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Abstract:  System‐of‐systems  (SoS)  evolution  is  a  complex  and unpredictable process. Although 

various principles to facilitate collaborative SoS evolution have been proposed, there  is a  lack of 

experimental data validating their effectiveness. To address these issues, we present an Agent‐Based 

Model (ABM) for SoS evolution in the Internet of Vehicles (IoV) , serving as a quantitative analysis 

tool for SoS research. By integrating multiple complex and rational behaviors of individuals, we aim 

to simulate real‐world scenarios as accurately as possible. To simulate the SoS evolution process, 

our  model  employs  multiple  agents  with  autonomous  interactions  and  incorporates  external 

environmental variables. Furthermore, we propose  three  evaluation metrics:  evolutionary  time, 

degree of variation, and evolutionary cost, to assess the performance of SoS evolution. Our study 

demonstrates  that  enhanced  information  transparency  significantly  improves  the  evolutionary 

performance of distributed SoS. Conversely, the adoption of uniform standards only brings limited 

performance enhancement  to distributed SoSs. Although our proposed model has  limitations,  it 

stands out from other approaches that utilize Agent‐Based Modeling to analyze SoS theories. Our 

model focuses on realistic problem contexts and simulates realistic interaction behaviors. This study 

enhances  the  comprehension of  SoS  evolution processes  and provides valuable  insights  for  the 

formulation of effective evolutionary strategies. 
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1. Introduction 

A system‐of‐systems (SoS) is a system with a highly complex structure. When the structure of 

an SoS undergoes transformation, further non‐linear changes will occur as a result of its complexity. 

In order to guide the SoS to achieve directed evolution, researchers have proposed many principles 

to manage the evolutionary process of the SoS [1–4]. 

However, due to the extremely complex nature of the SoS itself, it is challenging to describe the 

effects of these principles during the actual engineering process, as well as their mechanisms of action 

[5].  This  leads  to  a  lack  of  understanding when  the management  of  SoS  evolution  processes  is 

considered in SoS engineering, making it difficult to ensure that the relevant measures are sufficiently 

accurate and effective. 

To address these challenges, we examine the impacts of different SoS evolution principles on the 

performance of complex systems. As obtaining empirical evidence from a sufficient number of SoSs 

can be arduous, due  to  the scarceness of complex system design data, we propose an alternative 

approach  for  creating unique  SoS models  and  simulating design processes based on  empirically 

verified phenomena to overcome this issue. We undertook an analysis of the ABM methodʹs efficacy 
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utilizing a case study centered on the Internet of Vehicles. Using this method, researchers can gain 

valuable insights into how specific factors influence SoSs without the need for extensive empirical 

data. 

The case study detailed in this paper examines the evolution of a telematics SoS dealing with 

situational awareness problems. As a typical collaborative SoS, the structure of the telematics SoS is 

decentralized and distributed. The core principle of telematics is interactive communication between 

different distributed nodes (e.g., vehicles or infrastructure) within a network, facilitating the sharing 

of information to achieve situational awareness of the environment. Situational awareness refers to 

the perception of environmental factors under certain temporal and spatial conditions, as well as the 

prediction of their future trends, by collecting data  through on‐board sensors, cameras, and other 

devices [6–8]. When a telematics SoS receives new environmental information, nodes with different 

devices cooperate with each other to collect, process, and transmit relevant information to achieve 

information  sharing  in  the  telematics  SoS,  thus  completing  the  evolution  process.  The  effect  of 

choosing different evolutionary principles and strategies on the evolutionary performance of SoSs 

can be studied using the presented framework. 

The  problem  of  situational  awareness  in  telematics  SoS  offers  an  ideal  case  to  examine  the 

impacts of evolutionary principles on system‐of‐systems (SoS) performance. The emergent evolution 

that  occurs  during  the  situational  awareness  process  in  telematics  SoS  is  often  unpredictable. 

Consequently, this paper aims to address the challenge of modeling this evolutionary process and 

analyzing the influence of different principles on the information sharing process in the SoS. In this 

article, we combine SoS evolution theory, agent‐based modeling, design optimization, and research 

on  the  Internet of Vehicles  (IoV) architecture, which  is achieved  through  the  following  steps:  (1) 

Generating a vehicle networking SoS, (2) simulating the evolutionary process during SoS situational 

awareness  and behaviors of  intelligent  agents,  (3) verifying  the  effectiveness of  the  evolutionary 

principles by adjusting various parameter settings. 

The  article  delves  into  the  intricacies  of  SoS  evolution  by  examining  the  application  of 

evolutionary principles and an agent‐based model (ABM) in the context of vehicle networking SoS. 

Employing the ABM, we developed a unique model that generates complex SoS and simulates their 

evolutionary processes. This was achieved through the execution of Monte Carlo simulations in 150 

distinct SoSs,  concurrently  altering  their underlying  evolutionary principles. The  findings of  this 

comprehensive study highlight  the varying effects  that different principles have on  the evolution 

performance of SoS. This research not only contributes to a better understanding of SoS evolution, 

but also emphasizes the importance of selecting appropriate evolutionary principles when designing 

and optimizing vehicle networking SoSs. 

2. Preliminaries 

2.1. The Concept of SoS Evolution 

In  the  realm  of  system  engineering,  a  system‐of‐systems  (SoS)  represents  a  sophisticated 

arrangement of specialized systems that synergistically pool resources and integrate their capabilities 

to create a more functional and high‐performing system. Within this intricate structure, a constituent 

system (CS) operates as a component of one or more SoSs, functioning as a complete system with its 

own objectives and resources. A particularly intriguing manifestation of SoSs is the collaborative SoS, 

which emerges when constituent systems voluntarily align themselves around a central purpose and 

collectively determine their  implementation and maintenance standards. One salient example of a 

collaborative  SoS  is  a  connected  vehicle  SoS,  designed  to  achieve  situational  awareness  of  the 

environment  by  harnessing  the  collective  intelligence  and  capabilities  of  various  vehicular 

components. This innovative approach to system integration and collaboration not only enhances the 

overall  performance  of  the  individual  systems,  but  also  fosters  a  safer  and  more  efficient 

transportation ecosystem. 

Evolutionary characteristics were first identified as an inherent part of SoSs by Maier [9]. From 

a macroscopic  perspective,  the  SoS  can  be  seen  as  continuously,  but  slowly  evolving  [10].  This 
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evolutionary process  is  incessant  [11], meaning  that  the SoS has no permanent state  [12]. From a 

microscopic perspective, SoS evolution takes place through a series of largely deliberate preservative 

or  adaptive  interventions  [3],  such  as  upgrades  to  constituent  systems  or  responses  to  an  ever‐

changing environment [13,14]. 

