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Abstract: Recently, Gohar et al. introduced a novel, local, and well-behaved fractional calculus. It possesses all
the classical properties, and Its locality imposes simplicity and accuracy in modeling fractional order systems.
In this article, we further develop the definitions and extend the classical properties of Gohar fractional
calculus to address some of the open problems in Calculus. The fractional Gronwall's integral inequality,
Taylor power series expansion, and Laplace transform are defined and applied to overcome some of the
limitations in the classical integer-order calculus. The fractional Laplace transform is applied to solve Bernoulli-
type logistic and Bertalanffy nonlinear fractional differential equations, and the criteria under which it can be
applied to solve linear differential equations are investigated.
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1. Introduction

Over the last two decades, the impact of fractional calculus in both theoretical and practical
domains of science and engineering has grown substantially [1-3]. The dynamical behaviors can be
more precisely modeled and investigated within the framework of fractional calculus, as fractional-
order models of dynamical systems retain the memory of their earlier states [4], thereby offering a
more accurate and realistic description of their dynamical behavior. Until recently, many real-world
applications of fractional calculus have been confined to the well-known Riemann-Liouville and
Caputo fractional derivatives [5]. While these fractional derivatives offer certain desirable
advantages, such as memory storage and hereditary effects in natural phenomena, their "non-local"
integral definitions, which involve weakly singular kernels, give rise to theoretical limitations and
computational complexities. Among these limitations, we highlight their failure to satisfy some basic
properties such as the product rule, quotient rule, and chain rule. In addition, they do not meet Rolle’s
theorem or the mean value theorem.

Beyond these limitations, A. A. Gohar et al. [6] have recently introduced a novel, simple, and
well-behaved fractional calculus that preserves all the aforementioned basic properties and theorems,
which makes it a promising mathematical tool for modeling fractional-order systems. Some functions
are not differentiable in the classical sense, while others do not have Taylor power series expansions
over the neighborhood of certain points. However, as we shall see, all of these constraints can be
broken within the context of Gohar fractional calculus. In this article, we aim to develop new
definitions and properties of Gohar fractional calculus to fill in some gaps in the integer-order
Calculus and broaden its scope of application.

The article is organized as follows: In Section 2, the left and right Gohar fractional derivatives
and integrals of higher fractional orders (a > 1) are defined, the sequential fractional derivative is
introduced, and the Gronwall integral inequality is extended into the Gohar fractional domain.
Furthermore, the relationship between Gohar and Riemann-Liouville fractional integrals is
examined, and the interaction between Gohar fractional derivatives and integrals is discussed.
Finally, section 2 concludes with the partial Gohar fractional derivative of a function with several
variables. In Section 3, the fractional power series expansion is defined, and the series expansions for
some functions that do not have Taylor power series expansion in classical calculus are obtained. In
Section 4, the Gohar fractional Laplace transform is defined and applied to solve the Bernoulli-type
logistic and Bertalanffy nonlinear fractional differential equations. Furthermore, the Validity of
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applying the Gohar fractional Laplace transform to solve linear fractional differential equations is
investigated and discussed in detail.

2. Definitions, theorems, and further properties

2.1. Gohar Fractional Derivatives

Definition 2.1.1. The “left” Gohar fractional derivative of a function f:[a, ) - R of order 0 < a <
1 denoted by Ggf(x), is defined by

@) — limm L . I() A
Gaf(x) = lim — f(x+ n(1+Axm(x—a) ) )—f(x) , @.1)

and the “right” Gohar fractional derivative of f:(—o,b] > R of order 0 <a <1 denoted by
bG.f(x), is defined by

1 r(n) A
PGof(x) = Jim — [f <x +in (1 Hx g (b ) ) - f(x)], 22

for n e R*.

If f:[a,0) >R is G¢ -differentiable on (a,), and xlirg?+ Gif(x) exists, then
Gf(a) = Jim, G&f(x). Similarly, If f:[-e,b) » R is °G,-differentiable on (-«,b), and
lim bG,f(x) exists, then®G,f(b) = lim bG, f(x).

For a = 0 we write G,f(x) to denote the Gohar fractional derivative of f.

