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Abstract: In the dynamic field of mental health care, the nuanced application of Artificial 
Intelligence (AI) through Natural Language Processing (NLP) and Automatic Speech Recognition 
(ASR) is a pivotal innovation in patient empowerment and service optimization. This study 
introduces a distinctive online therapy platform that capitalizes on the synergy of NLP and ASR to 
offer unprecedented levels of interactive and personalized therapeutic interventions. The 
architecture of our system is meticulously detailed, featuring an ASR component with an impressive 
Word Error Rate (WER) of 14% when trained on the diverse French subsets of the Mozilla Common 
Voice dataset, complemented by a high-precision NLP framework skilled in processing and 
responding to user inputs. The evaluation of our system highlights its efficacy in enhancing therapy 
sessions and user satisfaction, with an emphasis on the qualitative aspects of user feedback. The 
paper addresses challenges such as dataset representativeness and language model refinement and 
articulates the strategic solutions employed to overcome them. The paper concludes with forward-
looking perspectives on AI's role in mental health services, advocating for the creation of 
sophisticated, language-specific datasets and models to satisfy the increasing demands of online 
therapy, reflecting a growing commitment of patients in the management of their therapy. This 
research underscores the transformative impact of AI in advancing mental health care into the 
digital age, representing a significant evolution over existing methodologies. 

Keywords: Conversational AI; Automatic Speech Recognition (ASR); Natural Language Processing 
(NLP); Online Therapy Platforms; AI in Mental Healthcare 

 

1. Introduction 

Digital age has ushered in a plethora of technological advancements, with Automatic Speech 
Recognition (ASR) standing as a paramount testament to this evolution. From its nascent stages in 
the mid-20th century, where rudimentary systems could recognize a mere handful of words, ASR 
has burgeoned into a sophisticated tool capable of transcribing multiple languages, dialects, and 
accents with a remarkable precision [1]. Such advancements are not mere technological marvels; they 
hold profound implications for sectors like healthcare, where communication is primordial . 

Conversational agents, underpinned by ASR and enriched with Natural Language Processing 
(NLP) capabilities, are redefining our digital interactions. These agents, extending beyond the realms 
of mere chatbots, simulate human-like interactions, offering potential applications ranging from e-
commerce customer support to intricate medical guidance [4]. As the global demand for efficient and 
accessible healthcare solutions intensifies, the integration of ASR and NLP in medical applications 
emerges as a beacon of innovation. This research delves into the transformative potential of these 
technologies in healthcare, particularly emphasizing their role in enhancing patient-provider 
communication and psychological well-being. 

The medical landscape is witnessing a paradigm shift, with ASR and conversational agents at 
its epicentre. In oncology, these technologies have transitioned from experimental tools to essential 
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components, offering patients comprehensive guidance on treatments, potential side effects, and 
post-treatment recovery [5]. For the elderly, whose increasing demography is often challenged by 
rapid technological advancements, ASR-integrated devices have become indispensable, monitoring 
daily activities and ensuring timely medical interventions [6]. 

Chronic conditions, such as diabetes and hypertension, necessitate rigorous monitoring. Here, 
ASR and conversational agents offer holistic solutions, encompassing medication reminders, dietary 
advice, exercise guidelines, and real-time vital variables monitoring [7]. Their transformative impact 
extends to rehabilitation, aiding patients with speech and mobility impairments [8], and to paediatric 
care, where they simplify medical terminologies for young patients [9]. In cardiology, the integration 
of ASR into monitoring devices has paved the way for real-time feedback mechanisms, a leap that 
holds life-saving potential [10]. 

The confluence of technology and mental health has birthed a novel approach to psychological 
and psychiatric care. Conversational agents, fortified with NLP and ASR, are revolutionizing 
therapeutic interventions. Digital therapists, such as Woebot® (a relational agent for mental health 
[11]), employ principles from cognitive-behavioural therapy (CBT) to engage users, showcasing 
significant efficacy in mitigating symptoms of depression and anxiety [12]. Numerous studies 
underscore the potential of these agents in delivering psychological interventions, with some 
rivalling the effectiveness of human therapists [13]. 

In the broader realm of psychiatric care, the applications of these agents are multifaceted. They 
assist in diagnostic assessments, monitor medication adherence, and provide therapeutic 
interventions for intricate psychiatric disorders [14]. The integration of ASR enhances their 
capabilities, enabling real-time vocal interactions that can discern user emotions, sentiments, and 
potential distress signals [15] combined with digital tools looking for specific behaviours of a 
pathological condition (such as mobile phone used in the case of bipolar illness [16]). As we navigate 
this intersection of technology and mental health, it becomes imperative to ensure that ethical 
considerations, patient safety, and data privacy remain paramount [17]. 

