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Abstract: Helicobacter pylori is a gastric oncopathogen that infects over half of the world’s human population. It
is a Gram-negative, microaerophilic, helix-shaped bacterium that is equipped with flagella, which provide high
motility. Colonization of the stomach is asymptomatic in up to 90% of people but is a recognized risk factor for
developing various gastric disorders such as gastric ulcers, gastric cancer and gastritis. Invasion of the human
stomach occurs via numerous virulence factors such as CagA and VacA. Similarly, outer membrane proteins
(OMPs) play an important role in H. pylori pathogenicity as a means to adapt to the epithelial environment and
thereby facilitate infection. While some OMPs are porins, others are adhesins. The epithelial cell receptors
SabA, BabA, AlpA, OipA, HopQ and HopZ have been extensively researched to evaluate their epidemiology,
structure, role and genes. Moreover, numerous studies have been performed to seek to understand the complex
relationship between these factors and gastric diseases. Associations exist between different H. pylori virulence
factors, the co-expression of which appears to boost pathogenicity of the bacterium. Improved knowledge of
OMPs is a major step towards combatting this global disease. Here, we provide a current overview of different
H. pylori OMPs and discuss their pathogenicity, epidemiology and correlation with various gastric diseases.

Keywords: Helicobacter pylori; outer membrane protein; virulence factor; gastric cancer; gastric
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1. Introduction

Helicobacter pylori is considered an ancient microorganism the existence of which can be traced
back to before the voyages of Christopher Columbus [1]. Yet, it took to the early 1980s for the
bacterium to be identified by the Australian physicians Barry Marshall and Robin Warren. For
discovering H. pylori as the principal cause of gastritis and peptic ulcer disease and mucosa-associated
lymphoid-tissue (MALT) lymphoma [2,3], they were awarded the Nobel Prize in Physiology or
Medicine in 2005. Chronic H. pylori infection is a predisposing factor for a range of other health
conditions including ischemic stroke, Alzheimer’s disease, multiple sclerosis, autoimmune
neutropenia, vitamin B12 deficiency, diabetes mellitus, cholelithiasis, idiopathic thrombocytopenic
purpura, iron-deficiency anemia, cardiovascular diseases, hepatobiliary diseases, and biofilm-related
infections, although further research is needed to verify each proposed link [4-15]. It is estimated that
more than half of the world’s population is infected with this microorganism, its prevalence in
developing countries reaching 70-90%, compared to developed nations where it is between 20-30%
[16,17]. Typically, a person becomes infected with H. pylori during childhood through oral-fecal or
oral-oral transmission [18]. This Gram-negative, helical bacterium is a major source of global gastric
cancer mortality, so is considered as an oncogenic pathogen (oncopathogen) and hence is classified
as a class I carcinogen by the World Health Organization [19]. It is equipped with different virulence
factors including flagella, lipopolysaccharide (LPS), urease, and outer membrane proteins (OMPs),
which are encoded by many paralogous gene families. It owes its characteristically high motility to
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its between 4-6 co-located flagella, which facilitate its movement and colonization of the stomach
mucosa layer. Urease production provides ammonia for bacterial protein synthesis and neutralizes
gastric acid, thereby making the stomach a preferred environment for colonization. This factor can
damage host tissue via several mechanisms, which, together with the inflammatory immune
response that this triggers, causes ulceration. Similarly, the unique structure of LPS promotes
bacterial pathogenicity by facilitating attachment to gastric mucosa, thus supporting persistence of
infection [20-23].

It is estimated that only about 20% of H. pylori carriers develop symptoms of disease. Chronic
gastritis is a condition ascribed for H. pylori carriers without any clinical symptoms. At the same time,
this pathogen is a risk factor for progression to gastric problems like a peptic ulcer [24-26]. Chronic
gastritis follows colonization of the stomach by H. pylori, which resists clearance and causes mucosal
inflammation and atrophy. Peptic ulcer formation, a consequence of damaged mucosa through
stomach acid activity, is accelerated by the chronically acidic environment [27]. These sores can
develop either into a lesion inside the stomach, known as a gastric ulcer, or inside the adjoining
duodenum within the small intestine, termed a duodenal ulcer [28]. Importantly, having chronic
gastritis increases a person’s risk of acquiring severe gastric conditions, notably gastric cancer that
most often manifests as stomach adenocarcinoma [29].

An array of contributing factors, such as genetic susceptibility, diet, environmental variables,
smoking and physical activity, are involved in progression to severe stomach conditions [30]. Studies
showed that H. pylori is the leading cause of 63.4% of all stomach cancer and 75% of non-cardia gastric
cancer (that affects the first part of the stomach) [31]. While there is now a decreasing trend in the rate
of gastric cancer worldwide, it is still the second highest cause of cancer mortality [32]. In order to
eradicate H. pylori, antibiotic therapy is suggested for gastric disorders. Currently, antibiotics like
clarithromycin, amoxicillin or metronidazole are used in combination with proton pump inhibitors
as a standard treatment [33]. It should also be noted that eradicating this microorganism may provoke
some extra-gastric diseases, in particular iron deficiency, idiopathic thrombocytopenic purpura,
chronic idiopathic urticaria and anemia. Further studies are required to confirm this correlation [34].

The first step for H. pylori to induce inflammation and cause infection is to colonize and attach
to gastric mucosa. Usually, this happens through OMPs which play a pivotal role in adherence and
pathogenicity. To date, there are about 64 members of this family which are recognized [35-37]. Also,
five paralogous genes of OMPs have been identified. Through analyzing strains of H. pylori, 26695
and ]J99, many OMPs were identified. In one study, five family members of OMP, each with its own
subfamily, were recognized. These families include the major OMPs Hop and Hor, Hof, Hom, iron-
regulated OMPs and FecA/FrpB-like proteins, and efflux pump OMPs (Table 1) [37].

