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Abstract: Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. It
progresses from simple steatosis to non-alcoholic steatohepatitis (NASH). Fibrosis is often present during
NAFLD progression; however, factors determining which subjects develop NASH or fibrosis are unclear.
Insulin-like growth factor binding proteins (IGFBP) is a family of secreted proteins involved in senescence and
scarring mainly synthetized in the liver. Here we aimed to study the association of IGFBP and its induced
senescence with the progression of NAFLD and liver fibrosis. Materials and Methods: 16 weeks old male C57BL/6
mice weighing 23 + 3 g were fed either Methionine-Choline Deficient or control diet for 2, 8 or 12 weeks. Blood
and liver samples were collected; histological assessment of NAFLD and fibrosis was performed. Fat contents
were measured. Cellular senescence was evaluated in the liver. IGFBP levels were assessed in liver and serum.
Data was expressed as Mean + SD and analyzed by one-way ANOVA followed Tukey’s test. Lineal regression
models were applied for NAFLD and fibrosis progression. p<0.05 was considered significant. Results: IGFBP-1
and -2 were increased in serum during NAFLD. IGFBP-7 was significantly increased in serum in NASH
compared with controls. Senescence increased in NAFLD. Serum and liver IGFBP-7 as well as SA-3-gal activity
increased as fibrosis progressed. Both IGFBP-7 and cellular senescence were significantly higher during NAFLD
and fibrosis in MCD-fed mice. Conclusions: IGFBP-1, -2, and -7 through its consequent senescence have a role in
the progression of NAFLD and its associated fibrosis, being a plausible determinant in the progression from
steatosis to NASH.

Keywords: Insulin-like growth factor binding proteins; liver fibrosis; cellular senescence; steatohepatitis;
steatosis.

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent hepatic disease worldwide, and
it is highly associated to metabolic disorders including obesity, insulin resistance, diabetes, and
metabolic syndrome [1-3]. NAFLD comprises a spectrum of histopathological changes characterized
by abnormally high accumulation of lipids in the liver found in simple steatosis (SS) that progresses
to steatohepatitis (NASH) where inflammation and ballooning are observed [1]. Fibrosis might be
present or absent during both simple steatosis and NASH [4], however factors determining which
patients develop fibrosis are not clear, although metabolic, endocrine, genetic and aging have been
suggested among them [1]. Cirrhosis, hepatocellular carcinoma, and liver failure are the hepatic
endpoints of this disease, but the presence of severe fibrosis is considered the most important
predictor of NAFLD outcome and death risk [5-7].
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Insulin-like growth factor (IGF) binding proteins (IGFBP) is a family of secreted proteins whose
primary function is binding IGFs in the bloodstream, regulating its bioavailability and half-life [8,9].
IGF-independent functions including proliferation, apoptosis and cellular senescence have been
described [8,9]. These proteins are expressed in most tissues, but the liver is the main source for most
of them [9]. A role during chronic liver disease has been suggested for some IGFBP. IGFBP-1
expression is increased in the liver during post-injury regeneration [10] and is considered a
hepatoprotective factor that prevents apoptosis in hepatocytes [11]. In humans, IGFBP-3 expression
is reduced in hepatocellular carcinoma, compared with cirrhotic tissue. IGFBP-3 is regulated by
transforming growth factor (TGF)- promoting hepatic stellate cells (HSC) migration in vitro and
increasing portal hypertension in the bile duct ligation model [12], and might be a key protein during
alcoholic liver disease by inducing lipid droplet and triglyceride accumulation in vitro [13]. IGFBP-7,
a low IGF-affinity protein, is mainly expressed in HSC, being upregulated during transdifferentiation
[14], and activation [15,16]. Expression of IGFBP-7 is significantly elevated in liver biopsies from
patients with fibrosis and cirrhosis [17], whereas inhibition or silencing of this protein prevents
accumulation of extracellular matrix in experimental models of liver fibrosis [16,17]. IGFBP-7 has
shown to induce cellular senescence [18]; in fact, IGFBP-7 expression in HCC tissue is lower
compared with healthy tissue [19]. Regarding metabolic abnormalities including NAFLD; low levels
of IGFBP-2 have been reported in obesity, type 2 diabetes and metabolic syndrome [20], whereas
IGFBP-5 is increased in NASH [21]. Serum IGFBP-3 is decreased in patients with NAFLD [22]
whereas IGF-1/IGFBP-3 ratio has been associated with lower likelihood of NAFLD and lower grade
steatosis [23] and, histopathologic features of the liver biopsy including ballooning and inflammation
[24]. Interestingly, increased expression of IGFBP-1 and IGFBP-7 in the liver might contribute to
hepatic insulin resistance [25] and further fat accumulation.