Building upon this foundation, our research introduces a novel application that further pushes 
the boundaries of what conversational agents can achieve in mental health care. By integrating 
cutting-edge ASR and NLP technologies, we have developed a system that not only understands and 
processes complex human speech but also responds in a contextually sensitive manner, thereby 
providing a more nuanced and effective therapeutic interaction. Recognizing the sensitive nature of 
mental health data, our approach is grounded in stringent ethical standards, ensuring the utmost 
respect for patient confidentiality and security. This commitment to ethical research practice is woven 
throughout our study, ensuring that the advancements we present are not only scientifically robust 
but also ethically sound, paving the way for a new era of responsible AI in mental health care. 

2. Methods 

In the pursuit of advancing the field of conversational AI within the context of online therapy 
applications, our study meticulously documents the methods and processes that were integral to our 
research. We begin by detailing the data preprocessing techniques and the datasets that laid the 
groundwork for our Automatic Speech Recognition (ASR) system. Following this, we describe the 
model selection criteria and training processes that were pivotal in developing a robust NLP 
framework. The subsequent sections delve into the user interaction dynamics, the technological 
frameworks employed, and the design principles that guided the creation of our conversational AI 
system. Finally, we outline the rigorous evaluation metrics that served to quantify the performance 
of our system. 

2.1. Materials 

The ASR system is integrated into a mobile application designed for online therapy, serving as 
a conversational agent to facilitate user interaction. It aids in various tasks, such as navigating the 
app, scheduling, modifying, postponing, or canceling appointments, and offers the option to dictate 
entries into a digital diary. The system's deployment in this context aims to enhance user experience 
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by providing an intuitive and seamless interface, thereby reducing barriers to effective therapy 
engagement. 

2.1.1. Data Preprocessing 

We established an effective ASR system, as described in Figure 1, by meticulously preprocessing 
audio data, as recommended by [18]. We converted a variety of audio formats, such as mp3, mp4, 
and flac, to the widely compatible .wav format using the ffmpeg multimedia framework. We chose 
this format for its broad compatibility with numerous ASR models. Following this conversion, we 
standardized the audio data to a sample rate of 16000 Hz using the torch audio library [19], which is 
essential for consistent model training. 

 
Figure 1. ASR process. 

2.1.2. Dataset 

The Mozilla Common Voice dataset was instrumental in training our ASR system. This open-
source corpus is a rich collection of transcribed voice data that enables the development and 
benchmarking of ASR systems in a variety of languages [20]. For the purposes of our study, we 
focused on the French subset of the dataset, which provided a vast and diverse range of accents, 
dialects, and speaking styles, essential for developing a robust model for the French language. The 
dataset's structure, with its clear labelling and extensive metadata, facilitated a streamlined training 
process and allowed for efficient fine-tuning of the ASR model to the nuances of spoken French. 

Acoustically, the Mozilla Common Voice dataset encompasses recordings from numerous 
environments, reflecting real-world scenarios where a user might interact with the therapy app. This 
variety in the audio data ensures that our ASR system is well-equipped to recognize and process 
speech in different acoustic settings, thereby improving its performance and reliability. 

2.1.3. Archetypal Selection and Training 

In our pursuit to address the challenges inherent to Automatic Speech Recognition (ASR), we 
turned to NVIDIA's NeMo project, a cutting-edge open-source platform designed specifically for 
ASR and other neural network tasks [21]. NeMo's repository boasts a plethora of pre-trained models, 
each tailored for specific applications and challenges within the realm of vocal AI. 

After a rigorous evaluation of available models, our choice gravitated towards a specific pre-
trained model, which has been previously recognized in the literature for its exemplary performance 
in speech-to-text conversion tasks [3]. This model, built on state-of-the-art architectures and training 
methodologies, promised a blend of accuracy and efficiency, making it an ideal candidate for our 
research objectives. 

To further enhance the model's transcription capabilities, we incorporated the Connectionist 
Temporal Classification (CTC) algorithm (Figure 2) [22]. The CTC algorithm plays a pivotal role in 
aligning temporal sequences in audio data with their corresponding transcriptions, a challenge that 
is non-trivial given the variable speed and cadence of human speech. During the training phase, the 
CTC loss function was employed, serving as a guiding metric to iteratively refine and optimize the 
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neural network. This ensured that the final model was adept at producing transcriptions that were 
not only accurate but also temporally coherent with the input audio. 

