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Abstract: Image stitching is a crucial aspect of image processing. However, factors like perspective 

and environment often lead to irregular shapes in stitched images. Cropping or completion methods 

typically result in substantial loss of information. This paper proposes a method for rectifying 

irregularly images into rectangles using deformable meshes and residual networks. The method 

utilizes a convolutional neural network to quantify rigid structures of images. Choosing the most 

suitable mesh structure based on the extraction results, offering options such as triangular, 

rectangular, and hexagonal. Subsequently, the irregularly image, predefined mesh structure, and 

predicted mesh structure are input into a wide residual neural network for regression. The loss 

function comprises local and global, aimed at minimizing the loss of image information within the 

mesh and global target. This method not only significantly reduces information loss during 

rectification but also adapting to different images with various rigid structures. Validation on the 

DIR-D dataset shows this method outperforms state-of-the-art methods in image rectification. 
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1. Introduction 

With the rapid development of image stitching and image fusion technologies, methods for 

obtaining multi-view or even global perspectives through multiple single viewpoints have been 

widely applied in human production and daily life [1–5]. For instance, the extensive use of 

technologies such as panoramic images, autonomous driving, and virtual reality (VR) enables precise 

remote observation of scenes by individuals [6–9]. However, in the process of stitching multiple 

single-view images, it is necessary to align the overlapping regions of different images by adjusting 

their positions, angles, and local distortions [10,11]. This often results in irregular boundaries in non-

overlapping regions, making it challenging for individuals to adapt and prone to misjudgments when 

observing panoramic images [12].  

One approach to addressing irregular boundaries directly involves the use of smaller 

rectangular boxes for cropping images [13,14]. However, this method may result in the loss of a 

significant amount of information, contradicting the original purpose of image stitching, which aims 

to expand the field of view [15,16]. Additionally, image completion can be employed to predict 

missing portions of an image and restore its integrity to some extent [17,18]. Nevertheless, its 

limitations are evident, particularly in cases where the missing portions contain complex structures 

or highly personalized information, making it challenging for image completion to accurately predict 

the missing areas [19–22]. This limitation renders image completion unsuitable for applications in 

fields with high security requirements, such as autonomous driving and industrial production 

monitoring [23]. 

To address the challenges posed by image cropping and image completion, Zhu proposed 

adjusting the stitched image by computing a perspective transformation matrix to make it closer to a 

rectangular shape [24]. However, this method often relies on the estimation of the geometric 

structures in specific regions of the image, such as lines or corners. Some approaches suggest 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2024                   doi:10.20944/preprints202402.1550.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.



 2 

 

transforming local quadrilateral mesh regions on the stitched image to make the overall image more 

rectangular [25–29]. Building upon the aforementioned research, He proposed optimizing the 

preservation of line meshes and deforming the rigid structures within the mesh [30]. Li improved the 

preservation term from line meshes to geodesic lines [31]. However, the applicability of this method 

is restricted due to the common occurrence of curved ground lines in panoramic images. Some 

researchers introduced Seam Carving, an algorithmic approach that alters the size of an image by 

carving or inserting pixels in different parts of the image, thereby transforming irregular images into 

rectangular forms [32–36]. Meanwhile, Lang proposed DRIS (Deep Rectagling for Image Stitching), 

employing a residual progressive regression strategy for fully convolutional network prediction of 

mesh deformations [37]. Based on the predicted mesh, irregular images are corrected. This method 

partially addresses the challenges of flexible structural distortions for image rectification and 

computational acceleration. Moreover, the approach utilizes a residual progressive regression 

strategy for fully convolutional network prediction of mesh deformations and subsequent correction 

of irregular images. However, DRIS still faces certain challenges. For instance, its loss function 

focuses solely on the situation within the initial mesh, without considering global information for 

further adjustments. This limitation results in deformation errors in panoramic information. 

Additionally, the method concentrates on horizontal and vertical objectives within the mesh, making 

it prone to deformation errors when correcting targets in other scale directions [38,39]. Currently, 

there is relatively limited research on image rectification, and achieving image rectification while 

ensuring minimal loss of information remains a challenging task [40–44]. 

