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Abstract: System-of-systems (50S) evolution is a complex and unpredictable process. Although
various principles to facilitate collaborative SoS evolution have been proposed, there is a lack of
experimental data validating their effectiveness. To address these issues, we present an Agent-Based
Model (ABM) for SoS evolution in the Internet of Vehicles (IoV), serving as a quantitative analysis
tool for SoS research. By integrating multiple complex and rational behaviors of individuals, we aim
to simulate real-world scenarios as accurately as possible. To simulate the SoS evolution process,
our model employs multiple agents with autonomous interactions and incorporates external
environmental variables. Furthermore, we propose three evaluation metrics: evolutionary time,
degree of variation, and evolutionary cost, to assess the performance of SoS evolution. Our study
demonstrates that enhanced information transparency significantly improves the evolutionary
performance of distributed SoS. Conversely, the adoption of uniform standards only brings limited
performance enhancement to distributed SoSs. Although our proposed model has limitations, it
stands out from other approaches that utilize Agent-Based Modeling to analyze SoS theories. Our
model focuses on realistic problem contexts and simulates realistic interaction behaviors. This study
enhances the comprehension of SoS evolution processes and provides valuable insights for the
formulation of effective evolutionary strategies.

Keywords: system-of-systems; evolutionary principle; agent-based model; internet of vehicles

1. Introduction

A system-of-systems (SoS) is a system with a highly complex structure. When the structure of
an 50S undergoes transformation, further non-linear changes will occur as a result of its complexity.
In order to guide the SoS to achieve directed evolution, researchers have proposed many principles
to manage the evolutionary process of the SoS [1-4].

However, due to the extremely complex nature of the SoS itself, it is challenging to describe the
effects of these principles during the actual engineering process, as well as their mechanisms of action
[5]. This leads to a lack of understanding when the management of SoS evolution processes is
considered in SoS engineering, making it difficult to ensure that the relevant measures are sufficiently
accurate and effective.

To address these challenges, we examine the impacts of different SoS evolution principles on the
performance of complex systems. As obtaining empirical evidence from a sufficient number of SoSs
can be arduous, due to the scarceness of complex system design data, we propose an alternative
approach for creating unique SoS models and simulating design processes based on empirically
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utilizing a case study centered on the Internet of Vehicles. Using this method, researchers can gain
valuable insights into how specific factors influence SoSs without the need for extensive empirical
data.

The case study detailed in this paper examines the evolution of a telematics SoS dealing with
situational awareness problems. As a typical collaborative SoS, the structure of the telematics SoS is
decentralized and distributed. The core principle of telematics is interactive communication between
different distributed nodes (e.g., vehicles or infrastructure) within a network, facilitating the sharing
of information to achieve situational awareness of the environment. Situational awareness refers to
the perception of environmental factors under certain temporal and spatial conditions, as well as the
prediction of their future trends, by collecting data through on-board sensors, cameras, and other
devices [6-8]. When a telematics SoS receives new environmental information, nodes with different
devices cooperate with each other to collect, process, and transmit relevant information to achieve
information sharing in the telematics SoS, thus completing the evolution process. The effect of
choosing different evolutionary principles and strategies on the evolutionary performance of SoSs
can be studied using the presented framework.

The problem of situational awareness in telematics SoS offers an ideal case to examine the
impacts of evolutionary principles on system-of-systems (50S) performance. The emergent evolution
that occurs during the situational awareness process in telematics SoS is often unpredictable.
Consequently, this paper aims to address the challenge of modeling this evolutionary process and
analyzing the influence of different principles on the information sharing process in the SoS. In this
article, we combine SoS evolution theory, agent-based modeling, design optimization, and research
on the Internet of Vehicles (IoV) architecture, which is achieved through the following steps: (1)
Generating a vehicle networking SoS, (2) simulating the evolutionary process during SoS situational
awareness and behaviors of intelligent agents, (3) verifying the effectiveness of the evolutionary
principles by adjusting various parameter settings.

The article delves into the intricacies of SoS evolution by examining the application of
evolutionary principles and an agent-based model (ABM) in the context of vehicle networking SoS.
Employing the ABM, we developed a unique model that generates complex SoS and simulates their
evolutionary processes. This was achieved through the execution of Monte Carlo simulations in 150
distinct SoSs, concurrently altering their underlying evolutionary principles. The findings of this
comprehensive study highlight the varying effects that different principles have on the evolution
performance of SoS. This research not only contributes to a better understanding of SoS evolution,
but also emphasizes the importance of selecting appropriate evolutionary principles when designing
and optimizing vehicle networking SoSs.

2. Preliminaries

2.1. The Concept of SoS Evolution

In the realm of system engineering, a system-of-systems (S0S) represents a sophisticated
arrangement of specialized systems that synergistically pool resources and integrate their capabilities
to create a more functional and high-performing system. Within this intricate structure, a constituent
system (CS) operates as a component of one or more SoSs, functioning as a complete system with its
own objectives and resources. A particularly intriguing manifestation of SoSs is the collaborative SoS,
which emerges when constituent systems voluntarily align themselves around a central purpose and
collectively determine their implementation and maintenance standards. One salient example of a
collaborative SoS is a connected vehicle SoS, designed to achieve situational awareness of the
environment by harnessing the collective intelligence and capabilities of various vehicular
components. This innovative approach to system integration and collaboration not only enhances the
overall performance of the individual systems, but also fosters a safer and more efficient
transportation ecosystem.

Evolutionary characteristics were first identified as an inherent part of SoSs by Maier [9]. From
a macroscopic perspective, the SoS can be seen as continuously, but slowly evolving [10]. This
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evolutionary process is incessant [11], meaning that the SoS has no permanent state [12]. From a
microscopic perspective, SoS evolution takes place through a series of largely deliberate preservative
or adaptive interventions [3], such as upgrades to constituent systems or responses to an ever-
changing environment [13,14].

