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Abstract: Image stitching is a crucial aspect of image processing. However, factors like perspective
and environment often lead to irregular shapes in stitched images. Cropping or completion methods
typically result in substantial loss of information. This paper proposes a method for rectifying
irregularly images into rectangles using deformable meshes and residual networks. The method
utilizes a convolutional neural network to quantify rigid structures of images. Choosing the most
suitable mesh structure based on the extraction results, offering options such as triangular,
rectangular, and hexagonal. Subsequently, the irregularly image, predefined mesh structure, and
predicted mesh structure are input into a wide residual neural network for regression. The loss
function comprises local and global, aimed at minimizing the loss of image information within the
mesh and global target. This method not only significantly reduces information loss during
rectification but also adapting to different images with various rigid structures. Validation on the
DIR-D dataset shows this method outperforms state-of-the-art methods in image rectification.

Keywords: image rectangular; deformable mesh; width residual network; global loss function

1. Introduction

With the rapid development of image stitching and image fusion technologies, methods for
obtaining multi-view or even global perspectives through multiple single viewpoints have been
widely applied in human production and daily life [1-5]. For instance, the extensive use of
technologies such as panoramic images, autonomous driving, and virtual reality (VR) enables precise
remote observation of scenes by individuals [6-9]. However, in the process of stitching multiple
single-view images, it is necessary to align the overlapping regions of different images by adjusting
their positions, angles, and local distortions [10,11]. This often results in irregular boundaries in non-
overlapping regions, making it challenging for individuals to adapt and prone to misjudgments when
observing panoramic images [12].

One approach to addressing irregular boundaries directly involves the use of smaller
rectangular boxes for cropping images [13,14]. However, this method may result in the loss of a
significant amount of information, contradicting the original purpose of image stitching, which aims
to expand the field of view [15,16]. Additionally, image completion can be employed to predict
missing portions of an image and restore its integrity to some extent [17,18]. Nevertheless, its
limitations are evident, particularly in cases where the missing portions contain complex structures
or highly personalized information, making it challenging for image completion to accurately predict
the missing areas [19-22]. This limitation renders image completion unsuitable for applications in
fields with high security requirements, such as autonomous driving and industrial production
monitoring [23].

To address the challenges posed by image cropping and image completion, Zhu proposed
adjusting the stitched image by computing a perspective transformation matrix to make it closer to a
rectangular shape [24]. However, this method often relies on the estimation of the geometric
structures in specific regions of the image, such as lines or corners. Some approaches suggest
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transforming local quadrilateral mesh regions on the stitched image to make the overall image more
rectangular [25-29]. Building upon the aforementioned research, He proposed optimizing the
preservation of line meshes and deforming the rigid structures within the mesh [30]. Li improved the
preservation term from line meshes to geodesic lines [31]. However, the applicability of this method
is restricted due to the common occurrence of curved ground lines in panoramic images. Some
researchers introduced Seam Carving, an algorithmic approach that alters the size of an image by
carving or inserting pixels in different parts of the image, thereby transforming irregular images into
rectangular forms [32-36]. Meanwhile, Lang proposed DRIS (Deep Rectagling for Image Stitching),
employing a residual progressive regression strategy for fully convolutional network prediction of
mesh deformations [37]. Based on the predicted mesh, irregular images are corrected. This method
partially addresses the challenges of flexible structural distortions for image rectification and
computational acceleration. Moreover, the approach utilizes a residual progressive regression
strategy for fully convolutional network prediction of mesh deformations and subsequent correction
of irregular images. However, DRIS still faces certain challenges. For instance, its loss function
focuses solely on the situation within the initial mesh, without considering global information for
further adjustments. This limitation results in deformation errors in panoramic information.
Additionally, the method concentrates on horizontal and vertical objectives within the mesh, making
it prone to deformation errors when correcting targets in other scale directions [38,39]. Currently,
there is relatively limited research on image rectification, and achieving image rectification while
ensuring minimal loss of information remains a challenging task [40—44].