To address the aforementioned challenges, this study proposes a deep learning-based image 

rectification algorithm named RIS-DMRN (Rectification for Image Stitching with Deformable Mesh 

and Residual Network). The algorithm defines a deformable target mesh for irregularly stitched 

images, which can be predicted during model training. The selection of the deformable mesh shape 

is based on the judgment of the current image's rigid structure by a convolutional neural network, 

offering three options: triangle, rectangle, and regular hexagon. Once the mesh shape is determined, 

the prediction network generates an initial predicted mesh based on the input irregular image and 

its mask matrix. The training process employs a width residual network to predict the initial mesh 

by content-aware processing of irregularly stitched images. Subsequently, the input irregular image, 

predicted initial mesh, and predefined target mesh are collectively input into the width residual 

neural network for rectification regression. The loss function of the width residual network comprises 

local and global. The local loss function controls the deformation loss of targets within the mesh, 

while the global-related loss function helps avoid global information loss during the deformation 

process. In comparison to existing methods, this approach utilizes a deformable mesh as the initial 

mesh, allowing for more versatile directional movement during mesh restoration and achieving 

better correction effects for targets within irregular images, as illustrated in the comparative results 

against various methods (Figure 1). Additionally, the introduction of local and global-related loss 

functions significantly mitigates the drawbacks of traditional methods that focus only on partial 

regions, enhancing the overall coherence during the deformation recovery process and preserving 

content more effectively after image rectification. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 February 2024                   doi:10.20944/preprints202402.1550.v1



 3 

 

 

Figure 1. Comparison of rectification methods for irregular image stitching. 

2. Materials and Methods 

This paper proposes a deformable mesh structure for the initial prediction of irregular images, 

enhancing its adaptability in various spatial scene structures. In light of this mesh structure, the paper 

establishes two methods for mesh application. One approach involves predicting the rigid structure 

of the input image through a simple convolutional neural network. Based on the prediction results, 

the most suitable mesh shape for the image is selected (Figure 2(a)). Subsequently, the input image 

and the chosen mesh shape are input into a width residual network for initializing mesh prediction. 

Finally, the predicted initial mesh and the input irregular image are jointly used for image 

rectification regression, resulting in the output image. 

Another option is to input the input image and predefined target meshes for all shapes into a 

width residual neural network to generate initial mesh predictions (Figure 2(b)). Subsequently, image 

rectification regression is performed with the input image. The optimization is then based on the 

regression loss of the rectified image, selecting the one with the minimum information loss as the 

final output image. 

 

(a) 
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(b) 

Figure 2. Image rectification with different mesh shape selection modes. (a) Selecting a mesh shape 

based on the image. Predicting the most suitable mesh shape for an input image through a 

convolutional neural network. Subsequently, the predicted initial mesh based on this shape and the 

predefined mesh are jointly input into a residual network for image rectification. (b) Selecting all mesh 

shapes for loss comparisons. Applying all mesh shapes to the input image and jointly inputting them 

into a residual network for rectification. The rectified image with the lowest loss is selected as the final 

output. 

2.1. Deformable mesh 

This paper introduces deformable meshes to meet the application demands in different 

scenarios. Traditional rectangles exhibit weaker generalization capabilities when dealing with 

complex scenes. Therefore, the paper introduces two additional mesh models: hexagonal and 

triangular meshes. Hexagonal meshes have more uniform relationships between adjacent pixels, with 

each hexagon having six neighbors with equal adjacency properties. This provides better spatial 

consistency for image rectification. For example, during the image interpolation process, hexagonal 

meshes can offer smoother and more natural transitions. Moreover, hexagonal meshes closely 

resemble the shapes of many objects and structures found in the natural world, such as beehives and 

crystal structures [45]. Therefore, they may provide a more natural representation of images related 

to natural landscapes. Triangular meshes, on the other hand, excel in realistically reconstructing the 

shapes in images, especially when the images contain curves and surfaces [46]. The use of triangular 

meshes allows for better adaptation to irregular image regions, enabling more flexible shape 

approximation and, consequently, a more accurate capture of details in the images. 

Simultaneously, this paper proposes two operational modes for the deformable meshes: speed-

oriented and quality-oriented. In the speed-oriented mode, the input image undergoes detection of 

rigid structures within irregular images using a simple recognition network. Based on the detected 

structure count and orientation, the mesh shape that best fits the threshold is directly selected. 