In the evolutionary process of SoS, a salient challenge is that evolution is not necessarily centrally
controlled, and the impetus for change may occur suddenly and dramatically [15]. Therefore,
evolution can simultaneously occur at multiple levels and within multiple areas of an SoS. In practice,
such evolutions within SoSs may take place in multiple places at once and on an ongoing basis. And
at the same time, different parallel evolution processes may complement or disrupt each other [16].
Consequently, any unforeseen evolution in the system (S0S) may lead to undesirable emergent
phenomena [2]. If such evolution cannot be effectively controlled, then the resulting emergent
behavior may lead to failures within the SoS development process [17]. Accordingly, emergent
evolution has been proposed to describe this unpredictable form of evolution [18]. In this paper, we
examine the emergent evolution of system-of-systems from the bottom-up level.

Based on the abovementioned studies, it is clear that emergent behavior among systems can be
reflected in the evolution of the whole system-of-systems and even influence the evolutionary
outcome. Therefore, it is necessary to propose appropriate evolutionary measures to manage and
guide this bottom-up behavior during the evolution of the system-of-systems. The validation and
application of SoS principles can help managers to better design SoS frameworks and manage
emergent behaviors in the evolutionary process, thus enhancing the efficiency and effectiveness of
SoS evolution.

2.2. Guiding Principles for SoS Evolution

This paper focuses on four of the significant principles that guide the evolution of SoSs.

2.2.1. Facilitate Information Exchange

Facilitating information exchange is an important principle when functionally distinct systems
interact within SoS [19]. Clausing argued that the impact of design reuse can be reduced and the
quality of evolution improved by ensuring the effective exchange of information during system
evolution [20]. Lock affirmed the positive role of information exchange, and argued that poor levels
of information exchange in the interaction between member systems within an SoS can affect the
efficiency and reliability of SoS evolution [2]. In addition, Carney argued that the rate of coordinated
information exchange is an important aspect of the maintenance of interoperability, and that
coordinated information exchange between systems allows the SoS to retain its original
characteristics during the evolution process [3]. Indeed, information exchange is an important factor
in the ability to build new organizations. Information exchange is the link that facilitates interaction
between systems in the process of building an SoS from independent systems [21]. Many properties
of systems are closely related to information exchange, including reliability and interoperability [22].
Successful information exchange is considered to be the basis for the achievement of system
properties such as interoperability [21].

Information exchange can also influence emergent complexity in the organizational structure
when analyzed from a micro perspective. Emergent changes that occur internally, such as
unpredictable deviations, unforeseen errors, or significant constraints, can be perceived at an earlier
stage through information exchange [23-25]. Moreover, information exchange can also motivate
agents to form organizations naturally [23]. In this process, frequent information exchange has an
effect on the inertia of agents —which may be due to short-term behavior—but, in the long run, may
lead to evolutionary trends [26].

2.2.2. Implementing Uniform Standards

Standards can provide a common framework and terminology, making participants more likely
to have the same understanding of the same problem [27]. Uniform standards can avoid ambiguity
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in interpretation, which may increase the level of mutual understanding between systems as they
evolve [28]. For example, relying on accepted formal or informal standards in multi-agent systems
can lead to mutual understanding [29]. By promoting and enhancing the level of understanding
between systems, uniform standards can further influence the evolutionary performance of a SoS.
Lock argued that “The agility of SoS evolution can be improved by using and implementing uniform
standards that promote understanding between interacting systems” [4]. Carney et al. argued that
inter-system agreement determines whether local interoperability relationships can be established
[2]. Selberg and Austin argued, from a system design perspective, that the selection of uniform and
widely used standards is important for SoS evolution [1].

Therefore, we argue that it will be easier for member systems to learn new knowledge and for
constituent systems to adapt to dynamic change if uniform standards or protocols are implemented.
A uniform standard will provide a common framework and language, making it easier for the
members of an organization to identify and use the information in a database.

2.2.3. Enhancing Transparency of Information

Information transparency, in the context of organizational dynamics, pertains to the degree of
information sharing and disclosure [30]. Transparency of information between systems can eliminate
inconsistencies between non-verbal and verbal behaviors and build trust between systems, thereby
promoting a level of mutual understanding in organizations [31,32]. For example, in human-
computer interaction systems, transparency can facilitate mutual understanding between humans
and agents, leading to cooperation [33]. In the area of SoS evolution, Lane and Valerdi argued that
building trust and transparency between systems helps to gain the support of SoS members to
effectively guide the evolution of the SoS [34]. Carney et al. argued that building trust mechanisms
between systems (e.g., by establishing information transparency) is particularly necessary for each
stage of SoS evolution [3].

Therefore, we argue that enhancing the transparency of information between systems is
conducive to building trust between SoS members and ultimately facilitating the evolution of the SoS.
In the framework presented in this study, Principle 3 (Enhancing Information Transparency)
primarily operates through top-down behavioral control mechanisms, while Principle 1 (Facilitate
Information Exchange) is chiefly governed by bottom-up interactive behaviors.

2.2.4. Establishing Common Goals

The term 'Common Goals' denotes the collective objectives or targeted outcomes that multiple
constituents or stakeholders within a system seek to realize in order to optimize system functionality.
Common goals among the members of the organization help to create synergy within the
organization, thus enhancing organizational cohesion [35]. Carney et al. argued that when there is a
common purpose between the constituent systems in a SoS, the closer each system is to that purpose
and the greater the SoS’s ability to adapt to change [3]. When members of an organization share a
common purpose, they are more motivated to seek consensus and, thus, collaborate and cooperate
more effectively [36].