Table 1. Classification of Helicobacter pylori outer membrane proteins.

Protein Number of Sub-family genes

family sub-family

Hop 22 hopZ, hopD, hopM, hopA, hopF, hopG, hop], hopH, hopE, hopO, hopP, hopC,
hopB, hopK, hopl, hopL, hopQ, hopQ, hopN, hopU

babA, babB
Hor 12 horA, horB, horC, horD, horE, horF, horG, horH, horl, hor], horK, horL
Hof 8 hofA, hofB, hofC, hofD, hofE, hofF, hofG, hofH

Hom 4 homA, homB, homC, homD
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3
FecA-like 3 fecA-1, fecA-2, fecA-3
FrpB-like 3 frpB-1, fryB-2, frpB-3
Efflux 6 hefA, hefD, hefG
pump figH
palA
Ipp20

2. Helicobacter pylori Virulence Factors

2.1. Cag A and Vac A

Definition, diversity, classification and their significance: Vacuolating cytotoxin, or VacA, and
Cag (cytotoxin-associated genes) pathogenicity island (PAI), encoding a bacterial type IV secretory
apparatus (T4SSs), are two main factors involved in H. pylori pathogenicity (Figure 1). CagA is a
protein of 116-140 kDa molecular weight that is expressed by almost 70% of strains and which
produces a specific cytotoxin [38]. The significant role of this protein in H. pylori-infected patients has
led to the isolates being defined as belonging to one of two groups, either CagA-positive (type I) or
CagA-negative (type II). Epithelial cells and cells of the immune system are considered as two main
targets for VacA, in which is expressed by all H. pylori strains [39,40]. VacA protein has cytotoxic
activity that is due to its ability to drive intracellular vacuolization [41]. It has been demonstrated that
various cell types are vulnerable to this toxin [40]. It has escape mechanisms to avoid the highly acidic
environment of the stomach [42]. Different receptors are recognized for VacA, yet their roles and
importance are not clear [43]. Similar to CagA, this virulence factor is expressed only in H. pylori type
I [44]. Notably, there are three types of VacA genotype predicated on their signal sequence, namely
sla, s1b and s2, as well as m1 and m2, which is based on middle-region alleles of the vacA gene [45].
Regarding vacA allelic diversity, regions including s-region (signal), m-region (middle), i-region
(intermediate), d-region (deletion) and c-regions are elucidated. Based on the deletion at the 3' end of
the vacA gene, different types are investigated. The 7 region exists in three types (i1, i2 and i3), while
all other regions are classified into two types (s1, s2, m1, m2, c1, c2, d1 and d2). More variants within
these regions are proposed, of which K, E and Q-types are conspicuous [46].

The cag PAl is a 40 kb DNA sequence as that encodes type IV secretion system (T4SS) and CagA
protein. This generates a pilus via which the bacterium can inject CagA protein into a host cell [47,48].
There are twelve recognized components of T4SSs in Gram-negative bacteria, including VirD4 and
VirB1-11. It is organized into three parts: outer membrane core complex, inner membrane complex,
and extracellular pilus [49,50]. Upon delivery of CagA into the cell and phosphorylation of a C-
terminal EPIYA motif, the signaling pathway is activated via binding of CagA to the SH2 domain.
Host cell changes occur after components interact with both phosphorylated and non-
phosphorylated CagA. Of note are changes in cell junction, elongation, polarity, proliferation and
proinflammatory response [51,52]. Various bacterial proteins such as CagM, CagX, CagY, CagT and
Cag3 that form a part of CagPIA are encoded by a 41 nm long core structure. Among these, CagX and
CagY are associated with the T4SS channel [53]. An interaction between CagL on the T4SS and 531
integrin leads to CagA transposition and pilus formation. Consequently, cells become more irregular
as a result of phosphorylation at the 3' end of CagA gene (EPIYA), which is located in the PAI [44,54].
CagA is a highly immunogenic protein that comprises two types, CagAl and CagAlI on the right or
left segment, respectively [38,44]. This H. pylori type I virulence factor is linked to gastroduodenal
disease and its gene may be acquired horizontally [44,55]. Upon bacterial attachment and infection,
CagA will activate signal factors such as interleukin (IL)-8, which depend on the Cag PAI activity
[44,56]. IL-8 and NFxB will pave the way for inflammation and carcinogenesis [54]. Another gene
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called cagE, located in the cagl and in proximity to cagA, has similarity with pt/C in Bordetella pertussis
[44]. This gene is considered a better marker of pathogenicity, although further verification is needed
[57]. In addition, there is a correlation among these virulence factors and other OMPs including IceA,
BabA, HopQ, OipA, SabA and HopZ [58].