Accordingly, IGFBPs might have a role during NAFLD, as well as on the development of fibrosis,
however this is not clear. The aim of the study was to assess IGFBPs in both serum and liver of mice
during the progression of NAFLD and the onset of fibrosis in this disease, we hypothesized that
IGFBP, through their IGF-independent actions might have an actual role in the development of the
disease.

2. Materials and Methods

2.1. NAFLD induction

Male C57BL/6 mice of 16 weeks of age and weighing 23 + 3 g were obtained from the Animal
Care Facilities at the Experimental Medicine Unit from School of Medicine, UNAM at Hospital
General de México, and maintained under controlled conditions. Both food and water were allowed
ad libitum. All animals received humane care; all procedures were approved by the Institutional
Committee of Care and Use of Laboratory Animals (FM/DI/005/2022 approved on September 6, 2022)
and agree with the national guidelines and the ARRIVE guidelines for animal use and care in research.
In order to develop different stages of NAFLD, mice were randomly assigned to be fed either a
Methionine-Choline Deficient (MCD) or a Methionine-Choline Complete (Control) Diet (MP
Biomedicals, CA, USA), during 2 (MCD 2w, n=19; Control 2w, n=7), 8 (MCD 8w, n=17; Control 8w,
n=9) or 12 weeks (MCD 12w, n=20; Control 12w, n=8).

2.2. Sample collection

After appropriate time, mice were anesthetized with Xylazine-Ketamine. Blood was collected
and allowed to clot at 4°C; serum was obtained by centrifugation at 750 xg for 10 minutes and stored
at -80°C until assayed. Liver samples from the left and medial lobes were collected, snap frozen in
liquid nitrogen and stored at -80°C until assayed. Samples from the left lobe were divided to either
be fixed in 3.7% formaldehyde-Phosphate buffered saline (PBS) and embedded in paraffin or, to be
embedded in Tissue-tek OCT (Sakura Finetek, CA, USA) and stored at -20°C until assayed.

2.3. Histological assessment
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Histological evaluation of fatty liver disease was performed in Hematoxylin-Eosin-stained
sections according to the Non-alcoholic fatty liver disease Activity Score (NAS) [26]. Fibrosis was
assessed in Masson’s Trichrome stained sections and classified according to their fibrosis degree [26].
Liver fat contents were assessed in frozen sections stained with Oil-Red O (Abcam, MA, USA) and
quantified by a morphometric analysis using Image ] v1.53k software (NIH, MD, USA) according to
[27]. Briefly: 10 optic fields were captured, and the percentage of red-stained area was calculated as
a percentage of the complete area of the optic field.

2.4. Senescence analysis

Cellular senescence was assessed in frozen sections embedded in Tissue-Tek OCT using the
Senescence Detection Kit (Abcam, MA, USA). A blue stain was indicative of the activity of the
senescence-associated 3-galactosidase (SA-p-gal). A morphometric analysis was performed by using
Image J v1.53k software.

2.5. Liver protein isolation

Total protein was obtained from each sample using the PBS-Protease Inhibitor Cocktail Set III
(Calbiochem, Darmstadt, Germany). Protein integrity was tested by SDS-PAGE prior to the assays.