Currently available mesh shapes include triangles, rectangles, hexagons, and more. In the quality-

oriented mode, each mesh shape conducts residual regression predictions on the input image, 

generating a rectified image. Ultimately, the optimal output is selected based on the loss values of 

the rectified images, choosing the one with a relatively superior rectification effect. 

2.2. Network Architecture 

The network architecture proposed in RIS-DMRN consists of two components (Figure 3): the 

rigid target recognition network and the width residual regression network [47]. The input comprises 

irregularly stitched images and their stitching mask matrix. The input image is initially processed by 

a simple recognition convolutional neural network to detect the quantity and orientation of rigid 

structures. Based on the detection results, the most suitable mesh shape is chosen for rectification. 

For instance, if there are predominantly horizontal or vertical rigid structures in the image, a 

preference is given to selecting a rectangular mesh. In the case of a higher prevalence of curved 

surfaces or curved structures, a triangular mesh is chosen. If the quantities of vertical rigid structures 

and curved structures are comparable, a hexagonal mesh is selected for image rectification. 
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Figure 3. Schematic structure of width residual neural network. 

The main structure for rigid structure detection in this paper is a convolutional neural network 

(Figure 4), with input images resized to a unified 448×448. The CNN consists of 6 convolutional 

blocks, each composed of various combinations of 3×3 convolutional kernels, 1×1 convolutional 

kernels, and 2×2 max-pooling layers with a stride of 2. After extracting image features into a 1000-

dimensional 7×7 feature vector, a 1000-dimensional vector is generated through average pooling. This 

vector is then input into Softmax for rigid structure detection. The network also incorporates 

normalization and dropout operations, although they are not explicitly shown in the diagram. 

Once the mesh shape is determined, the irregularly stitched image and its mask matrix are fed 

into the Wide Residual Neural Network (Wide ResNet) for the rectification process. The choice of 

Wide ResNet as the recovery prediction network for image rectification is motivated by its ability to 

enhance feature dimensions in each residual block through increased channel numbers. This 

augmentation enables the network to capture richer feature representations, playing a crucial role in 

the recovery of content items after mesh transformation and minimizing the loss in rectified content. 

Moreover, due to significant internal variations within the meshes during the rectification process, 

some meshes experience a gradual decrease in gradients during the backward propagation of model 

training, leading to convergence challenges. The introduction of wider residual blocks in the Wide 

ResNet facilitates easier gradient flow, mitigating the issue of gradient vanishing during training 

[48,49]. 
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Figure 4. Neural networks for target detection in rigid structures. 

The architecture of the Wide ResNet employed in RIS-DMRN consists of four residual 

convolutional blocks followed by an average pooling layer (Table 1). In the network, 'k' represents 

the multiplier for the convolutional kernels in the original module, ' N ' indicates the number of 

residual modules in that layer, and ' B (3,3) ' signifies each residual module consisting of two 3×3 

convolutional layers. After feature extraction through the residual network, a simple fully 

convolutional structure is utilized as a mesh motion regressor to predict the horizontal and vertical 

movements of each vertex based on the regular mesh, facilitating the output of the rectified image. 

Table 1. Schematic structure of width residual neural network. In the table, 'k' represents the 

multiplier for the convolutional kernels in the original module, ' N ' indicates the number of residual 

modules in that layer, and ' B (3,3) ' signifies each residual module consisting of two 3×3 convolutional 

layers. the image undergoes processing through a mean pooling layer, resulting in the final output 

image. 

Type Block type = B(3,3) Output 

conv1 [3×3, 16] 32×32 

conv2 [
3×3, 16×𝑘
3×3, 16×𝑘

] ×  N 32×32 

conv3 [
3×3, 16×𝑘
3×3, 16×𝑘

] ×  N 16×16 

conv4 [
3×3, 16×𝑘
3×3, 16×𝑘

] ×  N 8×8 

avgpool [8×8] 1×1 

2.3. Loss function 

The loss function of the proposed RIS-DMRN consists of two components: the local loss function 

and the global loss function. The calculation is formulated as follows Equation (1): 
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total local local global globall l l = +  (1) 

Where 𝜔𝑙𝑜𝑐𝑎𝑙  and 𝜔𝑔𝑙𝑜𝑏𝑎𝑙  represent the weights assigned to the local loss and global loss, 

respectively. The local loss 𝑙𝑙𝑜𝑐𝑎𝑙  and global loss 𝑙𝑔𝑙𝑜𝑏𝑎𝑙  contribute to the overall loss, and the 

weights control the balance between preserving local details and maintaining global context during 

the rectification process. 