 
Figure 2. CTC decoding algorithm. 

2.1.4. Language Modeling  

Language modeling is a paramount in enhancing ASR systems, aiming to elevate transcription 
accuracy and minimize the word error rate (WER). Throughout the development of our project, we 
employed an N-gram language model (LM), which was trained on extensive textual data. This LM 
was then integrated with beam search decoding to ascertain the most probable transcription 
outcomes. The beam search decoders in NeMo are compatible with LMs trained using the KenLM 
library, allowing for a seamless fusion of acoustic and language modelling [23]. 

The beam search algorithm is a heuristic search strategy that expands multiple tokens at each 
position within a sequence. It can consider any number of 'N' best alternatives through an 
hyperparameter known as beam width. For instance, with a beam width set to 2, the algorithm selects 
the two most probable characters at each sequence position, branching out and combining 
probabilities to form the most likely sequences until an "<END>" token is encountered, thus 
determining the best transcription path.  

The N-gram LM is particularly effective when used in conjunction with beam search decoders 
atop ASR models, as it refines the candidate outputs. The beam search decoder incorporates scores 
from the N-gram LM into its scoring calculations as follows:  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 × 𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ×  𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 
   Here, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  represents the prediction by the acoustic encoder, and 𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the 
estimate from the LM. The parameter 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 dictates the weight given to the N-gram LM, 
influencing the balance between language and acoustic modeling. A higher 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑎𝑎 indicates a 
stronger reliance on the LM, whereas 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 acts as a penalty term to account for sequence 
length in the scoring. Negative values for 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  penalize longer sequences, prompting the 
decoder to favour shorter predictions, while positive values bias towards longer candidate sequences. 

This careful calibration of parameters, as depicted in Figure 3, is essential for fine-tuning the 
language model's performance, ensuring that the ASR system not only predicts with high precision 
but also reflects the inherent variability of human speech [23,24]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 February 2024                   doi:10.20944/preprints202402.1585.v1



 5 

 

 

Figure 3. Configuration of Beam Search Decoder with N-gram Language Model. 

2.1.5. Model Architecture  

We selected QuartzNet 15x5, a derivative of the Jasper architecture known for its robust 
performance in speech recognition tasks [21]. This specific variant of QuartzNet, composed of 79 
layers with 5 blocks repeated 15 times and enriched by 4 additional convolutional layers, boasts 18.9 
million parameters. Its convolutional design, trained using Connectionist Temporal Classification 
(CTC) loss, is particularly effective at capturing the intricacies of complex speech patterns due to its 
multiple blocks with residual connections. Recognizing the need for a model attuned to the nuances 
of the French language, the QuartzNet model was fine-tuned from English language to French using 
French portion of Common Voice from Mozilla (MCV)[25]. This dataset was selected for its wide 
range of accents and dialects, which provided the diversity necessary to train a more robust and 
versatile ASR system for the intricacies of spoken French.  

2.2. Tasks and design 

Within the burgeoning field of digital therapeutics, the advancement and refinement of Natural 
Language Processing (NLP) technologies are of critical importance. NLP systems serve as the 
foundational framework that facilitates sophisticated human-computer dialogue, a core component 
that is indispensable in the context of online therapy applications. The efficacy of these platforms is 
heavily reliant on the clarity and precision of communication, as these attributes are directly 
correlated with the user's experience and the therapeutic efficacy [11]. 

2.2.1. Conceptual Foundation 

At the core of our research lies the intricate domain of Natural Language Processing (NLP), a 
subfield of AI that facilitates human-computer communication by enabling machines to comprehend 
and generate human language [26]. Within this domain, we delved into two crucial sub-disciplines. 
• Natural Language Understanding (NLU): This facet of NLP focuses on converting user input into 

a structured format that algorithms can interpret, thereby discerning the underlying intent and 
entities in a given text [26]. 

• Natural Language Generation (NLG): Contrasting NLU, NLG is concerned with formulating 
coherent responses in natural language based on the machine's understanding [27]. 
As our research progresses, our primary objective is to refine the NLP components. The aim is 

to seamlessly integrate them, producing a holistic conversational AI system (Figure 4) that stands as 
a testament to the potential of NLP in revolutionizing voice-assisted systems [28–32]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 February 2024                   doi:10.20944/preprints202402.1585.v1



 6 

 

 
Figure 4. Voice Assistant flowchart. 

2.2.2. User Interaction Dynamics 

To ensure a seamless interaction between the user and the voice assistant, we delved into the 
principles of user intent and entities. For instance, a command like "take an appointment" translates 
to an intent, termed "prendreRDV" in our system. Concurrently, entities within these intents, such as 
time, were meticulously identified and labelled [33]. 

