒙), 

 

𝕿𝒂
𝜶𝑮𝜶

𝒂𝒇(𝒙) = 𝒇(𝒙) − 𝒇(𝒂), 

(2.19) 

 

(2.20) 
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and for the continuous function 𝑓: [−∞, 𝑏) → ℝ we have 

𝑮𝜶
 

 
𝒃 𝕿 

𝜶
𝒃
 𝒇(𝒙) = 𝒇(𝒙), 

 

𝕿 
𝜶

𝒃
 𝑮𝜶

 
 
𝒃 𝒇(𝒙) = 𝒇(𝒙) − 𝒇(𝒃), 

 

(2.21) 

 

(2.22) 

for 0 < 𝛼 ≤ 1, 𝜂 ∈ ℝ+. 
Proof. In view of (2.17) and (2.3), we have 

      𝑮𝜶
𝒂𝕿𝒂

𝜶𝒇(𝒙) = 𝑮𝜶
𝒂 (
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

)

=
𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒙 − 𝒂)𝟏−𝜶

𝒅

𝒅𝒙
(
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

) = 𝒇(𝒙), 

 

      𝕿𝒂
𝜶𝑮𝜶

𝒂𝒇(𝒙) =
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝑮𝜶

𝒂𝒇(𝒙)
𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

=
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫

𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
(𝒕 − 𝒂)𝟏−𝜶𝒇′(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶
           

𝒙

𝒂

= 𝒇(𝒙) − 𝒇(𝒂). 

 

 

 

In a similar manner we can prove the other two relations for the right fractional derivatives and 

integrals. 

Definition 2.2.2. The Gohar fractional exponential function 𝐸𝛼,𝜂
𝑎 : [𝑎,∞) ⟶ ℝ, is defined by 

𝑬𝜶,𝜼
𝒂 (𝝀, 𝒙) = 𝒆𝒙𝒑(𝝀 ∙

𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∙
(𝒙 − 𝒂)𝜶

𝜶
), 

 

(2.23) 

 
where  𝜆 ∈ ℝ, 0 < 𝛼 ≤ 1, 𝜂 ∈ ℝ+.    

From the above definition we conclude that 𝐸1,𝜂
0 (𝜆, 𝑥) = 𝑒𝜆𝑥, from which we obtain the hyperbolic 

sine and cosine functions as follows: 

sinh(𝑥) =
1

2
[𝐸1,𝜂
0 (𝜆, 𝑥) − 𝐸1,𝜂

0 (−𝜆, 𝑥)] 𝑎𝑛𝑑 cosh(𝑥) =
1

2
[𝐸1,𝜂
0 (𝜆, 𝑥) + 𝐸1,𝜂

0 (−𝜆, 𝑥)]. 

Definition 2.2.3. A function 𝑓: [𝑎,∞) ⟶ ℝ is said to be Gohar exponentially bounded if it meets the 

following inequality 

|𝒇(𝒙)| ≤ 𝚲 ∙ 𝑬𝜶,𝜼
𝒂 (𝝀, 𝒙), ∀𝒙 ∈ [𝒂,∞), (2.24) 

where 0 < 𝛼 ≤ 1 and 𝜆, Λ, 𝜂 ∈ ℝ+. 

Integral inequalities are essential for the qualitative analysis of solutions to differential and 

integral equations. By extending the Gronwall integral inequality into the Gohar fractional domain, 

we get a mathematical tool for analyzing the stability of Gohar fractional systems. 

Lemma 2.2.1. Let 𝜑 be a nonnegative, continuous function over 𝑥 ∈ [𝑎, 𝑏) for 𝑏 ≤ ∞, and 𝜆, 𝜇 be 

nonnegative constants such that: 
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𝝋(𝒙) = 𝝀 + 𝝁 ∙
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫𝝋(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

. 
 

(2.25)   

Then 

𝝋(𝒙) ≤ 𝝀 ∙ 𝑬𝜶,𝜼
𝒂 (𝝁, 𝒙). (2.26) 

Proof. Let us define 𝒬(𝑥) = 𝜆 + 𝜇 ∙
Γ(𝜂−𝛼+1)

Γ(𝜂)
∫ 𝜑(𝑡)

𝑑𝑡

(𝑡−𝑎)1−𝛼

𝑥

𝑎
= 𝜆 + 𝜇𝔗𝑎

𝛼𝜑(𝑥), such that 𝒬(𝑎) = 𝜆 and 

𝒬(𝑥) ≥ 𝜑(𝑥), ∀𝑥 ∈ [𝑎, 𝑏). Then 

 

𝑮𝜶
𝒂𝓠(𝒙) − 𝝁𝓠(𝒙) = 𝝁𝝋(𝒙) − 𝝁𝓠(𝒙) ≤ 𝝁𝝋(𝒙) − 𝝁𝝋(𝒙) = 𝟎. 

 

  
Multiplying both sides by the Gohar fractional exponential function 𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥), and applying the 

product rule in [8], we get 

𝐺𝛼
𝑎 (𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥)𝒬(𝑥)) − 𝒬(𝑥)𝐺𝛼
𝑎 (𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥)) − 𝜇𝒬(𝑥)𝐸𝛼,𝜂
𝑎 (−𝜇, 𝑥) ≤ 0. 

Provided that 𝐺𝛼
𝑎𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥) = −𝜇𝐸𝛼,𝜂
𝑎 (−𝜇, 𝑥), the inequality above reduces to 

𝐺𝛼
𝑎 (𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥)𝒬(𝑥)) ≤ 0, 

and (2.20) implies that 

𝔗𝑎
𝛼𝐺𝛼

𝑎 (𝐸𝛼,𝜂
𝑎 (−𝜇, 𝑥)𝒬(𝑥)) = 𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥)𝒬(𝑥) − 𝐸𝛼,𝜂
𝑎 (−𝜇, 𝑎)𝒬(𝑎) = 𝐸𝛼,𝜂

𝑎 (−𝜇, 𝑥)𝒬(𝑥) − 𝜆

≤ 0, 
which implies that 

𝜑(𝑥) ≤ 𝒬(𝑥) ≤
𝜆

𝐸𝛼,𝜂
𝑎 (−𝜇, 𝑥)

= 𝜆 ∙ 𝐸𝛼,𝜂
𝑎 (𝜇, 𝑥). 

