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Bipartite (𝑷𝟔, 𝑪𝟔)-Free Graphs, Recognition and 
Optimization Problems 

Ruzayn Quaddoura * and Ahmad Al-qerem 

Department of Computer Science, Zarqa University, Jordan 

* Correspondence: ruzayn@zu.edu.jo 

Abstract: The canonical decomposition of a bipartite graph is a new decompositionmethod that 

involves three operators, parallel, series and 𝐾 + 𝑆 . The class of weak bisblit graphs is totally 

decomposable with respect of these operators, and the class of bicographs is totally decomposable 

with respect of parallel and series operators. We prove in this paper that the class of bipartite 

(𝑃6, 𝐶6)-free graphs is exactly the class of bipartite graphs that are totally decomposable with respect 

of parallel and 𝐾 + 𝑆 operators. We simplify the recognition algorithm of weak-bisplit graphs to 

adepte with bipartite (𝑃6, 𝐶6)-free graphs. As a result of this adapted algorithm, we prsent efficient 

solutions in this class of graphs for two optimization graph problems, the first is the maximm 

balanced bi-clique problem and the the second is the maximum independent set problem. 

Keywords: bipartite graphs; graphs decomposition; complexity; optimization problems 

 

1. Introduction 

All graphs under consideration are undirected and simple. A graph 𝐺 = (𝑉, 𝐸)  is called 

bipartite if the vertex set 𝑉 can be partitioned into two sets 𝐵 that called the black vertices and 𝑊 

that called the white vertices such that 𝐸 ⊆ 𝐵 × 𝑊. So a bipartite graph will be referred as 𝐺 = (𝐵 ∪

𝑊, 𝐸) . This property makes bipartite graphs useful in various practical applications, including: 

recommender systems [18], social networks [13], and information retrieval [10]. A bipartite graph 

𝐺 = (𝐵 ∪ 𝑊, 𝐸) is called complete or bi-clique if 𝐸 = 𝐵 × 𝑊. A complete bipartite graph with |𝐵| =

𝑛 and |𝑊| = 𝑚 is referred as 𝐾𝑛,𝑚. A 𝑆𝑡𝑎𝑟𝑖,𝑗,𝑘  is a tree for which there is only one vertex 𝑣 of 

degree three and three other vertices of degree one such that the distance from 𝑣 to those vertices 

are respectively 𝑖, 𝑗  and 𝑘 . for example 𝐾1,3  is 𝑆𝑡𝑎𝑟1,1,1 . We can remark that every connected 

component in a bipartite 𝑆𝑡𝑎𝑟1,1,1-free graph is either a chordless path or a chordless cycle. Fouquet 

et al. in [5] presented a decomposition method concerning bipartite graphs, called canonical 

decomposition, which is based on three operators, series, parallel and 𝐾 + 𝑆, and proved that the 

class of graphs that are totally decomposable with respect of this three operators of decomposition is 

the class of bipartite (𝑆𝑡𝑎𝑟1,2,3, 𝑃7)-free graphs which is called the class of weak bisplit graphs since it 

is considered as bipartite analogue of split graphs. Obviously, the class of weak bisplit graphs is a 

natural generalization of the class of bipartite (𝑃6, 𝐶6) -free graphs and this last is a natural 

generalizationof the class of bipartite 𝑆𝑡𝑎𝑟1,2,2 -free graphs which is studied by Lozin in [17]. 

Giakoumakis et. al. in [15] defined the class of bicographs as bipartite analogue of cographs. It is 

proved in [15] that the class of bicographs is exactly the class of bipartite(𝑆𝑡𝑎𝑟1,2,3, 𝑃7, 𝑆𝑢𝑛4)-free 

graphs and is the class of totally decomposable graphs with respect of parallel and series 

decompositions.We prove in this work that the class of bipartite (𝑃6, 𝐶6)-free graphs is the class of 

totally decomposable graphs with respect of parallel and 𝐾 + 𝑆 decompositions. As a result of this 

fact, the class of bipartite (𝑃6, 𝐶6)-free graphs can be recognized in linear time using the recognition 

algorithm of weak bisplit graphs presented in [16] or the recognition algorithm of 𝑆𝑡𝑎𝑟1,2,3 -free 

graphs presented in [12]. But since these two algorithms contain several redundant cases when 

projected to bipartite (𝑃6, 𝐶6)-free graphs, we propose a simplification of these two algorithms to 

adapt only the class of bipartite (𝑃6, 𝐶6)-free graphs. As a result of this adapted algorithm, we prsent 
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efficient solutions in this class of graphs for two optimization graph problems, the first is the maximm 

balanced bi-clique problem and the the second is the maximum independent set problem. 

 

 

 

 

 

 

 

Figure 1. The configuration𝑃6,𝐶6, 𝑆𝑡𝑎𝑟123and 𝑆𝑢𝑛4. 

2. Notation and Terminology 

For a graph 𝐺, we use 𝑉(𝐺) to represent its vertices and 𝐸(𝐺) to represent its edges. The number 

|𝑉(𝐺)| is represented by 𝑛 and the number |𝐸(𝐺)| is represented by 𝑚. If the two vertex sets 𝐵 and 

𝑊 in a bipartite graph 𝐺 =  (𝐵 ∪  𝑊, 𝐸) are both non-empty, the graph is referred to as bi-chromatic, 

otherwise it is monochromatic. The bi-complement of a bipartite graph 𝐺 =  (𝐵 ∪  𝑊, 𝐸) is defined as 

𝐺̅𝑏𝑖𝑝  =  (𝐵 ∪  𝑊, 𝐵 ×  𝑊 −  𝐸). The set of neighbors of a vertex 𝑣 in 𝐺 is represented by 𝑁(𝑣) and 

the number |𝑁(𝑣)| is referred to as the degree of 𝑣 and represented by 𝑑(𝑣). A vertex 𝑣 is considered 

isolated if 𝑑(𝑣) = 0 and is considered universal if 𝑑(𝑣) = |𝐵| when𝑣 ∈ 𝑊 or 𝑑(𝑣) = |𝑊| when 𝑣 ∈

𝐵. A 2𝐾2 is the complement of 𝐶4. A subset 𝑆 of vertices of 𝑉(𝐺) is called independent set if there is 

no edge between any two vertices of 𝑆. The sub-graph induced by a subset 𝑋 of vertices of 𝑉(𝐺) is 

represented by 𝐺[𝑋]. A graph 𝐺 is considered 𝑍-free, where 𝑍 is a set of graphs, if for any subset 𝑋 ⊆

𝑉(𝐺), 𝐺[𝑋] ∉ 𝑍, that is there is no sub-graph of 𝐺 isomorphic to a graph in 𝑍. Decomposition of graphs 

according to predefined operators is a powerful method for obtaining efficient solutions of a big number 

of graph problems. The reader can found a survey on graph decomposition methods and their uses in 

[11]. In this direction, Fouquet et al. in [5] presented a decomposition method concerning bipartite 

graphs, which is based on three operators: decomposing a bipartite graph into connected components, 

decomposing the bi-complement of a bipartite graph into connected components, and decomposing a 

bipartite graph into 𝐾 ⨁ 𝑆 components. Our recognition algorithm of bipartite (𝑃6, 𝐶6)-free graphs 

depends mainly on this method of decomposition, so to introduce our algorithm we need to present an 

overview of this method.  

Definition 1 [5]. A bipartite graph 𝐺 =  (𝐵 ∪  𝑊, 𝐸)such that 𝑛 ≥ 2  is a 𝐾 ⨁ 𝑆 graph if the vertex set 

𝑉(𝐺) contains an isolated vertex or there is a partition of  𝑉(𝐺) into two sets: a bi-clique 𝐾 and an independent 

set 𝑆.  

