Pre prints.org

Article Not peer-reviewed version

Bipartite (P_6,C_6)-Free Graphs,
Recognition and Optimization Problems

Ruzayn Quaddoura * and Ahmad Al-gerem

Posted Date: 27 February 2024
doi: 10.20944/preprints202402.1561.v1

Keywords: Bipartite graphs; Graphs Decomposition; Complexity; Optimization Problems

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Bipartite (Pg, C¢)-Free Graphs, Recognition and
Optimization Problems

Ruzayn Quaddoura * and Ahmad Al-qerem

Department of Computer Science, Zarqa University, Jordan
* Correspondence: ruzayn@zu.edu.jo

Abstract: The canonical decomposition of a bipartite graph is a new decompositionmethod that
involves three operators, parallel, series and K + S. The class of weak bisblit graphs is totally
decomposable with respect of these operators, and the class of bicographs is totally decomposable
with respect of parallel and series operators. We prove in this paper that the class of bipartite
(Ps, Cg)-free graphs is exactly the class of bipartite graphs that are totally decomposable with respect
of parallel and K + S operators. We simplify the recognition algorithm of weak-bisplit graphs to
adepte with bipartite (Pg, C5)-free graphs. As a result of this adapted algorithm, we prsent efficient
solutions in this class of graphs for two optimization graph problems, the first is the maximm
balanced bi-clique problem and the the second is the maximum independent set problem.

Keywords: bipartite graphs; graphs decomposition; complexity; optimization problems

1. Introduction

All graphs under consideration are undirected and simple. A graph G = (V,E) is called
bipartite if the vertex set V' can be partitioned into two sets B that called the black vertices and W
that called the white vertices such that E € B x W. So a bipartite graph will be referred as ¢ = (B U
W,E). This property makes bipartite graphs useful in various practical applications, including:
recommender systems [18], social networks [13], and information retrieval [10]. A bipartite graph
G = (BUW,E) is called complete or bi-clique if E = B x W. A complete bipartite graph with |B| =
n and |W|=m is referred as K,,. A Star;j, is a tree for which there is only one vertex v of
degree three and three other vertices of degree one such that the distance from v to those vertices
are respectively i,j and k. for example K;; is Star;;;. We can remark that every connected
component in a bipartite Star; 1 ;-free graph is either a chordless path or a chordless cycle. Fouquet
et al. in [5] presented a decomposition method concerning bipartite graphs, called canonical
decomposition, which is based on three operators, series, parallel and K + S, and proved that the
class of graphs that are totally decomposable with respect of this three operators of decomposition is
the class of bipartite (Stary 3, P;)-free graphs which is called the class of weak bisplit graphs since it
is considered as bipartite analogue of split graphs. Obviously, the class of weak bisplit graphs is a
natural generalization of the class of bipartite (P, C4)-free graphs and this last is a natural
generalizationof the class of bipartite Stary,,-free graphs which is studied by Lozin in [17].
Giakoumakis et. al. in [15] defined the class of bicographs as bipartite analogue of cographs. It is
proved in [15] that the class of bicographs is exactly the class of bipartite (Star 3, P;, Sun,)-free
graphs and is the class of totally decomposable graphs with respect of parallel and series
decompositions.We prove in this work that the class of bipartite (Pg, Cs)-free graphs is the class of
totally decomposable graphs with respect of parallel and K + S decompositions. As a result of this
fact, the class of bipartite (Ps, Cs)-free graphs can be recognized in linear time using the recognition
algorithm of weak bisplit graphs presented in [16] or the recognition algorithm of Star ,;-free
graphs presented in [12]. But since these two algorithms contain several redundant cases when
projected to bipartite (Ps, Cs)-free graphs, we propose a simplification of these two algorithms to
adapt only the class of bipartite (Pg, C)-free graphs. As a result of this adapted algorithm, we prsent

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

efficient solutions in this class of graphs for two optimization graph problems, the first is the maximm
balanced bi-clique problem and the the second is the maximum independent set problem.

e

6 Star1‘2‘3 P7

Figure 1. The configurationPg Cs, Star;yzand Suny.

2. Notation and Terminology

For a graph G, weuse V(G) torepresentits verticesand E(G) torepresent its edges. The number
[V(G)]| is represented by n and the number |E(G)]| is represented by m. If the two vertex sets B and
W in a bipartite graph ¢ = (B U W,E) are both non-empty, the graph is referred to as bi-chromatic,
otherwise it is monochromatic. The bi-complement of a bipartite graph G = (B U W,E) is defined as
G’ = (B U W,B x W — E). The set of neighbors of a vertex v in G is represented by N(v) and
thenumber |N(v)| isreferred to as the degree of v and represented by d(v). A vertex v is considered
isolated if d(v) = 0 and is considered universal if d(v) = |B| whenv € W or d(v) = |[W| when v €
B. A 2K, is the complement of C,. A subset S of vertices of V(G) is called independent set if there is
no edge between any two vertices of S. The sub-graph induced by a subset X of vertices of V(G) is
represented by G[X]. A graph G is considered Z-free, where Z is a set of graphs, if for any subset X <
V(G), G[X] € Z, thatis there isno sub-graph of G isomorphictoa graphin Z. Decomposition of graphs
according to predefined operators is a powerful method for obtaining efficient solutions of a big number
of graph problems. The reader can found a survey on graph decomposition methods and their uses in
[11]. In this direction, Fouquet et al. in [5] presented a decomposition method concerning bipartite
graphs, which is based on three operators: decomposing a bipartite graph into connected components,
decomposing the bi-complement of a bipartite graph into connected components, and decomposing a
bipartite graph into K @ S components. Our recognition algorithm of bipartite (Pg, C4)-free graphs
depends mainly on this method of decomposition, so to introduce our algorithm we need to present an
overview of this method.