To address the aforementioned challenges, this study proposes a deep learning-based image
rectification algorithm named RIS-DMRN (Rectification for Image Stitching with Deformable Mesh
and Residual Network). The algorithm defines a deformable target mesh for irregularly stitched
images, which can be predicted during model training. The selection of the deformable mesh shape
is based on the judgment of the current image's rigid structure by a convolutional neural network,
offering three options: triangle, rectangle, and regular hexagon. Once the mesh shape is determined,
the prediction network generates an initial predicted mesh based on the input irregular image and
its mask matrix. The training process employs a width residual network to predict the initial mesh
by content-aware processing of irregularly stitched images. Subsequently, the input irregular image,
predicted initial mesh, and predefined target mesh are collectively input into the width residual
neural network for rectification regression. The loss function of the width residual network comprises
local and global. The local loss function controls the deformation loss of targets within the mesh,
while the global-related loss function helps avoid global information loss during the deformation
process. In comparison to existing methods, this approach utilizes a deformable mesh as the initial
mesh, allowing for more versatile directional movement during mesh restoration and achieving
better correction effects for targets within irregular images, as illustrated in the comparative results
against various methods (Figure 1). Additionally, the introduction of local and global-related loss
functions significantly mitigates the drawbacks of traditional methods that focus only on partial
regions, enhancing the overall coherence during the deformation recovery process and preserving
content more effectively after image rectification.
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Figure 1. Comparison of rectification methods for irregular image stitching.

2. Materials and Methods

This paper proposes a deformable mesh structure for the initial prediction of irregular images,
enhancing its adaptability in various spatial scene structures. In light of this mesh structure, the paper
establishes two methods for mesh application. One approach involves predicting the rigid structure
of the input image through a simple convolutional neural network. Based on the prediction results,
the most suitable mesh shape for the image is selected (Figure 2(a)). Subsequently, the input image
and the chosen mesh shape are input into a width residual network for initializing mesh prediction.
Finally, the predicted initial mesh and the input irregular image are jointly used for image
rectification regression, resulting in the output image.

Another option is to input the input image and predefined target meshes for all shapes into a
width residual neural network to generate initial mesh predictions (Figure 2(b)). Subsequently, image
rectification regression is performed with the input image. The optimization is then based on the
regression loss of the rectified image, selecting the one with the minimum information loss as the
final output image.

X Layers F(x)
+
H(x)
Input Selected mesh shape Residual neural network

Rigid prediction network Prediction initialization mesh Recovery rectangle

(a)
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Figure 2. Image rectification with different mesh shape selection modes. (a) Selecting a mesh shape
based on the image. Predicting the most suitable mesh shape for an input image through a
convolutional neural network. Subsequently, the predicted initial mesh based on this shape and the
predefined mesh are jointly input into a residual network for image rectification. (b) Selecting all mesh
shapes for loss comparisons. Applying all mesh shapes to the input image and jointly inputting them
into a residual network for rectification. The rectified image with the lowest loss is selected as the final
output.

2.1. Deformable mesh

This paper introduces deformable meshes to meet the application demands in different
scenarios. Traditional rectangles exhibit weaker generalization capabilities when dealing with
complex scenes. Therefore, the paper introduces two additional mesh models: hexagonal and
triangular meshes. Hexagonal meshes have more uniform relationships between adjacent pixels, with
each hexagon having six neighbors with equal adjacency properties. This provides better spatial
consistency for image rectification. For example, during the image interpolation process, hexagonal
meshes can offer smoother and more natural transitions. Moreover, hexagonal meshes closely
resemble the shapes of many objects and structures found in the natural world, such as beehives and
crystal structures [45]. Therefore, they may provide a more natural representation of images related
to natural landscapes. Triangular meshes, on the other hand, excel in realistically reconstructing the
shapes in images, especially when the images contain curves and surfaces [46]. The use of triangular
meshes allows for better adaptation to irregular image regions, enabling more flexible shape
approximation and, consequently, a more accurate capture of details in the images.

Simultaneously, this paper proposes two operational modes for the deformable meshes: speed-
oriented and quality-oriented. In the speed-oriented mode, the input image undergoes detection of
rigid structures within irregular images using a simple recognition network. Based on the detected
structure count and orientation, the mesh shape that best fits the threshold is directly selected.
Currently available mesh shapes include triangles, rectangles, hexagons, and more. In the quality-
oriented mode, each mesh shape conducts residual regression predictions on the input image,
generating a rectified image. Ultimately, the optimal output is selected based on the loss values of
the rectified images, choosing the one with a relatively superior rectification effect.

2.2. Network Architecture

The network architecture proposed in RIS-DMRN consists of two components (Figure 3): the
rigid target recognition network and the width residual regression network [47]. The input comprises
irregularly stitched images and their stitching mask matrix. The input image is initially processed by
a simple recognition convolutional neural network to detect the quantity and orientation of rigid
structures. Based on the detection results, the most suitable mesh shape is chosen for rectification.
For instance, if there are predominantly horizontal or vertical rigid structures in the image, a
preference is given to selecting a rectangular mesh. In the case of a higher prevalence of curved
surfaces or curved structures, a triangular mesh is chosen. If the quantities of vertical rigid structures
and curved structures are comparable, a hexagonal mesh is selected for image rectification.
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Figure 3. Schematic structure of width residual neural network.