Lemma 2.1.1. Let f:[a,0) - R and g:(—o,b] = R be differentiable functions on (a,) and
(=, b), respectively. Then we have

G = o (k= S (), .
PGag(x) = — % (b-x)"""g'(x). 240
Proof. With the aid of Maclaurin series expansion for the logarithmic function
In (1 + Ax%(x - a)‘“) = Ax%(x — @)%+ 0(Ax?), 25)
we have
Gaf(x) = Alil_l)loA—lx [f (x + AX%O‘ —a)' "+ O(sz)> - f(x)l,

and the result (2.3) is obtained with the substitution h = Ax%(x— a)™® + 0(Ax?). The

relation for the right derivative (2.4) can be obtained by following the same argument.
Corollary 2.1.1. Assume that f,¢:[a,) - R are Gg-differentiable functions on (a,). If f is
differentiable and

) (x—a) ' p(),

Gl O =t —a+ 1) 2.6)

then ¢(x) = f'(x),vx > a.
Proof. The result is a direct consequence of (2.3).
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We define the “left” nth-sequential Gohar fractional derivative of order 0 < a <1 as

G ™ f(x) = G2GLGL ... G2 f(x), (2.7)

n—times

and the “right” nth-sequential Gohar fractional derivative of order 0 < a <1 as

bW F(x) = 26,66, ... PG, f(x). (2.8)

n—times

Definition 2.1.2. For a« € (n,n+ 1],n € Ztand B = a —n. The “left” Gohar fractional derivative of
the n times differentiable function f:[a, ) - R of order a, denoted by G4f(x), is defined by

Gaf(x) = Ggf™ (%), (2.9)
and the “right” Gohar fractional derivative of the n times differentiable function f:[—o0,b) = R of
order a, denoted by G, f(x), is defined by

PGof (x) = (=)™ PG f ™ (x). (2.10)
If f:la,0) >R is G¢ -differentiable on (a,), and Jim, GLf (x) exists, then
Gaf (@) = lim GGf (x). Similarly, If f:[-e,b) >R is ?G,-differentiable on (—,b), and
xlirll)’l_ bG.f(x) exists, then®G, f(b) = xlirgl_ bG.f(x).
Now, let us extend Lemma 2.1.1 for a« € (n,n + 1],n € Z*.

Lemma 2.1.2. Let f:[a,0) > R and g:[—o,b) = R be differentiable functions on (a, ) and
(—o0,b), respectively. Then for @ € (n,n+1],n € Z*and B = a —n we have

F(T]) n+l-a f(n+
f—a+rnrn O T (2.11)

r'(m)
TIm—a+n+1)

Gaf (x) =

Gag(x) = (D" (b — 0" g™ ().

(2.12)

Proof. The results are obtained by substituting (2.3) and (2.4) into (2.9) and (2.10), respectively.

For a=n+1, (2.11) and (2.12) reduce to Gif(x)=f™"V(x) and °*6,g(x) =
(-D)"g™V(x), respectively.
Theorem 2.1.1. Let f,g:[a, ) = R be Gg-differentiable functions on (a, o). Then for x > a,g(x) # 0
we have

Im—a+1) _ aipa a
T [(g(x) —a)* 'Gef(g(x))Gag(x)]. 213)

Proof. Since f and g are Gj-differentiable functions on (a,0). Then their composition fo g is
Gg-differentiable on (a,o0) and its left Gohar fractional derivative is given by

Ga(fog)(x) =

. 1 , r(n) A\
Ga(fog)(X)—llm— (fog) x+ n(1+Axm(x—a) )

Ax—0 Ax
—fe™
o1 r'(m) —a
_Al;lrl_ry})A_x (fog) <x+Axm(x—a) +0(Ax2)>
—(fo g)(x)l,

where we used the Maclaurin series expansion of the logarithmic function (5).
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l‘(n)

By taking § = x + Ax i D

(x — a)™® + 0(Ax?), with the aid of the continuity of g

we proceed as follows

a _ T e F(9®) = f(g(x))
Ga(fo9)(x) —m(X—a)l (g_)x £ x >
) (e a)l‘“( : f(g@®) - f(g(x))>< 96 - g(x))

Im—a+1) g®-gx g —gkx) ox E—x
I'(n — 1
= % . (g(x) _ a)a—l
(T 1-a fl9®) - f(g(x)))
<F(71 —a+1) 9 -a) g(f)—>g(x) g& - gk
_ < r'(n) - a)l_alimg(f) - g(x)>
Im—a+1) E5x E—x