In the evolutionary process of SoS, a salient challenge is that evolution is not necessarily centrally 

controlled,  and  the  impetus  for  change may  occur  suddenly  and  dramatically  [15].  Therefore, 

evolution can simultaneously occur at multiple levels and within multiple areas of an SoS. In practice, 

such evolutions within SoSs may take place in multiple places at once and on an ongoing basis. And 

at the same time, different parallel evolution processes may complement or disrupt each other [16]. 

Consequently,  any  unforeseen  evolution  in  the  system  (SoS) may  lead  to  undesirable  emergent 

phenomena  [2].  If  such  evolution  cannot  be  effectively  controlled,  then  the  resulting  emergent 

behavior may  lead  to  failures within  the  SoS  development  process  [17]. Accordingly,  emergent 

evolution has been proposed to describe this unpredictable form of evolution [18]. In this paper, we 

examine the emergent evolution of system‐of‐systems from the bottom‐up level. 

Based on the abovementioned studies, it is clear that emergent behavior among systems can be 

reflected  in  the  evolution  of  the whole  system‐of‐systems  and  even  influence  the  evolutionary 

outcome. Therefore,  it  is necessary  to propose appropriate evolutionary measures  to manage and 

guide  this bottom‐up behavior during  the evolution of  the system‐of‐systems. The validation and 

application  of  SoS  principles  can  help managers  to  better  design  SoS  frameworks  and manage 

emergent behaviors in the evolutionary process, thus enhancing the efficiency and effectiveness of 

SoS evolution. 

2.2. Guiding Principles for SoS Evolution 

This paper focuses on four of the significant principles that guide the evolution of SoSs. 

2.2.1. Facilitate Information Exchange 

Facilitating information exchange is an important principle when functionally distinct systems 

interact within SoS  [19]. Clausing argued  that  the  impact of design reuse can be reduced and  the 

quality  of  evolution  improved  by  ensuring  the  effective  exchange  of  information during  system 

evolution [20]. Lock affirmed the positive role of information exchange, and argued that poor levels 

of  information exchange  in  the  interaction between member systems within an SoS can affect  the 

efficiency and reliability of SoS evolution [2]. In addition, Carney argued that the rate of coordinated 

information  exchange  is  an  important  aspect  of  the  maintenance  of  interoperability,  and  that 

coordinated  information  exchange  between  systems  allows  the  SoS  to  retain  its  original 

characteristics during the evolution process [3]. Indeed, information exchange is an important factor 

in the ability to build new organizations. Information exchange is the link that facilitates interaction 

between systems in the process of building an SoS from independent systems [21]. Many properties 

of systems are closely related to information exchange, including reliability and interoperability [22]. 

Successful  information  exchange  is  considered  to  be  the  basis  for  the  achievement  of  system 

properties such as interoperability [21]. 

Information exchange can also  influence emergent complexity  in  the organizational structure 

when  analyzed  from  a  micro  perspective.  Emergent  changes  that  occur  internally,  such  as 

unpredictable deviations, unforeseen errors, or significant constraints, can be perceived at an earlier 

stage  through  information  exchange  [23–25]. Moreover,  information  exchange  can  also motivate 

agents to form organizations naturally  [23]. In this process, frequent  information exchange has an 

effect on the inertia of agents—which may be due to short‐term behavior—but, in the long run, may 

lead to evolutionary trends [26]. 

2.2.2. Implementing Uniform Standards 

Standards can provide a common framework and terminology, making participants more likely 

to have the same understanding of the same problem [27]. Uniform standards can avoid ambiguity 
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in  interpretation, which may  increase the  level of mutual understanding between systems as they 

evolve [28]. For example, relying on accepted formal or informal standards in multi‐agent systems 

can  lead  to mutual understanding  [29]. By promoting and  enhancing  the  level of understanding 

between systems, uniform standards can further influence the evolutionary performance of a SoS. 

Lock argued that “The agility of SoS evolution can be improved by using and implementing uniform 

standards that promote understanding between interacting systems” [4]. Carney et al. argued that 

inter‐system agreement determines whether  local  interoperability relationships can be established 

[2]. Selberg and Austin argued, from a system design perspective, that the selection of uniform and 

widely used standards is important for SoS evolution [1]. 

Therefore, we argue that it will be easier for member systems to learn new knowledge and for 

constituent systems to adapt to dynamic change if uniform standards or protocols are implemented. 

A  uniform  standard will  provide  a  common  framework  and  language, making  it  easier  for  the 

members of an organization to identify and use the information in a database. 

2.2.3. Enhancing Transparency of Information 

Information transparency, in the context of organizational dynamics, pertains to    the degree of 

information sharing and disclosure [30]. Transparency of information between systems can eliminate 

inconsistencies between non‐verbal and verbal behaviors and build trust between systems, thereby 

promoting  a  level  of  mutual  understanding  in  organizations  [31,32].  For  example,  in  human–

computer  interaction systems,  transparency can  facilitate mutual understanding between humans 

and agents, leading to cooperation [33]. In the area of SoS evolution, Lane and Valerdi argued that 

building  trust  and  transparency  between  systems  helps  to  gain  the  support  of  SoS members  to 

effectively guide the evolution of the SoS [34]. Carney et al. argued that building trust mechanisms 

between systems (e.g., by establishing information transparency) is particularly necessary for each 

stage of SoS evolution [3].   

Therefore,  we  argue  that  enhancing  the  transparency  of  information  between  systems  is 

conducive to building trust between SoS members and ultimately facilitating the evolution of the SoS. 

In  the  framework  presented  in  this  study,  Principle  3  (Enhancing  Information  Transparency) 

primarily operates through  top‐down behavioral control mechanisms, while Principle 1 (Facilitate 

Information Exchange) is chiefly governed by bottom‐up interactive behaviors. 

2.2.4. Establishing Common Goals 

The term ʹCommon Goalsʹ denotes the collective objectives or targeted outcomes that multiple 

constituents or stakeholders within a system seek to realize in order to optimize system functionality. 

Common  goals  among  the  members  of  the  organization  help  to  create  synergy  within  the 

organization, thus enhancing organizational cohesion [35]. Carney et al. argued that when there is a 

common purpose between the constituent systems in a SoS, the closer each system is to that purpose 

and the greater the SoS’s ability to adapt to change [3]. When members of an organization share a 

common purpose, they are more motivated to seek consensus and, thus, collaborate and cooperate 

more effectively [36].   