The main structure for rigid structure detection in this paper is a convolutional neural network
(Figure 4), with input images resized to a unified 448x448. The CNN consists of 6 convolutional
blocks, each composed of various combinations of 3x3 convolutional kernels, 1x1 convolutional
kernels, and 2x2 max-pooling layers with a stride of 2. After extracting image features into a 1000-
dimensional 7x7 feature vector, a 1000-dimensional vector is generated through average pooling. This
vector is then input into Softmax for rigid structure detection. The network also incorporates
normalization and dropout operations, although they are not explicitly shown in the diagram.

Once the mesh shape is determined, the irregularly stitched image and its mask matrix are fed
into the Wide Residual Neural Network (Wide ResNet) for the rectification process. The choice of
Wide ResNet as the recovery prediction network for image rectification is motivated by its ability to
enhance feature dimensions in each residual block through increased channel numbers. This
augmentation enables the network to capture richer feature representations, playing a crucial role in
the recovery of content items after mesh transformation and minimizing the loss in rectified content.
Moreover, due to significant internal variations within the meshes during the rectification process,
some meshes experience a gradual decrease in gradients during the backward propagation of model
training, leading to convergence challenges. The introduction of wider residual blocks in the Wide
ResNet facilitates easier gradient flow, mitigating the issue of gradient vanishing during training
[48,49].
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Figure 4. Neural networks for target detection in rigid structures.

The architecture of the Wide ResNet employed in RIS-DMRN consists of four residual
convolutional blocks followed by an average pooling layer (Table 1). In the network, 'k’ represents
the multiplier for the convolutional kernels in the original module, ' N ' indicates the number of
residual modules in that layer, and ' B (3,3) ' signifies each residual module consisting of two 3x3
convolutional layers. After feature extraction through the residual network, a simple fully
convolutional structure is utilized as a mesh motion regressor to predict the horizontal and vertical
movements of each vertex based on the regular mesh, facilitating the output of the rectified image.

Table 1. Schematic structure of width residual neural network. In the table, 'k' represents the
multiplier for the convolutional kernels in the original module, ' N ' indicates the number of residual
modules in that layer, and ' B (3,3) ' signifies each residual module consisting of two 3x3 convolutional
layers. the image undergoes processing through a mean pooling layer, resulting in the final output

image.

Type Block type = B(3,3) Output

convl [3x3, 16] 32x32
[3x3, 16xk]

conv2 3x3, 16xk| x N 32x32
[3x3, 16xk]

conv3 133, 16%k] x N 16x16
[3x3, 16xk]

conv4 33, 16xk| x N 8x8

avgpool [8x8] 1x1

2.3. Loss function

The loss function of the proposed RIS-DMRN consists of two components: the local loss function
and the global loss function. The calculation is formulated as follows Equation (1):
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= a)localllocal + o, I (1)

total global " global

Where wjocq; and wgopq; represent the weights assigned to the local loss and global loss,
respectively. The local loss ljy.q; and global loss lg;,pe contribute to the overall loss, and the
weights control the balance between preserving local details and maintaining global context during
the rectification process.

2.3.1. Local loss

The content loss term in the RIS-DMRN consists of two components: content loss and mesh loss.
The content loss term, represented by Equation (2), involves the comparison between the predicted
mesh (m) applied to the input irregular image (I,) and the warped version of the irregular image
(D(I,,m)) using the bending operation. Additionally, the content loss incorporates the difference
between the predicted mesh and the ground truth mesh (T). The function C, denoting the 'conv4'
convolutional layer in the width recognition network, plays a role in shaping the content loss term.
This formulation aims to ensure that the rectified image aligns closely with both the original irregular
content and the ground truth mesh structure.

lwen = [T = D(1,, )], +[C(T)-C(D(1,. M), 2)

For the mesh loss term in RIS-DMRN, the formula can be expressed as Equation (3):
Imesh :Z|M(Ipimlvj)_W(IplTl,J)” (3)
i

Where .5, represents the mesh loss term, i and j are indices within the mesh, m;; is the
predicted mesh by the model, T;; is the ground truth label mesh, and W is the mesh generation
function. This loss term aims to encourage the model to better learn and preserve the mesh structure
of the image by comparing the differences between the predicted mesh by the model and the true
label mesh.