Definition 1 [5]. A bipartite graph G = (B U W,E)such that n > 2 isa K @ S graph if the vertex set
V(G) contains an isolated vertex or there is a partition of V(G) into two sets: a bi-clique K and an independent
set S.

Property 1 [5]. A bipartite graph G = (BU W,E) with n = 2 isa K @ S-graph if and only if V(G) can be
partitioned into two sets Vy and V,, such that for every black vertex b € Vy and for every white vertex w €
V,, bw € E and for every white vertex w € V; and for every black vertex b € V,,bw & E.

We denote by the ordered pair (V3,V,) to represent the partition of the vertex set V(G) of a
K @ S-graph G and we called ita K @ S-partition of G.

Property 2 [5]. In a bipartite graph G = (B U W,E) that does not contain universal or isolated vertices,
either G is a K @ S-graph or, for any partition of the black vertices B or white vertices W into two sets X;
and X,, there is an induced 2K, in G with vertices in both X, and X,.

Corollary 1I5]. If a graph G is not a K @ S-graph, then every vertex v € V(G),v is a vertex of some 2K,.

Theorem 1 provides a method for decomposing a graph of type K @ S.

Theorem 1 [5]. A bipartite graph G isa K @ S-graph if and only if there exists a unique partition (Vy,...,V;)
of V(G), such that the following conditions are hold:
o Foreveryi = 1,...,7, V; # 0.

o Foreveryi = 1,...,r —1, thesets V; U...UV; and V;,; U...UV, forma K @ S-partition of G.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

o Forevery i = 1,...,r, the sub-graph G[V;] is not a K @ S-graph.

The partition (Vj,...,V;) of the vertex set V(G) is called the K + S-decomposition of the graph
G, and each set V; is referred to as a K @ S-component of G.

According to Theorem 1, the arrangement of components in a K @ S-decomposition is
important. Specifically, let (V3,...,V,) bethe K @ S-decompositionof G, if ablack vertex b € V;, then
for every white vertex w € V; where j > i, bw € E(G), and for every white vertex w € V; where
k <'i, bw & E(G). Similarly, if a white vertex w € V;, then for every black vertex b € V; where j >
i, bw € E(G), and for every black vertex b € V, where k < i, bw € E(G).

The canonical decomposition of a bipartite graph G is a new decomposition method defined in
[5] as following;:

e Decompose G into its K @ S-components if G is a K @ S-graph, this decomposition is called

K @ S-decomposition and is denoted by K @ S.

e Decompose G into the connected components of G if G is not connected graph, this

decomposition is called parallel decomposition and is denoted by P.

e Decompose G into the connected components of G’ if G is not connected graph, this

decomposition is called series decomposition and is denoted by S.

e If G cannot be decomposed in K @S, parallel or series decomposition then G is called

indecomposable graph or prime graph.

It has been proven in [5] that no matter the order in which the operator of decomposition is
applied (series decomposition, parallel decomposition, or K @ S -decomposition), the set of
indecomposable graphs obtained is unique. This also creates a unique tree (up to isomorphism)
associated with this decomposition known as the canonical decomposition tree. The internal nodes
of the tree are labeled by the type of decomposition applied, and the leaves correspond to
indecomposable graphs. Figure 2 shows an illustration of a bipartite graph and its canonical
decomposition tree.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

Figure 2. An example of bipartite graphG and the canonical decomposition treeT (G).

The canonical decomposition tree T(G) of a bipartite graph G resulting in order from the
K @ S -decomposition, parallel decomposition, and series decomposition procedure has several
properties outlined below. The terms vertex node, son, parent, and grandparent are used in their
conventional sense. If a is an internal node then G[a] is the sub-graph induced by the set of vertices
nodes having a as their least common grandparent.
1) Thetree T(G) consists of 3 types of internal nodes: parallel denoted by P, series nodes denoted

by S, andK @ S-nodes.

2) Two consecutive internal nodes cannot have the same label.

3) An internal node § labeled P or S cannot have a son that is a vertex node v. Otherwise, v
would be either an isolated or a universal vertex in G[§]. By the definition of a K @ S-graph,
G[6] would be a K @ S-graph.

4) The parent of a vertex node is always labeled K @ S (consequence of 3).

5) If G is a bi-chromatic graph, then for any K @ S-node §, G[§] must also be bi-chromatic.
Otherwise, if there is a node ¢ labelled K @ S and G[6] is a monochromatic graph then the
parent of § say y would have isolated or universal vertices so G[y] would be a K @ S-graph,
a contradiction with 2.

6) The sons of a K @ S-node are ordered according to the K @ S-decomposition.

7) Let § be aK @ S-node and 43,8, are respectively the first and last sons of §. If the parent of §
say y isa P-nodethen, §; cannotbe a white vertex node and §, cannot be a black vertex node.
Otherwise, by Property 1, §; and 6, areisolated verticesin G[6], since y isa P-node, §; and
§, are also isolated vertices in G[y], so ¥ mustbe a K @ S-node, a contradiction with 2.