Therefore, we argue that establishing a common purpose between constituent systems within a 

SoS increases the SoS’s ability to adapt to change, which ultimately facilitates the evolution of the 

SoS.   

2.3. Agent‐Based Modeling 

To handle the intricacy of SoS evolution, an agent‐based model (ABM) can be used to simulate 

the SoS, representing agent behaviors and SoS alterations [37]. This technique can be used to simulate 

the attributes of an SoS (i.e., its types, behaviors, and capabilities) [38]. As a “bottom‐up” technique, 

an ABM uses agents  to represent  the domain being modeled  [39]. Then, organizational behaviors 

may emerge as the cumulative result of individual behaviors. It should be noted that the evolution 

of a SoS is a complex, non‐linear process. And an ABM provides just such a model, requiring each 
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agent to behave in a stochastic, non‐linear manner and possess a non‐linear ability to adapt over time 

[40]. Characterized by being  autonomous  and  flexible  [41,42], An ABM  explains  the  actions  and 

interactions of  agents with  a  view  to  assessing  their  effects  on  the  system  as  a whole,  as  in  the 

Kauffman NK model [43]. 

The  autonomy  and  flexibility  of Agent‐Based Modeling  (ABM) make  it  highly  suitable  for 

modeling a wide range of distributed SOS. In the context of this research paper, the vehicle SoS under 

study represents a typical distributed SOS, thus making it an ideal candidate for the application of 

ABM methodology. The pioneering work in utilizing ABM methodology for vehicle research can be 

attributed to Nagel and Schreckenberg [44], who developed a stochastic discrete automation model 

incorporating Agent‐Based Simulation (ABS) to simulate individual vehicle nodes. Since then, ABM 

has garnered significant attention in the realm of vehicular systems research. Notable contributions 

include  studies  on  traffic  theory  by  Nagel  and  Flötteröd  [45]  and  Zhu  et  al.  [46],  vehicular 

transportation simulations conducted by Zou and Levinson [47], Levy et al. [48], and traffic control 

investigations by Bosse [49], Bui and Camacho [50], Wang and Lv et al. [51].   

And regarding the information sharing problem addressed in this paper, Shang Wenlong and 

Ke Han  et  al.  employed  ABM  to  establish  a  transportation  network model  and  a  vehicle  SoS 

communication model. Their study aimed to explore the impact of tourism information sharing on 

road networks[52]. Furthermore, the issue of information sharing within vehicular networks using 

the ABM approach has been explored by Mahdi and Hasson [53], Zia and Shafi et al. [54], and Rathee 

and Garg et al. [55]. It is important to note that this paper distinguishes itself from previous vehicular 

system  studies  by  focusing  on  the  intricate  interaction  behaviors  among  vehicle  nodes  and 

attempting to simulate the unpredictable emergent evolution observed in vehicle SoS. 

At the same time, this paper examines the suitability of ABM for organizational evolution. In 

this paper, each individual of an organization interacts with the others and the environment through 

various behaviors. It has been well‐documented that the foundational level of an organization can be 

elucidated by examining the interactions between actors, whether individuals or groups, and their 

environment  [56].  And  such  characteristics  of  interactions  play  a  crucial  role  in managing  the 

emergent evolution of SoS. Thus, we anticipate that ABM can capture these behavior characteristics 

within an organization and facilitate research into SoS evolution issues. 

In  fact,  several  articles have utilized  the ABM  approach  to  examine  intricate  organizational 

structures of SoS evolution. Peppard and Breu et al. used ABM techniques to analyze the evolutionary 

patterns of the formation mechanisms of collaborative SoSs by simulating the assembly processes of 

molecules under natural conditions [57]. These results were used by engineers to improve the design 

and management of SoSs. Besides, Sindiy and DeLaurentis et al. modeled a distributed SoS and used 

an  SoS  to  define  time‐varying  performance metrics  and  an  agent‐based model  to  simulate  the 

evolution of  these architectures  [58], while Nikolic  and Dijkema used ABM  techniques  to model 

industrial and infrastructural development in seaport areas, combining the feedback of knowledge 

processes with SoS evolution simulation [59]. While ABMs are beginning to be used for SoS‐related 

research, there have been few efforts to improve SoS theory‐related aspects [36]. The use of ABM to 

test SoS theory in this paper represents a continued expansion of this field. 

3. Methodology 

This section presents the conceptualization and implementation of the model utilizing the ODD 

(Overview, Design concepts, Details) protocol [60]. 

3.1. Overall Model Structure 

In this paper, the subject is an abstract system consisting of a number of agents in three categories 

(vehicle, infrastructure and mobile device) . These agents can absorb internal and external changes 

(e.g.,  changes  in  the  environment  or  changes  in  the mission)  through  different  behaviors  and 

interactions,  leading to emergent evolution of the SoS. It  is assumed that these  three categories of 

agents can adapt spontaneously to the dynamics of the SoS. The structure of the agent‐based model 

is illustrated in Figure 1. 
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Figure 1. Schematic diagram of the model structure. 

3.2. SoS Evolution 

The  case  assumed  in  this  paper  is  the  evolution  of  an  SoS when  dealing with  situational 

awareness problems in telematics. The telematics SoS consists of vehicle nodes, infrastructure nodes 

(e.g., traffic lights, surveillance cameras, road sensors, wireless network base stations), mobile device 

nodes (e.g., portable devices such as smartphones and wearable devices), and cloud servers. The core 

principle of telematics is interactive communication between various distributed nodes (e.g., vehicles 

and  infrastructure) within  the  network  and  information  sharing,  in  order  to  obtain  situational 

awareness  of  the  environment.  Situational  awareness  refers  to  the  perception  of  environmental 

factors under specific temporal and spatial conditions, as well as the prediction of their future trends, 

by collecting data from on‐board sensors, cameras, and other devices. 

In this model, three facilities in the same area form the Telematics SoS. To achieve situational 

awareness of the area, different behaviors occur at each node (i.e., constituent system) in response to 

changes in the environment. The constituent system is represented by an agent. In the experiment, 

initial  relationships  between  constituent  systems  in  the  same  sector  or  in  different  sectors  are 

established to simulate the relationships between systems in the SoS. 

When the Telematics SoS receives new environmental information, the nodes carrying different 

devices  cooperate  with  each  other  to  collect,  process,  and  transmit  relevant  information  for 

information sharing in the Telematics SoS, thus completing an evolutionary process. Specifically, in 

the Telematics SoS, each node within it undergoes independent evolution in response to changes in 

the external environment through interactive behaviors, which eventually leads to evolution of the 

SoS. 