In—a+1)

a-1
T L@@ — 0 6 (g()Geg ()]

Theorem 2.1.2. Let f:[a, ) = R be a non-constant two times differentiable function on (a, ) and a,f €
(0,1] such that a + B € (1,2]. Then

I'(m) I(n—(a+p)+2) 62, f(x)
rm-B+1| T-a+1) ~“*F (2.14)
+(1-B)x~-a) PG f(x)]

Proof. With the aid of (2.3) and the Gohar fractional product rule in [9], we have

r
GaGgf(x) = Gg (% (x — a)l_ﬁf'(x))

GaGpf(x) =

_ I'(m) x
_I‘(n—a+1)F(1]—B+1)

. r'(n) g
-0 el g O )

B [r(m]? —a —Bgr
Tt —a+ DI —B+ D (x—a)'*[(x - a)' Ff (x)

+ (1 -Px—-a)Pf ()]

_ Imra —(e+p) +2) I'(n)
Im—a+DI@-B+\I(m—(a+p)+2)

(x _ a)z—(a'i-ﬁ)fll (x)>

I'(m)
rm—-p+1)

_ I'n Tm—(a+p)+2) ,
"Tm-B+1)| Th—-a+1) Goipf () + (A - B (x—a) ey f(x)]

Theorem 2.1.2. reveals the non-commutativity of the Gohar fractional operator for a # 8, as we can obviously
see that

r'(n)

AP <m

(x - a)l"“f'(x)>
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dra T Th—(a+p)+2) , ara
# GgGg f (x).

Also, itis obvious that G¢Ggf(x) # G4, 4f(x) for a,p € (0,1] and the equality holds for
0<a<1p=1

In the following definition, we introduce the partial derivative of a function of several variables
in the Gohar fractional sense; such a derivative is useful for modeling a wide variety of physical
phenomena via partial fractional differential equations
Definition 2.1.3. Let f:R"™ - R be a function of n variables xi,x;,Xx3,...,x,. The partial Gohar
fractional derivative of f of order 0 < a <1 with respect to the variable x;, denoted by Gy, f, is
defined by

f<x1,x2, vy Xp—1, Xk

r(n) AN
+In 1+hmxk y Xk+1) 1 Xn —f(xl,xz, ...,xn) ,

o1
Ga;xkf = }ll_r)%z
(2.15)

where 1<k <n,neN;neR".
Lemma 2.1.3. Let f:R" > R be a function of n variables x4,x,,x3,..,x, whose first partial

o a . .
derivative —f, 1 < k <n exists and continuous over D c R". Then

Oxy
r
(77) l—a_f(xl,xz,...xk,---,xn)'

Gop f (X1, X2, . Xy, o, X)) = mxk 0x), (2.16)

Proof. With the aid of Maclaurin series expansion for the logarithmic function (5), we have

.1 r'(n) _
Gox S = }llf(}ﬁ[f <x1,x2, oy Xp—1, X + hmxkl * + 0(h?), X1, ---,xn>

- f(xl' X2 ey xn)]'

and the result follows directly by taking &= h- (nr_(’;ll) x4+ 0(h?).

2.2. Gohar Fractional Integrals
Definition 2.2.1. The “left” Gohar fractional integral of a function f:[a,) - R of order 0 < a <1,
denoted by T7f(x), is defined by

. Im—a+1) ; dt .
T8 = e [ fO G € R 2.17)

and the “right” Gohar fractional integral of f:[—,b) - R of order 0 < « <1, denoted by, T“f(x),
is defined by

b
'm—a+1 dt
) = [ 10 e w (2.18)

Theorem 2.2.1 (Fundamental theorem of Gohar fractional calculus). Let f:[a, ) = R be a continuous
function. Then for x > a we have

GETEf (%) = f(x), (2.19)

TaGaf(x) = f(x) - f(@), (2.20)
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and for the continuous function f:[—c0,b) - R we have