Therefore, we argue that establishing a common purpose between constituent systems within a
SoS increases the SoS’s ability to adapt to change, which ultimately facilitates the evolution of the
SoS.

2.3. Agent-Based Modeling

To handle the intricacy of SoS evolution, an agent-based model (ABM) can be used to simulate
the SoS, representing agent behaviors and SoS alterations [37]. This technique can be used to simulate
the attributes of an SoS (i.e., its types, behaviors, and capabilities) [38]. As a “bottom-up” technique,
an ABM uses agents to represent the domain being modeled [39]. Then, organizational behaviors
may emerge as the cumulative result of individual behaviors. It should be noted that the evolution
of a SoS is a complex, non-linear process. And an ABM provides just such a model, requiring each
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agent to behave in a stochastic, non-linear manner and possess a non-linear ability to adapt over time
[40]. Characterized by being autonomous and flexible [41,42], An ABM explains the actions and
interactions of agents with a view to assessing their effects on the system as a whole, as in the
Kauffman NK model [43].

The autonomy and flexibility of Agent-Based Modeling (ABM) make it highly suitable for
modeling a wide range of distributed SOS. In the context of this research paper, the vehicle SoS under
study represents a typical distributed SOS, thus making it an ideal candidate for the application of
ABM methodology. The pioneering work in utilizing ABM methodology for vehicle research can be
attributed to Nagel and Schreckenberg [44], who developed a stochastic discrete automation model
incorporating Agent-Based Simulation (ABS) to simulate individual vehicle nodes. Since then, ABM
has garnered significant attention in the realm of vehicular systems research. Notable contributions
include studies on traffic theory by Nagel and Flotterdd [45] and Zhu et al. [46], vehicular
transportation simulations conducted by Zou and Levinson [47], Levy et al. [48], and traffic control
investigations by Bosse [49], Bui and Camacho [50], Wang and Lv et al. [51].

And regarding the information sharing problem addressed in this paper, Shang Wenlong and
Ke Han et al. employed ABM to establish a transportation network model and a vehicle SoS
communication model. Their study aimed to explore the impact of tourism information sharing on
road networks[52]. Furthermore, the issue of information sharing within vehicular networks using
the ABM approach has been explored by Mahdi and Hasson [53], Zia and Shafi et al. [54], and Rathee
and Garg et al. [55]. It is important to note that this paper distinguishes itself from previous vehicular
system studies by focusing on the intricate interaction behaviors among vehicle nodes and
attempting to simulate the unpredictable emergent evolution observed in vehicle SoS.

At the same time, this paper examines the suitability of ABM for organizational evolution. In
this paper, each individual of an organization interacts with the others and the environment through
various behaviors. It has been well-documented that the foundational level of an organization can be
elucidated by examining the interactions between actors, whether individuals or groups, and their
environment [56]. And such characteristics of interactions play a crucial role in managing the
emergent evolution of SoS. Thus, we anticipate that ABM can capture these behavior characteristics
within an organization and facilitate research into SoS evolution issues.

In fact, several articles have utilized the ABM approach to examine intricate organizational
structures of SoS evolution. Peppard and Breu et al. used ABM techniques to analyze the evolutionary
patterns of the formation mechanisms of collaborative SoSs by simulating the assembly processes of
molecules under natural conditions [57]. These results were used by engineers to improve the design
and management of SoSs. Besides, Sindiy and DeLaurentis et al. modeled a distributed SoS and used
an SoS to define time-varying performance metrics and an agent-based model to simulate the
evolution of these architectures [58], while Nikolic and Dijkema used ABM techniques to model
industrial and infrastructural development in seaport areas, combining the feedback of knowledge
processes with SoS evolution simulation [59]. While ABMs are beginning to be used for SoS-related
research, there have been few efforts to improve SoS theory-related aspects [36]. The use of ABM to
test SoS theory in this paper represents a continued expansion of this field.

3. Methodology

This section presents the conceptualization and implementation of the model utilizing the ODD
(Overview, Design concepts, Details) protocol [60].

3.1. Overall Model Structure

In this paper, the subject is an abstract system consisting of a number of agents in three categories
(vehicle, infrastructure and mobile device) . These agents can absorb internal and external changes
(e.g., changes in the environment or changes in the mission) through different behaviors and
interactions, leading to emergent evolution of the SoS. It is assumed that these three categories of
agents can adapt spontaneously to the dynamics of the SoS. The structure of the agent-based model
is illustrated in Figure 1.
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Figure 1. Schematic diagram of the model structure.

3.2. S0S Evolution

The case assumed in this paper is the evolution of an SoS when dealing with situational
awareness problems in telematics. The telematics SoS consists of vehicle nodes, infrastructure nodes
(e.g., traffic lights, surveillance cameras, road sensors, wireless network base stations), mobile device
nodes (e.g., portable devices such as smartphones and wearable devices), and cloud servers. The core
principle of telematics is interactive communication between various distributed nodes (e.g., vehicles
and infrastructure) within the network and information sharing, in order to obtain situational
awareness of the environment. Situational awareness refers to the perception of environmental
factors under specific temporal and spatial conditions, as well as the prediction of their future trends,
by collecting data from on-board sensors, cameras, and other devices.

In this model, three facilities in the same area form the Telematics SoS. To achieve situational
awareness of the area, different behaviors occur at each node (i.e., constituent system) in response to
changes in the environment. The constituent system is represented by an agent. In the experiment,
initial relationships between constituent systems in the same sector or in different sectors are
established to simulate the relationships between systems in the SoS.

When the Telematics SoS receives new environmental information, the nodes carrying different
devices cooperate with each other to collect, process, and transmit relevant information for
information sharing in the Telematics SoS, thus completing an evolutionary process. Specifically, in
the Telematics SoS, each node within it undergoes independent evolution in response to changes in
the external environment through interactive behaviors, which eventually leads to evolution of the
SoS.