The next Definition extends the left and right Gohar fractional integrals to higher fractional 

orders 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+. 

Definition 2.2.4. The “left” Gohar fractional integral of 𝑓: [𝑎,∞) → ℝ of order 

 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+, denoted by 𝕿𝑎
𝛼𝑓(𝑥), is defined by 

           𝕿𝒂
𝜶𝒇(𝒙) =

𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)
𝚰𝒂
𝒏+𝟏 ((𝒙 − 𝒂)𝜷−𝟏𝒇(𝒙))

=
𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)𝚪(𝒏 + 𝟏)
∫(𝒙 − 𝒕)𝒏𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜷

𝒙

𝒂

, 

 

 

 

(2.27) 

and the “right” Gohar fractional integral of 𝑓: [−∞, 𝑏) → ℝ of order 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+, denoted 

by 𝕿 
𝛼

𝑏
 , is defined by 

         𝕿 
𝜶

𝒃
 𝒇(𝒙) =

𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)
𝚰 
𝒏+𝟏

𝒃
 ((𝒃 − 𝒙)𝜷−𝟏𝒇(𝒙))

=
𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)𝚪(𝒏 + 𝟏)
∫(𝒕 − 𝒙)𝒏𝒇(𝒕)

𝒅𝒕

(𝒃 − 𝒕)𝟏−𝜷

𝒃

𝒙

, 

 

 

 

(2.28) 

where 𝜂 ∈ ℝ+, 𝛽 = 𝛼 − 𝑛, Ι𝑎
𝛼 𝑎𝑛𝑑 Ι 

𝛼
𝑏
  are the “left” and “right” Riemann-Liouville fractional integrals 

[7], of order 𝛼 > 0, respectively, defined by 

𝚰𝒂
𝜶𝒇(𝒙) =

𝟏

𝚪(𝜶)
∫𝒇(𝒕)

𝒅𝒕

(𝒙 − 𝒕)𝟏−𝜶

𝒙

𝒂

, 
 

(2.29) 
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𝚰 
𝜶

𝒃
 𝒇(𝒙) =

𝟏

𝚪(𝜶)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒙)𝟏−𝜶

𝒃

𝒙

. 

 

 

(2.30) 

Notice that if 𝛼 = 𝑛 + 1, then 𝛽 = 1 and we have 

 

𝕿𝒂
𝒏+𝟏𝒇(𝒙) =

𝟏

𝚪(𝒏 + 𝟏)
∫(𝒙 − 𝒕)𝒏𝒇(𝒕)𝒅𝒕

𝒙

𝒂

, 

𝕿 
𝒏+𝟏

𝒃
 𝒇(𝒙) =

𝟏

𝚪(𝒏 + 𝟏)
∫(𝒕 − 𝒙)𝒏𝒇(𝒕)𝒅𝒕

𝒃

𝒙

, 

 

 

(2.31) 

 

 

(2.32) 

which is, via Cauchy formula, the (𝑛 + 1) times iterative integrals of 𝑓. It is worth mentioning the 

effect of the 𝒬  operator on the left Riemann-Liouville fractional integral: 𝒬Ι𝑎
𝛼𝑓(𝑥) = Ι 

𝛼
𝑏
 𝒬𝑓(𝑥). 

Accordingly, by means of (2.27) we get 

        𝓠𝕿𝒂
𝜶𝒇(𝒙) =

𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)
𝓠 (𝚰𝒂

𝒏+𝟏 ((𝒙 − 𝒂)𝜷−𝟏𝒇(𝒙)))

=
𝚪(𝜼 − 𝜷 + 𝟏)

𝚪(𝜼)
𝚰 
𝒏+𝟏

𝒃
 ((𝒃 − 𝒙)𝜷−𝟏𝓠𝒇(𝒙)) = 𝕿 

𝜶
𝒃
 (𝓠𝒇(𝒙)). 

 

 

 

(2.33) 

The following semigroup property relates the Gohar fractional integral operators 𝔗𝑎
𝛼𝔗𝑎

𝛽
 and 

𝔗𝑎
𝛼+𝛽

.  

Theorem 2.2.2. Assume that 𝑓: [𝑎,∞) → ℝ is a function and 𝛼, 𝛽 ∈ (0,1] such that 𝛼 + 𝛽 ∈ (1,2]. Then 

for 𝑥 > 𝑎 we have 

𝕿𝒂
𝜶𝕿𝒂

𝜷
𝒇(𝒙) =

𝚪(𝜼 − 𝜷 + 𝟏)

𝛃𝚪(𝜼)
{(𝒙 − 𝒂)𝜷𝕿𝒂

𝜶𝒇(𝒙)

+ 𝚪(𝜼 − 𝜶 + 𝟏) [
𝕿𝒂
𝜶+𝜷

𝒇(𝒙)

𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

−
(𝒙 − 𝒂)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟐−(𝜶+𝜷)

𝒙

𝒂

]}. 