2.3.1. Local loss 

The content loss term in the RIS-DMRN consists of two components: content loss and mesh loss. 

The content loss term, represented by Equation (2), involves the comparison between the predicted 

mesh (m) applied to the input irregular image (𝐼𝑝) and the warped version of the irregular image 

(𝐷(𝐼𝑝 , 𝑚)) using the bending operation. Additionally, the content loss incorporates the difference 

between the predicted mesh and the ground truth mesh (T). The function C, denoting the 'conv4' 

convolutional layer in the width recognition network, plays a role in shaping the content loss term. 

This formulation aims to ensure that the rectified image aligns closely with both the original irregular 

content and the ground truth mesh structure. 

2 2
( , ) ( ) ( ( , ))content p pl T D I m C T C D I m= − + −  (2) 

For the mesh loss term in RIS-DMRN, the formula can be expressed as Equation (3): 

, ,

,

( , ) ( , )mesh p i j p i j

i j

l W I m W I T= −  
(3) 

Where 𝑙𝑚𝑒𝑠ℎ  represents the mesh loss term, i and j are indices within the mesh, 𝑚𝑖,𝑗  is the 

predicted mesh by the model, 𝑇𝑖,𝑗  is the ground truth label mesh, and W is the mesh generation 

function. This loss term aims to encourage the model to better learn and preserve the mesh structure 

of the image by comparing the differences between the predicted mesh by the model and the true 

label mesh. 

2.3.2. Global loss 

The global loss term in RIS-DMRN proposed in this paper consists of two components: global 

structural loss term and boundary loss term, expressed as shown in Equation (4): 

global ms borderl l l= +  (4) 

The computation of the global structural loss term is expressed as Equation (5), where 𝐼𝑝
𝑐 

represents the irregular image cropped based on the mask matrix, 𝜇𝐼𝑝𝑐  is the mean of 𝐼𝑝
𝑐, μ_T is the 

mean of T, 𝜎𝐼𝑝𝑐
2  is the variance of 𝐼𝑝

𝑐, 𝜎𝑇
2 is the variance of T, and 𝜎𝐼𝑝𝑐𝑇 is the covariance between 𝐼𝑝

𝑐 

and T. Constants 𝑐1 and 𝑐2 are constants used to stabilize the formula. 

1 2

2 2 2 2

1 2

(2 )(2 )
( , )

( )( )

c c
p p

c c
p p

TI I Tc

ms p

T TI I

c c
l I T

c c

  

   

+ +
=

+ + + +
 (5) 

The expression for the boundary loss term is given by Equation (6), where 𝐼𝑚 represents the 

mask matrix of the original irregular image, and E represents the target template of an all-ones matrix. 

The boundary loss adjusts based on the 0/1 mask matrix of the irregular stitched image, with an all-

ones matrix as the true target, gradually approaching the rectangularization. 

2
( , ))border ml E D I m= −  (6) 
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3. Results 

The experimental implementation of the RIS-DMRN algorithm in this study was conducted on 

the following workstation configuration: Processor (CPU): Intel Core i9-13900HX (2.2 GHz, 6 cores, 

12 threads), Memory (RAM): 16GB DDR4 2400MHz, Graphics Card (GPU): NVIDIA GeForce GTX 

4070 Ti (8GB GDDR5X). The algorithm was implemented using Python 3.6 + TensorFlow 1.13.1 for 

program design. Due to the limited availability of publicly accessible datasets for image rectification 

research, this study conducted validation on the DIR-D dataset [37]. Following the consistent 

approach outlined in the paper [37], RIS-DMRN set the batch size to 8 during the training process, 

initialized the learning rate to 1×10-3, and performed exponential decay on the learning rate every 50 

epochs. The parameters 𝜔𝑙𝑜𝑐𝑎𝑙  and 𝜔𝑔𝑙𝑜𝑏𝑎𝑙  were set to 0.7 and 0.3, respectively, aiming to preserve 

detailed content while simultaneously focusing on the global shape changes. After experimenting 

with this paper, this combination is found t to be the better choice. 