2.3.2. Global loss

The global loss term in RIS-DMRN proposed in this paper consists of two components: global
structural loss term and boundary loss term, expressed as shown in Equation (4):

Iglobal = Ims + Iborder (4)

The computation of the global structural loss term is expressed as Equation (5), where Iy
represents the irregular image cropped based on the mask matrix, y¢ is the mean of I, u_T is the
mean of T, O'Iic; is the variance of IS, o2 is the variance of T, and argr is the covariance between I

and T. Constants ¢; and c, are constants used to stabilize the formula.
(2;u|gluT + Cl)(20-|;-|— + CZ)

(/ué +,LL1? +C1)(O-|2; +O—'I? +C2)

s (15,T) = (5)

The expression for the boundary loss term is given by Equation (6), where I,, represents the
mask matrix of the original irregular image, and E represents the target template of an all-ones matrix.
The boundary loss adjusts based on the 0/1 mask matrix of the irregular stitched image, with an all-
ones matrix as the true target, gradually approaching the rectangularization.

Iborder = ” E- D(Im ) m))||2 (6)
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3. Results

The experimental implementation of the RIS-DMRN algorithm in this study was conducted on
the following workstation configuration: Processor (CPU): Intel Core i9-13900HX (2.2 GHz, 6 cores,
12 threads), Memory (RAM): 16GB DDR4 2400MHz, Graphics Card (GPU): NVIDIA GeForce GTX
4070 Ti (8GB GDDR5X). The algorithm was implemented using Python 3.6 + TensorFlow 1.13.1 for
program design. Due to the limited availability of publicly accessible datasets for image rectification
research, this study conducted validation on the DIR-D dataset [37]. Following the consistent
approach outlined in the paper [37], RIS-DMRN set the batch size to 8 during the training process,
initialized the learning rate to 1x10-3, and performed exponential decay on the learning rate every 50
epochs. The parameters w;ocq; and wg;opq; Were set to 0.7 and 0.3, respectively, aiming to preserve
detailed content while simultaneously focusing on the global shape changes. After experimenting
with this paper, this combination is found t to be the better choice.

3.1. Quantitative comparison of image rectification

The algorithm proposed in this paper was primarily tested on 300 samples selected from the
DIR-D dataset. A quantitative comparison was performed against mainstream rectification methods,
and the results are presented in Table 1. The term "Initialization" denotes the initial state of the freshly
stitched image without image rectification processing. The quantification metrics include the average
values of SSIM, PSNR, and FID within the samples for comparison [50-52].

It is evident that compared to the RPIW [30] and DRIS [37], the proposed RIS-DMRN
outperforms in all metrics (Table 2). Additionally, it surpasses traditional seam carving and image
completion. This superiority is attributed to the configurations in the loss functions of the deep
learning rectification algorithm, which includes the design of content loss and mesh loss. These
designs minimize the deformation of target content within the image during rectification, resulting
in a more effective image rectification. In comparison to DRIS, the global structure loss term and
boundary loss term in RIS-DMRN better preserve global information. Preserving global information
is crucial for the algorithm to better understand the contextual relationships of objects in the image.
This understanding is vital for interpreting the relative positions, sizes, and interrelationships of
objects. Additionally, global information contributes to maintaining consistency between different
regions of the image, ensuring that the algorithm produces coherent output throughout the entire
image, especially in tasks like image rectification [53-55]. Simultaneously, it can be observed that
using a hexagon as the initial mesh shape yields slightly better results than traditional rectangular
meshes (Table 2). This improvement is attributed to hexagons having more rigid directional choices
and better shape adjacency relationships. While hexagons may increase the computational time to
some extent compared to rectangles, they often produce superior results.

Table 2. Quantization comparison of image rectification on DIR-D. Structural Similarity Index (SSIM),
Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception Distance (FID) are employed to assess
image quality from different perspectives. SSIM measures the structural similarity between two
images, considering brightness, contrast, and structure. And SSIM values range from -1 to 1, with 1
indicating identical images. PSNR compares original and processed images by measuring signal-to-
noise strength. Higher PSNR values in decibels (dB) indicate better image quality. FID primarily
assesses dissimilarity between generated and real images in terms of distribution. Lower FID values
indicate greater similarity in latent space.