Geographical Variances and Clinical Associations: Several studies have investigated
associations between these two antigens and different gastric conditions, yet neither is considered as
an indicator of gastric cancer [59,60]. A high frequency of CagA-positive isolates in patients with
gastric cancer was reported [61]. Different results obtained vary by geographical region. In one study
performed in various countries, slc-m1, s1b-m1 and sla-m1 of vacA were the predominant genotypes
in Japan and Korea, US, and Colombia, respectively. Although cagA genotype was predominant in
all nations, no relationships with clinical outcomes were identified [59]. In Egypt, however, 68.7% of
patients with a gastric ulcer, 50% of gastric carcinoma patients and 33.3% of gastritis cases were
positive for cagA gene expression [62]. On the other hand, in an Australian cohort of H. pylori-infected
individuals, 78% and 85% of cases of duodenal ulcer and gastric cancer, respectively, were positive
for the cagA gene [63]. Another study showed an association between vacA sla, cagE and cagA with
gastric cancer and duodenal ulceration [64]. Additionally, a correlation between d-region and gastric
atrophy and neutrophil infiltration was reported. There is a close relationship between geographical
region and distribution of VacA subtypes. It is apparent that s1/m1 and i1 are predominant genotypes
in northeast Asia. Also, a close relationship between VacA subtypes and gastric disorders is
demonstrable. Furthermore, an association between sl1a, sIc and m1 with gastric cancer, peptic ulcer
and intestinal metaplasia was reported [3,65-67].
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Figure 1. Helicobacter pylori type IV secretion system (T4SS) and Cag A pathogenicity. In the
intricate interplay between H. pylori adhesins and epithelial cells, various receptors play a crucial role
in mediating binding. A noteworthy homology has been observed between H. pylori outer membrane
proteins and Vir proteins in Agrobacterium., The cagA pathogenicity island consists of distinct elements
within the multicomponent T4SS complex. Specifically, Cag X, T, and Y contribute to the core
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complex, while CagE, W, and V participate in the inner membrane complex. Additionally, CagC, L,
and I are instrumental in pilus formation. Subsequent to the interaction between host cells and
binding proteins, the CagA substrate is delivered through assembled pili. Integrin receptors play a
pivotal role in facilitating this interaction with CagA, Y, L, and L. In the lower section of the diagram,
CagE, Z, a, and {3 are implicated in generating energy through dephosphorylation of nucleoside
triphosphates (NTP), ultimately leading to translocation of CagA. Notably, Cagy, situated in the
peptidoglycan layer, assumes responsibility for hydrolyzing peptidoglycan.

2.2. H. pylori Outer Membrane Proteins

Hop is the largest family of H. pylori OMPs, with 32 known members, yet they are collectively
encoded by only 4% of the bacterial genome [36,37]. Hop A-E act as porin proteins as well as a channel
through which antimicrobial agents permeate into the cell. Hence, many of them are potential
candidates for development vaccine [68,69]. This group contains two divisions, Hop and Hor
proteins. Interestingly, members of the latter lack a hop motif but still have an N-terminal motif, as
do Hop proteins, and which is greatly variable in size. The former is divided into two groups based
on the C-terminus [37].

Adhesion to host epithelial cells is the very first step for H. pylori colonization and persistence,
which is mostly mediated by OMPs and T4SS [70]. There are three distinct steps of infection:
colonization; attack of the gastric mucosa; and escape from the immune system. Attachment to
mucins depends on several variables including type of mucin, anatomical site, pH, H. pylori strain
and gastritis status. Also, interaction between H. pylori and host Lewis antigens, Le>b~y, attributed to
Hop proteins such as SabA and BabA, is vital to this process [71,72].

Protected by a mucus layer and composed mostly of MUC5AC and MUCS6, the gastric
epithelium is responsible for a glycosylation pattern that varies between gastric disorders. MUC2 is
a type of mucin that does not exist in normal mucosa but instead is found mostly in intestinal
metaplasia in which goblet cells are predominant. Understanding more about mucin expression
patterns is important as H. pylori adhesion is mediated through interaction between these antigens
and virulence factors [73-75].

2.2.1. Hop B and Hop C

HopB and HopC, also known as AlpA and AlpB, are encoded by the alp A/B locus (OMP 20 and
21, respectively). Homology of AlpA/B among various H. pylori strains is reported as more than 90%.
While the role of these proteins remains to be substantiated, they are assumed to be involved in
adhesion [37,76,77], for which laminin serves as a receptor. Any interruption to Hop B/C leads to
diminished binding of H. pylori to laminin [92]. In addition, these proteins are responsible for
producing cytokines such as IL-6, IL-8 and for activating signal transduction [76,78,79]. Gastric
damage and modulation of cell signaling are consequent to AlpA/B adhesion [80]. Both play a key
role in H. pylori colonization, although HopB appears to be more important [81]. New insights into
the molecular mechanism of HopC indicate a function in biofilm formation. As described later, H.
pylori can construct biofilm in human gastric cells, HopC being one of the OMPs with the capability
to contribute to this in outer membrane vesicles (OMVs) [82].

Regarding the pathogenicity of HopB/C, there is insufficient information correlating their
presence with clinical outcomes. Analysis of 200 H. pylori isolates revealed that all express these
proteins, which suggests their important roles [79]. Interestingly, in another study severe gastric
symptoms were associated with some H. pylori virulence factors such as HopB and VacA, with a high
prevalence of HopB in cases of gastric cancer and peptic ulcers (> 80%), implying the importance of
this OMP to predictions of infection outcome [67].

2.2.2. Hop H, a phase-variable protein

HopH, originally identified as outer inflammatory protein or Oip A (Hpo638), is a phase-
variable protein the alleles of which are present in almost all H. pylori strains. A high rate of diversity
within CT dinucleotide repeats occurs in the oipA gene. Similar to other OMPs, it is assumed that
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HopH is involved in epithelial cell adhesion, although there are discrepancies arising from diversity
between strains. This protein can also induce IL-8 production, cell-signaling and toxic events, as well
as apoptosis [83-85]. These properties are independent of Cag PIA activity. This means that those
strains which contain both virulence factors are capable of producing, for instance, higher levels of
IL-8 [86]. Both functional and non-functional types of OipA are known [86,87]. Interestingly, an
association between this protein and other virulence factors such as CagA, VacAsl and BabA has
been demonstrated [58,88,89].

Hop H association with clinical outcomes: A correlation between the presence of HopH and
gastric disorders such as gastric cancer and peptic ulceration has been established. A study in which
several virulence factors were examined together showed that gene expression could be a useful
predictor of progression to gastric cancer in patients with precancerous gastric lesions, although
paradoxical findings have raised doubts [90-93]. An investigation of hopH gene polymorphism led to
two proposals for its pathogenicity, enhanced bacterial adhesion and correlation with the presence
of other virulence factors [94]. In another study performed on gastritis and peptic ulcers, a high
prevalence of the oipA gene was reported, which could imply a relationship between this gene and
disease progression [95]. Similarly, a study performed on patients with gastritis, gastric carcinoma or
duodenal ulcers showed an association with virulence factors such as CagA, VacA, IceA, BabA and
OipA. However, only OipA was recognized as a distinctive factor for clinical outcomes. Nonetheless,
as this factor is common among patients, it should be applied as a predictor only in combination with
other virulence factors [87]. Several trials reported a connection between CagA and OipA expression
in which slipped strand mispairing of complementary bases during DNA replication enhances
bacterial adaptability. Conversely, OipA was reported as a non-significant marker in one study which
used PCR to detect and differentiate H. pylori virulence factors and to predict clinical outcomes [67].