In this research, the fundamental design concepts of the model primarily pertain to the
implementation of information sharing principles. Consequently, the agents in the experimental
setup were represented as binary strings comprising numerical values that encapsulate information
content. This representation serves as a means to depict their knowledge sets, which follows a well-
established modeling approach. The environment and the behavior of the agents in the experiments
change these strings and, thus, the properties of the agents. The schematic diagram of the knowledge
set is shown in Figure 2.

(11 1111...11]

V
[001010...10]
- Agents

(100000 ... 00]

v
Variable Knowledge Set

Figure 2. Schematic diagram of the knowledge set.

The Telematics SoS is in a constantly changing environment, where external changes fall into
three categories: Natural environment changes, man-made environment changes, and vehicle status
changes. Natural environmental changes refer to changes in the external natural environment which
have an impact on vehicle performance and driving safety (e.g., weather changes, road conditions,
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and so on). Man-made environmental changes refer to the impacts of urban planning, population
flow, road reconstruction, and other factors on vehicle driving. Vehicle state changes refer to changes
in the operating state of the vehicle itself (e.g., engine failure, tire leakage, and so on). Different
changes add different knowledge values to the agent’s knowledge set, and the agent’s behavior has
different effects under different changes. These knowledge values are assigned to all agents and
ultimately affect the evolutionary direction of the SoS.

For example, if a change in the human environment is applied to a class of facilities, an agent in
that class will set its knowledge value about the “human environment” to 1, meaning that it senses
and receives knowledge relating to the change. At this point, the knowledge values of the other
agents are set to 0, indicating that they are not receiving knowledge related to that change. As the SoS
evolves, the knowledge values of the other agents about the change will eventually change to 1,
indicating that the SoS as a whole has fully absorbed the change.

3.3. Agent Behaviors

The agents in this paper are designed as state machine models. In particular, the agents have
two states: No knowledge set and existing knowledge set. Agents in the no knowledge set state are
transformed to the knowledge set state when they are affected by three environmental changes. The
agent state transition diagram is shown in Figure 3.

Original state Transform Target state

3 Environmental Changes

No knowledge set y  Knowledge set

Generation

Figure 3. Agent state transition diagram.

Five spontaneous behaviors are set for the agents in the model, with reference to the behavior of
the self-directed system during the evolution of the SoS: Communication, negotiation, learning,
cooperation, and competition. When the knowledge set exists, there are two possible states for the
knowledge value of a certain bit in the knowledge set: the knowledge value is either 0 or 1. When the
knowledge value is 0, if any of the five interactive behaviors affect the knowledge value, then it will
be transformed to 1. The state transition diagram for the knowledge value is shown in Figure 4.

Original state Transform Target state
A bit of the 5 Spontaneous Behaviors A bit of the
knowledge set is 0 7| knowledge set is 1

Figure 4. State transition diagram for the knowledge value.

Agents perform the established behaviors spontaneously and participate in the evolution of the
SoS. The five spontaneous behaviors of agents are described below.

Communication refers to the communication between various nodes within the telematics SoS
through information transfer, such as vehicle-road cooperation between vehicles and road facilities,
communication between vehicles, and data exchange between vehicles and cloud servers. Through
communication, different nodes can understand each other’s status and needs, thus improving the
efficiency and safety of the whole system.

Learning means that the nodes in the Telematics SoS continuously collect and analyze a large
amount of data by interacting with the cloud server, as well as using algorithms to improve their own
performance and adaptability to the environment. For example, monitoring devices can predict
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future traffic conditions by analyzing factors such as traffic flow and congestion, then adjust their
own monitoring behavior based on these predictions.

Negotiation is the process of reaching a common decision between two or more independent
nodes through interaction. For example, nodes must decide among themselves how to allocate
resources such as bandwidth, processing power, and so on. The nodes need to adjust their respective
behaviors to adapt to environmental changes or to optimize certain metrics (e.g., reducing latency or
lowering power consumption) among themselves. During the negotiation process, nodes need to
send messages to each other, explain their intentions, exchange preferences, and reach an agreement.
The result of negotiation can be an agreement, an allocation of resources, or a change in the way that
the nodes behave.

Competition refers to the behavior of nodes competing for limited resources. In the Telematics
SoS, individual nodes require access to resources such as data, storage space, and network bandwidth
to perform their tasks. As these resources are limited, resource competition between nodes can occur;
for example, multiple nodes send data to the central server at the same time, which may result in
insufficient bandwidth, ultimately affecting the quality and speed of data transmission.

Cooperation is the act of working together among nodes to achieve a common goal. In the
Telematics SoS, individual nodes must work together to accomplish the overall situational awareness
task. For example, in self-driving cars, individual sensors need to work together to obtain information
about the environment and aggregate this information to the central controller for analysis and
processing, which enables the autonomous driving function.

Overall, the behaviors of communication, cooperation, competition, negotiation, and learning
are essential factors in the evolution of an SoS. In this model, these behaviors interact and influence
each other, acting on the knowledge sets of the agents and ultimately shaping the characteristics and
evolutionary direction of the SoS.

3.4. Principle

The ultimate goal of this study is to investigate the roles of the four principles mentioned in
Section 2.3 in the evolution of the SoS. In the model described herein, a crucial design concept is the
impact of these principles on the likelihood of an agent's behavior and consequently the evolutionary
dynamics of the system.