G, T (x) = f(2), (2.21)
pT 6 f () = f(x) — f(b), (2.22)

for 0 <a<1,mp€R*
Proof. In view of (2.17) and (2.3), we have

dt
(t — a)l—a

fm—a+1) [
GETLf (%) = G2 “’T‘;) | r®

d[Tp—a+1)

oD _gypa® f FO iz

“Th—-a+1) dx r'(n) =7

a)l a

I'(n-— a+1) dt

TaGaf(x) = ) Ggf( )W

=F(n—a+1)x r(n)
M ) Tm-a+1)

t—a)'"4f' (1)

( a)l a

=f(x) - f(a).
In a similar manner we can prove the other two relations for the right fractional derivatives and
integrals.
Definition 2.2.2. The Gohar fractional exponential function Eg,:[a, ) — R, is defined by
TIm—a+1) (x—a)*
r(m) a )

Eg,(4,x) = exp (A-
(2.23)

where 1€R,0<a<1,n€R"
From the above definition we conclude that E7,(4,x) = e**, from which we obtain the hyperbolic
sine and cosine functions as follows:

1 1
sinh(x) = [Eln(l x) — EP, (=2, x)] and cosh(x) = 5 [ED, (4, x) + ED, (4, x)].

Definition 2.2.3. A function f:[a,) — R is said to be Gohar exponentially bounded if it meets the
following inequality

If(X)] < A-EG,(4,x),Vx € [a, ), (2.24)
where 0 < a <1and,A,n € R*.

Integral inequalities are essential for the qualitative analysis of solutions to differential and
integral equations. By extending the Gronwall integral inequality into the Gohar fractional domain,
we get a mathematical tool for analyzing the stability of Gohar fractional systems.

Lemma 2.2.1. Let ¢ be a nonnegative, continuous function over x € [a,b) for b < o0, and A,u be
nonnegative constants such that:
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Imp—a+1 dt
o(xX)=A+pu- QI ()W- (2.25)

Then
@(x) < A+ E%, (1, %). (2.26)

Proof. Let us define Q(x) = A+ u- ”"F‘(:; Dx w(t)ﬁ A+ pZG(x), such that 9(a) =1 and
Q(x) = ¢(x),Vx € [a,b). Then

GaQ(x) — pQ(x) = pe(x) — pQ(x) < pe(x) — pe(x) = 0.
Multiplying both sides by the Gohar fractional exponential function Eg, (—u,x), and applying the
product rule in [8], we get

G (E&y (1 1)0(0)) = Q)G (Edy(—11,%)) — uQ(O)Ey (—i1,x) < 0.

Provided that GZEZ, (—u, x) = —puEg,(—u, x), the inequality above reduces to

G& (B (-100()) <0,
and (2.20) implies that

1468 (ESy (—100(0)) = E&y (—1, Q) — E&, (—1, )Q(a) = EL, (—,)Q(x) — A
<0,
which implies that

A
p(x) <Q9(x) < ES (=) =A1-EZ,(u x).
an

The next Definition extends the left and right Gohar fractional integrals to higher fractional
orders a € (n,n+ 1],n € Z*.
Definition 2.2.4. The “left” Gohar fractional integral of f:[a,©) = R of order
a € (n,n+ 1],n € Z*, denoted by T&f(x), is defined by

rm-pg+1) . _
(- @)

Taf(x) =
_Tm-+1) n dt
‘Hmﬂn+nj(_”fm( e (2.27)

and the “right” Gohar fractional integral of f:[—c,b) = R of order a € (n,n+ 1],n € Z*, denoted

by ,T% is defined by

rm-g+1) ..,

$TFC) = e

(b —xf1f(x)

_Tm-B+1)

‘rmnm+nja_)”“%u7ﬁ7 (2.28)

where n € R*,f = a —n,I§ and 1 are the “left” and “right” Riemann-Liouville fractional integrals
[7], of order a > 0, respectively, defined by

dt
I5f(x) = T(a )jf( )W (2.29)
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3 1 [ de
) = s [ O 5 (2.30)

Notice thatif « =n+ 1, then f =1 and we have

T = Hn+Dfu—ovamr (2.31)

n+1 _ _ n
pPTf(X) = T(n+ l)j(t x)"f(Hdt, (2.32)
which is, via Cauchy formula, the (n + 1) times iterative integrals of f. It is worth mentioning the
effect of the Q operator on the left Riemann-Liouville fractional integral: QIS f(x) = ,1%Qf (x).
Accordingly, by means of (2.27) we get

+
R P CROaI))
'm—-p+1
=—@T{%—3uﬁ*«b—xwﬂgﬂ@)=bz%9ﬂ@)
1 (2.33)
The following semigroup property relates the Gohar fractional integral operators T2%f and

E3:05+[?