 

 

 

 

(2.34) 

Proof. With the fact that  

         𝕿𝒂
𝜶+𝜷

𝒇(𝒙) =
𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

𝚪(𝜼)
𝚰𝒂
𝟐((𝒙 − 𝒂)𝜶+𝜷−𝟐𝒇(𝒙))

=
𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)

𝚪(𝜼)
∫(𝒙 − 𝒕)𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟐−(𝜶+𝜷)

𝒙

𝒂

, 

 

 

 

we interchange the order of integrals to get 
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           𝕿𝒂
𝜶𝕿𝒂

𝜷
𝒇(𝒙) =

𝚪(𝜼 − 𝜶 + 𝟏) ∙ 𝚪(𝜼 − 𝜷 + 𝟏)

[𝚪(𝜼)]𝟐
∫(∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒔

𝒂

)
𝒅𝒔

(𝒔 − 𝒂)𝟏−𝜷

𝒙

𝒂

=
𝚪(𝜼 − 𝜶 + 𝟏) ∙ 𝚪(𝜼 − 𝜷 + 𝟏)

[𝚪(𝜼)]𝟐
∫𝒇(𝒕) (∫

𝒅𝒔

(𝒔 − 𝒂)𝟏−𝜷

𝒙

𝒕

)
𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

=
𝚪(𝜼 − 𝜶 + 𝟏) ∙ 𝚪(𝜼 − 𝜷 + 𝟏)

[𝚪(𝜼)]𝟐
∫𝒇(𝒕) [

(𝒙 − 𝒂)𝜷

𝜷
−
(𝒕 − 𝒂)𝜷

𝜷
]

𝒅𝒕

(𝒕 − 𝒂)𝟏−𝜶

𝒙

𝒂

 

 

                                      =
(𝒙 − 𝒂)𝜷

𝜷
∙
𝚪(𝜼 − 𝜷+ 𝟏)

𝚪(𝜼)
𝕿𝒂
𝜶𝒇(𝒙)

+
𝚪(𝜼 − 𝜶 + 𝟏) ∙ 𝚪(𝜼 − 𝜷 + 𝟏)

𝜷𝚪(𝜼)
[

𝕿𝒂
𝜶+𝜷
𝒇(𝒙)

𝚪(𝜼 − (𝜶 + 𝜷) + 𝟐)
−
(𝒙 − 𝒂)

𝚪(𝜼)
∫𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟐−(𝜶+𝜷)

𝒙

𝒂

] 

   =
𝚪(𝜼 − 𝜷 + 𝟏)

𝛃𝚪(𝜼)
{(𝒙 − 𝒂)𝜷𝕿𝒂

𝜶𝒇(𝒙)

+ 𝚪(𝜼 − 𝜶 + 𝟏) [
𝕿𝒂
𝜶+𝜷

𝒇(𝒙)

𝚪(𝜼 − (𝜶 + 𝜷) + 𝟏)
−
(𝒙 − 𝒂)

𝚪(𝜼)
∫ 𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒂)𝟐−(𝜶+𝜷)

𝒙

𝒂

]}. 

 

 

 

 

 

 

 

Notice that as 𝛼, 𝛽 ⟶ 1, we have 𝔗𝑎
1𝔗𝑎

1𝑓(𝑥) = 𝔗𝑎
2𝑓(𝑥). Now, let us introduce the generalized 

version of Theorem 2.2.1. 

Theorem 2.2.3 Let 𝑓: [𝑎,∞) → ℝ be a function such that 𝑓𝑛(𝑥) is continuous. Then, for 

𝑥 > 𝑎, 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 ∈ ℤ+, 𝛽 = 𝛼 − 𝑛, 𝜂 ∈ ℝ+. we have 

𝑮𝜶
𝒂𝕿𝒂

𝜶𝒇(𝒙) = 𝒇(𝒙), 

 

                    𝕿𝒂
𝜶𝑮𝜶

𝒂𝒇(𝒙) = 𝒇(𝒙) −∑
𝒇𝒌(𝒂)(𝒙 − 𝒂)𝒌

𝒌!

𝒏

𝒌=𝟎

, 
 

      

 

 

(2.35) 

 

 

(2.36) 

and for the function 𝑓: [−∞, 𝑏) → ℝ whose nth derivative is continuous, we have 

𝑮𝜶
 

 
𝒃 𝕿 

𝜶
𝒃
 𝒇(𝒙) = 𝒇(𝒙), 

 

𝕿 
𝜶

𝒃
 𝑮𝜶

 
 
𝒃 𝒇(𝒙) = 𝒇(𝒙) −∑(−𝟏)𝒌

𝒇𝒌(𝒃)(𝒃 − 𝒙)𝒌

𝒌!

𝒏

𝒌=𝟎

. 

(2.37) 

 

 

(2.38) 

Proof. By means of (2.9) and (2.27), we get 
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      𝑮𝛼
𝑎𝕿𝑎

𝛼𝑓(𝑥) = 𝐺𝛽
𝑎 (

𝑑𝑛

𝑑𝑥𝑛
𝕿𝑎
𝛼𝑓(𝑥))

=
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)Γ(𝑛 + 1)
𝐺𝛽
𝑎 (

𝑑𝑛

𝑑𝑥𝑛
{∫(𝑥 − 𝑡)𝑛𝑓(𝑡)

𝑑𝑡

(𝑡 − 𝑎)1−𝛽

𝑥

𝑎

})

= 𝐺𝛽
𝑎 (
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)
∫𝑓(𝑡)

𝑑𝑡

(𝑡 − 𝑎)1−𝛽

𝑥

𝑎

) = 𝐺𝛽
𝑎𝔗𝑎

𝛽
𝑓(𝑥)

= 𝑓(𝑥).                                   

 

        𝕿𝑎
𝛼𝑮𝛼

𝑎𝑓(𝑥) =
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)
Ι𝑎
𝑛+1 ((𝑥 − 𝑎)𝛽−1𝑮𝛼

𝑎𝑓(𝑥))

=
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)Γ(𝑛 + 1)
∫(𝑥 − 𝑡)𝑛𝑮𝛼

𝑎𝑓(𝑡)
𝑑𝑡

(𝑡 − 𝑎)1−𝛽

𝑥

𝑎

=
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)Γ(𝑛 + 1)
∫(𝑥 − 𝑡)𝑛𝐺𝛽

𝑎𝑓(𝑛)(𝑡)
𝑑𝑡

(𝑡 − 𝑎)1−𝛽

𝑥

𝑎

=
Γ(𝜂 − 𝛽 + 1)

Γ(𝜂)Γ(𝑛 + 1)
∫(𝑥 − 𝑡)𝑛(𝑡 − 𝑎)1−𝛽

Γ(𝜂)

Γ(𝜂 − 𝛽 + 1)
𝑓(𝑛+1)(𝑡)

𝑑𝑡

(𝑡 − 𝑎)1−𝛽

𝑥

𝑎

= Ι𝑎
𝑛+1𝑓(𝑛+1)(𝑥) = 𝑓(𝑥) −∑

𝑓𝑘(𝑎)(𝑥 − 𝑎)𝑘

𝑘!