In the considered model, the evolutionary principles of facilitating Information Exchange
influence the communication and negotiation behaviors in the SoS. On one hand, communication is
the fundamental behavior within an organization, and is also a form of information exchange.
Encouraging internal information exchange within an organization can improve the quality and
fluidity of communication [61]. On the other hand, moderate and accurate information exchange can
significantly improve the negotiation performance without significant cost to the negotiators who
initiated it, resulting in more mutually beneficial negotiation outcomes [62].

In the considered model, the principle of implementing uniform standards can influence
learning and competitive behaviors in the SoS. We found that applying uniform and standardized
work principles effectively reduces costs, has a positive impact on team member learning, and
provides a basis for sustainable team improvement [63]. Furthermore, researchers have found that
uniform standards can regulate competition patterns and, thus, energize the entire organization [64];
however, an excessive reliance on standards can also lead to certain monopolistic phenomena [65].

In the considered model, the principle of data transparency can affect cooperation and
communication behaviors in the SoS. Information transparency is considered, in some studies, as a
tool that helps stakeholders to perceive information as relevant and timely, providing a reliable
picture of the organizational reality [66]. The principle of transparency enhances communication
between stakeholders and, thus, allows more valuable information to be conveyed [67]. In addition,
information transparency enhances transparency within an organization, leading to the involvement
of members in collaboration and the creation of certain collaborative mechanisms [68].

In the considered model, the principle of establishing common goals can affect cooperation and
negotiation behaviors in the SoS. Researchers have concluded that there is a positive relationship
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between the degree to which members of an organization agree on a common goal and the
effectiveness of collaboration toward that goal [69]. Thus, effective collaboration requires a shared,
common goal [70]. In addition, what is negotiated among members is a limited common goal. A
common goal can create a sense of trust between negotiators [71]. From another point of view,
maximizing the common goal effort between the two parties is the focus of each negotiation [72].

In the initial model, the different behaviors have a defined probability of occurrence, which are
validated to allow the system to evolve in a balanced way, while different principles are established
to influence the probability of occurrence of the behaviors. In this way, evolutionary principles are
studied indirectly in this paper.

3.5. Indicators

In order to assess the impacts of different principles on the system, this subsection introduces
misalignment as a reference indicator for the SoS evolutionary process in simulation experiments.
Furthermore, to provide a complete picture of performance, this subsection introduces the
evolutionary time (ET), degree of variation (DOV), and cost as performance assessment metrics.

Misalignment refers to the degree of mismatch between the knowledge sets of the member
systems in the system. We argue that, as the system evolves, differences between member systems
will continue to emerge, where higher differences will negatively affect organizational performance.
Based on the ABM model constructed in this section, misalignment is viewed as a difference in
knowledge between different types of entities in the evolutionary process.

Z?:l(XVN,i _XIN,L')Z. (1)

RM. SEVNS,INS = n

The formula for calculating this indicator is shown in Equation (1), where Xy ; ontherightside
of the formula denotes the mean value of the i knowledge value of the vehicle node (VN) and Xjy ;
denotes the mean value of the i knowledge value of the infrastructure node (IN). Therefore,
RMSEyy ;v on the left side of the formula indicates the root-mean-squared error between the vehicle
node (VN) and the infrastructure node (IN); that is, the difference in value between the two facilities.
The smaller the RMSEyy, |y, the smaller the difference between the two facilities and the smaller the
negative effect of evolution on the SoS.

The total root-mean-squared error between the three types of facilities is denoted as
Misalignment, as shown in Equation (2), where RMSEyy,ys denotes the difference between
vehicle nodes (VNs) and mobile facility nodes (MDNSs); RMSE;ysmpys denotes the difference
between infrastructure nodes (INs) and mobile facility nodes (MDNs); and RMSEyys ypns denotes
the difference between vehicle nodes (VNs) and infrastructure nodes (INs). Thus, Misalignment is
the sum of the root-mean-squared errors between the different facility knowledge sets, indicating the
total variance value within the system at that moment. This metric is the basic metric that provides
the results of the model, the role of which is to indicate the evolution of the SoS.

Misallgnment = RMSEVNS,INS+RMSEINS,MDNS+RM5EVNS,MDNS' (2)

Based on the misalignment base metric, the first evaluation metric of the model is evolution time
(ET), which is the time taken for the misalignment base metric to return to zero (i.e., the total time
required to complete the evolution of the SoS). ET describes the basic characteristics of the evolution
of the SoS. If the ET is smaller, the time required for SoS evolution is shorter and the evolutionary
performance of the model is stronger. As the SoS evolution process in the situational awareness
problem is short, it is measured in seconds.

The second evaluation metric of the model is the degree of variation (DOV), the value of which
is the integral of the variation over time (i.e., the time-weighted average of the root-mean-squared
error among all knowledge sets in the model). The DOV describes the degree of accumulation of the
total degree of variation over time in the Telematics SoS. If the DOV is smaller, the degree of variation
in the SoS evolution process is smaller and the evolutionary performance of the model is stronger.
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ET
DOV=f Misalignment dt. (3)
0

The third metric introduced in this study is cost, which represents the consumption of various
resources during the evolution of the SoS. As knowledge transfer in an organization is supported by
the consumption of various resources, we therefore assume that the implementation of each code of
conduct may incur costs. The case studied in this paper is a situational awareness problem and, as
vehicular networking requires the constant transmission of a large amount of data (e.g., vehicle
location, speed, acceleration, vehicle status, traffic conditions, and so on), sufficient bandwidth is
required to support the transmission of this data. Therefore, we use network bandwidth to represent
the resource consumption in this process. The unit is Gbps, which is the amount of data transmitted
in gigabits per second, in order to represent the network bandwidth occupied by the task of
situational awareness.