Theorem 2.2.2. Assume that f:[a, o) - R is a function and a,f € (0,1] such that a + f € (1,2]. Then
for x > a we have

aB _ F(’] - ﬁ + 1) _ Baa
mﬂJu»=—ﬁﬂ5—&x¢anu)
T2 ()
T -at Ve =Gy 12 (2.34)

|

2((x — a)*™F2f(x))

X
(x—a) dt
- [ro—F
r() (t— @)= @h)
a
Proof. With the fact that

zac+ﬂf(x) — F(U - (a + B) + 2)

r@m
Tm-(a+p)+2) [ dt
-5 f (= OO ey

we interchange the order of integrals to get
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[r(m1? -~ (s —a)tF

_I‘(11—¢7£+1)-[‘(11—[)’+1)Jr ; ds dt
B [r(m]? aff(t) ([ (s— a)l‘”> (t—a)l-«

dt
(t—a)l-«

Toahyoo = O D T P (f fO ) a

T@-a+ ) T@-B+1) [ [x-a)f (t-a)
- Ok J f“)[ ; ;

_G-af T-p+1)
B r(n)

Taf(x)

TP f(x) (x—a)

Im—a+1)-Tnp—-p+1)
T—(@+H+2) TG f IO —ar wﬂ]

Br(m)

_Tm-B+1)

_ q)Bx@
Ne)) {(x a)PT3f (x)

A (6)) (x-a
+T—a+1 “ - f
M- Dl et p v T | O G ar@w
Notice that as a,f — 1, we have T5ILf(x) = TZf(x). Now, let us introduce the generalized
version of Theorem 2.2.1.
Theorem 2.2.3 Let f:[a, ) = R be a function such that f"(x) is continuous. Then, for
x>aa€nn+1),n€Z"pf=a—nneR" wehave

GATEf(X) = f(x), (2.35)

k k
TG (x) = f(x) - ZM (2.36)

and for the function f:[—o0,b) = R whose nth derivative is continuous, we have

PGopTf(x) = f(x), (2.37)

fEB)(b — x)*

b6 @) = f) = ) (~DF (2.38)

k=0

Proof. By means of (2.9) and (2.27), we get
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0
GIT () = G (% zgf(x))
= Forn s 1% | & U (e =0f (”ﬁ
- o | LA j £ iy | = GRS
= f(x).
TIGLS () = %W(( - )f 168 f(x))
?E%uiiiif (= 06O = gy
- oo
iiZ>r<i:1ii (=0~ 0 e O g

t ( k
a)(x —a)
= e = £ - Y DT
where we used the integration by parts. A similar argument can be followed to prove the relations
for the right fractional derivatives and integrals.

Note thatif n =0, then TGif(x) =f(x) — f(a) and ,T*’G,f(x) = f(x) — f(b).

3. Gohar Fractional Power Series Expansions

Certain functions that lack infinite differentiability at some points do not possess a Taylor power
series expansion at those points. In this section, we proceed to develop the Gohar fractional power
series expansions to ensure the existence of fractional power series expansions for these functions at
such points.

Theorem 3.1. Let f(x) be an infinitely G,°-differentiable function on the neighborhood of a point xo. Then,
for 0 <a <1, the Gohar fmctional power series expansion of f is defined by
Z [rm a + 1)) 62" f (xo) (x — x0)*
S = o () Kl ’ (3.1)

1

where x, < x < xy,+ Rz,R > 0,57 € R*.
Proof. Let us expand f asan infinite power series of the form

) 1
fx) = Z ci(x —x0)" %, xg <x<x9+Ra,R>0.
i=0
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Consequently,
f(x0) = ¢
G;Of(xo) = F(na—isdn-)l-l)(h —Cq = %G’;Of(xo)
Xo(2 r z I'(n— 1 2 Gzo(Z)
G, ( )f(xo) = I‘(na—iiy?l-l) “2¢; > €y = (narg; ) Zf(xo)
x r " I'n— D] g™
GaO(n)f(xo) = [F(na——?il) -mDe, > ¢, = [ (nal‘gg_ )] n{(xo).