2.6. IGFBP assessment

IGFBP-1, -2, -3, -5, -6, and -7 from the livers and serum were quantified by multiple suspension
arrays (Milliplex MAP, MIGFBPMAG43K, Merck-Millipore, Billerica, MA, USA) according to
manufacturer instructions. Bead regions were assigned as follows: IGFBP-1: 27; IGFBP-2: 39; IGFBP-
3: 42; IGFBP-5: 55; IGFBP-6: 61; IGFBP-2: 72.

2.7. Statistics

Data were analyzed by SSPS v22 and presented as Mean + standard deviation (SD). Subjects
receiving control diet did not exhibited differences attributable to time of exposure to the diet or
aging and were analyzed as one single control group. Subjects receiving MCD diet were categorized
according to NAS or to fibrosis stages. One-way ANOVA followed by Tukey’s post-hoc test was
performed. Independent Linear regression models for the stage of NAFLD and fibrosis were used to
explore the associations between time of exposure to MCD diet, the degree of fibrosis, and the levels
of IGFBP (both crude and adjusted by hepatic lipid content). P<0.05 was considered significant.

3. Results

3.1. Histological classification

Subjects from the different times of treatment were classified by NAS. Accordingly, all 24
subjects fed Control were classified as healthy (Control; NAS=0). From MCD-fed mice, 10 were
classified as simple steatosis (SS, NAS=1-2), 27 as borderline NASH (bNASH; NAS=3-4) and 19 as
definite NASH (NASH; NAS= 5-8). Representative micrographs are shown in Figure 1a. None of the
Control subjects exhibited fibrosis. In contrast, from MCD-fed subjects, 7 were FO (no fibrosis), 27
were F1C (portal fibrosis) and 22 were F2 (portal and perisinusoidal fibrosis); no subjects with F3 or
cirrhosis were found in this study. Figure 1b shows representative micrographs of the stages of
fibrosis.
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(b)

Figure 1. NAFLD stages and fibrosis. Mice were fed either methionine-choline deficient or control
diet during 2, 8 or 12 weeks. Liver sections were stained with Hematoxylin-eosin or Masson’s
trichrome to assess NAS and fibrosis degree respectively. (a) Progression of NAFLD (SS: simple
steatosis; bNASH: borderline NASH; NASH: definite NASH); (b) Fibrosis progression (F0: no fibrosis;
F1C: portal fibrosis; F2: portal and perisinusoidal fibrosis). Bar = 50 pum.

3.2. Liver fat contents

Fat contents were significantly higher in MCD-fed mice compared with controls regardless of
the time of consumption, the stage of NAFLD or fibrosis degree (Figure 2a). No differences in fat
were observed among SS, bBNASH and NASH (Figure 2b). Consistently, when analyzed according to
the fibrosis degree, increased fat was observed in MCD fed mice, however no differences in fat

contents were found from FO to F2 (Figure 2c).

Fat (%)
Fat (%)

Control SS b-NASH NASH Control FO  Fic  F2
(b) (c)

Figure 2. Hepatic lipid contents. Mice were fed either methionine-choline deficient or control diet for
2, 8 or 12 weeks. Livers were collected and frozen sections were stained with Oil-Red O.
Morphometric assessment of lipid contents was performed and associated to the stage of NAFLD or
the fibrosis degree. (a) Micrographs showing the lipid accumulation (red staining) observed during
NAFLD progression; (b) Percentage of lipids according to the NAFLD stage; (c) Percentage of lipids
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according to the fibrosis degree. SS: simple steatosis; bNASH: borderline non-alcoholic steatohepatitis;
NASH: non-alcoholic steatohepatitis. Mean + SD. One-way ANOVA followed by Tukey’s post-hoc
test. *p<0.05. Bar =100 pum.