3.6. Monte Carlo Simulation and Model Verification

Monte Carlo simulations have recently emerged as a prevalent technique for testing agent-based
models (ABMs) and generating statistically significant outcomes under various evaluation metrics
[73,74]. By leveraging the capabilities of Monte Carlo simulations, numerous studies have
successfully modeled complex organizational relationships and gained valuable insights into the
underlying dynamics that govern these systems [75-77].

To eliminate the stochastic nature of ABM simulations, we generated and designed several
unique complex systems using Monte Carlo simulations, in order to sample the effects of specific
behaviors across a large number of complex systems. To fully test the role of each principle in the
evolutionary process, four experimental groups and a no-principle control group were set up,
according to the four evolutionary principles detailed above. In addition, the amount of
environmental change can affect the evolutionary process of the system. Therefore, the experiment
was set up with three levels, according to the amount of change, which were tested separately. The
experiment was run 80 times in each state, in order to eliminate the effect of random errors.

With five experimental groups, three variations, and 80 executions per combination, the ABM
in this paper was run 5 x 80 = 400 times. The initial variation in each experiment randomly affected a
few agents. By utilizing the Monte Carlo method, we were able to generate 400 unique and
representative complex SoSs, providing a robust data set for further analysis.

Validation of ABMs is difficult but necessary [78]. Therefore, a sensitivity analysis of the
simulation data between ABM experiments was required. For this study, sensitivity tests were
performed on metrics that were not relevant to the purpose of the experiment, in order to select
optimal control variables (see Table Al).

3.7. Time Complexity Analysis

The time complexity of Agent-Based Modeling (ABM) can pose a significant drawback as the
input size of certain parameters increases. In this paper, we focus on the evolution process of the
vehicular networking system as our model simulation. The initial amount of variation introduced
during this evolution process plays a crucial role in a specific Telematics system. Therefore, this study
aims to examine the impact of different initial variation amounts on the simulation time. The results
of our tests are presented in Figure 5.
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Figure 5. Relationship between the initial amount of introduced variation and model simulation

time.

The data from the tests can be fitted to a quadratic function: y = 1.0561x% — 0.1723x + 55.876,
where x represents the initial amount of variation. By analyzing the trends, we observe that the
simulation time increases quadratically with the initial amount of variation. Consequently, the
estimation time complexity of the model can be expressed as 0(n?), where n represents the amount
of variation introduced in the model. This implies that the model's efficiency may be compromised
when handling large-scale data.

4. Results

The evolution of the SoS is shown in Figure 6, in which the basic misalignment parameter
describes the evolution of the system. A summary of the information shown in the figure is provided
in the following:

(1) The misalignment metrics in all four graphs showed an increasing and then decreasing trend.
The reason for this phenomenon is that the initial interactions between some of the constituent
systems increased the degree of difference between all nodes in the SoS under the influence of
the external environment. As the interactions continued, evolution caused the degree of
difference between most of the constituent systems to decrease, eventually leading to complete
evolution.
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Figure 6. Diagrams comparing the evolution of the SoS with and without the application of the
various principles: (a) Principle 1 (Facilitating information exchange); (b) Principle 2 (Implementing
Uniform Standards); (c¢) Principle 3 (Enhancing Transparency of Information); and (d) Principle 4
(Establishing Common Goals).

(2) The peak misalignment values in the plot for Principle 2 (Implementing Uniform Standards)
occurred earlier than those without the application of the principle. The reason for this
phenomenon is that the application of this principles increased the overall efficiency of the
system at an early stage and different nodes in the installation received more new information
in a short period of time, thus creating differences between the self-managed systems.
Meanwhile, the peak misalignment values in the plot of principle 1 (Facilitating information
exchange) was significantly lower than that without the application of the principle, probably as
the exchange of information between nodes somewhat mitigated the degree of difference
between the self-managed systems.

(3) Compared to the control group, the misalignment values of the SoS with different principles
applied were all improved, in terms of in the rate of decline after reaching the peak. As such, the
time to complete SoS evolution was also shorter in all cases. This indicates that the application
of different principles can enhance the efficiency of system evolution, to some extent.

In the simulation experiments, the effects of the different principles on the evolution of the
system varied. The results of the evaluation of the four principles based on the three indicators
described above are shown in Figure 7. The information in the figure is summarized in the following
follows:

(1) Figure 6a shows the average evolution time of the SoS with the different principles applied. The
evolution time for the SoS without applying any principles was 1181.2 s. The evolution times for
the systems with Principle 1 and Principle 2 applied were close, at 989.8 s and 965.0 s,
respectively (roughly 82% of the original time). Meanwhile, the average evolution time with
Principle 4 applied was 954.8 s (80.8% of the original time), and the lowest evolution time was
obtained with Principle 3, which was only 892.8 s (or 75.6% of the original time).

(2) Figure 6b shows the degree of variation accumulated in the evolution of the SoS with the
application of the different principles. All four principles reduced the degree of variation to a
greater extent. The smallest reduction was obtained with Principle 2 (Implementing Uniform
Standards), which was 83.8% of the baseline variance, while the greatest reduction in the degree
of variation was achieved with Principle 1 (Facilitating information exchange), which was 72.3%
of the baseline degree of variation.
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Figure 7. Assessment of the roles of the four principles in the evolution of the SoS: (a) Evolutionary
time; (b) degree of variation; and (c) cost.

Figure 6c shows the average cost of the SoS evolution process after applying the different
principles. The evolution costs of the systems using Principle 3 and Principle 4 were relatively similar,
at 4585.5 Gbps and 4559.7 Gbps, respectively, with very low increases in cost. Principle 2 had the
highest cost of evolution (5262.3 Gbps), with a 16.4% increase compared to the baseline cost.