In  this  research,  the  fundamental  design  concepts  of  the  model  primarily  pertain  to  the 

implementation  of  information  sharing principles. Consequently,  the  agents  in  the  experimental 

setup were represented as binary strings comprising numerical values that encapsulate information 

content. This representation serves as a means to depict their knowledge sets, which follows a well‐

established modeling approach. The environment and the behavior of the agents in the experiments 

change these strings and, thus, the properties of the agents. The schematic diagram of the knowledge 

set is shown in Figure 2. 

 

Figure 2. Schematic diagram of the knowledge set. 

The Telematics SoS is in a constantly changing environment, where external changes fall into 

three categories: Natural environment changes, man‐made environment changes, and vehicle status 

changes. Natural environmental changes refer to changes in the external natural environment which 

have an impact on vehicle performance and driving safety (e.g., weather changes, road conditions, 
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and so on). Man‐made environmental changes refer  to the  impacts of urban planning, population 

flow, road reconstruction, and other factors on vehicle driving. Vehicle state changes refer to changes 

in  the operating  state of  the vehicle  itself  (e.g.,  engine  failure,  tire  leakage, and  so on). Different 

changes add different knowledge values to the agent’s knowledge set, and the agent’s behavior has 

different  effects under different  changes. These knowledge values are assigned  to all agents and 

ultimately affect the evolutionary direction of the SoS. 

For example, if a change in the human environment is applied to a class of facilities, an agent in 

that class will set its knowledge value about the “human environment” to 1, meaning that it senses 

and  receives knowledge  relating  to  the  change. At  this point,  the knowledge values of  the other 

agents are set to 0, indicating that they are not receiving knowledge related to that change. As the SoS 

evolves,  the knowledge values of  the other agents about  the change will eventually change  to 1, 

indicating that the SoS as a whole has fully absorbed the change. 

3.3. Agent Behaviors 

The agents in this paper are designed as state machine models. In particular, the agents have 

two states: No knowledge set and existing knowledge set. Agents in the no knowledge set state are 

transformed to the knowledge set state when they are affected by three environmental changes. The 

agent state transition diagram is shown in Figure 3. 

No knowledge set

Original state

Knowledge set 
Generation

Target stateTransform

3 Environmental Changes

 

Figure 3. Agent state transition diagram. 

Five spontaneous behaviors are set for the agents in the model, with reference to the behavior of 

the  self‐directed  system  during  the  evolution  of  the  SoS: Communication,  negotiation,  learning, 

cooperation, and competition. When the knowledge set exists, there are two possible states for the 

knowledge value of a certain bit in the knowledge set: the knowledge value is either 0 or 1. When the 

knowledge value is 0, if any of the five interactive behaviors affect the knowledge value, then it will 

be transformed to 1. The state transition diagram for the knowledge value is shown in Figure 4. 

A bit of the 
knowledge set is 0

Original state

A bit of the 
knowledge set is 1

Target stateTransform

5 Spontaneous Behaviors

 

Figure 4. State transition diagram for the knowledge value. 

Agents perform the established behaviors spontaneously and participate in the evolution of the 

SoS. The five spontaneous behaviors of agents are described below. 

Communication refers to the communication between various nodes within the telematics SoS 

through information transfer, such as vehicle–road cooperation between vehicles and road facilities, 

communication between vehicles, and data exchange between vehicles and cloud servers. Through 

communication, different nodes can understand each other’s status and needs, thus improving the 

efficiency and safety of the whole system. 

Learning means that the nodes in the Telematics SoS continuously collect and analyze a large 

amount of data by interacting with the cloud server, as well as using algorithms to improve their own 

performance  and  adaptability  to  the  environment.  For  example, monitoring  devices  can  predict 
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future traffic conditions by analyzing factors such as traffic flow and congestion, then adjust their 

own monitoring behavior based on these predictions. 

Negotiation is the process of reaching a common decision between two or more independent 

nodes  through  interaction.  For  example,  nodes must  decide  among  themselves  how  to  allocate 

resources such as bandwidth, processing power, and so on. The nodes need to adjust their respective 

behaviors to adapt to environmental changes or to optimize certain metrics (e.g., reducing latency or 

lowering power consumption) among  themselves. During  the negotiation process, nodes need  to 

send messages to each other, explain their intentions, exchange preferences, and reach an agreement. 

The result of negotiation can be an agreement, an allocation of resources, or a change in the way that 

the nodes behave. 

Competition refers to the behavior of nodes competing for limited resources. In the Telematics 

SoS, individual nodes require access to resources such as data, storage space, and network bandwidth 

to perform their tasks. As these resources are limited, resource competition between nodes can occur; 

for example, multiple nodes send data to the central server at the same time, which may result in 

insufficient bandwidth, ultimately affecting the quality and speed of data transmission. 

Cooperation  is  the  act of working  together  among nodes  to  achieve  a  common goal.  In  the 

Telematics SoS, individual nodes must work together to accomplish the overall situational awareness 

task. For example, in self‐driving cars, individual sensors need to work together to obtain information 

about  the  environment  and  aggregate  this  information  to  the  central  controller  for  analysis  and 

processing, which enables the autonomous driving function. 

Overall, the behaviors of communication, cooperation, competition, negotiation, and learning 

are essential factors in the evolution of an SoS. In this model, these behaviors interact and influence 

each other, acting on the knowledge sets of the agents and ultimately shaping the characteristics and 

evolutionary direction of the SoS. 

3.4. Principle 

The ultimate goal of  this study  is  to  investigate  the roles of  the  four principles mentioned  in 

Section 2.3 in the evolution of the SoS. In the model described herein, a crucial design concept is the 

impact of these principles on the likelihood of an agentʹs behavior and consequently the evolutionary 

dynamics of the system. 

In  the  considered  model,  the  evolutionary  principles  of  facilitating  Information  Exchange 

influence the communication and negotiation behaviors in the SoS. On one hand, communication is 

the  fundamental  behavior within  an  organization,  and  is  also  a  form  of  information  exchange. 

Encouraging  internal  information  exchange within  an  organization  can  improve  the quality  and 

fluidity of communication [61]. On the other hand, moderate and accurate information exchange can 

significantly  improve  the negotiation performance without significant cost  to  the negotiators who 

initiated it, resulting in more mutually beneficial negotiation outcomes [62]. 