2.2.3. Rasa Architectural Components 

In our research, we actively explored the Rasa architecture, focusing on the NLU Pipeline and 
Dialogue Management, to guarantee precise recognition of user intents and appropriate actions 
within conversations. Our in-depth examination of the Rasa framework's components included: 
• NLU Pipeline: responsible for intent classification, entity extraction, and response generation [34]. 

It processes user inputs through a trained model, ensuring accurate intent recognition. 
• Dialogue Management: discerns the optimal subsequent action in a conversation based on the 

immediate context [35]. 
• Tracker Stores, Event Brokers, Model Storage, and Lock Stores: collectively ensure the efficient storage 

of user interactions, integration with external services, and maintenance of message sequencing. 
Building on the modular architecture of Rasa, we structured our project to encapsulate the full 

spectrum of conversational AI capabilities. The project is organized into several key files and 
directories, each with a specific role: 
• domain.yml: a central configuration file that defines all the elements that the assistant can 

understand and produce. It includes: 

o Responses: The set of utterances the assistant can use in response to user inputs. 

o Intents: The classifications of user inputs that help the assistant interpret the user's intentions. 

o Slots: Variables that store information throughout the conversation, maintaining context and state. 

o Entities: Information extracted from user inputs that can be used to personalize interactions. 

o Forms & Actions: These enable the assistant to perform tasks and carry out dynamic conversations based 

on the dialogue flow. 

• Config.yml: Specifies the machine learning model configurations, guiding the natural language 
understanding and dialogue management processes. 

• data directory: Contains the training data that the assistant uses to learn and improve its 
understanding and dialogue management with nlu.yml for intent and entity examples, 
stories.yml for conversational paths, and rules.yml for dialogue policies. 
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The Rasa framework's flexibility is exemplified by its ability to adapt to various conversational 
scenarios, making it an invaluable tool for our research and development efforts. By leveraging Rasa, 
we have crafted an assistant that is not only proficient in language understanding and generation, 
but also adept at managing complex conversational flows and maintaining context across 
interactions. 

2.2.4. Data Preparation and Model Implementation 

a) Conversational Design and Objective Identification 

Central to our research was the principle of 'Conversation Design', which entailed structured 
planning of potential interactions, user profiling, understanding assistant objectives, and 
documenting typical user conversations [36]. 

b) Data Acquisition and Conversation Simulation 

Lacking historical interaction logs, we simulated human-bot interactions, leveraging insights 
from domain experts and our customer service team [37]. We specifically employed the 
fr_core_news_sm model from spaCy, version 3.0. This choice was based on preliminary validation 
tests that demonstrated its superior performance in understanding and processing the French 
language compared to other available models. 

c) NLU Pipeline and Language Model Choices 

 The fr_core_news_sm model, an efficient component of the spaCy library, was integral to our 
NLU pipeline. Its pre-trained embeddings were crucial for the linguistic analysis tailored to our 
project's needs, aligning with methodologies proven in health sector research [28–32]. The 
configuration of our NLP pipeline, optimized for our simulated dataset, is presented in Figure 5. 

 
Figure 5. NLU pipeline. 

d) Text Tokenization and Featurization 

We transformed our textual data into tokens suitable for machine interpretation by employing 
the SpacyTokenizer, which uses the linguistic annotations from the "fr_core_news_sm" model [28–
32]. Following tokenization, we utilized the SpacyFeaturizer to generate dense word embeddings, 
where a mean pooling strategy was applied to create aggregated phrase representations. To 
encompass a wider range of linguistic attributes, we integrated two variations of the 
CountVectorsFeaturizer, capturing both word and character-level n-grams, thereby enhancing our 
model's ability to understand nuanced language patterns. 
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e) Part-of-Speech Tagging and Intention Classification  

Subsequent to feature extraction, we deployed the Dual Intent and Entity Transformer (DIET) 
classifier within the Rasa framework for intention classification and entity extraction. This classifier 
was chosen for its capability to perform both tasks concurrently, which is essential for understanding 
the intricacies of natural language in conversation. We further augmented our entity recognition 
capabilities with the inclusion of the DucklingEntityExtractor, enabling our model to reliably 
interpret various data formats and entities such as dates, times, and numerical values. 

Intent Definitions and Training Data: A pivotal step in our NLU pipeline was the definition and 
categorization of intents. We meticulously compiled a dataset of utterances for each intent to facilitate 
robust training. Table 1 presents the intents recognized by our system, their definitions, associated 
entities, and the number of training examples for each. 