2.23.Hop P

This protein is also known as sialic acid-binding adhesin or SabA. for which the human Lewis
(Le) histo-blood group antigens Lex and Le* are the main receptors. Sialyl-dimeric-Lewis x
glycosphingolipid, defined as H. pylori receptor, is overexpressed in the stomach of infected people
as sLer and sLe® gene expression is upregulated during inflammation. In contrast, in the gastric
mucosa of healthy people sialylated glycoconjugates are not abundant [96-100]. Other receptors for
SabA have been identified. It can bind to a2-3-linked sialic acids and other sialic acid receptors [101],
while laminin in the extracellular matrix also serves as a receptor [102]. H. pylori can bind specifically
to glycosylated mucins, located in the proximity of epithelial cells, which helps it to maintain long-
term infection [103]. Additionally, the polymorphic nature of H. pylori is attributed to SabA binding
to sialylated carbohydrates. This is a unique strategy of adaptation for H. pylori [104], which tends to
colonize those stomach areas with low acidity and high levels of HopP receptors [105].

SabA is classified as a protein that is regulated by phase variation. This means that H. pylori can
switch expression of the gene on or off depending on circumstances [106]. Interestingly, sabA also
undergoes gene conversion, which plays a key function in regulating SabA levels. Adhesion is
affected by emerging subpopulations of H. pylori with variable expression of the protein, which is a
consequence of having recombination amongst sab A, sab B and omp27 genes [107]. SabA also
contributes significantly to spasmolytic polypeptide-expressing metaplasia (SPEM), which succeeds
chronic atrophy and is a strategy for the stomach to reform its normal structural units following
injury. It is thought that H. pylori can help SPEM progression, in which SabA adhesion to sLex plays
a pivotal role [108].

Hop P and gastric disorders: Numerous studies have investigated an association between SabA
and clinical outcomes. It appears that SabA is responsible for inflammation and its presence is
correlated with clinical outcomes [109,110]. Also, a close relationship between this protein and gastric
cancer has been found. In one study, 66% of H. pylori strains in patients with gastritis were SabA-
positive, 44% were positive in individuals with duodenal ulcers and 70% in cases of gastric cancer
[111]. Other studies that examined the frequency of SabA reported 93%, 86%, 80% and 23% detection



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1534.v1

7

in H. pylori strains in the Netherlands, France, Taiwan and Iran, respectively [58,112-114]. Recently, a
Brazilian report revealed that SabA can accelerate gastric cancer in infected people [115].

2.2.4.Hop Q

Otherwise known as Omp27, HopQ is classified into two families, HopQI and HopQII [36,116].
Both 3' and 5' ends of hop(Q alleles are highly conserved in H. pylori, but divergence occurs in the 1.1
kb mid-region, with a 75-80% similarity of nucleotide sequence. However, they are different in terms
of geographical distribution, HopQI being isolated mostly in East Asia and HopQII commonly
present in western countries [117,118]. Similar to other OMPs, these proteins mediate adherence to
the gastric mucosa. It seems that there is a correlation between HopQ and other virulence factors like
CagA and VacA [119]. Prevalence of this protein is common in those H. pylori strains with cag PAI,
which is responsible for encoding CagA and a type IV secretion system [47].

A family of receptors defined as carcinoembryonic antigen-related cell adhesion molecules
(CEACAMs) is recognized for HopQ and HopQ. CEACAM activation interferes with immune
functions of T and NK cells [120,121]. Moreover, CEACAMs mediates various cell functions such as
adhesion, proliferation, immune response and motility. CEACAM]I, 5 and 6 are expressed by gastric
epithelial cells. CEACAMI, 3 and 4 have both cytoplasmic and transmembrane domains, while
CEACAMS, 6, 7 and 8 have glycosylphosphatidylinositol linkage to the host cell membrane. A strong
connection between HopQ and CEACAM]I, 3, 5 and 6 N-terminal domains facilitates H. pylori
adhesion to gastric epithelial cells. Interestingly, CEACAM]1, 5 and 6 are found in multiple organs.
Binding between HopQ and CEACAMs plays a crucial role in CagA delivery into host cells [121-123].

The relationship between HopQ and CagA modulation is a focus of research interest [124]. It has
been shown that inflammatory reactions follow T4SS activation and transfer of CagA oncoprotein via
HopQ-CEACAMs interaction. The inflammatory response ultimately leads to gastric cancer, which
supports the idea of therapeutic approaches targeting HopQ-CEACAMs [125,126]. This interaction
affects human CEACAMSs, responsible for CagA activation and phosphorylation in
polymorphonuclear neutrophils (PMNs) but not dendritic cells and macrophages. In PMNss it lessens
CagA translocation and alters expression of CEACAM receptors. Also, the presence of human
CEACAMSs on PMNs increases bacterial survival within phagosome, thus resisting phagocytosis
[127].

Hop Q and clinical disorders: The correlation between both types of HopQ and gastric cancer
is established [128,129]. Also, a high incidence of gastric cancer has been reported in patients with
hopQI and vacA slml, or with hopQIl and vacA S2 genotypes [130]. In two studies, in specific
geographical regions in Iran, the rate of hopQIl was higher than that of hopQI and a correlation
between these OMPs and clinical outcomes was observed. However, another study showed the
inverse result by which HopQI prevalence was higher with no association with gastrointestinal
disorders [131,132]. Although its correlation with gastric diseases was demonstrated in several
investigations, paradoxically HopQ could even be used therapeutically, as trials have shown good
efficacies against melanoma metastasis [133].