In  the  considered  model,  the  principle  of  implementing  uniform  standards  can  influence 

learning and competitive behaviors in the SoS. We found that applying uniform and standardized 

work  principles  effectively  reduces  costs,  has  a  positive  impact  on  team member  learning,  and 

provides a basis for sustainable team improvement [63]. Furthermore, researchers have found that 

uniform standards can regulate competition patterns and, thus, energize the entire organization [64]; 

however, an excessive reliance on standards can also lead to certain monopolistic phenomena [65]. 

In  the  considered  model,  the  principle  of  data  transparency  can  affect  cooperation  and 

communication behaviors in the SoS. Information transparency is considered, in some studies, as a 

tool  that helps  stakeholders  to perceive  information  as  relevant  and  timely, providing  a  reliable 

picture of  the organizational  reality  [66]. The principle of  transparency  enhances  communication 

between stakeholders and, thus, allows more valuable information to be conveyed [67]. In addition, 

information transparency enhances transparency within an organization, leading to the involvement 

of members in collaboration and the creation of certain collaborative mechanisms [68]. 

In the considered model, the principle of establishing common goals can affect cooperation and 

negotiation behaviors  in  the SoS. Researchers have concluded  that  there  is a positive  relationship 
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between  the  degree  to  which  members  of  an  organization  agree  on  a  common  goal  and  the 

effectiveness of collaboration toward that goal [69]. Thus, effective collaboration requires a shared, 

common goal  [70].  In addition, what  is negotiated among members  is a  limited common goal. A 

common  goal  can  create  a  sense  of  trust  between negotiators  [71].  From  another point  of  view, 

maximizing the common goal effort between the two parties is the focus of each negotiation [72]. 

In the initial model, the different behaviors have a defined probability of occurrence, which are 

validated to allow the system to evolve in a balanced way, while different principles are established 

to influence the probability of occurrence of the behaviors. In this way, evolutionary principles are 

studied indirectly in this paper. 

3.5. Indicators 

In order to assess the impacts of different principles on the system, this subsection introduces 

misalignment as a reference  indicator for the SoS evolutionary process in simulation experiments. 

Furthermore,  to  provide  a  complete  picture  of  performance,  this  subsection  introduces  the 

evolutionary time (ET), degree of variation (DOV), and cost as performance assessment metrics. 

Misalignment  refers  to  the degree of mismatch between  the knowledge  sets of  the member 

systems in the system. We argue that, as the system evolves, differences between member systems 

will continue to emerge, where higher differences will negatively affect organizational performance. 

Based on  the ABM model  constructed  in  this  section, misalignment  is viewed  as  a difference  in 

knowledge between different types of entities in the evolutionary process. 

𝑅𝑀𝑆𝐸௏ே௦,ூே௦ ൌ ඨ
∑ ሺ𝑋௏ே,௜ െ 𝑋ூே,௜ሻଶ௡
௜ୀଵ

𝑛
.  (1)

The formula for calculating this indicator is shown in Equation (1), where 𝑋௏ே,௜  on the right side 
of the formula denotes the mean value of the ith knowledge value of the vehicle node (VN) and 𝑋ூே,௜ 
denotes  the mean  value  of  the  ith  knowledge  value  of  the  infrastructure  node  (IN).  Therefore, 

𝑅𝑀𝑆𝐸௏ே,ூே  on the left side of the formula indicates the root‐mean‐squared error between the vehicle 

node (VN) and the infrastructure node (IN); that is, the difference in value between the two facilities. 

The smaller the 𝑅𝑀𝑆𝐸௏ே,ூே, the smaller the difference between the two facilities and the smaller the 

negative effect of evolution on the SoS. 

The  total  root‐mean‐squared  error  between  the  three  types  of  facilities  is  denoted  as 

𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ,  as  shown  in  Equation  (2), where  𝑅𝑀𝑆𝐸௏ே௦,ூேୱ   denotes  the  difference  between 

vehicle  nodes  (VNs)  and  mobile  facility  nodes  (MDNs);  𝑅𝑀𝑆𝐸ூே௦,ெ஽ே௦   denotes  the  difference 
between infrastructure nodes (INs) and mobile facility nodes (MDNs); and 𝑅𝑀𝑆𝐸௏ே௦,ெ஽ேୱ  denotes 
the difference between vehicle nodes (VNs) and infrastructure nodes (INs). Thus, 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡  is 
the sum of the root‐mean‐squared errors between the different facility knowledge sets, indicating the 

total variance value within the system at that moment. This metric is the basic metric that provides 

the results of the model, the role of which is to indicate the evolution of the SoS. 

𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 ൌ 𝑅𝑀𝑆𝐸௏ே௦,ூே௦+𝑅𝑀𝑆𝐸ூே௦,ெ஽ே௦+𝑅𝑀𝑆𝐸௏ே௦,ெ஽ே௦.  (2)

Based on the misalignment base metric, the first evaluation metric of the model is evolution time 

(ET), which is the time taken for the misalignment base metric to return to zero (i.e., the total time 

required to complete the evolution of the SoS). ET describes the basic characteristics of the evolution 

of the SoS. If the ET is smaller, the time required for SoS evolution is shorter and the evolutionary 

performance of  the model  is  stronger. As  the SoS  evolution process  in  the  situational awareness 

problem is short, it is measured in seconds. 

The second evaluation metric of the model is the degree of variation (DOV), the value of which 

is the integral of the variation over time (i.e., the time‐weighted average of the root‐mean‐squared 

error among all knowledge sets in the model). The DOV describes the degree of accumulation of the 

total degree of variation over time in the Telematics SoS. If the DOV is smaller, the degree of variation 

in the SoS evolution process is smaller and the evolutionary performance of the model is stronger. 
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DOV ൌ න 𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
𝐸𝑇

0
𝑑𝑡.  (3)

The third metric introduced in this study is cost, which represents the consumption of various 

resources during the evolution of the SoS. As knowledge transfer in an organization is supported by 

the consumption of various resources, we therefore assume that the implementation of each code of 

conduct may incur costs. The case studied in this paper is a situational awareness problem and, as 

vehicular networking  requires  the  constant  transmission  of  a  large  amount  of data  (e.g., vehicle 

location, speed, acceleration, vehicle status,  traffic conditions, and so on), sufficient bandwidth  is 

required to support the transmission of this data. Therefore, we use network bandwidth to represent 

the resource consumption in this process. The unit is Gbps, which is the amount of data transmitted 

in  gigabits  per  second,  in  order  to  represent  the  network  bandwidth  occupied  by  the  task  of 

situational awareness. 