𝑛

𝑘=0

, 

where we used the integration by parts. A similar argument can be followed to prove the relations 

for the right fractional derivatives and integrals. 

Note that if 𝑛 = 0, then  𝕿𝑎𝛼𝑮𝛼𝑎𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑎) and 𝕿 
𝛼

𝑏
 𝑮𝛼

 
 
𝑏 𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑏). 

3. Gohar Fractional Power Series Expansions 

Certain functions that lack infinite differentiability at some points do not possess a Taylor power 

series expansion at those points. In this section, we proceed to develop the Gohar fractional power 

series expansions to ensure the existence of fractional power series expansions for these functions at 

such points. 

Theorem 3.1. Let 𝑓(𝑥) be an infinitely 𝐺𝛼
𝑥0-differentiable function on the neighborhood of a point 𝑥0. Then, 

for 0 < 𝛼 ≤ 1, the Gohar fractional power series expansion of 𝑓 is defined by 

𝒇(𝒙) = ∑[
𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
]

𝒌
𝑮𝜶
𝒙𝟎(𝒌)𝒇(𝒙𝟎)(𝒙 − 𝒙𝟎)

𝜶𝒌

𝒌!

∞

𝒌=𝟎

, 
 

(3.1) 

 

where 𝑥0 < 𝑥 < 𝑥0 + ℛ
1

𝛼, ℛ > 0, 𝜂 ∈ ℝ+. 
Proof. Let us expand 𝑓 as an infinite power series of the form 

𝒇(𝒙) =∑𝒄𝒊(𝒙 − 𝒙𝟎)
𝒊𝜶

∞

𝒊=𝟎

, 𝒙𝟎 < 𝒙 < 𝒙𝟎 +𝓡
𝟏
𝜶, 𝓡 > 𝟎. 

 

 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 February 2024                   doi:10.20944/preprints202402.1667.v1



 11 

 

Consequently,   

𝒇(𝒙𝟎) = 𝒄𝟎 

𝑮𝜶
𝒙𝟎𝒇(𝒙𝟎) =

𝜶𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
𝒄𝟏 ⟶ 𝒄𝟏 =

𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
𝑮𝜶
𝒙𝟎𝒇(𝒙𝟎) 

𝑮𝜶
𝒙𝟎(𝟐)𝒇(𝒙𝟎) = [

𝜶𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
]

𝟐

∙ 𝟐𝒄𝟐 ⟶ 𝒄𝟐 = [
𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
]

𝟐
𝑮𝜶
𝒙𝟎(𝟐)𝒇(𝒙𝟎)

𝟐
 

. 

. 

. 

𝑮𝜶
𝒙𝟎(𝒏)𝒇(𝒙𝟎) = [

𝜶𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
]

𝒏

∙ (𝒏!)𝒄𝒏 ⟶ 𝒄𝒏 = [
𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
]

𝒏
𝑮𝜶
𝒙𝟎(𝒏)𝒇(𝒙𝟎)

𝒏!
. 

 

 

 

 

Example 3.1. The Gohar fractional exponential function 𝐸𝛼,𝜂
𝑥0 (𝜆, 𝑥) is not classically differentiable at 

𝑥 = 𝑥0, and so it does not possess a Taylor power series expansion on the neighborhood of 𝑥0 for 

0 < 𝛼 ≤ 1. However, 𝐺𝛼
𝑥0(𝑘)𝑓(𝑥0) = 𝜆

𝑘𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘, which means that 𝑓 can be expanded in the Gohar 

fractional sense  as  

𝑬𝜶,𝜼
𝒙𝟎 (𝝀, 𝒙) = ∑[𝝀 ∙

𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
]

𝒌
(𝒙 − 𝒙𝟎)

𝜶𝒌

𝒌!

∞

𝒌=𝟎

. 
 

(3.2) 

 
The ratio test confirms the convergence of the series above to 𝑓 over 𝑥 ∈ [𝑥0, ∞).  

Example 3.2. The fractional trigonometric functions 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥 − 𝑥0)
𝛼  and 𝑔(𝑥) = 𝑐𝑜𝑠(𝑥 − 𝑥0)

𝛼  

are not classically differentiable at 𝑥 = 𝑥0,  and so they do not possess a Taylor power series 

expansion over the neighborhood of 𝑥0 for 0 < 𝛼 ≤ 1. However  

𝐺𝛼
𝑥0𝑓(𝑥) =

𝛼Γ(𝜂)

Γ(𝜂 − 𝛼 + 1)
𝑔(𝑥) 𝑎𝑛𝑑 𝐺𝛼

𝑥0𝑔(𝑥) = −
𝛼Γ(𝜂)

Γ(𝜂 − 𝛼 + 1)
𝑓(𝑥), 

and hence  

𝒔𝒊𝒏(𝒙 − 𝒙𝟎)
𝜶 =∑(−𝟏)𝒌

(𝒙 − 𝒙𝟎)
(𝟐𝒌+𝟏)𝜶

(𝟐𝒌 + 𝟏)!

∞

𝒌=𝟎

, 𝒙 ∈ [𝒙𝟎, ∞),  

     𝒄𝒐𝒔(𝒙 − 𝒙𝟎)
𝜶 =∑(−𝟏)𝒌

(𝒙 − 𝒙𝟎)
(𝟐𝒌)𝜶

(𝟐𝒌)!
,

∞

𝒌=𝟎

            𝒙 ∈ [𝒙𝟎, ∞).       

 

(3.3) 

 

 

(3.4) 
Example 3.3. Consider the initial value problem 

𝑮𝜶
𝒂𝒇(𝒙) = 𝝀𝒇(𝒙), 𝒇(𝒙𝟎) = 𝒇𝟎 (3.5) 

whose solution is differentiable over (𝑥0, ∞). 