Property 1 [5]. A bipartite graph 𝐺 = (𝐵 ∪  𝑊, 𝐸) with 𝑛 ≥ 2 is a 𝐾 ⨁ 𝑆-graph if and only if 𝑉(𝐺) can be 

partitioned into two sets 𝑉1 and 𝑉2, such that for every black vertex 𝑏 ∈ 𝑉1 and for every white vertex 𝑤 ∈

𝑉2, 𝑏𝑤 ∈ 𝐸 and for every white vertex 𝑤 ∈ 𝑉1 and for every black vertex 𝑏 ∈ 𝑉2, 𝑏𝑤 ∉ 𝐸. 

We denote by the ordered pair (𝑉1, 𝑉2) to represent the partition of the vertex set 𝑉(𝐺) of a 

𝐾 ⨁ 𝑆-graph 𝐺 and we called it a 𝐾 ⨁ 𝑆-partition of 𝐺. 

Property 2 [5]. In a bipartite graph 𝐺 =  (𝐵 ∪  𝑊, 𝐸) that does not contain universal or isolated vertices, 

either 𝐺 is a 𝐾 ⨁ 𝑆-graph or, for any partition of the black vertices 𝐵 or white vertices 𝑊 into two sets 𝑋1 

and 𝑋2, there is an induced 2𝐾2 in 𝐺 with vertices in both 𝑋1 and 𝑋2. 

Corollary 1[5]. If a graph 𝐺 is not a 𝐾 ⨁ 𝑆-graph, then every vertex 𝑣 ∈ 𝑉(𝐺),𝑣 is a vertex of some 2𝐾2. 

Theorem 1 provides a method for decomposing a graph of type 𝐾 ⨁ 𝑆.  

Theorem 1 [5]. A bipartite graph 𝐺 is a 𝐾 ⨁ 𝑆-graph if and only if there exists a unique partition (𝑉1, . . . , 𝑉𝑟) 

of  𝑉(𝐺), such that the following conditions are hold: 

• For every 𝑖 =  1, . . . , 𝑟, 𝑉𝑖 ≠ ∅. 

• For every 𝑖 =  1, . . . , 𝑟 − 1, the sets 𝑉1 ∪. . .∪ 𝑉𝑖 and 𝑉𝑖+1 ∪ . . .∪ 𝑉𝑟 form a 𝐾 ⨁ 𝑆-partition of 𝐺. 

𝑆𝑡𝑎𝑟1,2,3 𝑃6 𝐶6 𝑃7 𝑆𝑢𝑛4 
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• For every 𝑖 =  1, . . . , 𝑟, the sub-graph 𝐺[𝑉𝑖] is not a 𝐾 ⨁ 𝑆-graph. 

The partition (𝑉1, . . . , 𝑉𝑟) of the vertex set 𝑉(𝐺) is called the 𝐾 +  𝑆-decomposition of the graph 

𝐺, and each set 𝑉𝑖 is referred to as a 𝐾 ⨁ 𝑆-component of 𝐺. 

According to Theorem 1, the arrangement of  components in a 𝐾 ⨁ 𝑆 -decomposition is 

important. Specifically, let (𝑉1, . . . , 𝑉𝑟) be the 𝐾 ⨁ 𝑆-decomposition of 𝐺, if a black vertex 𝑏 ∈ 𝑉𝑖, then 

for every white vertex 𝑤 ∈ 𝑉𝑗  where 𝑗 > 𝑖, 𝑏𝑤 ∈ 𝐸(𝐺), and for every white vertex 𝑤 ∈ 𝑉𝑘  where 

𝑘 <  𝑖, 𝑏𝑤 ∉ 𝐸(𝐺). Similarly, if a white vertex 𝑤 ∈ 𝑉𝑖, then for every black vertex 𝑏 ∈ 𝑉𝑗 where 𝑗 >

 𝑖, 𝑏𝑤 ∉ 𝐸(𝐺), and for every black vertex 𝑏 ∈ 𝑉𝑘 where 𝑘 <  𝑖, 𝑏𝑤 ∈ 𝐸(𝐺). 

The canonical decomposition of a bipartite graph 𝐺 is a new decomposition method defined in 

[5] as following: 

• Decompose 𝐺 into its 𝐾 ⨁ 𝑆-components if 𝐺 is a 𝐾 ⨁ 𝑆-graph, this decomposition is called 

𝐾 ⨁ 𝑆-decomposition and is denoted by 𝐾 ⨁ 𝑆. 

• Decompose 𝐺  into the connected components of 𝐺  if 𝐺  is not connected graph, this 

decomposition is called parallel decomposition and is denoted by 𝑃. 

• Decompose 𝐺  into the connected components of 𝐺̅𝑏𝑖𝑝  if 𝐺̅𝑏𝑖𝑝  is not connected graph, this 

decomposition is called series decomposition and is denoted by 𝑆. 

• If 𝐺  cannot be decomposed in 𝐾 ⨁ 𝑆 , parallel or series decomposition then 𝐺  is called 

indecomposable graph or prime graph. 

It has been proven in [5] that no matter the order in which the operator of decomposition is 

applied (series decomposition, parallel decomposition, or 𝐾 ⨁ 𝑆 -decomposition), the set of 

indecomposable graphs obtained is unique. This also creates a unique tree (up to isomorphism) 

associated with this decomposition known as the canonical decomposition tree. The internal nodes 

of the tree are labeled by the type of decomposition applied, and the leaves correspond to 

indecomposable graphs. Figure 2 shows an illustration of a bipartite graph and its canonical 

decomposition tree. 
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Figure 2. An example of bipartite graph𝐺 and the canonical decomposition tree𝑇(𝐺). 

The canonical decomposition tree 𝑇(𝐺)  of a bipartite graph 𝐺  resulting in order from the 

𝐾 ⨁ 𝑆 -decomposition, parallel decomposition, and series decomposition procedure has several 

properties outlined below. The terms vertex node, son, parent, and grandparent are used in their 

conventional sense. If 𝛼 is an internal node then 𝐺[𝛼] is the sub-graph induced by the set of vertices 

nodes having 𝛼 as their least common grandparent.  

1) The tree 𝑇(𝐺) consists of 3 types of internal nodes: parallel denoted by 𝑃, series nodes denoted 

by 𝑆, and𝐾 ⨁ 𝑆-nodes. 

2) Two consecutive internal nodes cannot have the same label. 

3) An internal node 𝛿 labeled 𝑃 or 𝑆 cannot have a son that is a vertex node 𝑣. Otherwise, 𝑣 

would be either an isolated or a universal vertex in 𝐺[𝛿]. By the definition of a 𝐾 ⨁ 𝑆-graph, 

𝐺[𝛿] would be a 𝐾 ⨁ 𝑆-graph. 

4) The parent of a vertex node is always labeled 𝐾 ⨁ 𝑆 (consequence of 3). 

5) If 𝐺  is a bi-chromatic graph, then for any 𝐾 ⨁ 𝑆-node 𝛿 , 𝐺[𝛿]  must also be bi-chromatic. 

Otherwise, if there is a node 𝛿 labelled 𝐾 ⨁ 𝑆 and 𝐺[𝛿] is a monochromatic graph then the 

parent of 𝛿 say 𝛾 would have isolated or universal vertices so 𝐺[𝛾] would be a 𝐾 ⨁ 𝑆-graph, 

a contradiction with 2. 

6) The sons of a 𝐾 ⨁ 𝑆-node are ordered according to the 𝐾 ⨁ 𝑆-decomposition. 