3.6. Monte Carlo Simulation and Model Verification 

Monte Carlo simulations have recently emerged as a prevalent technique for testing agent‐based 

models (ABMs) and generating statistically significant outcomes under various evaluation metrics 

[73,74].  By  leveraging  the  capabilities  of  Monte  Carlo  simulations,  numerous  studies  have 

successfully modeled  complex organizational  relationships  and gained valuable  insights  into  the 

underlying dynamics that govern these systems [75–77]. 

To  eliminate  the  stochastic nature  of ABM  simulations, we  generated  and designed  several 

unique complex systems using Monte Carlo simulations,  in order  to sample  the effects of specific 

behaviors across a large number of complex systems. To fully test the role of each principle in the 

evolutionary  process,  four  experimental  groups  and  a  no‐principle  control  group were  set  up, 

according  to  the  four  evolutionary  principles  detailed  above.  In  addition,  the  amount  of 

environmental change can affect the evolutionary process of the system. Therefore, the experiment 

was set up with three levels, according to the amount of change, which were tested separately. The 

experiment was run 80 times in each state, in order to eliminate the effect of random errors. 

With five experimental groups, three variations, and 80 executions per combination, the ABM 

in this paper was run 5 × 80 = 400 times. The initial variation in each experiment randomly affected a 

few  agents.  By  utilizing  the Monte  Carlo  method,  we  were  able  to  generate  400  unique  and 

representative complex SoSs, providing a robust data set for further analysis. 

Validation  of  ABMs  is  difficult  but  necessary  [78].  Therefore,  a  sensitivity  analysis  of  the 

simulation  data  between ABM  experiments was  required.  For  this  study,  sensitivity  tests were 

performed on metrics  that were not  relevant  to  the purpose of  the experiment,  in order  to  select 

optimal control variables (see Table A1). 

3.7. Time Complexity Analysis 

The time complexity of Agent‐Based Modeling (ABM) can pose a significant drawback as the 

input size of certain parameters  increases.  In this paper, we  focus on  the evolution process of the 

vehicular networking system as our model simulation. The  initial amount of variation  introduced 

during this evolution process plays a crucial role in a specific Telematics system. Therefore, this study 

aims to examine the impact of different initial variation amounts on the simulation time. The results 

of our tests are presented in Figure 5. 
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Figure 5. Relationship between the initial amount of introduced variation and model simulation 

time. 

The data from the tests can be fitted to a quadratic function:  y ൌ 1.0561xଶ െ 0.1723x ൅ 55.876, 
where  x  represents  the  initial amount of variation. By analyzing  the  trends, we observe  that  the 

simulation  time  increases  quadratically with  the  initial  amount  of  variation.  Consequently,  the 

estimation time complexity of the model can be expressed as Oሺnଶሻ, where  n  represents the amount 

of variation introduced in the model. This implies that the modelʹs efficiency may be compromised 

when handling large‐scale data. 

4. Results 

The  evolution  of  the  SoS  is  shown  in Figure  6,  in which  the  basic misalignment parameter 

describes the evolution of the system. A summary of the information shown in the figure is provided 

in the following: 

(1) The misalignment metrics in all four graphs showed an increasing and then decreasing trend. 

The reason for this phenomenon is that the initial interactions between some of the constituent 

systems increased the degree of difference between all nodes in the SoS under the influence of 

the  external  environment.  As  the  interactions  continued,  evolution  caused  the  degree  of 

difference between most of the constituent systems to decrease, eventually leading to complete 

evolution. 

 
(a)  (b) 
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(c)  (d) 

Figure  6. Diagrams  comparing  the  evolution  of  the  SoS with  and without  the  application  of  the 

various principles: (a) Principle 1 (Facilitating information exchange); (b) Principle 2 (Implementing 

Uniform Standards);  (c) Principle 3  (Enhancing Transparency of  Information); and  (d) Principle 4 

(Establishing Common Goals). 

(2) The peak misalignment values  in  the plot  for Principle 2  (Implementing Uniform Standards) 

occurred  earlier  than  those  without  the  application  of  the  principle.  The  reason  for  this 

phenomenon  is  that  the  application of  this principles  increased  the overall  efficiency of  the 

system at an early stage and different nodes in the installation received more new information 

in  a  short  period  of  time,  thus  creating  differences  between  the  self‐managed  systems. 

Meanwhile,  the peak misalignment values  in  the plot of principle 1  (Facilitating  information 

exchange) was significantly lower than that without the application of the principle, probably as 

the  exchange  of  information  between  nodes  somewhat mitigated  the  degree  of  difference 

between the self‐managed systems. 
(3) Compared  to  the control group, the misalignment values of  the SoS with different principles 

applied were all improved, in terms of in the rate of decline after reaching the peak. As such, the 

time to complete SoS evolution was also shorter in all cases. This indicates that the application 

of different principles can enhance the efficiency of system evolution, to some extent. 

In  the  simulation  experiments,  the  effects of  the different principles on  the  evolution of  the 

system varied. The  results of  the  evaluation of  the  four principles based on  the  three  indicators 

described above are shown in Figure 7. The information in the figure is summarized in the following 

follows: 

(1) Figure 6a shows the average evolution time of the SoS with the different principles applied. The 

evolution time for the SoS without applying any principles was 1181.2 s. The evolution times for 

the  systems  with  Principle  1  and  Principle  2  applied  were  close,  at  989.8  s  and  965.0  s, 

respectively  (roughly 82% of  the original  time). Meanwhile,  the average evolution  time with 

Principle 4 applied was 954.8 s (80.8% of the original time), and the lowest evolution time was 

obtained with Principle 3, which was only 892.8 s (or 75.6% of the original time). 

(2) Figure  6b  shows  the  degree  of  variation  accumulated  in  the  evolution  of  the  SoS with  the 

application of the different principles. All four principles reduced the degree of variation to a 

greater extent. The smallest reduction was obtained with Principle 2  (Implementing Uniform 

Standards), which was 83.8% of the baseline variance, while the greatest reduction in the degree 

of variation was achieved with Principle 1 (Facilitating information exchange), which was 72.3% 

of the baseline degree of variation. 
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(a)  (b)  (c) 

Figure 7. Assessment of the roles of the four principles in the evolution of the SoS: (a) Evolutionary 

time; (b) degree of variation; and (c) cost. 

Figure  6c  shows  the  average  cost  of  the  SoS  evolution  process  after  applying  the  different 

principles. The evolution costs of the systems using Principle 3 and Principle 4 were relatively similar, 

at 4585.5 Gbps and 4559.7 Gbps, respectively, with very  low  increases in cost. Principle 2 had the 

highest cost of evolution (5262.3 Gbps), with a 16.4% increase compared to the baseline cost. 