3.1. Quantitative comparison of image rectification 

The algorithm proposed in this paper was primarily tested on 300 samples selected from the 

DIR-D dataset. A quantitative comparison was performed against mainstream rectification methods, 

and the results are presented in Table 1. The term "Initialization" denotes the initial state of the freshly 

stitched image without image rectification processing. The quantification metrics include the average 

values of SSIM, PSNR, and FID within the samples for comparison [50–52]. 

It is evident that compared to the RPIW [30] and DRIS [37], the proposed RIS-DMRN 

outperforms in all metrics (Table 2). Additionally, it surpasses traditional seam carving and image 

completion. This superiority is attributed to the configurations in the loss functions of the deep 

learning rectification algorithm, which includes the design of content loss and mesh loss. These 

designs minimize the deformation of target content within the image during rectification, resulting 

in a more effective image rectification. In comparison to DRIS, the global structure loss term and 

boundary loss term in RIS-DMRN better preserve global information. Preserving global information 

is crucial for the algorithm to better understand the contextual relationships of objects in the image. 

This understanding is vital for interpreting the relative positions, sizes, and interrelationships of 

objects. Additionally, global information contributes to maintaining consistency between different 

regions of the image, ensuring that the algorithm produces coherent output throughout the entire 

image, especially in tasks like image rectification [53–55]. Simultaneously, it can be observed that 

using a hexagon as the initial mesh shape yields slightly better results than traditional rectangular 

meshes (Table 2). This improvement is attributed to hexagons having more rigid directional choices 

and better shape adjacency relationships. While hexagons may increase the computational time to 

some extent compared to rectangles, they often produce superior results. 

Table 2. Quantization comparison of image rectification on DIR-D. Structural Similarity Index (SSIM), 

Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception Distance (FID) are employed to assess 

image quality from different perspectives. SSIM measures the structural similarity between two 

images, considering brightness, contrast, and structure. And SSIM values range from -1 to 1, with 1 

indicating identical images. PSNR compares original and processed images by measuring signal-to-

noise strength. Higher PSNR values in decibels (dB) indicate better image quality. FID primarily 

assesses dissimilarity between generated and real images in terms of distribution. Lower FID values 

indicate greater similarity in latent space. 

Method SSIM↑ PSNR↑ FID↓ 

Reference 0.3354 11.42 43.57 

RPIW [30] 0.3805 15.03 37.51 

DRIS [37] 0.7173 21.57 21.26 
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Ours 0.7234 22.65 20.05 

Consistent with the settings in the paper [37], this study also acknowledges that there may be 

differences in quantitative measurements when objects undergo slight positional variations in the 

generated rectangular results. Although the visual perception may still appear very natural in such 

cases, it could weaken the persuasiveness of quantitative experiments. Therefore, this study also 

incorporates BIQUE [56] and NIQE [57] as "no-reference" evaluation metrics (Table 3). These two 

evaluation methods are no-reference image quality assessment metrics, dedicated to quantifying the 

quality of images without the need for any additional reference data [58–61]. It is noteworthy that 

RIS-DMRN produces higher quality results under these blind image quality evaluation metrics. This 

indicates that the proposed method not only excels in preserving global information but also achieves 

significant improvements in overall image quality. 

Table 3. Quantitative comparison of non-referenced assessment indicators. Blind Image Quality 

Evaluator (BIQUE) and Natural Image Quality Evaluator (NIQE) are "no-reference" metrics designed 

to assess image quality without an original reference image. BIQUE estimates image quality by 

considering local contrast, structural information, and global color and brightness variations. NIQE 

focuses on natural images, assessing quality through the analysis of statistical features such as 

gradients, luminance, and color distribution. 