Method SSIM?T PSNR1T FID!
Reference 0.3354 11.42 43.57
RPIW [30] 0.3805 15.03 37.51

DRIS [37] 0.7173 21.57 21.26




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 February 2024 d0i:10.20944/preprints202402.1550.v1

Ours 0.7234 22.65 20.05

Consistent with the settings in the paper [37], this study also acknowledges that there may be
differences in quantitative measurements when objects undergo slight positional variations in the
generated rectangular results. Although the visual perception may still appear very natural in such
cases, it could weaken the persuasiveness of quantitative experiments. Therefore, this study also
incorporates BIQUE [56] and NIQE [57] as "no-reference" evaluation metrics (Table 3). These two
evaluation methods are no-reference image quality assessment metrics, dedicated to quantifying the
quality of images without the need for any additional reference data [58-61]. It is noteworthy that
RIS-DMRN produces higher quality results under these blind image quality evaluation metrics. This
indicates that the proposed method not only excels in preserving global information but also achieves
significant improvements in overall image quality.

Table 3. Quantitative comparison of non-referenced assessment indicators. Blind Image Quality
Evaluator (BIQUE) and Natural Image Quality Evaluator (NIQE) are "no-reference” metrics designed
to assess image quality without an original reference image. BIQUE estimates image quality by
considering local contrast, structural information, and global color and brightness variations. NIQE
focuses on natural images, assessing quality through the analysis of statistical features such as
gradients, luminance, and color distribution.

Method BIQUE! NIQE!
RPIW [30] 14.045 16.927
DRIS [37] 13.796 16.421

Label 11.017 14.763
Ours 13.562 16.027

3.2. Qualitative comparison of image rectification

To visually demonstrate the effectiveness of RIS-DMRN in image rectification, this study
divided the test set into two parts—one with more global contextual information and the other with
more local detailed information. The algorithm was tested on both sets, and the results were
compared qualitatively (Figure 5). Specifically, the study showcases the effects of different input
irregular images, image completion results, RIS-DMRN processed images, and ground truth label
images in scenes where global correlations are more prominent, such as natural landscapes.
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10

Reference

Figure 5. Rectification effect of different irregular images under images with more global correlation
information. 'Reference' in the figure represents the experimental result of image completion.

It is evident that image completion can fully rectify the image into a rectangle (Figure 5), but it
relies heavily on pixel-level adjustments based on context, making it overly dependent on
surrounding information. This dependency may lead to inaccurate filling of missing parts, resulting
in generated images that appear unrealistic or unnatural, and may even cause a certain degree of
decrease in image clarity [62—65]. In contrast, the rectangular images generated by RIS-DMRN closely
resemble the real label images. RIS-DMRN performs well in maintaining the global rigidity or
curvature of target objects in the image, attempting to preserve the original appearance without
introducing local barrel or pincushion distortions.

In scenarios with dense local information, this study compares the results of image completion
and RIS-DMRN processing when dealing with irregular images (Figure 6). It is observed that image
completion methods often lead to deformations in local rigid structures during the rectification
process. Moreover, when addressing the boundaries of missing regions, noticeable boundary effects
are common, as image completion methods need to ensure smooth transitions between the filled area
and the surrounding region, leading to prominent boundary artifacts [2,66,67]. In addition, this article
also presents other qualitative comparison results, as shown in Appendix A Figure Al and Figure
A2.
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Figure 6. Rectification effect of different irregular images under images with more local structural
information.

RIS-DMRN, with its finer mesh design, can control the loss and deformation of local information
within a certain range. This ensures that local shape changes do not excessively impact the
deformation of adjacent meshes, guaranteeing the preservation of local information during the
rectification process. Additionally, constraints in different mesh directions in RIS-DMRN allow it to
adapt to various deformations of rigid and curved structures, enabling a better fit to the original
shape of the image during the deformation process.

3.3. Impact of Deformable Mesh and Loss Functions on Image Rectification

In accordance with practical application requirements, this study designed three types of
deformable meshes—triangle, rectangle, and regular hexagon—for predicting the rectification of
irregular images. For the input size of the dataset at 512x384, a uniform mesh resolution of 16x12 was
employed for rectification prediction. In terms of loss functions, both local and global loss terms were
designed for regression prediction. Taking a random selection of 300 images from the test set of the
DIR-D dataset as an example, the study tested the quantitative metrics for image rectification under
different method combinations (Table 4). In the table, "W" indicates the inclusion of the current mesh
shape or loss function in the combination.