3.3. IGFBP levels in NAFLD

3.3.1. Liver tissue

IGFBPs were analyzed in liver and serum according to the stage of NAFLD. In the liver, IGFBP-
2 expression was significantly increased during all NAFLD stages compared to controls (Figure 3c)
whereas, IGFBP-3 expression was higher in bNASH compared with SS and NASH (Control =
88.6+12.1, SS = 67.0+14.2, LNASH = 110.5+30.3, NASH= 66.0+18.5 pg/mg of liver; p<0.05), other IGFBP
did not exhibit any change in the hepatic tissue related to NAFLD progression. However, using linear
regression models, statistically significant associations were observed. In both crude and adjusted by
hepatic lipid contents, IGFBPs were predictor of NAFLD stages as follows: IGFBP-1 for bNASH and
IGFBP-2 for every NAFLD stages (SS, bNASH and NASH)(Table 1). A crude significant predictor in
liver was IGFBP-6 (SS and NASH), whereas IGFBP-3 adjusted by lipids was a predictor for NASH
(Supplemental Table 1).

3.3.2. Serum

In serum, IGFBP-1 and -2 were increased in all NAFLD stages, but no differences were observed
among them (Figure 3b, 3d); IGFBP-7 was increased during both borderline and definite NASH
compared with controls (Figure 3f). IGFBP-3, -5 and -6 serum levels did not exhibited differences
related to NAFLD. When analyzed by linear regression (Table 1), by both crude and adjusted by lipid
contents, serum IGFBP-1 was an independent predictor of SS, PNASH and NASH, whereas IGFBP-2
and -7 were predictors for bNASH. Crude significant predictors in serum were IGFBP-2 (SS and
NASH) and IGFBP-7 (SS). When adjusted by lipids, predictors in serum were IGFBP-3 (hNASH and
NASH; Supplemental Table 1) and IGFBP-7 (NASH). Table 1 shows the coefficients (95% CI) for the
associations that were significant for the stages of NAFLD in the crude analysis and remain
significant after adjusting by hepatic lipid contents; these associations were confirmed for IGFBP-1, -
2 and -7. Interestingly, analyzing according to time of exposure to MCD diet, hepatic IGFBP-2 (crude
and adjusted) as well as serum levels of IGFBP-2 and -7 (crude) were shown to be predictors for

progression of NAFLD.
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Figure 3. IGFBP levels during NAFLD. Mice were fed either methionine-choline deficient (MCD) or
control diet during 2, 8 or 12 weeks. Hepatic and serum levels of IGFBPs were assessed and analyzed
according to the stage of NAFLD evaluated by NAS. (a) Hepatic expression of IGFBP-1; (b) IGFBP-1
serum levels; (c) IGFBP-2 hepatic expression; (d) IGFBP-2 serum levels; () IGFBP-7 hepatic expression;
(f) IGFBP-7 serum levels. Mean + SD. One-way ANOVA followed by Tukey’s post-hoc test. *p<0.05.
SS: simple steatosis; bNASH: borderline NASH; NASH: definite NASH.

Table 1. Linear regression models according to NAFLD stage.

IGFBP-1 IGFBP-2 IGFBP-7
Crude Adjusted Crude Adjusted Crude Adjusted
Exposure -3.195 13.519 -21.593 -27.348 5.875 9.258
(-26.99, (-11.41, (-38.68, (-47.76, (-2.50, (-0.01,
20.60) 38.45) -4.50) -6.93)* 14.25) 18.52)
SS 38.493 62.778 122.548 116.826 18.722 24.296
(-25.85, (-18.88, (78.25, (52.09, (-3.93, (-6.05,
) ) 102.84) 144.43) 166.84)***  181.56)**  41.38) 54.65)
Livertissue  p\AsH 5552 79.380 94.752 107422 17358 10.902
(9.35, (12.88, (61.80, (46.69, (1.10, (-13.81,
101.71)* 145.88) 127.70*** 168.16)**  33.62) 35.62)
NASH 3.672 28.816 89.745 105.661 21.080 10.560
(-51.09, (-51.37, (52.11, (38.16, (1.80, (-19.24,
58.44) 109.01) 127.38)***  173.16)**  40.36) 40.36)
Exposure -17.108 -9.390 23.904 14.966 -0.013 0.277
(-38.35, (-33.877, (8.63, (-2.18, (-1.00, (-0.94,
4.13) 15.10) 39.17)***  32.11) 0.97)* 1.49)
SS 100.763 138.635 97.291 56.635 3.890 3.433
Serum (45.55, (53.61, (57.60, (-2.89, (1.32, (-0.79,
155.98)**  223.66)**  136.98)***  116.16) 6.46)** 7.65)
bNASH  144.465 187.488 86.343 52.058 3.853 3.456
(101.25, (126.29, (55.28, (9.21, (1.84, (0.42,