Method BIQUE↓ NIQE↓ 

RPIW [30] 14.045 16.927 

DRIS [37] 13.796 16.421 

Label 11.017 14.763 

Ours 13.562 16.027 

3.2. Qualitative comparison of image rectification 

To visually demonstrate the effectiveness of RIS-DMRN in image rectification, this study 

divided the test set into two parts—one with more global contextual information and the other with 

more local detailed information. The algorithm was tested on both sets, and the results were 

compared qualitatively (Figure 5). Specifically, the study showcases the effects of different input 

irregular images, image completion results, RIS-DMRN processed images, and ground truth label 

images in scenes where global correlations are more prominent, such as natural landscapes. 
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Figure 5. Rectification effect of different irregular images under images with more global correlation 

information. 'Reference' in the figure represents the experimental result of image completion. 

It is evident that image completion can fully rectify the image into a rectangle (Figure 5), but it 

relies heavily on pixel-level adjustments based on context, making it overly dependent on 

surrounding information. This dependency may lead to inaccurate filling of missing parts, resulting 

in generated images that appear unrealistic or unnatural, and may even cause a certain degree of 

decrease in image clarity [62–65]. In contrast, the rectangular images generated by RIS-DMRN closely 

resemble the real label images. RIS-DMRN performs well in maintaining the global rigidity or 

curvature of target objects in the image, attempting to preserve the original appearance without 

introducing local barrel or pincushion distortions. 

In scenarios with dense local information, this study compares the results of image completion 

and RIS-DMRN processing when dealing with irregular images (Figure 6). It is observed that image 

completion methods often lead to deformations in local rigid structures during the rectification 

process. Moreover, when addressing the boundaries of missing regions, noticeable boundary effects 

are common, as image completion methods need to ensure smooth transitions between the filled area 

and the surrounding region, leading to prominent boundary artifacts [2,66,67]. In addition, this article 

also presents other qualitative comparison results, as shown in Appendix A Figure A1 and Figure 

A2. 
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Figure 6. Rectification effect of different irregular images under images with more local structural 

information. 

RIS-DMRN, with its finer mesh design, can control the loss and deformation of local information 

within a certain range. This ensures that local shape changes do not excessively impact the 

deformation of adjacent meshes, guaranteeing the preservation of local information during the 

rectification process. Additionally, constraints in different mesh directions in RIS-DMRN allow it to 

adapt to various deformations of rigid and curved structures, enabling a better fit to the original 

shape of the image during the deformation process. 

3.3. Impact of Deformable Mesh and Loss Functions on Image Rectification 

In accordance with practical application requirements, this study designed three types of 

deformable meshes—triangle, rectangle, and regular hexagon—for predicting the rectification of 

irregular images. For the input size of the dataset at 512×384, a uniform mesh resolution of 16×12 was 

employed for rectification prediction. In terms of loss functions, both local and global loss terms were 

designed for regression prediction. Taking a random selection of 300 images from the test set of the 

DIR-D dataset as an example, the study tested the quantitative metrics for image rectification under 

different method combinations (Table 4). In the table, "𝒲" indicates the inclusion of the current mesh 

shape or loss function in the combination. 

Table 4. Influence of different loss functions and mesh shapes on image rectification. SSIM, PSNR, 

and FID are utilized as components in various combinations. The symbol " 𝒲 " denotes the inclusion 

of the current grid shape or loss function in the combination. The 'model' column represents different 

combinations, where L stands for 'Localized loss', G for 'Global loss', T for 'Triangle', R for 'Rectangle', 

and H for 'Hexagon'. Various colors are employed in the table for clear correspondence with the 

combination methods illustrated in Figure 7. 

Loss function Mesh shape Model Quantitative index 

Localize

d loss 

Global 

loss 

Triangl

e 

Rectangl

e 

Hexago

n 
color 

SSIM

↑ 

PSNR

↑ 
FID↓ 
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  𝒲 𝒲  𝒲  R+G 0.4753 15.12 
74.6

8 

𝒲 𝒲    𝒲  R+L 0.6169 18.96 
24.7

0 

𝒲 𝒲 𝒲 𝒲 𝒲   T+G+L 0.7071 20.46 
22.0

2 

𝒲 𝒲 𝒲 𝒲  𝒲  R+G+L 0.7126 21.05 
21.7

4 

𝒲 𝒲 𝒲 𝒲   𝒲 
H+G+

L 
0.7203 21.97 

20.6

8 

When combining local and global loss terms on the basis of using a rectangular mesh, the overall 

rectification regression performance is poorer. Comparatively, the absence of the local loss term has 

a more significant impact on rectification. This is because the global loss term introduces substantial 

stretching and bending during the regression process, while the local loss term predicts the regression 

of rigid or curved structures based on the actual content within the mesh. If only the global loss term 

is used, the rectification may result in severe deformation within local structures, as they are not 

adequately repaired. 