Table 4. Influence of different loss functions and mesh shapes on image rectification. SSIM, PSNR,
and FID are utilized as components in various combinations. The symbol " W " denotes the inclusion
of the current grid shape or loss function in the combination. The 'model' column represents different
combinations, where L stands for 'Localized loss', G for 'Global loss', T for 'Triangle’, R for 'Rectangle’,
and H for 'Hexagon'. Various colors are employed in the table for clear correspondence with the
combination methods illustrated in Figure 7.

Loss function Mesh shape Model Quantitative index
Localize Global Triangl ~ Rectangl = Hexago SSIM  PSNR
color FID!
d loss loss e e n T T
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When combining local and global loss terms on the basis of using a rectangular mesh, the overall
rectification regression performance is poorer. Comparatively, the absence of the local loss term has
a more significant impact on rectification. This is because the global loss term introduces substantial
stretching and bending during the regression process, while the local loss term predicts the regression
of rigid or curved structures based on the actual content within the mesh. If only the global loss term
is used, the rectification may result in severe deformation within local structures, as they are not
adequately repaired.

The figures provide a more intuitive sense of the image loss resulting from different
combinations, offering a direct visual representation of the changes in evaluation metrics under
various combinations (Figure 7). In terms of the overall rectification performance with deformable
meshes, it can be observed that the hexagon performs the best, followed by the rectangular mesh,
while the triangular mesh exhibits a poorer rectification effect. This is because the hexagonal mesh
has better adaptability compared to other meshes; it can effectively cover and adapt to various
irregular contours, thereby enhancing the performance of the regression model [68,69].

SSIM? PSNR? FID|

Figure 7. Trends of evaluation indexes under different combinations of loss functions and mesh
shapes. The chart displays from left to right, with the vertical axis indicating SSIM, PSNR, and FID
values respectively, while the horizontal axis represents different combinations of mesh shapes and
loss functions. Higher SSIM and PSNR values indicate better image rectification effects, and a lower
FID value suggests superior image rectification performance.

Simultaneously, the hexagonal mesh can more compactly cover the image area, reducing
redundancy. It can decrease edge effects when handling image boundaries, reducing the likelihood
of extensive deformation at the image edges and thereby improving representation efficiency [70]. In
contrast, rectangular meshes may require more mesh points to represent the same image area,
resulting in larger input dimensions [71]. Although triangular meshes, compared to rectangular
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meshes, can better adapt to irregular shapes and exhibit greater flexibility in handling complex image
structures [72,73], the special interpolation between triangular meshes and the relationships between
neighboring triangles may result in the need for more mesh points to represent the same image area,
thus increasing redundancy [74]. Additionally, when dealing with image boundaries, triangular
meshes may encounter issues of discontinuity or lack of smoothness at the borders.

4. Discussion

This paper proposes a method for rectifying irregularly stitched images using deformable
meshes and residual networks. The approach involves predicting initial mesh models for irregular
images using three types of shapes: triangles, rectangles, and regular hexagons. The selection of
different meshes can dynamically adjust based on the requirements of predicting rigid structures or
actual image content. The predicted mesh model, predefined mesh model, and irregular input image
are jointly input into a width residual network for rectification regression. The loss function
comprises local and global loss terms, ensuring that the loss of image information within the mesh
and global contextual information is minimized. The final output rectifies the irregularly stitched
image into a rectangularized image.

Although the algorithm proposed in this paper has made progress, there is still room for further
improvement and optimization. One aspect that could be enhanced is the optimization of
computational complexity. Currently, when constructing non-traditional rectangular meshes such as
triangular or hexagonal meshes, the calculations tend to become more complex. For instance,
calculating the relative positions or distances between adjacent cells might involve more intricate
geometric operations. Additionally, the vertex coordinates and connectivity of triangular and
hexagonal meshes are more complex compared to rectangular meshes, typically requiring more
storage to represent the same area. Furthermore, using neural network structures to handle non-
rectangular meshes in deep learning networks may require more parameters and more complex
processing layers, potentially leading to reduced training and inference speeds. In the future, the
paper will continue to research and improve efficiency in these areas.

5. Conclusions

This paper proposes a method for rectifying irregularly images into rectangles using deformable
meshes and residual networks. The method utilizes a convolutional neural network to quantify rigid
structures of images. Choosing the most suitable mesh structure based on the extraction results,
offering options such as triangular, rectangular, and hexagonal. Subsequently, the irregularly image,
predefined mesh structure, and predicted mesh structure are input into a wide residual neural
network for regression.
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Appendix A

Input Reference Ours Label

Figure Al. Randomly selected stitched images for testing the RIS-DMRN in this paper.
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Figure A2. Randomly selected stitched images for testing the RIS-DMRN in this paper.
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