As can be seen from Figure 6, Principle 2 (Implementing Uniform Standards) was the least
effective in improving the situational awareness model in this paper, with a small improvement in
evolution performance and a large increase in cost. Meanwhile, Principle 3 (Enhancing Transparency
of Information) was the most effective, significantly reducing the evolution time and variability while
keeping the evolution cost low. In addition, Principle 1 (Facilitating information exchange) presented
a good reduction in variance and Principle 4 (Establishing Common Goals) had the lowest cost.

5. Discussion

5.1. Elaboration of Experimental Outcomes

The model detailed in this paper provides insights into the validation of theoretical principles,
allowing for study of the effects of different principles on system evolution and the implementation
of complex system-of-systems modeling using the ABM approach. Overall, the experimental findings
presented in this paper demonstrate variations in the impacts of the four evolutionary principles on
SoS evolution.

The experimental results indicate that the Degree of Variation (DOV) of the Telematics SoS
decreases significantly over time after implementing Principle 1 (Facilitating Information Exchange).
This outcome corroborates the efficacy of information exchange in mitigating discrepancies during
the SoS evolution, aligning with our preliminary hypothesis. Prior research has previously
underscored the potential of information exchange to enhance information visibility within
transportation systems [79]. Furthermore, the process of information exchange serves to eliminate
obstructions between disparate systems, align the interests of stakeholders [80], and alleviate
unwarranted variations within systems [81].

From a pragmatic perspective, the enhancement of information exchange is instrumental in
resolving prevalent challenges within the SoS, such as conflicting interests and ambiguous
accountabilities [82]. These challenges are inherently associated with the disparities present among
the constituent systems. Consequently, it is plausible to postulate that the enhancement of SoS
performance via information exchange is attributed to the principle's efficacy in bridging differences
among system members.

In our study, we have made an interesting observation regarding the effect of Principle 2
(Implementing Uniform Standards) . Contrary to our initial prediction, we found that implementing
uniform standards is actually the most costly. This finding is significant because unified standards
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are generally expected to reduce costs in system architecture [83]. Furthermore, our research also
revealed that uniform standards are less effective in improving the performance of the SoS in our
experiment. These observations raise an important question: why are uniform standards not as
effective in the experimental setting designed in this paper?

We believe that this phenomenon can be attributed to the difficulty of adapting uniform
standards to distributed SoSs, particularly when there are significant differences among constituent
systems. This phenomenon has been acknowledged in other literature as well. In distributed systems,
uniform standards may overlook the heterogeneity of individuals, leading to a decrease in overall
system efficiency [84,85]. These findings highlight the need for further investigation into this issue in
future research.

Our experimental findings indicate that Principle 3 (Enhancing Information Transparency)
outperforms other principles in minimizing both the duration of SoS evolution and the variability
encountered during this progression. We posit that this principle augments the interactive behavior
among agents by modulating specific factors. Prior studies have corroborated the efficacy of
augmented information transparency in bolstering trust within constituent systems [86-88] ,
especially in analogous distributed SoSs [89]. Additionally, increased transparency has been shown
to bolster the efficiency of knowledge support, subsequently amplifying the innovative capacity of
organizational members [90].

It is noteworthy, however, that the minimal variability observed during the evolutionary process
and the shortest evolutionary duration do not necessarily correspond to the least evolutionary cost.
This observation suggests that the inherent nature of enhanced information transparency might levy
supplementary costs upon the organization [91]. In summation, the SoS exhibits optimal performance
post the implementation of Principle 3 ((Enhancing Information Transparency). From an applied
standpoint, organizational leaders can augment information transparency within the SoS employing
modern information technologies, such as social networking platforms and electronic bulletin boards,
or even through conventional means like performance bulletin boards [90].

In addition to these findings, the simulation results demonstrate that Principle 4 (Establishing
Common Goals) has a positive impact on reducing the SoS variance and the time required for SoS
evolution, aligning with the expectations before the experiment conducted. However, it is
noteworthy that the establishing common goals makes the evolution of SoS significantly less costly
compared to other principles. This result challenges conventional wisdom, as there is no readily
apparent logical correlation between the two variables under consideration. Furthermore, there is a
lack of relevant research to substantiate the relationship between common goals and costs.

Drawing upon the analyzed observations, this study posits a hypothesis delineating the nuanced
role of the 'establishing common goals' in modulating the cost associated with the evolution of SoS.
This modulation ostensibly occurs through its impact on a constellation of intermediary factors.
Extant literature substantiates that the articulation of common goals can attenuate the risks inherent
in information exchange processes, thereby cultivating a milieu of trust among constituent members
[92,93]. Such trust can decrease conflict-related costs and the need for mutual monitoring within
organizations. Furthermore, a consensus on common goals can enhance access to tacit knowledge,
streamlining work processes and bolstering decision-making efficiency [94-96]. To gain further
insights, we plan to conduct additional research to investigate this factor in more depth.

5.2. Evaluating the Efficacy and Limitations of the Model

In the realm of Telematics, a pioneering study on the information sharing problem was
conducted by Shang Wenlong, Han Ke, and their colleagues, who employed Agent-Based Modeling
(ABM) as their research approach. Their investigation centered around the utilization of the
penetration rate as an evaluative metric for gauging the extent of information sharing. While this
assessment method offers a broad perspective, it fails to consider the intricate interplay among
vehicle nodes. In contrast to prior investigations, this scholarly article indirectly captures the
interplay of diverse behaviors that are challenging to model accurately. Consequently, it
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substantiates the influence of various widely adopted principles on information sharing within
connected vehicle systems, thereby presenting a innovation in the field.