Applying the left Gohar fractional integral to both sides of (3.5), we get 

𝑓(𝑥) = 𝑓0 + 𝜆𝔗𝑎
𝛼𝑓(𝑥),  

And hence 

𝑓𝑛+1(𝑥) = 𝑓0 + 𝜆𝔗𝑎
𝛼𝑓𝑛(𝑥),    𝑛 = 0,1,2, … 

For 𝑛 = 0, we have 

𝑓1(𝑥) = 𝑓0 + 𝜆𝑓0
Γ(𝜂 − 𝛼 + 1)

𝛼Γ(𝜂)
(𝑥 − 𝑥0)

𝛼 = 𝑓0 [1 + 𝜆
Γ(𝜂 − 𝛼 + 1)

𝛼Γ(𝜂)
(𝑥 − 𝑥0)

𝛼], 

for 𝑛 = 1, we have 

𝑓2(𝑥) = 𝑓0 [1 + 𝜆
Γ(𝜂 − 𝛼 + 1)

𝛼Γ(𝜂)
(𝑥 − 𝑥0)

𝛼 + 𝜆2 (
Γ(𝜂 − 𝛼 + 1)

𝛼Γ(𝜂)
)

2

∙
(𝑥 − 𝑥0)

2𝛼

2
]. 
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By means of Mathematical induction, the solution to (45) is given by 

 

   𝒇𝒏(𝒙) = 𝒇𝟎∑(𝝀
𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
)

𝒌

∙
(𝒙 − 𝒙𝟎)

𝒌𝜶

𝒌!

𝒏

𝒌=𝟎

. 

 

 

  

(3.6) 
As 𝑛 ⟶ ∞, the obtained solution is expressed in terms of the Gohar fractional exponential function 

(2.23) as follows 

𝒇𝒏(𝒙) = 𝒇𝟎∑(𝝀
𝚪(𝜼 − 𝜶 + 𝟏)

𝜶𝚪(𝜼)
)

𝒌

∙
(𝒙 − 𝒙𝟎)

𝒌𝜶

𝒌!

∞

𝒌=𝟎

= 𝒇𝟎𝑬𝜶,𝜼
𝒙𝟎 (𝝀, 𝒙). 

 

(3.7) 
For 𝛼 = 1 the solution (3.7) reduces to 𝑓(𝑥) = 𝑓0𝐸1,𝜂

𝑥0 (𝜆, 𝑥) = 𝑓0𝑒 
𝜆(𝑥−𝑥0), which is compatible 

with the exact solution of (3.5) at 𝛼 = 1. 

4. Gohar Fractional Laplace Transform 

4.1. Basic Definitions and Results 

Definition 4.1.1. Let 𝑓: [𝑡0,∞) → ℝ be a real-valued function. Then the Gohar fractional Laplace 

transform of 𝑓 of order 0 < 𝛼 ≤ 1, denoted by ℒ𝛼
𝑡0𝑓(𝑡), is defined by  

𝓛𝜶
𝒕𝟎{𝒇(𝒕)} = 𝓕𝜶

𝒕𝟎(𝓢) =
𝚪(𝜼 − 𝜶 + 𝟏)

𝚪(𝜼)
∫ 𝑬𝜶,𝜼(−𝓢, 𝒕)𝒇(𝒕)

𝒅𝒕

(𝒕 − 𝒕𝟎)
𝟏−𝜶 

∞

𝒕𝟎

, 
 

(3.8) 

 
provided the integral exists, where 𝑡0 ∈ ℝ, 𝜂 ∈ ℝ

+. 

Lemma 4.1.1. Let 𝑓: [𝑡0, ∞) → ℝ  be twice differentiable real-valued function. Then its Gohar 

fractional Laplace transform satisfies the following relations: 

𝓛𝜶
𝒕𝟎{𝑮𝜶

𝒕𝟎𝒇(𝒕)} = 𝓢𝓛𝜶
𝒕𝟎{𝒇(𝒕)} − 𝒇(𝒕𝟎), 

 

𝓛𝜶
𝒕𝟎 {𝑮𝜶

𝒕𝟎(𝟐)𝒇(𝒕)} = 𝓢𝟐𝓛𝜶
𝒕𝟎{𝒇(𝒕)} − 𝓢𝒇(𝒕𝟎) − 𝑮𝜶

𝒕𝟎𝒇(𝒕𝟎). 

 

(3.9) 

 

(3.10) 

Proof. The result (3.9) can be obtained by applying (3.8) and (2.3) and using the integration by parts, 

while (3.10) is a direct consequence of (3.9). 

The following Lemma highlights one of the most interesting results: the relation between the 

classical and the Gohar fractional Laplace transforms. 

Lemma 4.1.2. Let 𝑓: [𝑡0, ∞) → ℝ be a real-valued function such that ℒ𝛼
𝑡0{𝑓(𝑡)} = ℱ𝛼

𝑡0(𝒮) exists. Then 

  𝓛𝜶
𝒕𝟎{𝒇(𝒕)} = 𝓕𝜶

𝒕𝟎(𝓢) = 𝓛{𝒇((
𝛂𝚪(𝜼)

𝚪(𝜼 − 𝜶 + 𝟏)
𝒕)

𝟏
∝

+ 𝒕𝟎)} , 𝟎 < 𝜶 ≤ 𝟏, 

where 

𝓛{𝒇(𝒕)} = ∫ 𝒆−𝓢𝒕𝒇(𝒕)𝒅𝒕

∞

𝟎

. 

 

(3.11) 

 

 

 

(3.12) 

Proof. The result follows directly by taking the substitution 𝑥 =
Γ(𝜂−𝛼+1)

Γ(𝜂)
∙
(𝑡−𝑡0)

𝛼

𝛼
 in (3.8). 