7) Let 𝛿 be a𝐾 ⨁ 𝑆-node and 𝛿1, 𝛿2 are respectively the first and last sons of 𝛿. If the parent of 𝛿 

say 𝛾 is a 𝑃-node then, 𝛿1 cannot be a white vertex node and 𝛿2 cannot be a black vertex node. 

Otherwise, by Property 1, 𝛿1 and 𝛿2 are isolated vertices in 𝐺[𝛿], since 𝛾 is a 𝑃-node, 𝛿1 and 

𝛿2 are also isolated vertices in 𝐺[𝛾], so 𝛾 must be a 𝐾 ⨁ 𝑆-node, a contradiction with 2. 

8) If the parent of a 𝐾 ⨁ 𝑆-node𝛿 is labeled 𝑆 and 𝛿1, 𝛿2 are respectively the first and last sons of 

𝛿 then 𝛿1 cannot be a black vertex node and 𝛿2 cannot be a white vertex node. Similar to 7. 

3. Recognition Algorithm of Bipartite (𝑷𝟔, 𝑪𝟔)-free Graphs 

The following Theorem is the key of our recognition algorithm for bipartite (𝑃6, 𝐶6)-free graphs. 

Theorem 2. A bipartite graph 𝐺 is (𝑃6, 𝐶6)-free if and only if every connected sub-graph of 𝐺is a 𝐾 ⨁ 𝑆-

graph. 

Proof. Suppose that 𝐺  is a bipartite graph (𝑃6, 𝐶6)-free. Let 𝐻  be a connected sub-graph of 𝐺 

which is not a 𝐾 ⨁ 𝑆 -graph. By Corollary 1, 𝐻  contains a 2𝐾2  say 𝑏1𝑤1, 𝑏2𝑤2 . Since 𝐻  is a 

connected sub-graph of 𝐺  and 𝐺  is (𝑃6, 𝐶6)-free graph, there is a vertex in 𝑉(𝐻) that connects 

𝑏1𝑤1 and 𝑏2𝑤2. Suppose without loss of generality that 𝑏 is a black vertex such that 𝑏𝑤1, , 𝑏𝑤2 ∈

𝐸(𝐻). Since 𝐻 is not 𝐾 ⨁ 𝑆-graph, the vertex 𝑏 is not universal, so there is a white vertex 𝑤 such 

that 𝑏𝑤 ∉ 𝐸(𝐻). Since 𝐻 is connected there is a path in 𝐻 that connects the vertex w and the path 

𝑃5 = 𝑏1, 𝑤1, 𝑏, 𝑤2, 𝑏2. But now the set {𝑏1, 𝑤1, 𝑏, 𝑤2, 𝑏2, 𝑤} forms a 𝑃6 or a 𝐶6, a contradiction. 

The inverse is clear since a 𝑃6 or a 𝐶6 is connected and contains a 2𝐾2, so it is not a 𝐾 ⨁ 𝑆-

graph. □ 

Theorem 2 states that the class of bipartite (𝑃6, 𝐶6)-free graphs is the smallest class closed under 

parallel and 𝐾 ⨁ 𝑆-decomposition. So the canonical decomposition tree of a bipartite (𝑃6, 𝐶6)-free 

graph consists only of 𝑃-nodes or 𝐾 ⨁ 𝑆-nodes. Our recognition algorithm builds a decomposition 

tree with 𝑃 or 𝐾 ⨁ 𝑆 labeled internal nodes if the input graph is (𝑃6, 𝐶6)-free otherwise a failure 

message.This building was influenced by the cographs recognition method proposed by Corneil, et 

al in [2]. Moreover, this algorithm greatly simplifies two recognition algorithms when projected on 

bipartite (𝑃6, 𝐶6)-free graphs. The first is for weak bisplit graphs presented in [16] and the second for 

bipartite 𝑆𝑡𝑎𝑟123-free graphs presented in [12], where both these two algorithms need to examine 

more than twenty cases in order to confirm that the input graph is (𝑃6, 𝐶6)-free or not, while, as we 

will see, our algorithm needs to examine only two cases that are presented below in Theorem 3 and 
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in Theorem 4. The algorithm begins with an empty graph and gradually adds vertices, ensuring that 

the resulting sub-graphs remain (𝑃6, 𝐶6)-free. The initial bipartite graph is considered (𝑃6, 𝐶6)-free if 

all vertices can be added successfully in this manner. The principal step of the algorithm takes into 

considerationthe decomposition tree 𝑇of a (𝑃6, 𝐶6)-free bipartite graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸), a vertex 

𝑥 ∉ 𝐵 ∪ 𝑊, and a set of edges denoted by 𝐸(𝑥) = {𝑥𝑣: 𝑣 ∈ 𝐵 ∪ 𝑊 and 𝑣 ∈ 𝑁(𝑥)}, and produces the 

decomposition tree 𝑇′ of the resulting graph 𝐺′ =  (𝐵 ∪ 𝑊 ∪ {𝑥}, 𝐸 ∪ 𝐸(𝑥)) if it remains (𝑃6, 𝐶6)-

free, or stops otherwise. The algorithm considers the connections of 𝑥 to other vertices in 𝐺 using a 

marking procedure. We can assume without loss of generality that 𝑥 is a white vertex and the graph 

𝐺 is a bi-chromatic graph. 

3.1. Marking Procedure 

The Marking procedure, used in [2], takes into consideration the neighbors of the vertex 𝑥 in 

the graph 𝐺 to mark the nodes of 𝑇, the decomposition tree of 𝐺. 

Algorithm 1: Marking 

Input: The canonical decomposition tree 𝑇 of  𝐺, and the white vertex 𝑥. 

Output: The marking tree 𝑇. 

For every black vertex node 𝑣 of  𝑇. 

If 𝑣 is a neighbor of 𝑥 mark 𝑣 by (𝑡), if 𝑣 is not a neighbor of 𝑥, mark 𝑣 by (). 

Traverse 𝑇 on a bottom-up traversal, let 𝛼 be an internal node of 𝑇: 

If every son of 𝛼 which is distinct of white vertex node is marked by () then mark 𝛼 by (). 

If there is a son of 𝛼 marked by (𝑡) and a son marked by () then mark 𝛼 by (𝑝).  

If every son of 𝛼 which is distinct of white vertex node is marked by (𝑡) then mark 𝛼 by (𝑡). 

At the end of the marking procedure on tree 𝑇, a node can have three possible states: marked 

by(𝑡), marked by (𝑝), or marked by (). If a node 𝛿 is marked by (𝑡), it means that 𝑥 is total for 

𝐺[𝛿], that is, 𝑥 is connected to all black vertices in 𝐺[𝛿]. If it is marked by (𝑝), it means that 𝑥 is 

partial for 𝐺[𝛿], that is, 𝑥 is connected to some but not all black vertices in 𝐺[𝛿]. If it is marked by 

(), it means that 𝑥 is independent of 𝐺[𝛿], that is, it 𝑥 is not connected to any black vertex in 𝐺[𝛿]. 

If a node is a vertex node, it can either be marked by () or marked by (𝑡). By Theorem 2, the marking 

procedure focuses only on 𝑃 -nodes and 𝐾 ⨁ 𝑆 -nodes, ignoring the 𝑆 -nodes that must be 

unavailable. For the graph 𝐺′  to be considered bipartite(𝑃6, 𝐶6) -free, it must meet a necessary 

condition. 

Lemma 1. If two internal nodes in the tree 𝑇are marked by(𝑝), and 𝐺′ is a (𝑃6, 𝐶6)-free bipartite graph, then 

one of these two nodes must be a grandparent of the other. 