2.2.5.Hop S, Hop T and Hop U

HopS, HopT and HopU were first identified as blood group antigen-binding adhesin A (BabA)
or OMP 28 (~80 kDa), BabB or OMP 19, and BabC or OMP 9, respectively. They each mediate
attachment of H. pylori to histo-blood group antigens on gastric epithelial cells except for BabC, the
function of which is not yet clear. Notably, there is extensive homology at the 3' and 5' segments of
babA and babB [134]. There are two types of babA, namely babA1 and babA2, with the latter divided
into two subtypes with high and low protein production (Bab A-H and Bab A-L) [135,136]. An
evaluation of glycosphingolipids as a receptor reported that H. pylori varies in its attachment to
different blood groups including A Rh* and O Rh-~. Moreover, H. pylori could not adhere to
glycosphingolipids in people with blood group O but could bind extremely well in A Rh*
individuals. In this study, Le® hexaosyceramide, pentaosylceramide, heptaosylceramide,
lactosylceramide, lactotetraosylceramide, neolactohexaosylceramide and pentaosylceramide were
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reported as BabA receptors [137]. In addition to Le®, fucosylated blood group A, B and O antigens are
noteworthy receptors [138]. Depending on the mid region and ability to bind ABO antigens, there are
two classifications of BabA, specialist and generalist. The former refers to those H. pylori strains that
can attach to ALeb (A-Lewis a), whereas the latter refers to those that bind to ALeb, BLe? (B-Lewis b)
and Leb [139]. Also, analysis of variation of babA and babB revealed that there are five and three groups
of alleles, including AD1-5 and BD1-3, for BabA and BabB, respectively [136].

Helicobacter pylori is able to achieve compatibility with the variable gastric acidic environment
through recombination and mutation in babA genes. This enables mediated attachment via this
protein, which is responsible for this phenomenon, thereby increasing the risk of progression to
gastric cancer [140]. BabA is an antigen that is commonly expressed by H. pylori and which is related
to specific clinical outcomes including peptic ulcers and gastric cancer. Also, colonization occurs
predominantly in the lowermost antrum of the stomach [141,142]. Based on recent studies,
recombination between the three bab genes frequently happens [143]. BabA undergoes genetic
regulation through phase variation, which modulates its role in adherence. Also, it can be affected by
recombination between babA and babB genes [144]. This genetic regulation is beneficial for H. pylori
adaptation to its gastric environment in which the bacterium is exposed to a high level of
physiological stress [145].

Correlation with gastric disorders: Several studies have investigated a correlation between babA
gene expression and gastric disorders such as peptic ulcers and gastric cancer. Reportedly,
inflammation induced by BabA adhesion results in gastric conditions such as precancerous
transformations and intestinal metaplasia [146-148]. Also, a correlation between Le? and low binding
activity and risk of duodenal ulcers was found [149]. Notably, undertaken the correlation between
this genotype and gastric cancer was demonstrated separately in Germany, Portugal, Japan, Taiwan,
China, USA and Brazil [90,150-154]. Similarly, babA2 gene was recently found at high frequency in
patients with gastric cancer or peptic ulcers, although discrepancies arise regarding whether or not
development to the severe gastric condition is associated with this genotype. A possible reason for
this could be a lack of expression of BabA protein despite the presence of the gene [67]. This agrees
with a meta-analysis of twenty studies that indicated a strong association between BabA2 and
increased risk of gastric cancer in Asian populations compared to South American ones, suggesting
a significant role of this virulence factor in pathogenicity [155].

2.2.6. Hop Z

This protein, also known as HP9, has a role in adherence to gastric epithelial cells, although its
receptor is not yet recognized [72]. The hopZ gene undergoes slipped-strand mispairing and is
regulated by a phase-variable CT repeat, which means whether it is switched on or off depends on
the prevailing in vivo situation. There are two types, HopZI and HopZII. This differentiation dates to
the era in prehistory before migration of humans from Africa [69,156]. Its relationship with infection
is suggested by some findings [157,158]. In one investigation, an association between this protein and
gastric cancer was reported, but a correlation between HopZ and chronic atrophic gastritis has yet to
be found [72,156].

2.2.7.Hop V, Hop W and other OMPs

These porin members belong to the Hop A/E family. This is due to homologous N-terminal and
C-terminus regions. In terms of their pore size, HopV and HopW are similar to E. coli OmpF porin.
Among H. pylori isolates, their expression is relatively less. Hop X/Y have been identified as porins
similar to Hop A-D [37,159-161]. Colonization attributed to OMPs is mediated by H. pylori OMP 18
[162].

In the Helicobacter outer membrane (Hom) family, four members (HomA, B, C and D) are
recognized, of which HomB is the most studied. Hom A/B exhibit variation in regard to genes copies
and genomic localization in different geographical areas. The rate of homology between homA/B
genomes is estimated at 90%, with only a 300 bp difference. Similar to other OMPs, recombination
and phase variation are involved in gene duplication [37]. HomA/B are known for their significant
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roles in adherence, antibiotic resistance, biofilm formation and gastric malignancies [163]. Two
important functions ascribed to HomB are IL-8 secretion and adherence [164]. While no specific
association with clinical outcomes has been found for either of these proteins, they are likely to be
involved in H. pylori persistence [165].

Another group, defined as Hof proteins, includes eight members, namely Hof A-H. Each of these
contains a hydrophobic C-terminal motif, similar to the Hom family. Recently, a study of Helicobacter
heilmannii showed that Hof E and Hof F act as adhesins in the same way as other OMPs [37,166].