Table 1. Intent Definitions and Training Data. 

Intent Definition Entities 
Training Data 

Count 
goodbye User wishes to say farewell - 8 

greet Greetings - 8 
affirm User confirms something - 9 
deny User refuses or denies something - 4 

informApp User seeks information about the application - 14 
informPacks User inquires about the application's packages - 17 

bot_challenge User asks if they are speaking to a bot or a human - 3 
prendreRdv User requests an appointment time 41 
changerRdv User requests to change their appointment time 14 
annulerRdv User requests to cancel their appointment - 18 

raterRdv User missed their appointment - 6 
informerRdv User inquires about confirmed appointments - 11 

info_date User asks for a date of the appointment time 9 
IdK User responds with 'I don't know' - 3 

ageUser User provides their age age 9 
raisonEmotion User responds due to an undesirable emotion - 4 
entenduApp User responds how they heard about the service - 9 

emotion_therapy User explains why they need therapy - 16 
gerer_sentiment User describes how they manage their feelings - 6 

out_of_scope 
Intent for text that our assistant does not cover 

initially 
- 6 

f) Dialogue Management 

We leveraged Rasa's core capabilities to decode and manage the flow of conversations. By 
utilizing a curated set of stories and rules as our training data, we empowered the assistant to 
accurately predict and execute the most appropriate action in response to user inputs during 
conversations. 

g) Forms in Conversations 

We integrated forms as a fundamental component of our conversational design to streamline 
specific tasks. These forms were crucial in efficiently handling user requests for scheduling or 
rescheduling appointments, ensuring a smooth and intuitive conversational experience. 

2.2.5. Data Management and System Architecture 

We architected the application to facilitate robust data handling and user interaction. Selecting 
Firebase as our NoSQL database platform, we capitalized on its scalability and real-time 
synchronization features (Figure 6). The database architecture comprises two primary collections: 
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'conversation' for interaction logs and 'RDV' for appointment management, optimizing data retrieval 
and manipulation processes. 

We constructed the ASR component utilizing NVIDIA's NeMo toolkit, which excels in capturing 
and transcribing speech with notable precision [19]. Simultaneously, the Rasa framework underpins 
our natural language understanding and dialogue management, interpreting user queries with a high 
degree of accuracy [42].  

For the user interface, we employed the Flutter framework, renowned for its dynamic and 
responsive design capabilities, to craft an engaging user experience. The system's backend, 
orchestrated on a Flask server, efficiently handles requests and integrates with the frontend via HTTP 
protocols, ensuring swift and precise responses to user interactions. 

 

Figure 6. System Architecture - An overview of the system's infrastructure, illustrating the interplay 
between the ASR component, dialogue management, and the user interface. 

2.3. Analysis 

2.3.1. Evaluation of ASR performance 

To rigorously assess the performance of our Automatic Speech Recognition (ASR) system, we 
employed the Word Error Rate (WER) as our primary evaluation metric. WER is a widely recognized 
and standard metric in the realm of speech recognition, providing a quantitative measure of the 
system's accuracy by comparing the system's predicted transcriptions against the actual or 'ground 
truth' transcriptions. 

The WER is computed by determining the minimum number of operations – substitutions (S), 
insertions (I), and deletions (D) – required to align the predicted transcription with the ground truth. 
These operations are summed and then divided by the total number of words N in the ground truth 
transcription, as shown in the WER formula: WER = (S + I + D)/N. Here, N represents the number 
of words in the reference transcription, which serves as the normalization factor for the error rate. A 
lower WER indicates higher transcription accuracy, while a higher WER suggests potential areas of 
improvement in the ASR system. 

The choice of WER as our evaluation metric is grounded in its ability to offer a comprehensive 
view of the system's performance. By accounting for all types of transcription errors, WER provides 
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a holistic assessment, ensuring that we capture the full spectrum of discrepancies between the 
predicted and actual transcriptions. This approach is in line with the findings of [43], who highlighted 
the significance of WER in evaluating ASR systems, emphasizing its utility in pinpointing areas of 
potential refinement and optimization. 

2.3.2. NLP System Evaluation 

For the evaluation of intent recognition and entity extraction, we used a combination of "Train-
Test Split" and "cross-validation" methods to assess the robustness of our models. Cross-validation 
was particularly emphasized due to its advantage in utilizing the dataset more effectively, providing 
a comprehensive view of the model's performance across different subsets of data. 