187.68)%**  248.69)***  117.41)***  94.91)* 5.86)** 6.49)*
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NASH 95.872 167.234 82.528 42.754 4.768 3.938
(46.69, (89.32, (47.17, (-11.80, (2.48, (0.07,
145.06)***  245.15)***  117.89)***  97.31) 7.06) 7.80)*

SS: Simple steatosis; bNASH: borderline non-alcoholic steatohepatitis; NASH: non-alcoholic steatohepatitits.
Data is shown as Coefficient (95% CI). *p<0.05; **p<0.01; ***p<0.001

3.4. IGFBP during mild to moderate fibrosis in NAFLD

3.4.1. Liver tissue

Some IGFBPs have been related to fibrosis in different tissues [28-31]; here in MCD-induced
NAFLD, we observed an increase in the expression of IGFBP-2 and IGFBP-7 in the liver (Figure 4c,
4e). IGFBP-2 was increased in all MCD-fed mice compared with controls; according to fibrosis, FO
exhibited the highest expression in the hepatic tissue and it decreased in F1C and F2 (Figure 4c).
Regarding IGFBP-7, this protein was increased in F2 compared with controls and FO, but no
differences were observed when compared with F1C (Figure 4e). Similarly, according to the degree
of fibrosis, statistically significant associations were observed in the liver, for both crude and adjusted
by hepatic lipids, in IGFBP-2 (FO, F1C, and F2), and IGFBP-7 (F2); whereas a crude predictor was
IGFBP-5 (FO and F1C; Supplemental Table 2) and, IGFBP-ladjusted by lipids was a significant
predictor for FO and F2 (Table 2).

3.4.2. Serum

In serum, IGFBP-1 and -2 were increased in all MCD-fed mice, but no differences were observed
among the fibrosis degrees (Figure 4b, 4d); IGFBP-7 was increased in mice with fibrosis; F1C and F2
compared with controls (Figure 4f). IGFBP-3, -5 and -6 serum levels did not exhibited differences
related to fibrosis. Linear regression models showed a statistically significant association, in both
crude and adjusted by lipids, for IGFBP-1 (F0, F1C, and F2), IGFBP-2 (F1C and F2), and IGFBP-7 (F1C
and F2); IGFBP-2 was a crude predictor for F1C (Table 2) and IGFBP-6 for F2 (Supplemental Table 2) .
Regarding time of exposure to MCD diet, a significant association with fibrosis was observed only
for serum levels of IGFBP-2 (crude). Table 2 shows the coefficients (95% CI) for the associations that
were significant for the fibrosis degree in the crude analysis and remain significant after adjusting by

lipids.
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Figure 4. IGFBP during liver fibrosis in NAFLD. Mice were fed either methionine-choline deficient

(MCD) or control diet during 2, 8 or 12 weeks. Hepatic and serum levels of IGFBPs were assessed and
analyzed according to the fibrosis degree during NAFLD. (a) IGFBP-1 hepatic expression; (b) IGFBP-
1 serum levels; (c) IGFBP-2 hepatic expression; (d) IGFBP-2 serum levels; (e) IGFBP-7 hepatic
expression; (f) IGFBP-7 serum levels. Mean + SD. One-way ANOVA followed by Tukey post-hoc test.
*p<0.05 vs Control; **p<0.05 vs Control and F0. SS: simple steatosis; bNASH: borderline NASH; NASH:

definite NASH.
Table 2. Linear regression models according to fibrosis degree.
IGFBP-1 IGFBP-2 IGFBP-7
Crude Adjusted Crude Adjusted Crude Adjusted
Exposure 5 137 17.899 -11.963 -9.707 1.768  4.398
(-31.041,  (-6.99, (-23.80, (-23.96, (-6.34, (-4.95,
26.668) 42.79) -0.12)* 4.54) 9.87)  13.75)
FO 43925 108.685 167.126 169.176 2012 8.565
(-30.11, (40.01, (137.47, (130.50, (-18.63, (-17.24,
Liver 117.96) 177.36)**  196.78)***  207.85)***  22.66) 34.37)
tissue  FIC 15.546 21.507 93.984 81.854 15926  9.558
(-42.31, (-41.08, (69.98, (41.13, (-0.20, (-13.96,
73.40) 84.10) 117.98)***  122.58)***  32.06) 33.07)
F2 37.069 73.961 70.058 52.506 28.996 29.142
(-18.68, (9.41, (46.91, (13.64, (12.89, (4.89,
92.82) 138.51)* 93.21)***  91.37)** 45.10)** 53.39)*
Exposure .14 280 -11.338 22.962 12.738 -0.230  -0.100
(-39.42, (-39.88, (6.02, (-6.50, (-124, (-143,
10.86) 17.21) 39.90)* 31.977) 0.78)  1.23)
FO 132.477 173.399 90.865 46.646 1.722  2.057
(67.16, (94.64, (46.85, (-6.435, (-0.90, (-1.60,
Serum 197.79)***  252.16)***  134.88)***  99.73) 435)  5.71)
FIC 116.838 169.778 84.247 49.147 4740 4.020
(67.17, (97.10, (50.78, (0.77, (274,  (0.69,
166.50)***  241.56)***  117.72)***  97.52)* 6.74)*** 7.35)*
F2 118.259 184.027 89.224 61.460 4566  4.522
(69.09, (109.10, (56.09, (11,57, (259, (1.08,
167.43)***  258.06)***  122.36)***  111.35)* 6.54)*** 7.96)*

Data is shown as Coefficient (95% CI). *p<0.05; **p<0.01; ***p<0.001.

3.5. Cellular senescence during NAFLD and fibrosis
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The observation of IGFBP-7 increased in serum in both borderline and definite NASH stages as
well as during F1C and F2 fibrosis stages combined with its consisting identification as a predictor
by both crude and adjusted by lipid model, suggested a possible role for this protein in the
progression of NAFLD. We assessed cellular senescence as a mechanism mediated by IGFBP-7 that
has been shown to be involved in the progression of chronic liver disease [32,33]. As expected, cellular
senescence was increased during NAFLD compared with healthy controls. SA-B-gal activity was
significantly increased in SS subjects compared with controls, and it was significantly higher in
bNASH and NASH compared with controls and SS (Figure 5a). Regarding fibrosis, cellular
senescence progressively increased during fibrosis compared with healthy controls. When analyzed
according to the fibrosis stages, F2 exhibited higher percentage of senescent cells compared with FO
and F1C (Figure 5b) suggesting that IGFBP-7 and its induced senescence might have a role in the
progression from mild to moderate fibrosis during NAFLD.

10+ * 10+ K%
%k %k
2 ® T g . 1
S . s
s 6 ® 61
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Q4 @ 4 1=
< <
v 2 0 2
olmmmm [ . ol
Control SS bNASH NASH Control FO  F1C  F2
(a) (b)

Figure 5. Cellular senescence in NAFLD and fibrosis. Non-alcoholic fatty liver disease was induced
by MCD-diet. Cellular senescence was evaluated in liver frozen sections as the percentage of activity
of SA-B-Gal. (a) Cellular senescence during NAFLD; (b) Cellular senescence during liver fibrosis
associated to NAFLD. Mean + SD. One-way ANOVA followed by Tukey post-hoc test. *p<0.05 vs
Control; **p<0.05 vs Control and F0. SS: simple steatosis; bLNASH: borderline NASH; NASH: definite
NASH.