Theorem 4.1.1. Let 𝑓, 𝑔: [𝑡0, ∞) → ℝ  be real-valued functions and 𝜆, 𝜇, 𝑐 ∈ ℝ.  Then, if ℱ𝛼
𝑡0(𝒮) =

ℒ𝛼
𝑡0{𝑓(𝑡)} and ℋ𝛼

𝑡0(𝒮) = ℒ𝛼
𝑡0{ℎ(𝑡)} exist for 𝒮 ≥ 0, 0 < 𝛼 ≤ 1, then 

 

𝓛𝜶
𝒕𝟎{𝝀𝒇(𝒕) + 𝝁𝒉(𝒕)} = 𝝀𝓕𝜶

𝒕𝟎(𝓢) + 𝝁𝓗𝜶
𝒕𝟎(𝓢), 𝓢 > 𝟎, 

 

(3.13) 
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𝓛𝜶
𝒕𝟎{𝑬𝜶,𝜼

𝒕𝟎 (𝝀, 𝒕)𝒇(𝒕)} = 𝓕𝜶
𝒕𝟎(𝓢 − 𝝀), 

 

𝓛𝜶
𝒕𝟎 {[

𝚪(𝜼 − 𝜶 + 𝟏)

𝛂𝚪(𝜼)
]

𝒏

(𝒕 − 𝒕𝟎)
𝒏𝜶𝒇(𝒕)} = (−𝟏)𝒏

𝒅𝒏

𝒅𝓢𝒏
𝓕𝜶
𝒕𝟎(𝓢), 

 

𝓛𝜶
𝒕𝟎{(𝒇 ∗ 𝒉)(𝒕)} = 𝓕𝜶

𝒕𝟎(𝓢) ∙ 𝓗𝜶
𝒕𝟎(𝓢), 𝓢 > 𝟎, 

                                       

𝓛𝜶
𝒕𝟎{𝕿𝒕𝟎

𝜶 𝒇(𝒕)} =
𝓕𝜶
𝒕𝟎(𝓢)

𝓢
, 𝓢 > 𝟎. 

 

 

 

(3.14) 

 

 

(3.15) 

 

 

(3.16) 

 

 

(3.17) 

Proof. The relations (3.13), (3.14), (3.15), and (3.16) are direct consequences of (3.11) and the properties 

of the classical Laplace transform, and for (3.17) we have 

ℒ𝛼
𝑡0{𝐺𝛼

𝑡0𝔗𝑡0
𝛼 𝑓(𝑡)} = ℱ𝛼

𝑡0(𝒮) = 𝒮ℒ𝛼
𝑡0{𝔗𝑡0

𝛼 𝑓(𝑡)} − 𝔗𝑡0
𝛼 𝑓(𝑡0) = 𝒮ℒ𝛼

𝑡0{𝔗𝑡0
𝛼 𝑓(𝑡)}, 

which implies that 

ℒ𝛼
𝑡0{𝔗𝑎

𝛼𝑓(𝑡)} =
ℱ𝛼
𝑡0(𝒮)

𝒮
, 𝒮 > 0, 

where 𝐺𝛼
𝑡0𝔗𝑡0

𝛼 𝑓(𝑡) = 𝑓(𝑡)  by (2.19) and ℒ𝛼
𝑡0{𝐺𝛼

𝑡0𝔗𝑡0
𝛼 𝑓(𝑡)} = 𝒮ℒ𝛼

𝑡0{𝔗𝑡0
𝛼 𝑓(𝑡)} − 𝔗𝑡0

𝛼 𝑓(𝑡0)  by (3.9) and 

𝔗𝑡0
𝛼 𝑓(𝑡0) = 0 by (2.17). 

Example 4.1.1. In this example we obtain the Gohar fractional Laplace transform for some functions.  

• ℒ𝛼
𝑡0{𝑐} =

𝑐

𝒮
, 𝑐 ∈ ℝ, 𝒮 > 0 

• ℒ𝛼
𝑡0{𝐸𝛼,𝜂

𝑡0 (𝜆, 𝑡)} =
1

𝒮 − 𝜆
, 𝒮 > 𝜆 

• ℒ𝛼
0{𝑡𝑛} = [

αΓ(𝜂)

Γ(𝜂 − 𝛼 + 1)
]

𝑛
𝛼 Γ (

𝑛
𝛼 + 1)

𝒮
𝑛
𝛼
+1

, 𝑛 ∈ ℤ+, 𝒮 > 0 

• ℒ𝛼
0{𝑡𝑛𝐸𝛼,𝜂

0 (𝜆, 𝑡)} = [
αΓ(𝜂)

Γ(𝜂 − 𝛼 + 1)
]

𝑛
𝛼 Γ (

𝑛
𝛼 + 1)

(𝒮 − 𝜆)
𝑛
𝛼
+1
, 𝑛 ∈ ℤ+, 𝒮 > 𝜆 

• ℒ𝛼
𝑡0 {𝐸𝛼,𝜂

𝑡0 (𝜆, 𝑡)𝑠𝑖𝑛 (𝑘
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∙
(𝑡 − 𝑡0)

𝛼

𝛼
)} =

𝑘

(𝒮 − 𝜆)2 + 𝑘2
, 𝑘 ∈ ℝ, 𝒮 > 𝜆. 

Example 4.1.2 (The logistic model). Consider the nonlinear Gohar fractional logistic-type differential 

equation 

            𝑮𝜶𝒇(𝒕) = [𝟏 − 𝑬𝜶,𝜼
𝟎 (−𝟏, 𝒕)𝒇(𝒕)]𝒇(𝒕), 𝟎 < 𝜶 ≤ 𝟏, (3.18) 

Subject to the initial condition 𝑓(0) = 𝑓0 =
1

2
.  

With the transformation 𝜑(𝑡) = [𝑓(𝑡)]−1, we can linearize (3.18) as follows 

𝐺𝛼𝜑(𝑡) = 𝐸𝛼,𝜂
0 (−1, 𝑡) − 𝜑(𝑡). 