Proof. Suppose that 𝛼  and 𝛽  are two internal nodes marked by (𝑝) then 𝛼  and 𝛽  are partial 

with respect to 𝑥. Let 𝛿 be the least common grandparent of 𝛼and 𝛽. We denote by 𝛼′and 𝛽′ to 

be respectively the son of 𝛿 containing 𝛼 and the son of 𝛿 containing𝛽. Since 𝐺[𝛼] and 𝐺[𝛽] are 

sub-graphs of 𝐺[𝛼′]  and 𝐺[𝛽′]  then 𝛼′and 𝛽′are partial with respect to 𝑥 . Assume that 𝛿  is 

labeled 𝑃, then 𝐺[𝛼′] and 𝐺[𝛽′] are connected sub-graphs of 𝐺[𝛿]. Thus there is an induced path 

𝑏1, 𝑤1, 𝑏2 in 𝐺[𝛼′] (resp. 𝑏′1, 𝑤′1, 𝑏′2 in 𝐺[𝛽′]) such that 𝑥 is adjacent to 𝑏1 and not adjacent to 𝑏2 

(resp. to 𝑏′1 and not to 𝑏′2). The set {𝑤′1, 𝑏′1, 𝑥, 𝑏1, 𝑤1, 𝑏2} forms a 𝑃6, a contradiction. 

Assume that 𝛿 is labeled 𝐾 ⨁ 𝑆. By Corollary 1,𝛼′ (resp.𝛽′) contains a 2𝐾2 that is partial with 

respect to 𝑥. Let 𝑏1𝑤1, 𝑏2𝑤2 (resp. 𝑏′1𝑤′1, 𝑏′2𝑤′2) be a 2𝐾2 in 𝐺[𝛼′] (resp. in 𝐺[𝛽′] such that 𝑥 is 

adjacent to 𝑏1  and not adjacent to 𝑏2  (resp. to 𝑏′1 and not to 𝑏′2 ). Then the set 

{𝑤2, 𝑏2, 𝑤′2, 𝑏1, 𝑥, 𝑏′1, 𝑤′1} forms a 𝑃6, a contradiction. □ 

By lemma 1, the nodes in 𝑇 that are marked by (𝑝) are arranged in a single path that starts 

from the lowest node marked by (𝑝) and goes up to the root. The lowest node marked by (𝑝) is 

referred to as 𝛼. It is assumed that the conditions of Lemma 1 are met and that 𝛼 is known. The 

following notations are introduced: 

• Given two internal nodes 𝛿 and 𝛿′ such that 𝛿 is a grandparent of 𝛿′, the unique son of 𝛿 
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that contains 𝛿′ is denoted as 𝑠𝑜𝑛(𝛿, 𝛿′). 

• For an internal node 𝛿, which is either𝛼 or one of its grandparents, the set of sons of 𝛿 that are 

marked by () is denoted as 𝑠𝑜𝑛𝑠()(𝛿), and the set of sons that are marked by (𝑡) is denoted as 

𝑠𝑜𝑛𝑠(𝑡)(𝛿). 

• If 𝛿 has a label 𝐾 ⨁ 𝑆, considering the ordering of the sons of 𝛿, the set of sons of 𝛿 marked 

by (𝑡) and located before 𝑠𝑜𝑛(𝛿, 𝛼) is denoted as 𝑠𝑜𝑛𝑠1
(𝑡)

(𝛿), and the set of sons marked by 

(𝑡) and located after 𝑠𝑜𝑛(𝛿, 𝛼) is denoted as 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛿). The set of sons of 𝛿 marked by () 

and located before 𝑠𝑜𝑛(𝛿, 𝛼) is denoted as 𝑠𝑜𝑛𝑠1
()

(𝛿), and the set of sons marked by () and 

located after 𝑠𝑜𝑛(𝛿, 𝛼) is denoted as 𝑠𝑜𝑛𝑠2
()

(𝛿). 

So, a node 𝛿 labeled 𝑃 which is a grandparent of 𝛼 splits its sons into at most three categories: 

𝑠𝑜𝑛𝑠(𝑡)(𝛿),  𝑠𝑜𝑛𝑠()(𝛿), and 𝑠𝑜𝑛 (𝛿, 𝛼) the son that contains𝛼,. If 𝛿 is labeled 𝐾 ⨁ 𝑆, its sons can be 

divided into at most five sets: 𝑠𝑜𝑛(𝛿, 𝛼) , 𝑠𝑜𝑛𝑠1
(𝑡)

(𝛿) , 𝑠𝑜𝑛𝑠1
()

(𝛿) ,  𝑠𝑜𝑛𝑠2
(𝑡)

(𝛿) , and 𝑠𝑜𝑛𝑠2
()

(𝛿) . 

Meanwhile, the sons of 𝛼 are split into two non-empty categories: 𝑠𝑜𝑛()(𝛼), and 𝑠𝑜𝑛𝑠(𝑡)(𝛼). 

Definition 2. If 𝛿 is a grandparent of 𝛼in 𝑇, then 𝛿 is considered incompatible 𝑃-node if it has at least one 

son marked by (𝑡) (i.e. 𝑠𝑜𝑛𝑠(𝑡)(𝛿) ≠ ∅). If 𝛿 is a 𝐾 + 𝑆-node, it is considered incompatible before 𝛼 if it 

has at least one son marked by () located before 𝑠𝑜𝑛(𝛿, 𝛼) (i.e. 𝑠𝑜𝑛𝑠1
()

(𝛿) ≠ ∅) . If 𝛿 is a 𝐾 ⨁ 𝑆-node, it is 

considered incompatible after 𝛼  if it has at least one son marked by (𝑡)  located after 𝑠𝑜𝑛(𝛿, 𝛼)  (i.e. 

𝑠𝑜𝑛𝑠2
(𝑡)

(𝛼) ≠ ∅). 

3.2. Building the tree 𝑇′ 

We assume that the necessary condition of Lemma 1 has been verified and all nodes that are 

marked by (𝑝) are known and are arranged in a single path that starts from the lowest marked node 

𝛼 and goes up to the root of  𝑇. In order to build 𝑇′, we examine the label of 𝛼 and the presence of 

incompatible marked nodes.When 𝛼 is 𝐾 ⨁ 𝑆-node and since it is the lowest node marked by (𝑝), 

we can divide its group of sons into a maximum of four consecutive subsets, namely 𝑋1
(𝑡)

, 𝑋2
()

, 𝑋3
(𝑡)

, 

𝑋4 where: 

𝑋1
(𝑡)

includes the first group of consecutive sons of 𝛼 that are either a group of white vertices 

nodes or total with respect to 𝑥. 

𝑋2
()

includes the first group of consecutive sons of 𝛼 that are not part of 𝑋1
(𝑡)

 and either a group 

of white vertices nodes or not related to 𝑥.  

𝑋3
(𝑡)

includes the first group of consecutive sons of 𝛼 that are not part of 𝑋2
()

 nor of 𝑋1
(𝑡)

 and 

either a group of white vertices nodes or total with respect to 𝑥.  

𝑋4represents the remaining sons of 𝛼. 

Note that, as a result of this division of the sons of 𝛼  when its label is 𝐾 ⨁ 𝑆 , 𝑋2
()

 and 

𝑋3
(𝑡)

cannot be together monochromatic graphs. 

Lemma 2. Assume that 𝛼  is a 𝐾 ⨁ 𝑆 -node. If 𝐺′  is a bipartite (𝑃6, 𝐶6)-free graph then the following 

conditions are hold: 

1) 𝑥 has no neighbor in 𝑋4. 