For cross-validation, we partitioned the data into five folds, ensuring that each fold was a good 
representative of the whole. We then trained our model on four folds and validated it on the fifth, 
repeating this process five times so that each fold served as the validation set once. The performance 
metrics from each fold were then aggregated to give an overall performance measure. 

The metrics for NLP system evaluation included precision, recall, and F1-score for both intent 
classification and entity recognition. These metrics were calculated using the scikit-learn library, 
which provided functions for model training, cross-validation, and performance evaluation. 

2.3.3. Deployment and Database Integration 

Following deployment, we meticulously monitored the system's performance metrics, including 
response times and user satisfaction rates. The integration of the ASR and NLP components into the 
Flask server facilitated a seamless data flow between the mobile application and backend services, 
yielding prompt and accurate responses to user queries. The deployment pipeline's effectiveness was 
evidenced by the automated testing and updating of models, ensuring continuous system 
optimization. We leveraged the Flask framework's capabilities to manage requests and maintain real-
time communication with the frontend application [44]. 

User interactions, system responses, and performance metrics were logged systematically, 
providing a rich dataset for ongoing analysis and system refinement. This data-driven approach 
allowed us to iteratively enhance the system's accuracy and user experience, as reflected in the 
positive feedback from the application's user base. 

2.3.4. Ethical Considerations and Data Privacy 

In this study, a minimal data collection approach was adopted to prioritize user privacy and 
align with ethical standards. Only user email addresses and pseudonyms were collected, with no 
additional personal identifiers. This measure ensures a high degree of anonymity, reducing the risk 
of personal data exposure. Before participating, users were informed about the study's objectives, the 
extent of data usage, and their right to withdraw at any point, from which informed consent was 
obtained. All data were handled in accordance with the European General Data Protection 
Regulation (GDPR), emphasizing data minimization, integrity, and confidentiality. The use of emails 
and pseudonyms was strictly for communication and personalization within the study, ensuring that 
users' privacy was maintained. Despite the limited nature of personal data collection, our 
commitment to ethical standards and user privacy remained paramount throughout the research 
process. 

3. Results 

3.1. ASR System Performance 

The accuracy of the model was evaluated using the development set from French Mozilla 
Common Voice (MCV) dataset. The Word Error Rate (WER) served as a primary metric, reflecting 
the percentage of errors within the model's transcriptions. The model obtains a WER of 14% on the 
development set of MCV dataset. Using this model, our system demonstrates a commendable level 
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of accuracy in transcribing spoken French. This result is particularly significant given the diversity of 
accents, dialects, and speaking styles present in the Common Voice data, which closely mimics the 
variability encountered in real-world scenarios. The proficiency exhibited by our system suggests its 
suitability for practical applications, such as facilitating user interaction with a conversational agent 
in an online therapy mobile application. 

3.2. NLP System Evaluation 

Subsequent to ASR transcription, the NLP system was subjected to a thorough evaluation, 
focusing on its precision, recall, and F1-score for various intents and entities. These metrics are pivotal 
as they directly influence the user experience by determining the system's ability to comprehend and 
respond to user inputs with precision. 

Figure 7 presents the confusion matrix for intent recognition, providing insight into system's 
ability to classify user intents correctly. 

 
Figure 7. Intent Recognition Confusion Matrix. 

Figure 8 depicts the confusion matrix for the DIET classifier, highlighting the system's 
performance in entity extraction, and provides a granular view of the system's performance, 
showcasing areas of strength and those necessitating further optimization. The Table 2 presents a 
comprehensive breakdown of precision, recall, and F1-scores, supplemented by the 'Support' column 
which indicates the volume of samples for each category within the test dataset. The 'Confused With' 
column offers valuable insights into the most frequent misclassifications, guiding potential 
enhancements to the model. 
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Figure 8. DIET Classifier Confusion Matrix. 

For instance, the intent 'Prendre Rdv' demonstrated exceptional precision and recall, both 
surpassing the 90% threshold, denoting its reliable recognition within the system. Conversely, the 
intent 'greet' manifested lower metrics, signifying a domain where the classifier's discernment could 
be improved. 

Table 2. Detailed Intent and Entity Performance Metrics. 