8) If the parent of a K @ S-noded is labeled S and &7, 6, are respectively the first and last sons of

6 then §; cannot be a black vertex node and §, cannot be a white vertex node. Similar to 7.

3. Recognition Algorithm of Bipartite (Pg, C¢)-free Graphs

The following Theorem is the key of our recognition algorithm for bipartite (Pg, Cs)-free graphs.

Theorem 2. A bipartite graph G is (P, Cs)-free if and only if every connected sub-graph of Gis a K @ S-
graph.
Proof. Suppose that G is a bipartite graph (Ps, Cs)-free. Let H be a connected sub-graph of G
which is not a K @ S-graph. By Corollary 1, H contains a 2K, say byw,, b,w,. Since H is a
connected sub-graph of G and G is (Pg, Cg)-free graph, there is a vertex in V(H) that connects
byw; and b,w,. Suppose without loss of generality that b is a black vertex such that bw,,,bw, €
E(H). Since H is not K @ S-graph, the vertex b is not universal, so there is a white vertex w such
that bw & E(H). Since H is connected there is a path in H that connects the vertex w and the path
Ps = by, wy, b, w,, b,. But now the set {b;,wy, b,w,, b,,w} formsa P ora (g4, a contradiction.

The inverse is clear since a P, or a Cg is connected and contains a 2K,, so it isnot a K @ S-
graph. O

Theorem 2 states that the class of bipartite (Ps, C¢)-free graphs is the smallest class closed under
parallel and K @ S-decomposition. So the canonical decomposition tree of a bipartite (Ps, Cg)-free
graph consists only of P-nodes or K @ S-nodes. Our recognition algorithm builds a decomposition
tree with P or K @ S labeled internal nodes if the input graph is (P, C¢)-free otherwise a failure
message.This building was influenced by the cographs recognition method proposed by Corneil, et
al in [2]. Moreover, this algorithm greatly simplifies two recognition algorithms when projected on
bipartite (Ps, Cg)-free graphs. The first is for weak bisplit graphs presented in [16] and the second for
bipartite Stary,;-free graphs presented in [12], where both these two algorithms need to examine
more than twenty cases in order to confirm that the input graph is (P, Cs)-free or not, while, as we
will see, our algorithm needs to examine only two cases that are presented below in Theorem 3 and

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024

5

in Theorem 4. The algorithm begins with an empty graph and gradually adds vertices, ensuring that
the resulting sub-graphs remain (Pg, C¢)-free. The initial bipartite graph is considered (P, Cy)-free if
all vertices can be added successfully in this manner. The principal step of the algorithm takes into
considerationthe decomposition tree Tof a (Ps, Cg)-free bipartite graph G = (B UW,E), a vertex
x € BUW, and a set of edges denoted by E(x) = {xv:v € BUW and v € N(x)}, and produces the
decomposition tree T’ of the resulting graph ¢' = (B UW U {x},E U E(x)) if it remains (Pg, Cg)-
free, or stops otherwise. The algorithm considers the connections of x to other verticesin G usinga
marking procedure. We can assume without loss of generality that x is a white vertex and the graph
G is a bi-chromatic graph.

3.1. Marking Procedure

The Marking procedure, used in [2], takes into consideration the neighbors of the vertex x in
the graph G to mark the nodes of T, the decomposition tree of G.

do0i:10.20944/preprints202402.1561.v1

Algorithm 1: Marking
Input: The canonical decomposition tree T of G, and the white vertex x.
Output: The marking tree T.
For every black vertexnode v of T.
If v is a neighbor of x mark v by (t), if v is not a neighbor of x, mark v by ().
Traverse T on a bottom-up traversal, let a be an internal node of T:
If every son of @ which is distinct of white vertex node is marked by () then mark a by ().
If there is a son of @ marked by (t) and a son marked by () then mark a by (p).

If every son of @ which is distinct of white vertex node is marked by (t) then mark a by (t).

At the end of the marking procedure on tree T, a node can have three possible states: marked
by(t), marked by (p), or marked by (). If a node § is marked by (t), it means that x is total for
G[6], that is, x is connected to all black vertices in G[d]. If it is marked by (p), it means that x is
partial for G[d], that is, x is connected to some but not all black vertices in G[§]. If it is marked by
(), it means that x is independent of G[§], that is, it x is not connected to any black vertex in G[6].
If anode is a vertex node, it can either be marked by () or marked by (t). By Theorem 2, the marking
procedure focuses only on P -nodes and K @ S -nodes, ignoring the S -nodes that must be
unavailable. For the graph G’ to be considered bipartite (P, Cg)-free, it must meet a necessary
condition.

Lemma 1. If two internal nodes in the tree Tare marked by(p), and G' is a (Pg, Cg)-free bipartite graph, then
one of these two nodes must be a grandparent of the other.