2) If 𝑋3
(𝑡)

is empty then 𝐺[𝑋3
(𝑡)

] is a monochromatic graph or a complete bipartite graph. 

Proof. Suppose that 𝑋4 is not empty, otherwise we are done. Let’s show that 𝑥 has no neighbor in 

𝑋4 . Since 𝑋4  is not empty then 𝑋3
(𝑡)

 and 𝑋2
()

 are both non empty. Let 𝑏4 ∈ 𝑋4  such that 𝑥  is 

adjacent to 𝑏4. Now, 𝑋4 contains two adjacent vertices 𝑏′4, 𝑤′4 such that 𝑥 is not adjacent to 𝑏′4 

otherwise 𝑏4 ∈ 𝑋3
(𝑡)

. Let 𝑏2, 𝑏3  be two black vertices of 𝑋2
()

and 𝑋3
(𝑡)

respectively. By construction, 

there is a white vertex 𝑤 such that 𝑤 is adjacent to 𝑏2 and 𝑤 is not adjacent to 𝑏3. But now the 

set {𝑏4, 𝑥, 𝑏3, 𝑤4, 𝑏2, 𝑤} forms a 𝑃6, a contradiction. 

Let’s show now that the condition 2 must be hold. Suppose that 𝑋3
(𝑡)

is not empty then 𝑋2
()

is also 

non empty. 
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Claim 1. Every element of 𝑋3
(𝑡)

 is a vertex node. 

Proof. Suppose that 𝛿 is an element of 𝑋3
(𝑡)

 that is an internal node. Then 𝛿 is a 𝑃-node, thus it 

contains a 2𝐾2  say 𝑏1𝑤1, 𝑏2𝑤2 . Let 𝑏 ∈ 𝑋2
()

, then the set {𝑏, 𝑤1, 𝑏1, 𝑥, 𝑏2, 𝑤2}  forms a 𝐶6 , a 

contradiction. ■ 

Claim 2. 𝑋2
()

contains a white vertex. 

Proof. Suppose that 𝑋2
()

 does not contain any white vertex then 𝑋3
(𝑡)

contains an element that is an 

internal node, a contradiction with claim 1. ■ 

Let 𝑏2, 𝑤2  be two vertices of 𝑋2
()

 such that 𝑏2𝑤2 ∈ 𝐸(𝐺) . Suppose that 𝐺[𝑋3
(𝑡)

] is neither a 

monochromatic graph nor a complete bipartite graph. Then 𝑋3
(𝑡)

contains the vertices 𝑏3, 𝑏′3, 𝑤3 

such that 𝑏3 is adjacent to 𝑤3  and 𝑏′3 is independent of 𝑤3 . Consequently {𝑏′3, 𝑥, 𝑏3, 𝑤3, 𝑏2, 𝑤2} 

forms a 𝑃6, a contradiction.□ 

Theorem 3. Assume that there is no incompatible grandparent of 𝛼. 𝐺′is a bipartite (𝑃6, 𝐶6)- free graph if and 

only if one of either 

1) 𝛼 is a 𝑃-node or 

2) 𝛼 is a 𝐾 ⨁ 𝑆-node and Lemma 2 is hold. 

Proof. The if part of the Theorem has been proved in lemma 2. We will describe the building of 𝑇′ 

for the only if part. The building of 𝑇′ when 𝛼i s a𝑃-node is described in Figure 3.a. If 𝑠𝑜𝑛𝑠(𝑡)(𝛼) 

consists of a unique son then this son will be a son of the node labeled 𝐾 ⨁ 𝑆. Suppose that 𝛼 is a 

𝐾 ⨁ 𝑆-node. If 𝑋3
(𝑡)

is empty, then we insert 𝑥 in 𝑇 as a new son of 𝛼. The building of 𝑇′ when 

𝐺[𝑋3
(𝑡)

] is a monochromatic graph or a complete bipartite graph is described also in Figure 3.b. In this 

case, if 𝐺[𝑋3
(𝑡)

] is a monochromatic graph then 𝑊𝛼 = ∅. □ 

 

Figure 3. Building of 𝑇′ when there is no incompatible grandparent of 𝛼. 

Lemma 3. Assume that 𝐺′ is a bipartite (𝑃6, 𝐶6)-free graph. If there is an incompatible grandparent 𝛽 of 𝛼 

then the following condition are holds: 

1) 𝛽 is a 𝐾 ⨁ 𝑆-incompatible node after 𝛼. 

2) 𝛽 is the unique incompatible grandparent of 𝛼. 

3) The set 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛽) consists of black vertices nodes located exactly after 𝑠𝑜𝑛(𝛽, 𝛼). 

Proof. Suppose that 𝛽  is an incompatible grandparent of 𝛼  of type 𝑃 . Then there exists two 

adjacent vertices 𝑏3, 𝑤3 in an element of 𝑠𝑜𝑛𝑠(𝑡)(𝛽). Since 𝑠𝑜𝑛(𝛽, 𝛼) induces a connected graph, it 

contains an induced 𝑃3 say 𝑏1, 𝑤1, 𝑏2 such that 𝑏1 is adjacent to 𝑥 and 𝑏2 is independent of 𝑥. 

But now {𝑥, 𝑏1, 𝑤1, 𝑏2, 𝑏3, 𝑤3} forms a 𝑃6, a contradiction. 
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If 𝛽  is a 𝐾 ⨁ 𝑆 -incompatible node before α, then 𝑠𝑜𝑛𝑠1
()

(𝛽)  contains a black vertex 𝑏 

independent of 𝑥. By Corollary 1, 𝑠𝑜𝑛(𝛽, 𝛼) contains a 2𝐾2 say 𝑏1𝑤1, 𝑏2𝑤2 such that 𝑥 is adjacent 

to 𝑏1  and 𝑥  is independent of 𝑏2 . The set {𝑥, 𝑏1, 𝑤1, 𝑏, 𝑤2, 𝑏2}  forms a 𝑃6 , a contradiction. 

Consequently 𝛽  is a 𝐾 ⨁ 𝑆 -incompatible node after 𝛼 . Let’s consider 𝛽  to be the highest 

incompatible grandparent of 𝛼and let 𝑏 ∈ 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛽). 

Claim. There is no grandparent 𝛿 of 𝛼containing a white vertex total for 𝑠𝑜𝑛(𝛿, 𝛼 ). 

Proof. Let 𝛿  be a grandparent of 𝛼  and 𝑤  is a white vertex of 𝛿  total for 𝑠𝑜𝑛(𝛿, 𝛼 ) . Let 

𝑏1𝑤1, 𝑏2𝑤2 be an induced 2𝐾2 of 𝑠𝑜𝑛 (𝛿, 𝛼) such that 𝑥 is adjacent to 𝑏1 and independent of 𝑏2. 

Then the set {𝑏, 𝑥, 𝑏1, 𝑤, 𝑏2, 𝑤2} forms a 𝑃6, a contradiction. ■ 

By this claim, if 𝛿 is a 𝐾 ⨁ 𝑆-incompatible node after 𝛼 then the set 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛿) consists of 

black vertices nodes located exactly after 𝑠𝑜𝑛(𝛿, 𝛼) . Moreover, for every grandparent 𝛿  of 𝛼 

labeled 𝐾 ⨁ 𝑆 and located between 𝛼 and 𝛽, 𝑠𝑜𝑛(𝛿, 𝛼) is the last son of 𝛿, otherwise 𝛿 contains 

a white vertex total for 𝑠𝑜𝑛(𝛿, 𝛼 ), a contradiction, thus 𝛿 cannot be incompatible. Therefore, 𝛽is the 

unique incompatible grandparent of 𝛼. □ 

Theorem 4. Assume that 𝛽is the unique 𝐾 ⨁ 𝑆-incompatible grandparent after 𝛼 and the set 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛽) 

consists of black vertices nodes located exactly after 𝑠𝑜𝑛 (𝛽, 𝛼). 𝐺′ is a bipartite (𝑃6, 𝐶6)-free graph if and only 

if one of the following conditions is hold: 

1) 𝛼 is a 𝑃-node. 