Intent/ 
Entity 

Precision Recall F1-Score Support Confused With 

time 42.86% 33.33% 37.50% 9 - 
age 0.00% 0.00% 0.00% 5 - 

Gerer sentiment 50.00% 33.33% 40.00% 6 emotion_therapy (2), out_of_scope (1) 
Informer Rdv 43.75% 63.64% 51.85% 11 raterRdv (1), annulerRdv (1) 
Prendre Rdv 90.24% 90.24% 90.24% 41 informerRdv (2), out_of_scope (1) 

Emotion therapy 60.00% 56.25% 58.06% 16 entenduApp (2), raterRdv (1) 
goodbye 23.08% 37.50% 28.57% 8 greet (3), informerRdv (1) 
raterRdv 42.86% 50.00% 46.15% 6 emotion_therapy (2), changerRdv (1) 

greet 20.00% 12.50% 15.38% 8 goodbye (4), affirm (2) 
deny 27.27% 42.86% 33.33% 7 Goodbye (2), emotion_therapy (1) 

info_date 66.67% 22.22% 33.33% 9 changerRdv (2), raterRdv (1) 
Informer Packs 76.19% 94.12% 84.21% 17 informerApp (1) 

affirm 20.00% 20.00% 20.00% 10 goodbye (3), deny (3) 
informer App 73.33% 78.57% 75.86% 14 informerPacks (3) 

out of 
scope 

60.00% 50.00% 54.55% 6 informerRdv (1), prendreRdv (1) 

annuler Rdv 89.47% 94.44% 91.89% 18 deny (1) 
entendu 

App 
33.33% 11.11% 16.67% 9 affirm (4), informerApp(2), emotion therapy (1) 
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changer Rdv 64.29% 64.29% 64.29% 14 informerRdv (3), info_date (1) 
ageUser 100.00% 77.78% 87.50% 9 affirm (1),    deny (1) 
Overall 64.24% 63.64% 62.75% 209 - 

3.3. Error Analysis and Model Confidence 

The error analysis is instrumental in delineating the model's limitations and informing 
subsequent iterations. Figure 9 Intent Prediction Confidence Distribution, portrays the variance in 
prediction confidences across different intents, thus reflecting the model's certainty in its 
classifications. 
• Model Performance: The model assigns confidence scores that range broadly, from high 

confidence, such as a score of 0.995 for correctly predicting "salut" as "greet," to moderate 
confidence levels, such as a score of 0.827 for classifying "je veux que la date soit demain" as 
"changerRdv." This range indicates the model's varied levels of certainty in its predictions. 

• Accuracy and Misclassification: Notably, the model sometimes misclassifies intents with 
substantial confidence. For example, "je refuse" is misclassified as "emotion_therapy" with a 
confidence score of 0.328, highlighting a clear area for model improvement. 

• Confidence Score Distribution: The distribution of confidence scores is indicative of the model's 
predictive certainty. A concentration of high scores would imply a high degree of certainty in its 
predictions, whereas a more dispersed set of scores could signal the necessity for further model 
calibration. 

 

Figure 9. Intent Prediction Confidence Distribution. 

3.4. System Integration and Deployment 
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The integration of the ASR and NLP systems into a cohesive voice-assistant application is 
substantiated by its deployment within an operational setting. User feedback and interaction logs 
have been overwhelmingly positive, with users particularly highlighting the system's intuitive 
conversational interface. This interface has significantly enhanced user engagement and experience, 
facilitating easier navigation and interaction within the online therapy platform. 
• User Interaction: The application's conversational agent has successfully assisted users in 

managing appointments, navigating the platform, and utilizing the diary feature through voice 
commands. This has been particularly beneficial for users with varying levels of technical 
proficiency. 

• Continuous Improvement: Regular user feedback and system interaction logs are critical for 
ongoing refinement, ensuring the system remains responsive to user needs and operational 
demands. 
In reflecting on the system's deployment and user feedback, we conducted a further analysis of 

the system's performance metrics to identify opportunities for enhancement. The ASR system, while 
performing at a commendable level, displayed a tendency for phonetic misinterpretations, 
particularly in challenging acoustic environments. The NLP system's precision in intent recognition, 
while generally high, showed areas for improvement in handling complex language structures and 
expressions. These insights were paralleled by user feedback, which, despite being overwhelmingly 
positive, suggested areas where the conversational interface could become more intuitive. This 
feedback loop from real-world application is invaluable, providing direct guidance for the 
continuous refinement of our system. It assures us that while our system is on the right path, there is 
a journey ahead toward achieving seamless human-computer linguistic interaction within the 
therapeutic context. 

4. Discussion 

The integration of Automatic Speech Recognition (ASR) and Natural Language Processing 
(NLP) technologies into mental health services is an emerging area that presents distinct challenges 
and opportunities. Our study contributes to this domain by implementing a French-language ASR 
system within an online therapy application, addressing a gap in current research. The Word Error 
Rate (WER) of 14% on the Mozilla Common Voice development set, while not leading the industry, 
represents a significant step forward given the limited development of French ASR datasets and 
models, particularly for the nuanced context of therapeutic dialogue. 