4. Discussion

IGFBP superfamily has been related to insulin resistance [25,34], fat deposition and other cellular
processes including senescence [9]. All these factors have a clear role in the development of NAFLD.
Here we assessed a group of IGFBP in both liver and serum according to the progression of NAFLD
and fibrosis in the MCD mouse model. Our results show significantly increased serum levels of
IGFBP-1, and -2 in mice with NAFLD and fibrosis. IGFBP-7, a low affinity IGFBP, was increased in
serum as well as in the liver tissue; interestingly, it was elevated in serum in bNASH and NASH as
well as during fibrosis in F1C and F2, suggesting a role for IGFBP-7 in the progression of NAFLD and
the onset of fibrosis in this model. Linear regression models confirmed the predictive value of IGFBP-
1, -2 and -7 for both, NAFLD stages and fibrosis degree.

As expected, we observed higher fat contents in the liver of all NAFLD subjects compared with
controls, although no differences in the amounts of fat were observed among the stages of the disease
(Figure 2b), or among the different degrees of fibrosis observed: F0 to F2 (Figure 2c).

For IGFBP-1, we observed differences in serum, related to both NAFLD and fibrosis (Figure 3b,
4b). This protein is known to possess a hepatoprotective role [11]; IGFBP-1 is among the first genes
over expressed after a partial hepatectomy [10], it also increases during liver disease [35,36]. IGFBP-
1 is transcriptionally regulated by insulin [37], and has been linked, as well as IGFBP-2, with insulin
sensitivity [38]. On the other hand, it has been shown that hedgehog, a well-known fibrogenic
pathway, also regulates IGFBP-1 the expression [39], suggesting this peptide might also be a
fibrogenic mediator in the liver. Serum levels of IGFBP-1 were a significant crude and adjusted
predictor for SS, bLNASH and NASH (Table 1). Regarding fibrosis, hepatic IGFBP-1 was an adjusted
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predictor for FO and F2, whereas serum levels of this protein were significant predictors for F0, F1C
and F2. We consider these associations to be related to both, hepatic lipid contents and the onset of
liver fibrosis, according to Hagstrom et. al, IGFBP-1 levels might increase even more as fibrosis
progresses [29].

IGFBP-2 has been extensively studied in obesity, type 2 diabetes, insulin resistance and
metabolic syndrome [34,40-43]. In fact, this peptide has been suggested as a possible protector against
obesity and insulin resistance [44]. However, not much data is available during NAFLD. Here, we
observed an increase in IGFBP-2 during NAFLD and fibrosis, in both liver and serum. Interestingly,
during fibrosis IGFBP-2 was significantly elevated in the liver during FO compared with F1C and F2,
however both stages exhibited higher expression compared with controls. Hepatic expression of
IGFBP-2 was a significant crude and adjusted predictor of SS, LNASH and NASH, whereas its serum
levels were crude predictor as well. The increased levels of IGFBP-2 observed in the MCD-induced
NAFLD might be explained by the fact that this model is characterized by low bodyweight and lacks
insulin and leptin resistance. However, it is noteworthy the effect observed in the liver during fibrosis,
where this peptide was a significant predictor of fibrosis progression in both, crude and adjusted by
lipid models. Although IGFBP-2 has been suggested to have a role in idiopathic pulmonary fibrosis
[30,31], its role in hepatic fibrosis is not clear.

Regarding IGFBP-7, this peptide is a well-known inductor of cellular senescence [45-47], and it
is implicated in HSC activation, which in turn produce ECM accumulation and fibrosis [15,16].
Cellular senescence has also been related to HSC activation and NAFLD as well [33]. IGFBP-7 was
significantly increased in the serum of subjects with bNASH and NASH, compared with controls
(Figure 3f). IGFBP-7 progressively increased in both liver and serum according to fibrosis; in the liver
its expression was significantly higher in F2 (Figure 4e) whereas its serum levels rose from F1C
(Figure 4f). When adjusted by lipid content in the liver, serum IGFBP-7 was a predictor of NASH
(Table 1). Regarding fibrosis, IGFBP-7 was a predictor (crude and adjusted by lipids) of F2 (Table 2).