Proof. Suppose that a and S are two internal nodes marked by (p) then a and f are partial
with respect to x. Let § be the least common grandparent of aand f. We denote by a’and g’ to
be respectively the son of § containing a and the son of § containingf. Since G[a] and G[f] are
sub-graphs of G[a'] and G[B'] then a'and B'are partial with respect to x. Assume that § is
labeled P, then G[a'] and G[B'] are connected sub-graphs of G[&]. Thus there is an induced path
by, wy, b, in G[a'] (resp. b'y,w'y,b’; in G[B']) such that x is adjacent to b; and not adjacent to b,
(resp.to b'; and not to b',). The set {w'y, b'y,x, by, wy, b,} formsa Pg, a contradiction.

Assume that § is labeled K @ S. By Corollary 1,a’ (resp.f’) contains a 2K, that is partial with
respect to x. Let byw,, byw, (resp. b'yw'y,b',w',) be a 2K, in G[a'] (resp. in G[B'] such that x is
adjacent to b; and not adjacent to b, (resp. to b’y and not to b,). Then the set
{w,, by,W',, by, x,b',w';} formsa Pg, a contradiction. o

By lemma 1, the nodes in T that are marked by (p) are arranged in a single path that starts
from the lowest node marked by (p) and goes up to the root. The lowest node marked by (p) is
referred to as a. It is assumed that the conditions of Lemma 1 are met and that a is known. The
following notations are introduced:

e Given two internal nodes § and §’ such that § is a grandparent of §’, the unique son of §

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

that contains &’ is denoted as son(§,45").

e Foraninternal node &, which is eitherar or one of its grandparents, the set of sons of § that are
marked by () is denoted as sonsO(§), and the set of sons that are marked by (t) is denoted as
sons®(6).

. If § has alabel K @ S, considering the ordering of the sons of §, the set of sons of § marked
by (t) and located before son(é,a) is denoted as sonsl(t) (8), and the set of sons marked by
(t) and located after son(d,a) is denoted as sonsz(t) (8). The set of sons of § marked by ()
and located before son(6,a) is denoted as sonslo (8), and the set of sons marked by () and

located after son(d, a) is denoted as sonszo).

So,anode § labeled P whichisa grandparentof a splitsits sons into at most three categories:
sons®(8), sonsO(8), and son (8,a) the son that containsa,. If § is labeled K @ S, its sons can be
divided into at most five sets: son(§,a), sonsl(t)(S), sonslo(é‘), sonsgt) (6), and sonszo).
Meanwhile, the sons of @ are split into two non-empty categories: son®(a), and sons®(a).
Definition 2. If § is a grandparent of ain T, then & is considered incompatible P-node if it has at least one
son marked by (t) (i.e. sons®©(8) # Q). If & is a K + S-node, it is considered incompatible before a if it
has at least one son marked by () located before son(d,a) (i.e. sonslo 8)#0).If § isa K@ S-node, it is
considered incompatible after a if it has at least one son marked by (t) located after son(6,a) (ie.
sonsz(t) (a) = 0).

3.2. Building the tree T’

We assume that the necessary condition of Lemma 1 has been verified and all nodes that are
marked by (p) are known and are arranged in a single path that starts from the lowest marked node
a and goes up to the root of T.In order to build T’, we examine the label of @ and the presence of

incompatible marked nodes.When a is K @ S-node and since it is the lowest node marked by (p),

®

we can divide its group of sons into a maximum of four consecutive subsets, namely X (t), X é), X357,

X, where:
X I(t)includes the first group of consecutive sons of a that are either a group of white vertices
nodes or total with respect to x.
X 2() includes the first group of consecutive sons of « that are not part of X l(t) and either a group
of white vertices nodes or not related to x.
X ét)includes the first group of consecutive sons of a that are not part of XZO nor of X l(t) and
either a group of white vertices nodes or total with respect to x.
X,represents the remaining sons of a.
Note that, as a result of this division of the sons of @ when its label is K ® S, XZO and
X ét)cannot be together monochromatic graphs.

Lemma 2. Assume that a is a K @ S-node. If G' is a bipartite (P, Cg)-free graph then the following
conditions are hold:
1) x has no neighbor in X,.
2) IfX 3(t)is empty then G [Xs(t)] is a monochromatic graph or a complete bipartite graph.
Proof. Suppose that X, is not empty, otherwise we are done. Let’s show that x has no neighbor in
X,. Since X, is not empty then Xg(t) and XZO are both non empty. Let b, € X, such that x is
adjacent to b,. Now, X, contains two adjacent vertices b’y,w’, such that x is not adjacent to b’,
otherwise b, € X3(t). Let by, b; be two black vertices of Xzoand Xét) respectively. By construction,
there is a white vertex w such that w is adjacent to b, and w is not adjacent to b;. But now the
set {b,,x, bs, w,, b,,w} formsa P, a contradiction.