In comparison with the broader healthcare sector, where ASR systems are increasingly utilized, 
such as in clinical documentation and patient care, our system's performance is modest. This is partly 
due to the predominance of English-centric research, which benefits from more advanced models 
and datasets. The scarcity of comprehensive French-language datasets, especially in specialized fields 
like mental health, is a notable limitation. The ' Mozilla Common Voice ' dataset, while valuable, 
underscores the need for more extensive resources that capture the full spectrum of French linguistic 
variations. 

The potential benefits of ASR and NLP technologies in mental health care are significant, as they 
can provide support and enhance the accessibility of services. However, the sensitive nature of 
mental health dialogue requires a level of linguistic and emotional intelligence that our current 
system is still striving to achieve. This is particularly challenging in French, where resources to train 
such systems are less available. 

The technical robustness of our ASR and NLP models was a primary focus, yet we recognize 
their current limitations. The system's WER of 14% is a testament to our progress with French ASR, 
but it also highlights the need for improvement. Most errors were phonetic misinterpretations, 
common in therapeutic dialogues due to their emotional and nuanced nature. We have begun 
addressing these through iterative refinements in model training and data preprocessing to better 
capture linguistic subtleties. Future versions will incorporate user feedback to reduce biases and 
improve the system's emotional intelligence. 
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To move forward, it is imperative that future research focuses on the development of 
comprehensive French-language datasets that reflect the diversity of the mental health service users 
population. Collaborative efforts between technologists, clinicians, and linguists are crucial to create 
models that can accurately interpret the subtleties of therapeutic communication. Moreover, the 
development of adaptive models that can learn from user interactions and tailor responses to the 
specific linguistic and emotional context of therapy sessions will be key for future progress. 

In conclusion, our work represents progress in French-language ASR for mental health 
applications, but it also clearly delineates the need for investment in the creation of rich datasets and 
the development of sophisticated models. Such advancements will not only enhance the accuracy of 
ASR systems, but will also ensure that they meet the critical needs of mental health support in the 
digital age. 

As we acknowledge the progress made, it is crucial to highlight the ethical considerations 
inherent in applying ASR and NLP to mental health. Our study has maintained a steadfast 
commitment to the ethical deployment of these technologies, ensuring they serve as a complement 
rather than a substitute for human empathy and understanding. We recognize the potential for biases 
in our system, particularly given the unique linguistic intricacies of French as used in therapeutic 
settings. Efforts to mitigate these biases have been integral to our development process, and we 
continue to refine our algorithms to better capture the emotional valence and therapeutic intent of 
conversations. Additionally, we have implemented feedback mechanisms that allow continuous 
improvement of the system based on user interactions. These steps are essential in moving towards 
a more sensitive, accurate, and user-centered application of AI in mental health, which respects the 
nuances of human language and emotion. The future of our research will emphasize not only the 
technical refinement of ASR and NLP models, but also the cultivation of their ethical application, 
ensuring they align with the overarching goal of augmenting mental health support in a responsible 
and patient-centric manner. 

5. Conclusions 

In summary, our research has made a notable contribution to the field of ASR and NLP within 
the context of mental health services by developing a French-language ASR system tailored for an 
online therapy platform. Despite the challenges posed by the scarcity of robust French-language 
datasets, our system achieved a WER of 14% on the Mozilla Common Voice development set, 
demonstrating its potential utility in real-world therapeutic settings. 

The significance of our work extends beyond the technical achievement of the ASR system's 
performance. It lays the groundwork for future innovations in the delivery of mental health services, 
where the nuances of language and the need for empathetic communication are paramount. By 
bridging the gap in French-language resources, we pave the way for more inclusive and accessible 
mental health care. 

Looking ahead, the path is clear for the continued evolution of ASR and NLP technologies in 
healthcare. The development of comprehensive datasets and sophisticated models that can 
understand and respond to the complexities of human language and emotion is crucial. Our study 
serves as a stepping stone towards the realization of more effective and empathetic digital mental 
health services, and we anticipate that subsequent research will build upon our findings to further 
enhance the capabilities of ASR systems in this vital sector. 

As we conclude, we reflect on the importance of interdisciplinary collaboration in advancing 
these technologies. The intersection of computational linguistics, clinical expertise, and user-centered 
design is the point where significant progress will be made. It is our hope that this research not only 
informs, but also inspires continued efforts to develop tools that support mental well-being in the 
digital age.  
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