IGFBP-7 levels were in accordance with cellular senescence, assessed as the percentage of
activity of SA-B-gal. During NAFLD progression, higher percentages of senescent cells were detected
in bNASH and NASH compared with controls and SS. However, SS also exhibited increased levels
of senescent cells compared with controls (Figure 5a). In a similar manner, SA-$3-gal activity was
augmented as fibrosis progressed from mild to moderate, but high levels of senescent cells were also
observed in FO (Figure 5b). Fat depots have also been implicated in the induction of cellular
senescence in the affected hepatocytes as a consequence of lipotoxicity, increased oxidative stress as
well as DNA damage and telomere erosion [33]. Our data agrees with the association of increased fat
contents in hepatocytes and exhibiting higher percentage of senescence [33]. However, as seen in SS
and FO, hepatic fat depots are not enough to induce the progression of NAFLD, nor fibrosis, instead
the increase in IGFBP7 followed by cellular senescence might be a trigger to progress to NASH as
well as the onset of ECM accumulation, by activating HSC. Senescence is known to increase in aging
organs and tissues [48], however we do not consider aging a factor affecting our results, since we did
not observed differences in SA-f3-gal activity in the livers of mice fed control diet during the 2, 8 or
12 weeks, even though they were 6-10 weeks older at sample collection, in fact they were reported as
a single control group. Cellular senescence is involved in a range of chronic liver disorders including
viral hepatitis B and C [49], alcoholic liver disease [32], genetic haemochromatosis [50] and NAFLD
[33], however the mechanisms inducing senescence in chronic liver disease remain unclear. NAFLD
and its derived fibrosis occur simultaneously; however, not all subjects progress at the same rate and
fibrosis is not strictly associated to NASH [4]. Serum levels of IGFBP-7 were significantly increased
in the subjects with fibrosis (F1C and F2), but its hepatic expression was only increased in the F2
livers. Regarding senescence and fibrosis, we observed higher percentages of activity of SA-p-gal in
the liver from all MCD-fed subjects that increased with the fibrosis progression.

Several factors determine which subjects develop fibrosis during NAFLD, the well documented
oxidative stress [51], endoplasmic reticulum stress, and, as suggested by our findings, IGFBP-7 and
its resulting cellular senescence. Other features of NAFLD, including inflammation and ballooning,
might be implicated in the increased senescence observed in bNASH and NASH. In our results
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increased IGFBP-1, -2, -7 and senescence were the most important determinants for the progression
to NASH and fibrosis in the MCD-induced NAFLD mouse model.

One limitation of our study is that we observed only mild to moderate fibrosis; further studies
in severer stages of fibrosis, cirrhosis and hepatocellular carcinoma derived from NAFLD are needed
in order to establish a complete association between fibrosis, IGFBP-7 and senescence during NAFLD.
Another limitation is in the MCD model, where NAFLD occurs in the absence of metabolic affection,
however we consider our data as valuable since the presence of such metabolic affections might also
influence IGFBP expression as well as senescence being a confounding factor when relating them to
hepatocellular lipid content and fibrosis.

5. Conclusions

In conclusion, IGFBP-1, -2, -7 increases were significant predictors for the progression of NAFLD
and fibrosis in the MCD mouse model. Particularly IGFBP-7, a molecule involved in the activation of
HSC and accumulation of ECM, and a well-known inductor of cellular senescence might be
determinant for the progression to NASH and fibrosis. Both IGFBP-7 and its consequent senescence
have a role in the progression from SS to NASH and during the onset of fibrosis and its progression
from mild to moderate.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org., Table S1: Linear regression models for IGFBP-3, 5, and 6 for NAFLD stage; Table
S2: Linear regression models for IGFBP-3, 5, and 6 for fibrosis.
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