As  can be  seen  from Figure  6, Principle  2  (Implementing Uniform Standards) was  the  least 

effective in improving the situational awareness model in this paper, with a small improvement in 

evolution performance and a large increase in cost. Meanwhile, Principle 3 (Enhancing Transparency 

of Information) was the most effective, significantly reducing the evolution time and variability while 

keeping the evolution cost low. In addition, Principle 1 (Facilitating information exchange) presented 

a good reduction in variance and Principle 4 (Establishing Common Goals) had the lowest cost. 

5. Discussion 

5.1. Elaboration of Experimental Outcomes 

The model detailed in this paper provides insights into the validation of theoretical principles, 

allowing for study of the effects of different principles on system evolution and the implementation 

of complex system‐of‐systems modeling using the ABM approach. Overall, the experimental findings 

presented in this paper demonstrate variations in the impacts of the four evolutionary principles on 

SoS evolution. 

The  experimental  results  indicate  that  the Degree of Variation  (DOV) of  the Telematics SoS 

decreases significantly over time after implementing Principle 1 (Facilitating Information Exchange). 

This outcome corroborates the efficacy of information exchange in mitigating discrepancies during 

the  SoS  evolution,  aligning  with  our  preliminary  hypothesis.  Prior  research  has  previously 

underscored  the  potential  of  information  exchange  to  enhance  information  visibility  within 

transportation systems [79]. Furthermore,  the process of  information exchange serves to eliminate 

obstructions  between  disparate  systems,  align  the  interests  of  stakeholders  [80],  and  alleviate 

unwarranted variations within systems [81]. 

From  a pragmatic perspective,  the  enhancement of  information  exchange  is  instrumental  in 

resolving  prevalent  challenges  within  the  SoS,  such  as  conflicting  interests  and  ambiguous 

accountabilities [82]. These challenges are inherently associated with the disparities present among 

the  constituent  systems. Consequently,  it  is  plausible  to  postulate  that  the  enhancement  of  SoS 

performance via information exchange is attributed to the principleʹs efficacy in bridging differences 

among system members. 

In  our  study, we  have made  an  interesting  observation  regarding  the  effect  of  Principle  2 

(Implementing Uniform Standards) . Contrary to our initial prediction, we found that implementing 

uniform standards is actually the most costly. This finding is significant because unified standards 
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are generally expected  to reduce costs  in system architecture  [83]. Furthermore, our  research also 

revealed that uniform standards are  less effective in improving the performance of the SoS in our 

experiment.  These  observations  raise  an  important  question: why  are  uniform  standards  not  as 

effective in the experimental setting designed in this paper? 

We  believe  that  this  phenomenon  can  be  attributed  to  the  difficulty  of  adapting  uniform 

standards to distributed SoSs, particularly when there are significant differences among constituent 

systems. This phenomenon has been acknowledged in other literature as well. In distributed systems, 

uniform standards may overlook the heterogeneity of individuals, leading to a decrease in overall 

system efficiency [84,85]. These findings highlight the need for further investigation into this issue in 

future research. 

Our  experimental  findings  indicate  that  Principle  3  (Enhancing  Information  Transparency) 

outperforms other principles in minimizing both the duration of SoS evolution and the variability 

encountered during this progression. We posit that this principle augments the interactive behavior 

among  agents  by  modulating  specific  factors.  Prior  studies  have  corroborated  the  efficacy  of 

augmented  information  transparency  in  bolstering  trust  within  constituent  systems  [86–88]  , 

especially in analogous distributed SoSs [89]. Additionally, increased transparency has been shown 

to bolster the efficiency of knowledge support, subsequently amplifying the innovative capacity of 

organizational members [90]. 

It is noteworthy, however, that the minimal variability observed during the evolutionary process 

and the shortest evolutionary duration do not necessarily correspond to the least evolutionary cost. 

This observation suggests that the inherent nature of enhanced information transparency might levy 

supplementary costs upon the organization [91]. In summation, the SoS exhibits optimal performance 

post  the  implementation of Principle 3  ((Enhancing  Information Transparency). From an applied 

standpoint, organizational leaders can augment information transparency within the SoS employing 

modern information technologies, such as social networking platforms and electronic bulletin boards, 

or even through conventional means like performance bulletin boards [90]. 

In addition to these findings, the simulation results demonstrate that Principle 4 (Establishing 

Common Goals) has a positive impact on reducing the SoS variance and the time required for SoS 

evolution,  aligning  with  the  expectations  before  the  experiment  conducted.  However,  it  is 

noteworthy that the establishing common goals makes the evolution of SoS significantly less costly 

compared  to other principles. This  result  challenges  conventional wisdom, as  there  is no  readily 

apparent logical correlation between the two variables under consideration. Furthermore, there is a 

lack of relevant research to substantiate the relationship between common goals and costs. 

Drawing upon the analyzed observations, this study posits a hypothesis delineating the nuanced 

role of the ʹestablishing common goalsʹ in modulating the cost associated with the evolution of SoS. 

This modulation ostensibly  occurs  through  its  impact  on  a  constellation  of  intermediary  factors. 

Extant literature substantiates that the articulation of common goals can attenuate the risks inherent 

in information exchange processes, thereby cultivating a milieu of trust among constituent members 

[92,93].    Such trust can decrease conflict‐related costs and the need for mutual monitoring within 

organizations. Furthermore, a consensus on common goals can enhance access to tacit knowledge, 

streamlining work  processes  and  bolstering  decision‐making  efficiency  [94–96].  To  gain  further 

insights, we plan to conduct additional research to investigate this factor in more depth. 

5.2. Evaluating the Efficacy and Limitations of the Model 

In  the  realm  of  Telematics,  a  pioneering  study  on  the  information  sharing  problem  was 

conducted by Shang Wenlong, Han Ke, and their colleagues, who employed Agent‐Based Modeling 

(ABM)  as  their  research  approach.  Their  investigation  centered  around  the  utilization  of  the 

penetration rate as an evaluative metric  for gauging  the extent of  information sharing. While  this 

assessment method  offers  a  broad  perspective,  it  fails  to  consider  the  intricate  interplay  among 

vehicle  nodes.  In  contrast  to  prior  investigations,  this  scholarly  article  indirectly  captures  the 

interplay  of  diverse  behaviors  that  are  challenging  to  model  accurately.  Consequently,  it 
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substantiates  the  influence  of  various widely  adopted  principles  on  information  sharing within 

connected vehicle systems, thereby presenting a innovation in the field. 