Let’s show now that the condition 2 must be hold. Suppose that X ?Et)is not empty then X é) is also
non empty.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

Claim 1. Every element of Xét) is a vertex node.
Proof. Suppose that § is an element of X §t) that is an internal node. Then § is a P-node, thus it
contains a 2K, say b;wy, b,w,. Let b€ XZO , then the set {b,w;, by, x,b,,w,} forms a Cq, a
contradiction. m
Claim 2. X. z()contuins a white vertex.
Proof. Suppose that X 20 does not contain any white vertex then X ét)contains an element that is an
internal node, a contradiction with claim 1. m

Let by,,w, be two vertices of XZO such that b,w, € E(G). Suppose that G [th)] is neither a
monochromatic graph nor a complete bipartite graph. Then th) contains the vertices b;, b's, w;
such that b; is adjacent to w; and b'; is independent of wz. Consequently {b's,x, b3, w3, by, w,}
forms a Pg, a contradiction.o
Theorem 3. Assume that there is no incompatible grandparent of a. G'is a bipartite (Pg, Cg)- free graph if and
only if one of either
1) « isa P-node or
2) aisa K & S-node and Lemma 2 is hold.
Proof. The if part of the Theorem has been proved in lemma 2. We will describe the building of T’
for the only if part. The building of T' when ai s aP-node is described in Figure 3.a. If sons®(a)
consists of a unique son then this son will be a son of the node labeled K @ S. Suppose that a is a
K @ S-node. If X;t)is empty, then we insert x in T as a new son of a. The building of T’ when
G[X 3(t)] is a monochromatic graph or a complete bipartite graph is described also in Figure 3.b. In this
case, if G[X3(t)] is a monochromatic graph then W, = ¢. o

a) b)

AN

T

| sonsO(a) | | sons'(a)

sons'O(a)

Figure 3. Building of T' when there is no incompatible grandparent of a.

Lemma 3. Assume that G’ is a bipartite (Ps, C¢)-free graph. If there is an incompatible grandparent B of «
then the following condition are holds:

1) f isa K @ S-incompatible node after a.

2) P is the unique incompatible grandparent of a.

3) The set sonsz(t) (B) consists of black vertices nodes located exactly after son (g, a).

Proof. Suppose that f is an incompatible grandparent of @ of type P. Then there exists two
adjacent vertices bz, w; in an element of sons® (). Since son(f,a) induces a connected graph, it
contains an induced P; say by, wy, b, such that b; is adjacent to x and b, is independent of x.
But now {x, b;,wy, by, b5, w;} forms a Pg, a contradiction.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

8

If B is a K@ S-incompatible node before a, then sonsl() (B) contains a black vertex b
independent of x. By Corollary 1, son(f,a) contains a 2K, say b;w;, b,w, such that x isadjacent
to b; and x is independent of b,. The set {x,b;,w;,b,w,,b,} forms a Ps, a contradiction.
Consequently f is a K @ S -incompatible node after a. Let's consider S to be the highest
incompatible grandparent of aandlet b € sonsgt) .

Claim. There is no grandparent § of acontaining a white vertex total for son(6,a).

Proof. Let § be a grandparent of @ and w is a white vertex of § total for son(s,a). Let
bywy, b,w, be an induced 2K, of son (6§, @) such that x is adjacent to b; and independent of b,.
Then the set {b,x, b;,w, b,,w,} forms a P, a contradiction. m

By this claim, if § is a K @ S-incompatible node after a then the set sonsz(t) (8) consists of
black vertices nodes located exactly after son(§,a). Moreover, for every grandparent § of «
labeled K @ S and located between a and B, son(6,a) is the last son of §, otherwise & contains
a white vertex total for son(6, a), a contradiction, thus § cannot be incompatible. Therefore, Bis the
unique incompatible grandparent of a. o
Theorem 4. Assume that fis the unique K @ S-incompatible grandparent after a and the set sonsz(t) B
consists of black vertices nodes located exactly after son (B, a). G' is a bipartite (Pg, C¢)-free graph if and only
if one of the following conditions is hold:

1) a isa P-node.

2) aisa K @ S-node such that Xg) is an empty set.

Proof. Suppose that a isa K @ S-node and let b € sonsét) (B). Suppose that th) is non empty. By
lemma 2, G[X. 3@] is a monochromatic graph or a complete bipartite graph. In the two cases G[XZO]
cannot be a monochromatic graph otherwise X, §t) is empty. Thus X. 20 contains two adjacent vertices
b,,w,. Let b; be ablack vertex of X ;t). Since G[a] is a connected graph then there is a white vertex
say ws in the last son of a, butnow {b,x, b3, ws, b,,w,} formsa Ps, a contradiction.

For the only if part, we describe the building of T".When «a is a P-node, the building of T is
illustrated in Figure 4.a. If the set sons®(a) is a unique son then this son must be labeled K @ S. In
this case, we delete the node §; and the element sons®(a) will be a son of &,. The building of
T'when the condition 2 is hold is illustrated in Figure 4.b. If X. 20 is a unique son, then this son is either
anode labeled P or ablack vertex node. In this case, we delete the node §,, and the element X zowill
be a son of §;.0

sons ()

Figure 4. Building of T'when g the unique K + S-incompatible grandparent of a exist.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024

3.3. Recognition Algorithm

The recognition algorithm of bipartite (Pg, Cs)-free graphs is given by Algorithm 2, where the
procedure of the step Build-tree (G',T,head(L)) is presented in Algorithm 3.

do0i:10.20944/preprints202402.1561.v1

Algorithm 2 Recognition of bipartite (Pg, C¢)-free graph

Input: a bipartite graph ¢ = (B UW,E).

Output: if G is (Ps, C5)-free graph then the canonical decomposition tree T(G), otherwise a failure
message ”G isnot (P, Cs)-free graph”.

Initialization step: Let L be the list of all the vertices of G sorted in descending order according to
their degrees.

T =new-vertex;

G =0;

Build-tree (G’,T,head(L)).