Example 3.1. The Gohar fractional exponential function E;% (4,x) is not classically differentiable at
X = xy, and so it does not possess a Taylor power series expansion on the neighborhood of x, for
0 < a < 1. However, Gio(k) f(xo) = A*for all k, which means that f can be expanded in the Gohar
fractional sense as

. . T —a+ D] (- xp)*
E(A,x) = [A- ] .

The ratio test confirms the convergence of the series above to f over x € [xg, ©).
Example 3.2. The fractional trigonometric functions f(x) = sin(x —x,)* and g(x) = cos(x — xy)“
are not classically differentiable at x = x,, and so they do not possess a Taylor power series
expansion over the neighborhood of x, for 0 < a < 1. However

vorr ~_ al() o~ al()
G f(x) = mg(x) and G,°g(x) = —mf(x),
and hence
i xye = S gy & X o

sin(x — xg) ;}( 1) Zk+ D X € [xg, ), (33)
had _ QEa

cos(x — xg)* = Z(—l)k%, X € [xg, ).
k=0

(3.4)

Example 3.3. Consider the initial value problem
Gif(X) = Af(X),  fxo) = fo (3.5)

whose solution is differentiable over (x,, ).
Applying the left Gohar fractional integral to both sides of (3.5), we get
f) = fo+AZaf (x),
And hence
fn+1(x) = fO + Azgfn(X), n= 0,1,2,

For n =0, we have

o —a+1 o _
fl(x)zf"”f"%(x—xo)%fo lHA%(x—xo)“.

for n =1, we have |
rn — 1 I'(n — 1 2 _ 2a]

200 = fo|1 +A%(x—xo)“ _|_,12< (na[‘?n;_ )> x Zxo) .
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By means of Mathematical induction, the solution to (45) is given by
n k
Tm—a+1)\ (x—xk
fa@® = fo ; <,1 o ) e
- (3.6)

As n — oo, the obtained solution is expressed in terms of the Gohar fractional exponential function
(2.23) as follows

V(G Ta—at D\ x-xte
fo(x) = foz (/1 ) ) = fOEa?n(/l:x)-
= AN k! (3.7)
For @ =1 the solution (3.7) reduces to f(x) = foE; (4, x) = foe*™~*0), which is compatible
with the exact solution of (3.5) at a« = 1.

4. Gohar Fractional Laplace Transform

4.1. Basic Definitions and Results

Definition 4.1.1. Let f:[ty,©) - R be a real-valued function. Then the Gohar fractional Laplace
transform of f of order 0 < & < 1, denoted by LXf(t), is defined by

rm—a+1) ‘ dt

to — qlo — _

L ©) = F2) = it [ Ean(=5,0F0) =gy (3.8)
to

provided the integral exists, where t, € R,n € R*.

Lemma 4.1.1. Let f:[ty,©) - R be twice differentiable real-valued function. Then its Gohar

fractional Laplace transform satisfies the following relations:

LACF ()} = SLAHF(O)} — f(to), (3.9)

£ {GEDf(0) = SLOUF W) — 5F(2o) — G2F (ko) (3-10)

Proof. The result (3.9) can be obtained by applying (3.8) and (2.3) and using the integration by parts,
while (3.10) is a direct consequence of (3.9).
The following Lemma highlights one of the most interesting results: the relation between the
classical and the Gohar fractional Laplace transforms.
Lemma 4.1.2. Let f:[ty,®) = R be a real-valued function such that L2{f(t)} = F°(S) exists. Then
1

o  toren ol () x
LA} =F(8) = LS Tm—atn’) Tt 0<as1, (3.11)
where
L{f(®)} = j e_Stf(t)dt- (312)

0

T(n-a+1) (t-to)“

- in (3.8).
Theorem 4.1.1. Let f,g:[ty, ) = R be real-valued functions and A,u,c € R. Then, if FLo(s) =
LRF)} and HL(S) = LL2{h()} exist for $ 20,0 <a <1, then

Proof. The result follows directly by taking the substitution x =

LAAS () + ph(D)} = AFL(S) + pHL(S),8 > 0, (3.13)



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 February 2024 d0i:10.20944/preprints202402.1667.v1

13
LAHEL, (A Of (O} = F2S - ), (3.14)

to r(n_a+) _ na n d" to
Lo {[ oI () ] (t - to) f(t)}—( D" Fo (), (3.15)

LA * DO} = F(S) - H(5),5 >0,
(3.16)
£z f(::)}_L > 0.