Applying the Gohar fractional Laplace transform to both sides we get 

ℒ𝛼
0{𝐺𝛼𝜑(𝑡)} = ℒ𝛼

0{𝐸𝛼,𝜂
0 (−1, 𝑡) − 𝜑(𝑡)}, 
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𝒮Φ𝛼
0(𝒮) − 2 =

1

𝒮 + 1
− Φ𝛼

0(𝒮), 

Φ𝛼
0(𝒮) =

1

(𝒮 + 1)2
+

2

𝒮 + 1
. 

Applying the inverse Gohar fractional Laplace transform to both sides, the solution to (3.18) is given 

by 

𝒇(𝒕) = [
𝚪(𝜼 − 𝜶 + 𝟏)

𝛂𝚪(𝜼)
𝒕𝜶 + 𝟐]

−𝟏

∙ 𝑬𝜶,𝜼
𝟎 (−𝟏, 𝒕). 

          

(3.19) 

Example 4.1.3 (The Bertalanffy model). The nonlinear Gohar fractional Bertalanffy differential 

equation is defined as  

   𝑮𝜶𝒇(𝒕) = 𝒇(𝒕)
𝟐
𝟑 − 𝒇(𝒕), 𝟎 < 𝜶 ≤ 𝟏, 

 

(3.20) 

 
under the initial condition 𝑓(0) = 𝑓0. 

With the transformation 𝜑(𝑡) = 𝑓(𝑡)
1

3, we can linearize (3.20) as follows: 

𝐺𝛼𝜑(𝑡) =
1

3
(1 − 𝜑(𝑡)), 𝜑0 = 𝑓0

1
3. 

Applying the Gohar fractional Laplace transform to both sides we get 

Φ𝛼
0(𝒮) =

1

𝒮
+ (𝜑0 − 1) (𝒮 +

1

3
)
−1

. 

Applying the inverse Gohar fractional Laplace transform to both sides, we get 

                 𝒇(𝒕) = [𝟏 + (𝒇𝟎
𝟏
𝟑 − 𝟏) ∙ 𝑬𝜶,𝜼

𝟎 (−
𝟏

𝟑
, 𝒕)]

𝟑

. 
 

(3.21) 

4.2. Validity of the Gohar Fractional Laplace Transform for Solving Linear Fractional Differential Equations 

Now we shall investigate the validity of the Gohar fractional Laplace transform for solving linear 

fractional differential equations of the form 

 

𝑮𝜶
𝒕𝟎𝒇(𝒕) + 𝕻𝒇(𝒕) = 𝝍(𝒕), ∀𝒕 ∈ [𝒕𝟎, ∞); 𝒇(𝒂) = 𝒇𝟎, 

 

(4.1)  

where 𝑓: [𝑡0, ∞) → ℝ,𝔓 ∈ ℝ, and 𝜓: [𝑡0, ∞) → ℝ is a continuous function. 

Theorem 4.2.1. Let 𝑓: [𝑡0, ∞) → ℝ be a piecewise continuous Gohar exponentially bounded function. If 

ℱ𝛼
𝑡0(𝒮) = ℒ𝛼

𝑡0{𝑓(𝑡)}, then ℱ𝛼
𝑡0(𝒮) ⟶ 0 𝑎𝑠 𝒮 ⟶ ∞. 

Proof. The Gohar exponential boundedness of 𝑓 implies the existence of 𝜆, Λ1 ∈ ℝ
+and 𝜏 ∈ [𝑡0,∞) 

such that |𝑓(𝑡)| ≤ Λ1 ∙ 𝐸𝛼,𝜂
𝑡0 (𝜆, 𝑡), ∀𝑡 ≥ 𝜏.  Furthermore, the piecewise continuity of 𝑓  on [𝑡0, 𝜏] 

implies its boundedness there; that is, ∃ Λ2 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑓(𝑡)| ≤ Λ2, ∀ 𝑡0 ≤ 𝑡 ≤ 𝜏. 

This means that |𝑓(𝑡)| ≤ Λ ∙ 𝐸𝛼,𝜂
𝑡0 (𝜆, 𝑡), ∀𝑡 ∈ [𝑡0,∞), where Λ = max {Λ1, Λ2}. Therefore, 

|
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∫𝐸𝛼,𝜂

𝑡0 (−𝒮, 𝑡)𝑓(𝑡)
𝑑𝑡

(𝑡 − 𝑡0)1−𝛼

𝑇

𝑡0

|

≤
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∫|𝐸𝛼,𝜂

𝑡0 (−𝒮, 𝑡)𝑓(𝑡)|
𝑑𝑡

(𝑡 − 𝑡0)1−𝛼

𝑇

𝑡0
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≤ Λ
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∫𝐸𝛼,𝜂

𝑡0 (−𝒮 + 𝜆, 𝑡)
𝑑𝑡

(𝑡 − 𝑡0)1−𝛼

𝑇

𝑡0

 

                                                                       =
Λ

𝒮 − 𝜆
−

Λ

𝒮 − 𝜆
𝐸𝛼,𝜂
𝑡0 (−𝒮 + 𝜆, 𝑇). 

As 𝑇 ⟶ ∞, we have 

|ℱ𝛼
𝑡0(𝒮)| ≤

Λ

𝒮 − 𝜆
, 𝒮 > 𝜆. 

According to Theorem 4.2.1, the functions 𝒰(𝒮) = 𝑐𝑜𝑠(𝒮), 𝒱(𝒮) = 𝒮2, 𝑎𝑛𝑑 𝒲(𝒮) =
𝑒𝒮

𝒮
 are not 

Gohar fractional Laplace transforms of any function 𝑓. 

Theorem 4.2.2. Let 𝑓: [𝑡0, ∞) → ℝ  be a unique continuous solution to the linear fractional differential 

equation (4.1); if the forcing function 𝜓: [𝑡0,∞) → ℝ is continuous and Gohar exponentially bounded over its 

domain, then the solution 𝑓(𝑡) and its Gohar fractional derivative 𝐺𝛼
𝑡0𝑓(𝑡) are Gohar exponentially bounded 

and their Gohar fractional Laplace transform exist. 