Algorithm 3 Procedure Build-tree (G',T, head(L))

1) Marking(T, x)

2) Find theset S ={6:d isan internal node marked by (p)}

3) If S = @ then T =insert(x,T)
(If x is independent of T (resp. total for T) then create a new root § of T labeled K ® S
such that x is the left (resp. right) son of § and the root of T is the right (resp. left) son of
5)

4) Elseif [S| > 2 than Exit with the message "failure".

5) Elseif |S| =1 then T =insert(x,T) (according to Theorem 3)

6) Elseif one of the twonodes of S is not a grandparent of the other then Exit with the message
"failure".
Elselet S = {a,f} and [is the grandparent of «

7) If B isa P-node then Exit with the message "failure".

8) Else T = insert (x,T) (according to Theorem 4)

9 G = GV(G) U

10) If L = @then Exitelse L =L — {x};x = head(L); Build-tree(G’, T, x)

3.4. Complexity

Our aim is to demonstrate that recognizing a bipartite graph G, which does not contain Pg or
Cs, can be accomplished in O(n +m) time complexity. Since the principal step of our algorithm is
the step Build-tree(G’, T, x), we will demonstrate the linearity of our algorithmby showing that this
step requires onlyO(d, (x)) operations, where dg,(x) is the degree of the node x in G'.

It is evident that the step 1 runs within 0(dg;,(x)) time, as only a maximum of 0(dg,(x)) nodes
are marked. Furthermore, we can assume that for every node in the tree T, the set of its sons that are
marked by (t), by (p) or by () has been calculated. So find the set S requires also 0(dg,(x))
operations. Suppose that S = |2]. We can check whether one of the two nodes of S is a grandparent
of the other as following: Choose an element of S and start to mark the parent of this element, then
mark the parent of parent and so on until the other element of S is marked or until the root of T is
marked. For the last case, that is, if the root of T has been marked, we repeat this process for the
other element of S. By this manner, we can also determine the node «, the lowest node marked by
(p) and the grandparent (. Obviously, this process can be done in 0(dg,(x)) mark operations.

It remain analysis the time complexity of the function insert (x, T). This requires to verify the
necessary conditions in Theorem 3 or in Theorem 4. Therefore we need to compute all required sets

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

10

for building the tree T'. If a has label P, then the computation of the set sons®(a) and the set
sonsV(a) is straightforward. Suppose a has label K @ S. We can compute the sets Xl(t), XZO,
X 3(t),and X, as following: First, we compute X ft) by traversing the set of sons of a from left to right.
In this manner, X 1(t) will be the first nodes that are either a set of white vertices or nodes marked by
(t), we continue by this traversing until a son of @ marked by () has been found. The remaining
sons of @ marked by (t) must belong to X;t) since X, is independent of x according to Lemma
2. To compute X.gt), we choose a son of a (let's call it ¢) from the remaining nodes marked by (t)
and we traverse the set of sons of a starting from ¢ in left and right directions, from left until a son
of a marked by () has been found and from right also until a son of « marked by () has been
found or until the last son from right has been found. We continue by this traversing as long as
every son is either a white vertex node or is a node marked by (t). As long as the set X;t) has been
computed, the sets XZO can be computed immediately. The remaining sons of a form the set X,
which must be independent of x This computation requires 0(dg,(x)) time complexity.

Finally, we need to determine if the node [, whichitslabelis K @ S, is incompatible after a or
not and check whether the set sonsz(t) (B) is a set of black vertices nodes located exactly after
son(f,a). This two conditions can be achieved together as following: Since f is known as a
grandparent of a, the son son(f, a) is identified. Now, we can traverse the sons of f starting from
the first son located exactly after son(f,a) and determine whether any one of these sons is a white
vertex node or not. In addition, we must traverse the sons of f starting from the first son located
exactly before son(f,a) to determine if the set sonslo(c?) is empty or not. This traverse also requires
0(dg/(x)) time complexity.

we leave to the reader to verify that the step Build-tree(G, T, x)) that correspond to insert x in
the tree T takes a constant time in all cases.

Since testing whether G' = G U {x} is a bipartite (Pg, C¢)-free or not can be done within
0(dg/(x)) time complexity, it is clear that recognition of bipartite (P, Cs)-free graph algorithm runs
in O(n+m) time complexity.

4. Optimization Problems

We believe that the canonical decomposition tree for bipartite (Ps, Cs)-free graph can be used to
find efficient solutions for several optimization graph problems because of the simple structure of
this tree.In this paper, we limit ourselves to show that the canonical decomposition tree of a bipartite
graph (P, Cg)-free can be used to solve in polynomial time the maximal balanced bi-clique problem
and in linear time the maximum independent set problem. In the conclusion part of this paper, we
talk about some potential use for this result and consider it as a subject for further study.

Let T(G) be the canonical decomposition tree for a bipartite (P, Cs)-free graph G. To present
our solutions of the above two problems, we need to covert T(G) to a binary tree as following;:

Visit the nodes of T(G) in depth first search

Let S be an internal visited node and S, ..., S, are the sons of S.If k > 2then the left son of S
is S; and the right son becomes a new son S’ that has the same label as § with sons S, ..., S.