2) 𝛼 is a 𝐾 ⨁ 𝑆-node such that 𝑋3
(𝑡)

 is an empty set. 

Proof. Suppose that 𝛼 is a 𝐾 ⨁ 𝑆-node and let 𝑏 ∈ 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛽). Suppose that 𝑋3
(𝑡)

 is non empty. By 

lemma 2, 𝐺[𝑋3
(𝑡)

] is a monochromatic graph or a complete bipartite graph. In the two cases 𝐺[𝑋2
()

] 

cannot be a monochromatic graph otherwise 𝑋3
(𝑡)

 is empty. Thus 𝑋2
()

 contains two adjacent vertices 

𝑏2, 𝑤2. Let 𝑏3 be a black vertex of 𝑋3
(𝑡)

. Since 𝐺[𝛼] is a connected graph then there is a white vertex 

say 𝑤3 in the last son of 𝛼, but now {𝑏, 𝑥, 𝑏3, 𝑤3, 𝑏2, 𝑤2} forms a 𝑃6, a contradiction. 

For the only if part, we describe the building of 𝑇′.When 𝛼 is a 𝑃-node, the building of 𝑇′ is 

illustrated in Figure 4.a. If the set 𝑠𝑜𝑛𝑠(𝑡)(𝛼) is a unique son then this son must be labeled 𝐾 ⨁ 𝑆. In 

this case, we delete the node 𝛿1 and the element 𝑠𝑜𝑛𝑠(𝑡)(𝛼) will be a son of 𝛿2. The building of 

𝑇′when the condition 2 is hold is illustrated in Figure 4.b. If 𝑋2
()

 is a unique son, then this son is either 

a node labeled 𝑃 or a black vertex node. In this case, we delete the node 𝛿2, and the element 𝑋2
()

will 

be a son of 𝛿1.□ 

 

Figure 4. Building of 𝑇′when 𝛽 the unique 𝐾 + 𝑆-incompatible grandparent of 𝛼 exist. 
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3.3. Recognition Algorithm 

The recognition algorithm of bipartite (𝑃6, 𝐶6)-free graphs is given by Algorithm 2, where the 

procedure of the step Build-tree (𝐺′, 𝑇, ℎ𝑒𝑎𝑑(𝐿)) is presented in Algorithm 3. 

 

Algorithm 2 Recognition of bipartite (𝑷𝟔, 𝑪𝟔)-free graph 

Input: a bipartite graph 𝐺 =  (𝐵 ∪ 𝑊, 𝐸). 

Output: if 𝐺 is (𝑃6, 𝐶6)-free graph then the canonical decomposition tree 𝑇(𝐺), otherwise a failure 

message ”𝐺 is not (𝑃6, 𝐶6)-free graph”. 

Initialization step: Let 𝐿 be the list of all the vertices of 𝐺 sorted in descending order according to 

their degrees. 

𝑇 =new-vertex; 

𝐺′ = ∅; 

Build-tree (𝐺′, 𝑇, ℎ𝑒𝑎𝑑(𝐿)). 

Algorithm 3 Procedure Build-tree (𝑮′, 𝑻, 𝒉𝒆𝒂𝒅(𝑳)) 

1) Marking(𝑇, 𝑥) 

2) Find the set 𝑆 = {𝛿: 𝛿 is an internal node marked by (𝑝)} 

3) If 𝑆 =  ∅ then 𝑇 = 𝑖𝑛𝑠𝑒𝑟𝑡(𝑥, 𝑇) 

(If 𝑥 is independent of 𝑇 (resp. total for 𝑇) then create a new root 𝛿 of 𝑇 labeled 𝐾 ⨁ 𝑆 

such that 𝑥 is the left (resp. right) son of 𝛿 and the root of 𝑇 is the right (resp. left) son of 

𝛿) 

4) Else if |𝑆| > 2 than Exit with the message "failure". 

5) Else if |𝑆| = 1 then   𝑇 = 𝑖𝑛𝑠𝑒𝑟𝑡(𝑥, 𝑇) (according to Theorem 3) 

6) Else if one of the two nodes of 𝑆 is not a grandparent of the other then Exit with the message 

"failure". 

Else let 𝑆 = {𝛼, 𝛽} and 𝛽 is the grandparent of 𝛼 

7) If 𝛽 is a 𝑃-node then Exit with the message "failure".  

8) Else 𝑇 = 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑇) (according to Theorem 4) 

9) 𝐺′ =  𝐺[𝑉(𝐺′)  ∪ {𝑥}]; 

10) If 𝐿 = ∅then Exit else 𝐿 = 𝐿 − {𝑥};𝑥 =  ℎ𝑒𝑎𝑑(𝐿); Build-tree(𝐺′, 𝑇, 𝑥) 

3.4. Complexity 

Our aim is to demonstrate that recognizing a bipartite graph 𝐺, which does not contain 𝑃6 or 

𝐶6, can be accomplished in 𝑂(𝑛 + 𝑚) time complexity. Since the principal step of our algorithm is 

the step Build-tree(𝐺′, 𝑇, 𝑥), we will demonstrate the linearity of our algorithmby showing that this 

step requires only𝑂(𝑑𝐺′(𝑥)) operations, where 𝑑𝐺′(𝑥) is the degree of the node 𝑥 in 𝐺′.  

It is evident that the step 1 runs within 𝑂(𝑑𝐺′(𝑥)) time, as only a maximum of 𝑂(𝑑𝐺′(𝑥)) nodes 

are marked. Furthermore, we can assume that for every node in the tree 𝑇, the set of its sons that are 

marked by (𝑡), by (𝑝) or by () has been calculated. So find the set 𝑆  requires also 𝑂(𝑑𝐺′(𝑥)) 

operations. Suppose that 𝑆 = |2|. We can check whether one of the two nodes of 𝑆 is a grandparent 

of the other as following: Choose an element of 𝑆 and start to mark the parent of this element, then 

mark the parent of parent and so on until the other element of 𝑆 is marked or until the root of 𝑇 is 

marked. For the last case, that is, if the root of 𝑇 has been marked, we repeat this process for the 

other element of 𝑆. By this manner, we can also determine the node 𝛼, the lowest node marked by 

(𝑝) and the grandparent 𝛽. Obviously, this process can be done in 𝑂(𝑑𝐺′(𝑥)) mark operations.  

It remain analysis the time complexity of the function 𝑖𝑛𝑠𝑒𝑟𝑡 (𝑥, 𝑇). This requires to verify the 

necessary conditions in Theorem 3 or in Theorem 4. Therefore we need to compute all required sets 
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for building the tree 𝑇′. If 𝛼 has label 𝑃, then the computation of the set 𝑠𝑜𝑛𝑠(t)(𝛼) and the set 

𝑠𝑜𝑛𝑠()(𝛼)  is straightforward. Suppose 𝛼  has label 𝐾 ⊕ 𝑆 . We can compute the sets 𝑋1
(𝑡)

, 𝑋2
()

, 

𝑋3
(𝑡)

,and 𝑋4 as following: First, we compute 𝑋1
(𝑡)

 by traversing the set of sons of 𝛼 from left to right. 