Experimentation and validation of SoS theory is a difficult area in system-of-systems research.
In addition, the ABM method is a unique tool for verification of theory. When an ABM is used as an
experimental tool to study SoS problems, representing the complexity of an SoS involving multiple
constituent systems is a difficult problem to solve. The research idea presented in this paper is
intended to improve the modeling of agents as much as possible—for example, by incorporating
multiple complex and reasonable behaviors—in order to simulate the situation as realistically as
possible. On this basis, multiple agents which interact autonomously were used, which is the core
advantage of the ABM approach, in order to simulate the emergent nature of the SoS and achieve an
effective simulation of the SoS.

Nevertheless, it is important to acknowledge that the ABM model presented in this paper has
certain limitations. As discussed in subsection 3.7, the model exhibits high time complexity, which
may hinder its efficiency when dealing with more intricate problems. To address this concern, future
studies will explore the application of proxy sampling methods or optimization algorithms to
mitigate these limitations. Additionally, it is worth noting that certain simplifying assumptions were
made in the context of this simulation experiment. To apply a model like the one presented in this
paper to more complex SoS problems, researchers may need to add more realistic attributes to the
agent.

5.3. Bridging Natural and Social Sciences: A Methodological Discourse

The discourse surrounding the congruencies and divergences in the research methodologies
employed in the natural and social sciences has been long-standing. Hayek posited that the inherently
uncertain nature of human beings, who are central subjects in social science studies, precludes the
social sciences from yielding results analogous to those derived from the natural sciences [97]. This
uncertainty stems from cognitive limitations, conflicting interests, diverse value orientations, and
reflexivity.

Contrastingly, Popper contended that a uniform set of criteria should be applied when
evaluating both the natural and social sciences [98]. Within the realm of systems engineering, there
is a recurrent necessity to incorporate considerations from both technical (pertaining to natural
sciences) and human (pertaining to social sciences) perspectives, especially when navigating complex
systems.

Drawing upon the experimental simulation methodology prevalent in the natural sciences,
which emphasizes categorical identification, this study aligns with Popper's perspective to scrutinize
social science theorems. The objective is to facilitate a transition from quantitative analysis to a more
qualitative approach. It is important to acknowledge that the principles examined in this research are
inherently challenging to fully validate or falsify due to the fundamental uncertainty associated with
human behavior, a challenge frequently encountered in social science research.

Given this backdrop, the present paper proposes a novel approach to validating social science
theories leveraging Agent-Based Modeling. This preliminary exploration seeks to foster a foundation
for further empirical investigations in subsequent research endeavors.

6. Conclusions

A system-of-systems is a complex system with a high degree of unpredictability in its
evolutionary process. In order to improve the performance of SoS evolution and to achieve a guided
evolutionary process, many studies have proposed principles for SoS evolution. However, these
principles remain at the theoretical level and lack experimental data to support them. In this study,
an agent-based model of the SoS evolution process was developed against the background of an SoS
handling the situational awareness problem in vehicular networks, and an attempt was made to
validate and study the SoS evolution principles.

The results of the simulation indicate that the application of all four evolutionary principles can
enhance the evolutionary performance of the telematic SoS, but with varying effects. Specifically,
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promoting information exchange between constituent systems can successfully minimize the degree
of variation during SoS evolution, while establishing a common objective among constituent systems
can substantially reduce the cost of SoS evolution. Regarding the evolutionary problem in the model,
the implementation of uniform standard in collaborative SoS seems less effective due to its disregard
for individual heterogeneity. Among the considered contexts, improving high information
transparency within the SoS performs optimally among the four strategies and significantly shortens
the time required for the evolution of the telematics SoS.

The aim of this study was to validate the principles of SoS evolution proposed in previous
studies, in order to provide evidence for the SoS theory through experimental model and data. The
contributions of this paper serve to further deepen understanding of the SoS evolution process
through experimental results, as well as providing researchers with a reference for improving SoS
evolutionary principles. However, it is important to note that the current model being investigated
suffers from high time complexity and oversimplification, as discussed in this paper. To address these
limitations, we plan to optimize the developed ABM model in the future to enhance the
Computational Conclusion presented in this study.
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Appendix A
Table Al. Data and results of sensitivity tests.
Parameters Values Finding
Number of knowledge values 30  Evolutionary time increases with the number of knowledge
contained in a single 60 values and has little impact on the overall evolutionary
knowledge set 90 trend.
Number of agents in the 20 The evolution time increases with the number of agents, and
domain 30 the evolution trend is similar.

Number of groups of systems The evolution time decreases with the increase in the

with connectivity in the number of groups, the evolution performance changes more

domain drastically, and the evolution trend is roughly similar.

Number of goal-related
changes

Evolutionary time increases with the number of changes and
has less impact on the overall evolutionary trend.

Number of standard-related
changes

Evolutionary time increases with the number of changes and
has less impact on the overall evolutionary trend.

Number of task-related
changes

Evolutionary time increases with the number of changes and
has less impact on the overall evolutionary trend.
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Probability of inf ti
robablity ot fformation 0.7 Evolutionary time decreases with increasing probability and

correspondence behavior .
p 0.9 has no effect on evolutionary trend.

within a group

Probability of data-sharing 0.7 Evolutionary time decreases with increasing probability and
behavior within a group 0.9 has no effect on evolutionary trend.
Probability of consensus-
seeking behavior within the

group
Probability of information-

0.7 Evolutionary time decreases with increasing probability and
0.9 has no effect on evolutionary trend.

0.3 Evolutionary time decreases with increasing probability and

correspondence behavior in the )
P 0.5 has no effect on evolutionary trend.

domain

Probability of data-sharing 0.3 Evolutionary time decreases with increasing probability and

behavior in the domain 0.5 has no effect on evolutionary trend.
Probability of consensus- 0.3 Evolutionary time decreases with increasing probability and
seeking behavior in the domain 0.5 has no effect on evolutionary trend.
Number of simulations per 20
. e P No effect on evolutionary trends.
experimental condition 40
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