3. H. pylori survival strategies

3.1. Genetic characteristics of H. pylori OMPs contribute to its ability to survive

A feature of the genome of H. pylori is its appreciable plasticity. This is due to genetic
recombination which results in a high level of mutation, notably reported for babA2 gene expression
[167,168]. This pathogen uses various micro- and macro-diverse tools to survive in the gastric
mucosal environment [169,170]. Genetic incongruity is especially pronounced among omp genes [37].
Most studies have been performed on two H. pylori well-researched strains, 26695 and J99, which are
thought to be representative of clinically significant isolates [116].

There are three categories of H. pylori genes: phase-variable; structure-variable; and strain-
specific [26]. Some phase-variable genes use a specific method to escape from immune surveillance
whereby not only does the expression of antigens change, but also the bacterium becomes more
heterogenous. To date, six genes, including sabA/B, babB/C, oipA and hopZ, have been identified that
are regulated by this mechanism [26,171].

One interesting finding is that H. pylori can upregulate expression of Le’ and Le, yielding BabA
and SabA receptors, respectively. This function is performed by deposition of these antigens, which
facilitates increased colonization [172].

There is broad similarity between H. pylori strains in terms of ribosome-binding sites (nucleotide
number). However, the shorter spacing that is observed in some H. pylori genes may cause a change
in the gene expression reported for seven orthologous pairs of omp genes. Examples can be seen in
babA genes. Slipped-strand repair plays a pivotal role in altering expression of these proteins, thereby
providing a mechanism by which H. pylori can evade the host immune system. The Com-B system in
bab A/B/C is integral to this mechanism. While the central region of these genes is diverse, the 5' and
3' ends are similar. Slipped-strand repair has been reported in several genes and is thought to
underpin antigenic variation and genetic diversity that is observed among H. pylori strains. Five hop
orthologs undergo this regulation to change signal sequence, while the final product of expression
remains the same [36,37,136,168,173]. In addition, gene duplication, in which there are two copies of
an allele, is described for babA, hop], hopK, hopQ, hopM and hopN genes. This event differs between
various hop genes depending on the H. pylori strain [37,134].

As well as OMPs, based on recent studies there are two other genes that affect H. pylori
pathogenicity. ice A1 and ice A2 are a pair of novel genes that are considered as risk factors for various
gastric conditions. Transcription of either ice A gene can be induced by H. pylori attachment to gastric
epithelial cells. Their distribution among different geographical areas and gastric diseases is variable
[174,175]. There is a relationship between this gene and other virulence factors such as CagA and
VacA. The findings of one study suggest that ice A and cagA may be used as potential markers for
clinical outcomes [62]. However, as the findings are paradoxical, elucidation through further research
is required [59,176]. The duodenal ulcer-promoting gene dupA, which is located in the plasticity
region of cag PAI, is thought to provide an increased risk for duodenal ulcers. Expression of this gene
induces IL-8 and neutrophil activity [177]. On the other hand, in patients with gastric cancer its
prevalence is much lower. dup A may provide a good candidate to predict clinical outcomes such as
duodenal ulcers [26,177-179].

3.2. H. pylori biofilm, an alternative strategy for survival
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Another medical challenge that is presented by H. pylori is its capacity to form biofilm. Under
the protection of the impervious matrix of extracellular polymeric substances (EPS), bacteria are
refractory to antibiotic penetration, thus greatly reducing the efficacy of standard treatment
approaches [180]. OMVs are an integral component of H. pylori biofilm EPS matrix. Produced during
bacterial growth, OMVs are implicated in pathogenesis through biofilm formation. A recent study
demonstrated that an a-class carbonic anhydrase (CA) is found in OMVs, synthesized by both
biofilm-producing and planktonic H. pylori strains [181]. On the other hand, genes responsible for
encoding CAs in H. pylori are distributed to cytoplasmic B-CA (hppCA) and a-CA (hpaCA). Also,
expression of these two genes is accelerated at low pH and their joint activity with urease helps H.
pylori to withstand the acidic gastric conditions. Therefore, hpCA has been considered as a new
therapeutic candidate [181-185].

4. H. pylori and Host Responses

The protective host immune response to H. pylori helps to lessen the threat that colonization
poses. However, this noted pathogen has evolved a unique strategy to overcome host defenses. Long-
term infection is a consequence of remodeling of the host-pathogen interface as well as immune
evasion due to multiple virulence factors expressed by H. pylori [186].

It is known that cag PAI is a potent driver of IL-8 and NfkB secretion. A cascade of intracellular
activities is involved in H. pylori-dependent signal transduction. Nucleotide-binding oligomerization
domain (NOD)1 is an intracellular pattern recognition receptor that recognizes bacterial
peptidoglycan, among other danger signals, and thus plays a fundamental role in innate and adaptive
defenses and control of inflammationl [187]. This protein also has an important function in cancer
development. Following interaction between CagA and PAR1b, BRCA1 disturbs phosphorylation,
which can lead to the promotion of DNA double-strand breaks and BRCAness. This phenomenon is
expanded via p53 inactivation, enabling DNA-damaged cells to escape from apoptosis and
proliferate. This propels a “hit-and-run mechanism”, which is a significant cause of gastric
carcinogenesis [188].

Similarly, VacA activity affects the immune system in multiple ways. For example, paracellular
permeability during carcinogenesis, TGF-1 production and heightened inflammation. At the same
time, through vacuolization, antigen proteolysis decreases, which subsequently reduces peptide
presentation and thereby inhibits T cell stimulation. This leads to down-modulation of CD4* and
CD8* responses, thus facilitating the persistence of H. pylori infection [189].