In this manner, 𝑋1
(𝑡)

 will be the first nodes that are either a set of white vertices or nodes marked by 

(𝑡), we continue by this traversing until a son of 𝛼 marked by () has been found. The remaining 

sons of 𝛼 marked by (𝑡) must belong to 𝑋3
(𝑡)

 since 𝑋4 is independent of 𝑥 according to Lemma 

2. To compute 𝑋3
(𝑡)

, we choose a son of 𝛼 (let's call it 𝑐) from the remaining nodes marked by (𝑡) 

and we traverse the set of sons of 𝛼 starting from 𝑐 in left and right directions, from left until a son 

of 𝛼 marked by () has been found and from right also until a son of 𝛼 marked by () has been 

found or until the last son  from right has been found. We continue by this traversing as long as 

every son is either a white vertex node or is a node marked by (𝑡). As long as the set 𝑋3
(𝑡)

 has been 

computed, the sets 𝑋2
()

 can be computed immediately. The remaining sons of 𝛼 form the set 𝑋4 

which must be independent of 𝑥 This computation requires 𝑂(𝑑𝐺′(𝑥)) time complexity.  

Finally, we need to determine if the node 𝛽, which its label is 𝐾 ⊕ 𝑆, is incompatible after 𝛼 or 

not and check whether the set 𝑠𝑜𝑛𝑠2
(𝑡)

(𝛽)  is a set of black vertices nodes located exactly after 

𝑠𝑜𝑛(𝛽, 𝛼) . This two conditions can be achieved together as following: Since 𝛽  is known as a 

grandparent of 𝛼, the son 𝑠𝑜𝑛(𝛽, 𝛼) is identified. Now, we can traverse the sons of 𝛽 starting from 

the first son located exactly after 𝑠𝑜𝑛(𝛽, 𝛼) and determine whether any one of these sons is a white 

vertex node or not. In addition, we must traverse the sons of 𝛽 starting from the first son located 

exactly before 𝑠𝑜𝑛(𝛽, 𝛼) to determine if the set 𝑠𝑜𝑛𝑠1
()

(𝛿) is empty or not. This traverse also requires 

𝑂(𝑑𝐺′(𝑥)) time complexity. 

we leave to the reader to verify that the step Build-tree(𝐺, 𝑇, 𝑥)) that correspond to insert 𝑥 in 

the tree 𝑇 takes a constant time in all cases.  

Since testing whether 𝐺′ =  𝐺 ∪ {𝑥}  is a bipartite (𝑃6, 𝐶6) -free or not can be done within 

𝑂(𝑑𝐺′(𝑥)) time complexity, it is clear that recognition of bipartite (𝑃6, 𝐶6)-free graph algorithm runs 

in 𝑂(𝑛 + 𝑚) time complexity. 

4. Optimization Problems 

We believe that the canonical decomposition tree for bipartite (𝑃6, 𝐶6)-free graph can be used to 

find efficient solutions for several optimization graph problems because of the simple structure of 

this tree.In this paper, we limit ourselves to show that the canonical decomposition tree of a bipartite 

graph (𝑃6, 𝐶6)-free can be used to solve in polynomial time the maximal balanced bi-clique problem 

and in linear time the maximum independent set problem. In the conclusion part of this paper, we 

talk about some potential use for this result and consider it as a subject for further study.  

Let 𝑇(𝐺) be the canonical decomposition tree for a bipartite (𝑃6, 𝐶6)-free graph 𝐺. To present 

our solutions of the above two problems, we need to covert 𝑇(𝐺) to a binary tree as following:  

Visit the nodes of 𝑇(𝐺) in depth first search 

Let 𝑆 be an internal visited node and 𝑆1, … , 𝑆𝑘 are the sons of 𝑆.If 𝑘 > 2then the left son of 𝑆 

is 𝑆1 and the right son becomes a new son 𝑆′ that has the same label as 𝑆 with sons  𝑆2, … , 𝑆𝑘. 

4.1. Maximum balanced bi-clique problem 

A sub-graph 𝐹 = 𝐺[𝑋 ∪ 𝑌] of a bipartite graph 𝐺 is called balanced bi-clique if 𝐹 is a bi-clique 

and |𝑋| = |𝑌|. The balanced bi-clique problem is to compute a balanced bi-clique in 𝐺 of maximum 

size. This problem is important in many different fields of study. It has numerous practical uses in 

very large-scale integration (VLSI), such as the design of defect-tolerant devices [1,7], programmable 

logic array folding [14]. Balanced bi-clique problem is NP-complete for a general bipartite graph [9], 

and there are very few works dedicated to obtaining an exact maximum balanced bi-clique, aside 

from the work [6] where it is proposed two exact algorithms to find a maximum balanced 

bi-clique for small dense and large sparse bipartite graphs respectively. The majority 

of known techniques for determining a maximum balanced bi-clique are heuristic algorithms, see  

for example, [8,19].  
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We propose in this work an 𝑂(𝑛3) time complexity algorithm to compute a maximum balanced 

bi-clique in a bipartite (𝑃6, 𝐶6)-free graph 𝐺 using its canonical decomposition binary tree 𝑇(𝐺). The 

idea of our solution is to compute all possible bi-cliques in 𝐺, that are maximal with respect to set 

inclusion, then find among them the one that contains a maximum balanced bi-clique. A bi-clique 𝐹 

is maximal with respect to set inclusion if there is no bi-clique in 𝐺 that contains 𝐹. The structure of 

𝑇(𝐺) when 𝐺 is a bipartite (𝑃6, 𝐶6)-free graph and the definition of 𝐾 ⨁ 𝑆 operation allow us to 

achieve this computation by a post order traversal of 𝑇(𝐺) and associating for each internal node 𝛼 

all possible maximal bi-cliques in 𝐺[𝛼] (with respect to set inclusion) through the two sets ofmaximal 

bi-cliques associated with the left son 𝛼1 and the right son 𝛼2 of 𝛼.The set of maximal bi-cliques 

associated with 𝛼1  denoted by 𝐿(𝛼1) = {𝐹𝑖
1 = 𝐺[𝑋𝑖

1 ∪ 𝑌𝑖
1] ∶ 𝑖 = 1, … , 𝑟} and the set of maximal bi-

cliques associated with 𝛼2 denoted by 𝐿(𝛼2) = {𝐹𝑖
2 = 𝐺[𝑋𝑖

2 ∪ 𝑌𝑖
2] ∶ 𝑖 = 1, … , 𝑘}. We suppose that for 

every bi-clique 𝐹𝑖
𝑗

= 𝐺[𝑋𝑖
𝑗

∪ 𝑌𝑖
𝑗
], 𝑋𝑖

𝑗
 is a set of black vertices and 𝑌𝑖

𝑗
 is a set of white vertices. In 

addition, we suppose that the members of 𝐿(𝛼1) are arranged from left to right according to their 

appearance in the sub-tree 𝑇(𝛼1). Likewise, we suppose that the members of 𝐿(𝛼2) are arranged 

from left to right according to their appearance in the sub-tree 𝑇(𝛼2). This supposition is done 

directly according to the arrangement of sons for every 𝐾 ⨁ 𝑆-node in 𝑇(𝐺). The reader can verify 

simply the truth of computation used in the algorithm Balanced Bi-clique for the set of maximal bi-

cliques 𝐿(𝛼) according to the definition of 𝐾 ⨁ 𝑆-node and the definition of 𝑃-node. Figure 5 can 

help to imagine this computation.  

Algorithm Balanced Bi-clique 

Input: A binary canonical decomposition tree 𝑇(𝐺) of a bipartite (𝑃6, 𝐶6)-free graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸). 