(3.17)

Proof. The relations (3.13), (3.14), (3.15), and (3.16) are direct consequences of (3.11) and the properties
of the classical Laplace transform, and for (3.17) we have

LAGLTEf(O} = Fp(8) = SLAILF(O) = TE f(to) = SLTE (D)},

which implies that

‘ F ()
LTS (D)} = 5 ,8 >0,

where G,°TEf(t) = f(t) by (2.19) and LP{GILF(O)} = SL{IL (O} —TEf(t,) by (3.9) and
T, f(to) = 0 by (2.17).

Example 4.1.1. In this example we obtain the Gohar fractional Laplace transform for some functions.

c
-Lf;{c}=—,ceua,s>0

« LAEL, (LD} = — =8> 1

n_n
o LO{t"} = () (an )n €Z*, 8§ >0

n n
« LY"ES, (A, D)} = [ () (a n) ,MELY,S>A
' F(—a+ D] (s_ patt
Tm—a+1) (t—ty)” k
« L2IES (A, D)sin| k - =——S——,keERS> A
a { an )Sl"< 0 2 CEDEEYE
Example 4.1.2 (The logistic model). Consider the nonlinear Gohar fractional logistic-type differential
equation
Gof(®) =[1-ES,(-LOf®]|f(D),0<a<1, (3.18)

Subject to the initial condition f(0) = f, = %
With the transformation ¢(t) = [f(t)]™!, we can linearize (3.18) as follows

Gap(D) = Egy(=1,8) = 9(D).
Applying the Gohar fractional Laplace transform to both sides we get

LAG,0 ()} = LUES,(—1,0) — p(D)},
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1
SP(S)—2= S+1 D(S),
2

+ .
S+12 §+1
Applying the inverse Gohar fractional Laplace transform to both sides, the solution to (3.18) is given

by

Da(S) =

B Tm—a+1) a _1. 0
f® = —aI‘(n) t*+ 2 Eq,(—1,1). (3.19)

Example 4.1.3 (The Bertalanffy model). The nonlinear Gohar fractional Bertalanffy differential
equation is defined as

2
Gof O =fO3-fO),0<a<1, (3.20)

under the initial condition f(0) = f,.

1
With the transformation ¢(t) = f(t)3, we can linearize (3.20) as follows:

1 1
Gap(6) =3 (1-0®), 9o = fo3.

Applying the Gohar fractional Laplace transform to both sides we get

1 !
OUS) =5+ (00— D (5 +3)

Applying the inverse Gohar fractional Laplace transform to both sides, we get
3

f@®= [1 + (fo% - 1) "Ean (‘%t)] ' (3.21)

4.2. Validity of the Gohar Fractional Laplace Transform for Solving Linear Fractional Differential Equations

Now we shall investigate the validity of the Gohar fractional Laplace transform for solving linear
fractional differential equations of the form

GLf (1) + BF () = Y(1), Vit € [to, »); f(a) = fo, 4.1)

where f:[ty,©) - R, B € R,and y: [ty, ©) - R is a continuous function.

Theorem 4.2.1. Let f:[t;, ) = R be a piecewise continuous Gohar exponentially bounded function. If
FLO(S) = LL{F()}, then FL°(S) — 0as S — oo.

Proof. The Gohar exponential boundedness of f implies the existence of A4,A; € R*and t € [¢t,, )
such that |f(t)| <A Eé",] (4, t),vt = 1. Furthermore, the piecewise continuity of f on [t 7]
implies its boundedness there; thatis, 3 A, > 0 such that |f(t)| < A, Vi, <t <7

This means that |f(t)] < A- E;O,, (A,t),Vt € [ty, ), where A = max {A;,A,}. Therefore,

dt

F—a+1) [
(t —t)t

F(TI) Ea(,)n (_S; t)f(t)

to

T
T—a+1) (| e, _at
< T!lE&n( S, t)f(t)l (t _ to)l—a
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T
'h—a+1)

< bo (—
< o) E (=8 +4,1)

dt
(t—ty)t®

to

A A
—m—mE ( S+AT)