Composed of lipid A and polysaccharide, LPS is an H. pylori endotoxin within the outer cell
membrane. It is intrinsically involved in septic shock and sepsis through triggering proinflammatory
mediators such as TNF-a and IL-1 [190]. LPS can promote gastric cancer through inhibiting
inflammatory immune responses as well as preventing invasion of gastric cancer cells by immune
mediators. Specifically, LPS derived from H. pylori can weaken cytotoxicity of mononuclear cells
towards gastric cancer cells, as well as cytotoxic activity of gastric epithelia and NK cells. In addition,
H. pylori LPS selectively elevates production of IL-18 and IL-12 and activates signal transduction
patterns related to TLR4- and toll/IL-1 receptor [190-192]. Multiple studies have shown the significant
role of TLR4-LPS in initiation and escalation of gastric cancer. The synthesis of two important factors
in promoting cancer, TNF-a and IL-8, is accelerated after TLR4-LPS binding [193,194].

A series of mechanisms is utilized by this pathogen to enable it to evade the host immune system.
H. pylori is a motile bacterium that is equipped with at least four flagella, the coordinated actions of
which propel it through the gastric mucus layer. Each flagellum comprises several components
including hook, basal body, filament and sheath. Interestingly, reports show that they contribute to
biofilm formation [189,195]. As alluded to above, urease production is another means to combat the
immune system. As it helps to alleviate the acidic environment, this implies a role in chronicity of
infection and bacterial persistence. Also, ammonium produced by urease may cause damage to host
cells [196,197]. Additional recognized roles for urease include a chemotactic effect on immune cells
as well as angiogenesis, which may promote development of infection to gastric cancer [198,199].
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A “founder colony” is a newly proposed model of escape and persistence in which H. pylori
penetrates deep within the microenvironment of gastric glands to initiate colonization. These small
colonies then expand to form persistent clonal population islands. They are distinct from planktonic
bacteria in the superficial layer and gaining the space for new bacterial growth presents a challenge
[200].

5. Advancements and Challenges in Therapeutic Strategies Targeting H. pylori

In order to achieve a protective immune response some therapeutic strategies such as T cell
activation and targeting inhibitory receptors are of note. In this regard, promising results were
obtained using MDX-1106 (anti-PD-1), lambrolizumab, and rapamycin to control the mTOR/p70 S6
kinase pathway. However, further clinical research is required to acquire a deep knowledge of
immunity to H. pylori. A better understanding of these mechanisms is critical to design an appropriate
vaccine [201]. Several prototype vaccines are in development and currently undergoing trials are in
progress (Table 2). Regarding other therapeutic approaches, there are several targets suggested for
H. pylori treatment. These include shikimate pathways (involved in ubiquinone and aromatic acid
synthesis), flavodoxin (electron carrier protein), coenzyme A, succinylase pathway, and urease
inhibitory compounds [202]. As discussed below, there are several innovative therapeutic approaches
against H. pylori, including novel treatments targeting key virulence factors and host-microbe
interactions.

Table 2. Improvement of vaccine design and progression of development pathway.

Vaccine Type Status Reference Time
Imevax/IMX101 Multicomponent I [223] Ongoing
VacA, CagA, NAP Recombinant /1 [224] 2018
(NCTO00736476)

HpaA expression by Vibrio Recombinant Preclinical [225] 2017
cholera

Cholera toxin B and H. pylori  Epitope Preclinical [226] 2016
Lpp20

H. pylori vaccine Oral recombinant 1 [227] 2015
CTB-Urel-UreB (BIB) Recombinant multi-epitope =~ Preclinical [228] 2014
HelicoVax Multi-epitope Preclinical [229] 2011

Regarding therapies that target Cag A, progress has been made using ATPase Caga inhibitors
to target the Cag type IV secretion system. CHIR-1, a kinase-targeting compound, and
difluoromethylornithine, have both shown promising results. However, technical limitations make it
difficult to achieve full inhibition. It is necessary to preincubate bacteria with CHIR-1 to reach the
strongest level of inhibition [203-206]. In summary, a major role of VacA and CagA in H. pylori
pathogenicity and disease progression is evident. Irrespective of the geographical differences, CagA
is a good indicator of patient outcome and targeting this protein could provide a potentially effective
means of treatment [207].

Targeting OMPs is a promising innovative therapeutic approach against H. pylori, given their
importance and roles in gastric conditions (Table 3). Hop B and Hop C are considered potential
targets for vaccine therapy as they are involved during the early colonization stages of infection with
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H. pylori. In immunization studies in mice, when HopB, either on its own or in combination with
other antigens (BabB, urease, catalase), was conjugated to the DC-Chol mucosal adjuvant, enhanced
cellular and humoral protective responses were observed [208]. In a further promising evaluation of
HopB immunogenicity in recombinant plasmids, HopB recombinant protein was introduced as a
novel means of infection prophylaxis and eradication [209].

It has shown that OipA is a promising candidate for an oral vaccine. In murine studies,
inoculating IgA raised against OipA significantly ameliorated H. pylori infection [210]. Similarly, a
Salmonella typhimurium bacterial ghost-based DNA vaccine that delivers the 0ipA gene is proposed as
a novel immunogen. This oral vaccine was capable of boosting immune responses, observed as
heightened antibody and cytokine levels, and minimized bacterial colonization [211]. In another
study, the efficiency of a recombinant OipA vaccine in mice was indicated by an elevated interferon-
v response [212]. Hence, a series of investigations shows a connection between this protein and gastric
disorders, but using a combination of factors is suggested as a more accurate predictor of clinical
outcomes.
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Table 3. Different H. pylori OMPs, their given names, receptors, and roles in gastric disorders.