Experimentation and validation of SoS theory is a difficult area in system‐of‐systems research. 

In addition, the ABM method is a unique tool for verification of theory. When an ABM is used as an 

experimental tool to study SoS problems, representing the complexity of an SoS involving multiple 

constituent  systems  is  a difficult problem  to  solve. The  research  idea  presented  in  this paper  is 

intended  to  improve  the modeling of agents as much as possible—for example, by  incorporating 

multiple  complex and  reasonable behaviors—in order  to  simulate  the  situation  as  realistically as 

possible. On this basis, multiple agents which interact autonomously were used, which is the core 

advantage of the ABM approach, in order to simulate the emergent nature of the SoS and achieve an 

effective simulation of the SoS. 

Nevertheless, it is important to acknowledge that the ABM model presented in this paper has 

certain limitations. As discussed in subsection 3.7, the model exhibits high time complexity, which 

may hinder its efficiency when dealing with more intricate problems. To address this concern, future 

studies will  explore  the  application  of  proxy  sampling methods  or  optimization  algorithms  to 

mitigate these limitations. Additionally, it is worth noting that certain simplifying assumptions were 

made in the context of this simulation experiment. To apply a model like the one presented in this 

paper to more complex SoS problems, researchers may need to add more realistic attributes to the 

agent. 

5.3. Bridging Natural and Social Sciences: A Methodological Discourse 

The discourse  surrounding  the  congruencies and divergences  in  the  research methodologies 

employed in the natural and social sciences has been long‐standing. Hayek posited that the inherently 

uncertain nature of human beings, who are central subjects in social science studies, precludes the 

social sciences from yielding results analogous to those derived from the natural sciences [97]. This 

uncertainty  stems  from cognitive  limitations, conflicting  interests, diverse value orientations, and 

reflexivity. 

Contrastingly,  Popper  contended  that  a  uniform  set  of  criteria  should  be  applied  when 

evaluating both the natural and social sciences [98]. Within the realm of systems engineering, there 

is  a  recurrent  necessity  to  incorporate  considerations  from  both  technical  (pertaining  to  natural 

sciences) and human (pertaining to social sciences) perspectives, especially when navigating complex 

systems. 

Drawing  upon  the  experimental  simulation methodology  prevalent  in  the  natural  sciences, 

which emphasizes categorical identification, this study aligns with Popperʹs perspective to scrutinize 

social science theorems. The objective is to facilitate a transition from quantitative analysis to a more 

qualitative approach. It is important to acknowledge that the principles examined in this research are 

inherently challenging to fully validate or falsify due to the fundamental uncertainty associated with 

human behavior, a challenge frequently encountered in social science research. 

Given this backdrop, the present paper proposes a novel approach to validating social science 

theories leveraging Agent‐Based Modeling. This preliminary exploration seeks to foster a foundation 

for further empirical investigations in subsequent research endeavors. 

6. Conclusions 

A  system‐of‐systems  is  a  complex  system  with  a  high  degree  of  unpredictability  in  its 

evolutionary process. In order to improve the performance of SoS evolution and to achieve a guided 

evolutionary process, many  studies have proposed principles  for SoS  evolution. However,  these 

principles remain at the theoretical level and lack experimental data to support them. In this study, 

an agent‐based model of the SoS evolution process was developed against the background of an SoS 

handling  the  situational awareness problem  in vehicular networks, and an attempt was made  to 

validate and study the SoS evolution principles. 

The results of the simulation indicate that the application of all four evolutionary principles can 

enhance  the evolutionary performance of  the  telematic SoS, but with varying effects. Specifically, 
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promoting information exchange between constituent systems can successfully minimize the degree 

of variation during SoS evolution, while establishing a common objective among constituent systems 

can substantially reduce the cost of SoS evolution. Regarding the evolutionary problem in the model, 

the implementation of uniform standard in collaborative SoS seems less effective due to its disregard 

for  individual  heterogeneity.  Among  the  considered  contexts,  improving  high  information 

transparency within the SoS performs optimally among the four strategies and significantly shortens 

the time required for the evolution of the telematics SoS. 

The  aim of  this  study was  to validate  the principles of SoS  evolution proposed  in previous 

studies, in order to provide evidence for the SoS theory through experimental model and data. The 

contributions  of  this  paper  serve  to  further  deepen  understanding  of  the  SoS  evolution  process 

through experimental results, as well as providing researchers with a reference for improving SoS 

evolutionary principles. However, it is important to note that the current model being investigated 

suffers from high time complexity and oversimplification, as discussed in this paper. To address these 

limitations,  we  plan  to  optimize  the  developed  ABM  model  in  the  future  to  enhance  the 

Computational Conclusion presented in this study. 
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Appendix A 

Table A1. Data and results of sensitivity tests. 

Parameters  Values  Finding 

Number of knowledge values 

contained in a single 

knowledge set 

30 

60 

90 

Evolutionary time increases with the number of knowledge 

values and has little impact on the overall evolutionary 

trend. 

Number of agents in the 

domain 

20 

30 

The evolution time increases with the number of agents, and 

the evolution trend is similar. 

Number of groups of systems 

with connectivity in the 

domain 

1 

2 

4 

The evolution time decreases with the increase in the 

number of groups, the evolution performance changes more 

drastically, and the evolution trend is roughly similar. 

Number of goal‐related 

changes 

0 

2 

3 

Evolutionary time increases with the number of changes and 

has less impact on the overall evolutionary trend. 

Number of standard‐related 

changes 

0 

2 

3 

Evolutionary time increases with the number of changes and 

has less impact on the overall evolutionary trend. 

Number of task‐related 

changes 

0 

2 

3 

Evolutionary time increases with the number of changes and 

has less impact on the overall evolutionary trend. 
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Probability of information 

correspondence behavior 

within a group 

0.7 

0.9 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Probability of data‐sharing 

behavior within a group 

0.7 

0.9 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Probability of consensus‐

seeking behavior within the 

group 

0.7 

0.9 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Probability of information‐

correspondence behavior in the 

domain 

0.3 

0.5 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Probability of data‐sharing 

behavior in the domain 

0.3 

0.5 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Probability of consensus‐

seeking behavior in the domain 

0.3 

0.5 

Evolutionary time decreases with increasing probability and 

has no effect on evolutionary trend. 

Number of simulations per 

experimental condition 

20 

40 
No effect on evolutionary trends. 
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