As T — oo, we have

|72 (8)] < %,5 > A,

According to Theorem 4.2.1, the functions U(S) = cos(S),V(S) = S, and W(S) =§ are not
Gohar fractional Laplace transforms of any function f.
Theorem 4.2.2. Let f:[ty,0) = R be a unique continuous solution to the linear fractional differential
equation (4.1); if the forcing function : [ty, ) = R is continuous and Gohar exponentially bounded over its
domain, then the solution f(t) and its Gohar fractional derivative Gé" f(t) are Gohar exponentially bounded
and their Gohar fractional Laplace transform exist.
Proof. Since (t) is Gohar exponential bounded over [ty o), then there exist v,Q € R* and
sufficiently large 7 € [ty, ), such that [Pp(t)]| < QE »(—v, ),V t = 7. Furthermore, f(t) is a
solution to the Volterra integral equation

r —
f®O =fo+ M f () - ‘—Bf(S))W

For t = 7, we can write it as

I'h—a+1)

f (¥(s) = Bf () W

j (¥(s) %f(s))ﬁ -

The continuity of f(t) leads to the boundedness of P (t) — Bf(t) over [ty t]; that is, IA >
0 such that |lY(t) = Pf@)I <A VL, <t <1. Consequently we have

1
IF@Ol < pl+ =t ){ j G j ||¢(s)||ﬁ+|a3| | IIf(s)Ilﬁ}

Multlplymg both sides by the Gohar fractional exponential function Ea (=v,t) and noting that
( vt)<E »(—=v,7) and |1/)(t)|<QE (v, 1),V t =1, we get
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IO Egly(=v, )
< foll - Eg% (v, D)
'm—a+1)

roy | Man ”)f( NI

—M+|‘B|

f (<v,1) f Ol

o (<v,0) f F )|

W
< lfoll - Egy (=v,7)

Tm—a+1)) @T—t)*
) A- " Ea,r/(_v' T)

+ LS (v, 1) f WO =y

d
+ 1| f PN~ Ety (=) s
< Ifoll - B2 (v, 7)
'm—a+1) .(T—to) to
o) A E, (vr)
] d
fEto (—v,t)- Eto (v, S)#
y ¢ ds
#1117 5 - =
<lfoll - E2y(—v,7)
I'm—a+1) _(T—to) to
) A Ey(=v,7)
g d
10 f ~Edg + |5p] f FON - £y (—v,) = psima

to
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< lfoll - B2y (—v,7)

'h—a+1) .(T—to)“

to _
o |° Fan(=0)
1) t d
—vE .pto —S
+0 [ etag 4 191 [IFOI- £ (—v,9) oy
to to

< lIfoll - E% (=, 7)

'm—a+1) .(T—to)“

A EL (—v,7) +ge""tO
) (DY
: d
t S
+ 191 I B8y (—vs) sz ot =
to

By taking

I'n—a+1)
A=lfoll - Ey(—v, 1) +

I'(m)

(T_tO)a t Q —vt
{A a Ea?n(—v,‘r)+;e vto ’

and

o) = If Ol - Ey(—v,0), 1 = |B],

we get the Gronwall integral inequality (2.25)

t
I'(n— 1 d
) =1+u _—(77 F(f])_i_ ) f(p(S) —(s — tz)l‘“'t = T.

In view of Lemma 2.2.1, we have

() < AEQ, (1),

which implies that

IfF Ol < AEL, (u+v,0),t > 7.

From (4.1), we get

G2 F O < IBHFOIN + YOIl < UBIEL, (1 +v,8) + QEL, (v,0),t > 7.

This completes the proof.

5. Conclusions

In this work, we developed new definitions, fundamental theorems, and classical properties of
Gohar fractional calculus. The left and right Gohar fractional derivatives and integrals are defined
and extended to higher fractional orders. The fractional Gronwall's inequality, power series
expansion, and Laplace transform are defined and applied to overcome some of the limitations in the
classical integer-order calculus. The fractional Laplace transform is applied to solve the logistic and
Bertalanffy nonlinear fractional differential equations. The fractional Gronwall inequality is used to
demonstrate the exponential boundedness of the solutions to linear fractional differential equations,
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which validates the Gohar fractional Laplace transform for solving such equations. However, it is
essential for the forcing function to be continuous and Gohar exponentially bounded.
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