OMP Also known as Receptor PU GC GA
EPIYAD/C
Cag A Cytotoxicity in associated gene Epithelial cell v v
CagL
RPTP-«
RPTP-B
Lipids
Heparin sulphate VacAsIml
Vac A Vacuolating cytotoxin VacAslml VacAslml
Sphingomyelin VacAs2m?2
Fibronectin
B2- integrin
EGFR
Laminin
Hop B/C Alp A/B - - -
Collagen IV
Hop H Oip A Not known v v -
sLex
Hop P Sab A - - -
sLe?
sLeb

Hop S Bab A Bab A2 4 v
A, B, O blood group




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 doi:10.20944/preprints202402.1534.v1

Hop Q - CEACAMSs - v -

Abbreviations: PU, peptic ulcer; GC, gastric cancer; GA, gastric adenocarcinoma; DU, duodenal ulcer; MALT, mucosa-associated lymphoi
factor receptor; v/, genopositive.
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Porcine milk has shown promising therapeutic potential by interfering with SabA adhesion.
Apparently, this product has an inhibitory effect on H. pylori adhesion by expressing Lewis B glycans,
as well as sialyl Lewis X [213]. Multiple trials demonstrated the efficacy of SabA as a potential
recombinant vaccine candidate. One study evaluated a novel immunogenic cocktail, including VacA,
BabA, SabA, FecA and Ompl6, using a reverse vaccinology approach [214,215]. Similarly, a
multiepitope oral vaccine composed of BabA, SabA, OipA, VacA, CagA, cholera toxin subunit B
(CTB) and other components, serves as another promising vaccine candidate [216]. The significant
role of SabA in anchoring H. pylori and its ability to adapt to the gastric environment reinforces the
idea of using this protein as the basis for vaccine design. Furthermore, there is promise in evaluating
glycosphingolipids as therapeutic targets to develop new treatments for pathogenic host-microbe
interactions in the human stomach [217,218].

Research has been performed to evaluate anti-adhesive agents on hopQ genotypes. In one study,
HopQ1 was more sensitive than HopQII to different dietary ingredients [219]. It is suggested that
engineered CEACAMSs conjugated to antimicrobial agents, with higher specificity and affinity for
HopQ, can improve antibacterial efficiencies [220]. Further research is needed regarding prevalence
of this protein, correlation with clinical outcomes and potential targets.

When the efficacy of various drugs to interfere with the interaction between BabA and gastric
mucosa was evaluated, rhamnogalacturonans showed potential as inhibitors of this protein [221]. In
terms of treatment, some progress has been made using mucolytic agents. Findings show that N-
acetylcysteine has the ability to disrupts BabA adhesion to the gastric mucosa. Also, this conserved
disulfide has a synergic effect with antibiotic therapy that boosts the efficiency of each [222]. Pectin
and rhamnogalacturonans show promise as BabA adhesion blockers, indicating that BabA could
potentially serve as a target for designing receptor-mediated adhesion drugs [221].

6. Conclusion

Helicobacter pylori is the principal cause of gastric conditions including peptic ulcers, gastric
carcinoma, mucosa-associated lymphoid tissue lymphoma and gastritis. Its pathogenicity is due to a
combination of virulence factors including — but not limited to — urease, flagella, and OMPs [22,231-
235]. The progression of H. pylori infection to gastric cancer happens through a series of events.
Primary inflammation may develop into acute gastritis and chronic gastritis. At this stage, multiple
factors such as stomach pH, genetic diversity and environmental factors can gradually alter the
gastric condition to cancer. During early stages, most patients are unaware of their condition and so
treatment is not started until symptoms are more advanced. Hence, developing earlier and more
accurate screening methods to enable prevention and eradication of H. pylori at the community level,
as well as better treatment strategies to combat existing infection in patients, are warranted [236].
This will require an in-depth knowledge of different features of this bacterium.

Various indices are involved in determining clinical outcome. Notable among these are host
genetics, particularly relating to the functioning of an individual’s immune system, as well as H. pylori
virulence factors These belong to one of three groups that relate to colonization, development, and
disease [89,237]. OMPs exist in all H. pylori strains as a tool for initial attachment, so are therefore
considered as potential targets for candidate vaccine design. Recombinant vaccines incorporating
CagA, VacA, urease, BabA, SabA, OipA and porin proteins show promise in ongoing trials [215].

Adherence to and colonization of epithelial cells play integral, initial roles in the pathogenicity
of H. pylori. These interactions are mediated via OMPs and other virulence factors. Through adhesion
to gastric mucosa and harnessing its type IV secretion system, the pathogen transfers toxins and
effector molecules into the host cell. OMPs also facilitate inflammation, metaplasia and the ultimate
pathological outcome of gastric cancer [238]. Each OMP has a distinct receptor, so gaining a clear
understanding of them all aids diagnosis of infection and benefits clinical outcomes. In this context,
combined evaluation of different OMPs can be both more rapid and accurate than any single
identification. In one study, by considering various OMPs including OipA, BabA and SabA, the
accuracy of gastric cancer prediction reached 77% [239]. In addition, an association between the
production of some OMPs has been identified. While there is an inverse relationship between OipA



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2024 d0i:10.20944/preprints202402.1534.v1

16

and CagPAlI the presence of this OMP is a prerequisite for CagA translocation [85]. Similarly, at an
83% rate of H. pylori infection, a close relationship between VacA and chronic gastritis is apparent.
Also, a correlation between VacA, BabA2 and OipA with increased risk of gastric cancer has been
revealed [103]. When considering these relationships as potential prognostic markers a number of
challenges such as limited time of survival and geographical regionality of occurrence should be
considered.

Although several H. pylori-related virulence factors are involved in promoting gastric disorders,
the causal relationships that underlie severe gastric conditions are still to be elucidated. The
importance of these factors is crucial from both treatment and management perspectives [71]. It is
also necessary to gain a precise evaluation of the epidemiology of each OMP, as its prevalence at a
population level is different based on geographical region, even within the same country. Other
criteria such as patient age gender, and bacterial genotype are also important [240-242]. To date,
despite considerable research efforts there is no vaccine candidate that is sufficiently far advanced to
be of interest to a pharmaceutical company to take through commercial development. Therefore,
further research and greater investment are warranted in order to improve vaccine design and
efficacy in terms of both prevention and lessening medical burden.
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