The figures provide a more intuitive sense of the image loss resulting from different 

combinations, offering a direct visual representation of the changes in evaluation metrics under 

various combinations (Figure 7). In terms of the overall rectification performance with deformable 

meshes, it can be observed that the hexagon performs the best, followed by the rectangular mesh, 

while the triangular mesh exhibits a poorer rectification effect. This is because the hexagonal mesh 

has better adaptability compared to other meshes; it can effectively cover and adapt to various 

irregular contours, thereby enhancing the performance of the regression model [68,69]. 

 

Figure 7. Trends of evaluation indexes under different combinations of loss functions and mesh 

shapes. The chart displays from left to right, with the vertical axis indicating SSIM, PSNR, and FID 

values respectively, while the horizontal axis represents different combinations of mesh shapes and 

loss functions. Higher SSIM and PSNR values indicate better image rectification effects, and a lower 

FID value suggests superior image rectification performance. 

Simultaneously, the hexagonal mesh can more compactly cover the image area, reducing 

redundancy. It can decrease edge effects when handling image boundaries, reducing the likelihood 

of extensive deformation at the image edges and thereby improving representation efficiency [70]. In 

contrast, rectangular meshes may require more mesh points to represent the same image area, 

resulting in larger input dimensions [71]. Although triangular meshes, compared to rectangular 
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meshes, can better adapt to irregular shapes and exhibit greater flexibility in handling complex image 

structures [72,73], the special interpolation between triangular meshes and the relationships between 

neighboring triangles may result in the need for more mesh points to represent the same image area, 

thus increasing redundancy [74]. Additionally, when dealing with image boundaries, triangular 

meshes may encounter issues of discontinuity or lack of smoothness at the borders. 

4. Discussion 

This paper proposes a method for rectifying irregularly stitched images using deformable 

meshes and residual networks. The approach involves predicting initial mesh models for irregular 

images using three types of shapes: triangles, rectangles, and regular hexagons. The selection of 

different meshes can dynamically adjust based on the requirements of predicting rigid structures or 

actual image content. The predicted mesh model, predefined mesh model, and irregular input image 

are jointly input into a width residual network for rectification regression. The loss function 

comprises local and global loss terms, ensuring that the loss of image information within the mesh 

and global contextual information is minimized. The final output rectifies the irregularly stitched 

image into a rectangularized image. 

Although the algorithm proposed in this paper has made progress, there is still room for further 

improvement and optimization. One aspect that could be enhanced is the optimization of 

computational complexity. Currently, when constructing non-traditional rectangular meshes such as 

triangular or hexagonal meshes, the calculations tend to become more complex. For instance, 

calculating the relative positions or distances between adjacent cells might involve more intricate 

geometric operations. Additionally, the vertex coordinates and connectivity of triangular and 

hexagonal meshes are more complex compared to rectangular meshes, typically requiring more 

storage to represent the same area. Furthermore, using neural network structures to handle non-

rectangular meshes in deep learning networks may require more parameters and more complex 

processing layers, potentially leading to reduced training and inference speeds. In the future, the 

paper will continue to research and improve efficiency in these areas. 

5. Conclusions 

This paper proposes a method for rectifying irregularly images into rectangles using deformable 

meshes and residual networks. The method utilizes a convolutional neural network to quantify rigid 

structures of images. Choosing the most suitable mesh structure based on the extraction results, 

offering options such as triangular, rectangular, and hexagonal. Subsequently, the irregularly image, 

predefined mesh structure, and predicted mesh structure are input into a wide residual neural 

network for regression. 
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Appendix A 

 

Figure A1. Randomly selected stitched images for testing the RIS-DMRN in this paper. 
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Figure A2. Randomly selected stitched images for testing the RIS-DMRN in this paper. 
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