Proof. Since 𝜓(𝑡)  is Gohar exponential bounded over [𝑡0, ∞),  then there exist 𝜈, Ω ∈ ℝ+ and 

sufficiently large 𝜏 ∈ [𝑡0, ∞),  such that |𝜓(𝑡)| ≤ Ω𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡), ∀ 𝑡 ≥ 𝜏.  Furthermore, 𝑓(𝑡)  is a 

solution to the Volterra integral equation 

𝑓(𝑡) = 𝑓0 +
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∫(𝜓(𝑠) − 𝔓𝑓(𝑠))

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

. 

For 𝑡 ≥ 𝜏, we can write it as  

𝑓(𝑡) = 𝑓0 +
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{∫(𝜓(𝑠) − 𝔓𝑓(𝑠))

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝜏

𝑡0

+∫(𝜓(𝑠) − 𝔓𝑓(𝑠))
𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝜏

}. 

The continuity of 𝑓(𝑡)  leads to the boundedness of 𝜓(𝑡) − 𝔓𝑓(𝑡)  over [𝑡0, 𝜏];  that is, ∃ Λ >

0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝜓(𝑡) − 𝔓𝑓(𝑡)‖ ≤ Λ, ∀ 𝑡0 ≤ 𝑡 ≤ 𝜏.  Consequently we have 

‖𝑓(𝑡)‖ ≤ ‖𝑓0‖ +
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∫

𝑑𝑠

(𝑠 − 𝑡0)
1−𝛼

+∫‖𝜓(𝑠)‖
𝑑𝑠

(𝑠 − 𝑡0)
1−𝛼

+ |𝔓|∫‖𝑓(𝑠)‖
𝑑𝑠

(𝑠 − 𝑡0)
1−𝛼

𝑡

𝜏

𝑡

𝜏

𝜏

𝑡0

}. 

Multiplying both sides by the Gohar fractional exponential function 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡) and noting that 

𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡) ≤ 𝐸𝛼,𝜂

𝑡0 (−𝜈, 𝜏) and |𝜓(𝑡)| ≤ Ω𝐸𝛼,𝜂
𝑡0 (𝜈, 𝑡), ∀ 𝑡 ≥ 𝜏, we get 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 February 2024                   doi:10.20944/preprints202402.1667.v1



 16 

 

‖𝑓(𝑡)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡)

≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ𝐸𝛼,𝜂

𝑡0 (−𝜈, 𝑡) ∫
𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝜏

𝑡0

+ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡)∫‖𝜓(𝑠)‖

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼
+ |𝔓|

𝑡

𝜏

∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡)∫‖𝑓(𝑠)‖

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝜏

} 

                          ≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)∫‖𝜓(𝑠)‖

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝜏

+ |𝔓|∫‖𝑓(𝑠)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝜏

} 

                       ≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+ Ω ∫𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡) ∙ 𝐸𝛼,𝜂

𝑡0 (𝜈, 𝑠)
𝑑𝑠

(𝑠 − 𝑡0)
1−𝛼

𝑡

𝑡0

+ |𝔓| ∫‖𝑓(𝑠)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑠)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

}    

≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+ Ω ∫𝑒−𝜈𝜉𝑑𝜉 + |𝔓| ∫‖𝑓(𝑠)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑠)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

𝑡

𝑡0

} 
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≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+ Ω ∫ 𝑒−𝜈𝜉𝑑𝜉 + |𝔓| ∫‖𝑓(𝑠)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑠)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

∞

𝑡0

} 

≤ ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏)

+
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏) +

Ω

𝜈
𝑒−𝜈𝑡0

+ |𝔓| ∫‖𝑓(𝑠)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑠)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

} , 𝑡 ≥ 𝜏.                

By taking 

𝜆 = ‖𝑓0‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏) +

Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
{Λ ∙

(𝜏 − 𝑡0)
𝛼

𝛼
𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝜏) +

Ω

𝜈
𝑒−𝜈𝑡0}, 

and 

𝜑(𝑡) = ‖𝑓(𝑡)‖ ∙ 𝐸𝛼,𝜂
𝑡0 (−𝜈, 𝑡), 𝜇 = |𝔓|, 

we get the Gronwall integral inequality (2.25) 

𝜑(𝑡) = 𝜆 + 𝜇 ∙
Γ(𝜂 − 𝛼 + 1)

Γ(𝜂)
∫𝜑(𝑠)

𝑑𝑠

(𝑠 − 𝑡0)1−𝛼

𝑡

𝑡0

, 𝑡 ≥ 𝜏. 

In view of Lemma 2.2.1, we have 

𝜑(𝑡) ≤ 𝜆𝐸𝛼,𝜂
𝑡0 (𝜇, 𝑡), 

which implies that 

‖𝑓(𝑡)‖ ≤ 𝜆𝐸𝛼,𝜂
𝑡0 (𝜇 + 𝜈, 𝑡), 𝑡 ≥ 𝜏. 

From (4.1), we get 

‖𝐺𝛼
𝑡0𝑓(𝑡)‖ ≤ |𝔓|‖𝑓(𝑡)‖ + ‖𝜓(𝑡)‖ ≤ 𝜆|𝔓|𝐸𝛼,𝜂

𝑡0 (𝜇 + 𝜈, 𝑡) + Ω𝐸𝛼,𝜂
𝑡0 (𝜈, 𝑡), 𝑡 ≥ 𝜏. 

This completes the proof. 

5. Conclusions 

In this work, we developed new definitions, fundamental theorems, and classical properties of 

Gohar fractional calculus. The left and right Gohar fractional derivatives and integrals are defined 

and extended to higher fractional orders. The fractional Gronwall's inequality, power series 

expansion, and Laplace transform are defined and applied to overcome some of the limitations in the 

classical integer-order calculus. The fractional Laplace transform is applied to solve the logistic and 

Bertalanffy nonlinear fractional differential equations. The fractional Gronwall inequality is used to 

demonstrate the exponential boundedness of the solutions to linear fractional differential equations, 
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which validates the Gohar fractional Laplace transform for solving such equations. However, it is 

essential for the forcing function to be continuous and Gohar exponentially bounded.  
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