4.1. Maximum balanced bi-clique problem

A sub-graph F = G[X UY] of a bipartite graph G is called balanced bi-clique if F is a bi-clique
and |X| = |Y|. The balanced bi-clique problem is to compute a balanced bi-clique in G of maximum
size. This problem is important in many different fields of study. It has numerous practical uses in
very large-scale integration (VLSI), such as the design of defect-tolerant devices [1,7], programmable
logic array folding [14]. Balanced bi-clique problem is NP-complete for a general bipartite graph [9],
and there are very few works dedicated to obtaining an exact maximum balanced bi-clique, aside

from the work [6] where it is proposed two exact algorithms to find amaximum balanced
bi-clique for small dense and large sparse bipartite graphs respectively. The majority

of known techniques for determining a maximum balanced bi-clique are heuristic algorithms, see
for example, [8,19].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

11

We propose in this work an 0(n?®) time complexity algorithm to compute a maximum balanced
bi-clique in a bipartite (Ps, Cs)-free graph G using its canonical decomposition binary tree T(G). The
idea of our solution is to compute all possible bi-cliques in G, that are maximal with respect to set
inclusion, then find among them the one that contains a maximum balanced bi-clique. A bi-clique F
is maximal with respect to set inclusion if there is no bi-clique in G that contains F. The structure of
T(G) when G is a bipartite (Ps, Cg)-free graph and the definition of K @ S operation allow us to
achieve this computation by a post order traversal of T(G) and associating for each internal node «
all possible maximal bi-cliques in G[a] (with respect to set inclusion) through the two sets ofmaximal
bi-cliques associated with the left son a; and the right son a, of a.The set of maximal bi-cliques
associated with a; denoted by L(a;) = {F} = G[X} UY!]:i=1,..,7} and the set of maximal bi-
cliques associated with @, denoted by L(a,) = {F? = G[X? UY{?] : i = 1,...,k}. We suppose that for
every bi-clique Fij = G[Xij U Yl.j | Xl.j is a set of black vertices and Yij is a set of white vertices. In
addition, we suppose that the members of L(a;) are arranged from left to right according to their
appearance in the sub-tree T(a;). Likewise, we suppose that the members of L(a;) are arranged
from left to right according to their appearance in the sub-tree T(a,). This supposition is done
directly according to the arrangement of sons for every K @ S-node in T(G). The reader can verify
simply the truth of computation used in the algorithm Balanced Bi-clique for the set of maximal bi-
cliques L(a) according to the definition of K @ S-node and the definition of P-node. Figure 5 can
help to imagine this computation.

Algorithm Balanced Bi-clique
Input: A binary canonical decomposition tree T(G) of a bipartite (Ps, C5)-free graph G = (BU W, E).
Output: A maximal balanced bi-clique F = G[X U Y] for G

Let @ be anode on a post order traversal of T(G)
If a is a black vertex node b (resp. a white vertex node w) then L(a) = {G[{b} U @] (resp.G[P U
{wi]
Else let @; and @, be the left and right son of a respectively and let (a;) = {F} = G[Xl-l u Yil] 1=
1,1}, L(ay) ={F} =G[X} UY|:i=1,..,k} .
If @ isa K @ S-node then
Let L ={G[(XIU..uXHu?u..uYH}
L,={GX}uluY?u..uY)li=1,..r}
Ly ={G[(X? UX}U.UXHUY:i=1..k}
Ifr+1ork=+1then L(a)=L;UL,UL; else L(a) =L, U L3
Else// a isa P-node //L(a) = L(a;) U L(a,)
If a isthe rootof T(G) thenlet L(a) ={F, =G[X;UY;],i =1,...,s}
Let s; = max {min(|X;], |¥;]), ..., min (|X,], |Ys])} return F,

The number of bi-cliques computed for each internal node is at most 0(n?). Since T(G) contains
0(n) node, the algorithm Balanced Bi-clique has a time complexity 0(n?).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

12

-—’f - -__‘_"——_
,-<~”/; B
P
[ay \| 'r a\l
\ / \ "2
~— —
~ A ~ ~ A ~
-~ ~ -~ =

L(ay) L(ay)
Figure 5. A node a and the sets of all maximal bi-cliques associated with its sons.

4.2. Maximum independent set problem

A subset S of the vertex set V(G) in a graph G is called independent set if any two vertices in
S are not adjacent. The maximum independent set problem is to compute an independent setin G
of maximum size. This problem is NP-complete for general graphs [9], but it can be solved in
0(n**\/m/logn) time complexity for a general bipartite graph [4]. This time complexity can
improved to O(n) for bipartite (Ps, Cs)-free graph using its canonical binary decomposition tree..
The idea of our solution results from the structure of K @ S-graph G as following: Let (V;,V,) be a
K @ S-partition of the vertex set V(G). By Property 1, every black vertex of V; is connected to every
white vertex of V, and every white vertex of V; is independent to every black vertex of V,. So, the
maximum independent set in G is either the maximum independent set in G[V;] or the maximum
independent setin G[V,] or the independent set formed by the union of white vertices of G[V;] and
black vertices of G[V,]. This remark proves the correctness of the following algorithm. Note that if G
is not connected then the maximum independent set in G is equal to the union of the maximum
independent sets in its connected components.

Algorithm Maximum Independent Set
Input: A binary canonical decomposition tree T(G) of a bipartite (P, Cs)-free graph G = (BU W, E).

Output: A maximum independent set S for G

Let a be anode on a post order traversal of T(G).