Output: A maximal balanced bi-clique 𝐹 = 𝐺[𝑋 ∪ 𝑌] for 𝐺 

Let 𝛼 be a node on a post order traversal of 𝑇(𝐺) 

If 𝛼 is a black vertex node 𝑏 (resp. a white vertex node 𝑤) then 𝐿(𝛼) = {𝐺[{𝑏} ∪ ∅] (resp.𝐺[∅ ∪

{𝑤}] 

Else let 𝛼1 and 𝛼2 be the left and right son of 𝛼 respectively and let (𝛼1) = {𝐹𝑖
1 = 𝐺[𝑋𝑖

1 ∪ 𝑌𝑖
1] ∶ 𝑖 =

1, … , 𝑟} , 𝐿(𝛼2) = {𝐹𝑖
2 = 𝐺[𝑋𝑖

2 ∪ 𝑌𝑖
2]: 𝑖 = 1, … , 𝑘} . 

If 𝛼 is a 𝐾 ⨁ 𝑆-node then  

Let                           𝐿1 = {𝐺[(𝑋1
1 ∪ … ∪ 𝑋𝑟

1) ∪ (𝑌1
2 ∪ … ∪ 𝑌𝑘

2)]} 

𝐿2 = {𝐺[𝑋𝑖
1 ∪ (𝑌𝑖

1 ∪ 𝑌1
2 ∪ … ∪ 𝑌𝑘

2)]: 𝑖 = 1, … 𝑟} 

                               𝐿3 = {G[(𝑋𝑖
2 ∪ 𝑋1

1 ∪ … ∪ 𝑋𝑟
1) ∪ 𝑌𝑖

2]: 𝑖 = 1, … 𝑘} 

 If 𝑟 ≠ 1 or 𝑘 ≠ 1 then 𝐿(𝛼) = 𝐿1 ∪ 𝐿2 ∪ 𝐿3 else 𝐿(𝛼) = 𝐿2 ∪ 𝐿3 

Else// 𝛼 is a 𝑃-node //𝐿(𝛼) = 𝐿(𝛼1) ∪ 𝐿(𝛼2) 

If 𝛼 is the root of 𝑇(𝐺) then let 𝐿(𝛼) = {𝐹𝑖 = 𝐺[𝑋𝑖 ∪ 𝑌𝑖], 𝑖 = 1, … , 𝑠} 

Let 𝑠𝑡 = max {min(|𝑋1|, |𝑌1|), … , min (|𝑋𝑠|, |𝑌𝑠|)} return 𝐹𝑡 

The number of bi-cliques computed for each internal node is at most 𝑂(𝑛2). Since 𝑇(𝐺) contains 

𝑂(𝑛) node, the algorithm Balanced Bi-clique has a time complexity 𝑂(𝑛3). 
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Figure 5. A node 𝛼 and the sets of all maximal bi-cliques associated with its sons. 

4.2. Maximum independent set problem 

A subset 𝑆 of the vertex set 𝑉(𝐺) in a graph 𝐺 is called independent set if any two vertices in 

𝑆 are not adjacent.  The maximum independent set problem is to compute an independent set in 𝐺 

of maximum size. This problem is NP-complete for general graphs [9], but it can be solved in 

𝑂(𝑛1.5√𝑚/ log 𝑛)  time complexity for a general bipartite graph [4]. This time complexity can 

improved to 𝑂(𝑛) for bipartite (𝑃6, 𝐶6)-free graph using its canonical binary decomposition tree.. 

The idea of our solution results from the structure of 𝐾 ⨁ 𝑆-graph 𝐺 as following: Let (𝑉1, 𝑉2) be a 

𝐾 ⨁ 𝑆-partition of the vertex set 𝑉(𝐺). By Property 1, every black vertex of 𝑉1 is connected to every 

white vertex of 𝑉2 and every white vertex of 𝑉1 is independent to every black vertex of 𝑉2. So, the 

maximum independent set in 𝐺 is either the maximum independent set in 𝐺[𝑉1] or the maximum 

independent set in 𝐺[𝑉2] or the independent set formed by the union of white vertices of 𝐺[𝑉1] and 

black vertices of 𝐺[𝑉2]. This remark proves the correctness of the following algorithm. Note that if 𝐺 

is not connected then the maximum independent set in 𝐺 is equal to the union of the maximum 

independent sets in its connected components. 

Algorithm Maximum Independent Set 

Input: A binary canonical decomposition tree 𝑇(𝐺) of a bipartite (𝑃6, 𝐶6)-free graph 𝐺 = (𝐵 ∪ 𝑊, 𝐸). 

Output: A maximum independent set 𝑆 for 𝐺 

Let 𝛼 be a node on a post order traversal of 𝑇(𝐺).  

If 𝛼 is a black vertex node 𝑏 (resp. a white vertex node 𝑤) then  

𝑆(𝛼) = {𝑏}, 𝐵(𝛼) = {𝑏}, 𝑊(𝛼) = ∅  (resp.𝑆(𝛼) = {𝑤}, 𝐵(𝛼) = ∅, 𝑊(𝛼) = {𝑤}) 

Else let 𝛼1 and 𝛼2 be respectively the left and right son of 𝛼 and let 𝑆(𝛼1) be a maximum independent set of 

𝐺[𝛼1] and 𝑆(𝛼2) is a maximum independent set of  𝐺[𝛼2], let 𝑊(𝛼1), 𝐵(𝛼1) be respectively the white and black 

vertices of 𝐺[𝛼1] and 𝑊(𝛼2), 𝐵(𝛼2) are respectively the white and black vertices of 𝐺[𝛼2]. 

If 𝛼 is a 𝐾 ⨁ 𝑆-node then  

𝑠 = max{|𝑆(𝛼1)|, |𝑆(𝛼2)|, |𝑊(𝛼1) ∪ 𝐵(𝛼2)|} 

𝑆(𝛼) = 𝑆 where |𝑆| = 𝑠, 𝑊(𝛼) = 𝑊(𝛼1) ∪ 𝑊(𝛼2) and 𝐵(𝛼) = 𝐵(𝛼1) ∪ 𝐵(𝛼2) 

else// 𝛼 is a 𝑃-node  

𝑆(𝛼) = 𝑆(𝛼1) ∪ 𝑆(𝛼2), 𝑊(𝛼) = 𝑊(𝛼1) ∪ 𝑊(𝛼2) and 𝐵(𝛼) = 𝐵(𝛼1) ∪ 𝐵(𝛼2) 

Since 𝑇(𝐺)  contains 𝑂(𝑛)  node, the algorithm maximum independent set has a time 

complexity 𝑂(𝑛). 
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Conclusion 

we have showed in this paper that  bipartite (𝑃6, 𝐶6)-free graphs can be recognized in linear 

time. Using this result, we solved two optimization graph problems in this class of graphs, the first 

is the maximm balanced bi-clique problem and the the second is the maximum independent set 

problem. An additional potential using of the canonical decomposition tree of bipartite (𝑃6, 𝐶6)-free 

graph is to solve the problem P| prec. 𝑝𝑗 = 1| Cmax : Suppose there are 𝑛 tasks with a unit execution 

time, and their order is constrained by a directed acyclic graph. Additionally, there are 𝑚 machines 

of the same type. The goal is to discover a schedule that minimizes the makespan, which is the time 

when the final task in the graph finishes its execution. It is proved in [3] that this problem is NP-

complete even if the precedence constraints form a bipartite graph of depth one. We conjecture that 

this problem can be solved in polynomial time for bipartite (𝑃6, 𝐶6)-free graph. 
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