If a is a black vertex node b (resp. a white vertex node w) then

S(a) = {b}, B(a) ={b}, W(a) =@ (resp.S(a) ={w}, B(a) =@, W(a) = {w})

Else let a; and @, be respectively the left and right son of @ and let S(a;) be a maximum independent set of
G[a;] and S(ay) isamaximum independentsetof G[a,], let W(a;), B(a;) be respectively the white and black
vertices of G[a;] and W(a,), B(a;) are respectively the white and black vertices of G[a;].

If a isa K @ S-node then

s = max{|S(apl, IS(a)l, W (a;) U B(ay)1}

S(a) =S where |S| =s, W(a) = W(a;) UW(a,) and B(a) = B(a;) U B(ay)

else// a isa P-node

S(a) = S(ar) U S(a), W(a) = W(a;) UW(ay) and B(a) = B(a;) U B(a)

Since T(G) contains O(n) node, the algorithm maximum independent set has a time
complexity 0(n).

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

13

Conclusion

we have showed in this paper that bipartite (P, C5)-free graphs can be recognized in linear
time. Using this result, we solved two optimization graph problems in this class of graphs, the first
is the maximm balanced bi-clique problem and the the second is the maximum independent set
problem. An additional potential using of the canonical decomposition tree of bipartite (Ps, Cg)-free
graph is to solve the problem P| prec. p; = 11 Cmax : Suppose there are n tasks with a unit execution
time, and their order is constrained by a directed acyclic graph. Additionally, there are m machines
of the same type. The goal is to discover a schedule that minimizes the makespan, which is the time
when the final task in the graph finishes its execution. It is proved in [3] that this problem is NP-
complete even if the precedence constraints form a bipartite graph of depth one. We conjecture that
this problem can be solved in polynomial time for bipartite (P, Cs)-free graph.

References

1. A. Al-Yamani, S. Ramsundar, and D. K. Pradhan. A defect tolerance scheme for nanotechnology circuits.
IEEE Transactions on Circuits and Systems I: Regular Papers, 54(11):2402-2409, 2007.

2. D. G. Corneil, Y. Perl, LK. Stewart, A linear recognition algorithm for cographs. SIAM Journal of
Computing, Vol.14, No 4, November, 926-934. 1985.

3. E. BAMPIS, The Complexity of short schedules for UET bipartite graphs, RAIRO Oper. Res. 33 367-370.
(1999).

4. H. Alt, N. Blum, K. Mehlhorn, M. Paul, Computing a maximum cardinality matching in bipartite graphs
in time n'®,/m/logn, Inform.Process. Lett. 37, 237-240 (1991).

5. J.L. Fouquet, V. Giakoumakis,].M. Vanherpe, Bipartite graphs totally decomposable by canonical
decomposition, Internat. J. Foundations Comput. Sci. 10(4) 513-533. (1999).

6. L. Chen, C. Liu, R. Zhou, J. Xu, J. Li. Efficient Exact Algorithms for Maximum Balanced Biclique Search in
Bipartite Graphs, SIGMOD '21: Proceedings of the 2021 International Conference on Management of Data,
June 2021Pages 248-260 18

7. M. B. Tahoori. Application-independent defect tolerance of reconfigurable Nano architectures. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 2(3):197-218, 2006.

8. M.Lj, J.-K. Hao, and Q. Wu. General swap based multiple neighborhood adaptive search for the maximum
balanced biclique problem. Computers & Operations Research, 119:104922, 2020.

9. MR. GAREY and D. S. JOHNSON, Computers and Intractability, A Guide to the Theory of NP-
completeness, Mathematical Series. Freeman, San Francisco, CA, 1979.

10. P.Bird, & Fleiner, T..Recent advances in matching algorithms. European Journal of Operational Research,
294(3), 745-769. (2022).

11. R. Quaddoura, K. Mansour, Classical graphs decomposition and their totally decomposable graphs,
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.1, January 2010.

12. R. Quaddoura, Linear time recognition of bipartite Star;y;-free graphs, The international Arab Journal of
Information Technology, Vol. 3, No. 3, July (2006).

13. R.Wang, Y. Wu, X. Hu, & J. Liu, Bipartite graph neural networks for social recommendation. Information
Sciences, 572, 396-409 (2021).

14. S.Ravi and E. L. Lloyd. The complexity of near-optimal programmable logic array folding. SIAM Journal
on Computing, 17(4):696-710, 1988.

15. V. Giakoumakis, J.-M. Vanherpe, Bi-complement reducible graphs, Adv. Appl. Math. 18 (1997) 389 402.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1561.v1

14

16. V. Giakoumakis, .M. Vanherpe, Linear time recognition and optimization for weak bisplit graphs, bi—
cographs and bipartite P¢-free graphs, International Journal of Foundation of Computer Science, Vol. 14,
No. 1,107-136(2003).

17. V.V. Lozin, E-free bipartite graphs, Discrete Anal. Oper. Res. Ser. 1 7(1) (2000) 49-66 (in Russian).

18. X. Chakraborty, A Kumar. & G. Tomar, A survey on bipartite graph based recommender systems.
Information, Processing & Management, 58(6), 102536. (2021).

19. Y. Zhou and].-K. Hao. Tabu search with graph reduction for finding maximum balanced bicliques in

bipartite graphs. Engineering Applications of Artificial Intelligence, 77:86 — 97, 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

