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Abstract: The European Union Water Framework Directive (2000/60/EC; WFD) aims to achieve a good ecological
and chemical status of all bodies of surface water by 2027. The development of an integrated guidance on surface
water chemical monitoring (e.g. WFD Guidance Document No. 7/19) has been transferred into national German
law (Ordinance for the Protection of Surface Waters, OGewV). For the majority of compounds, this act requires
a monthly sampling frequency to assess the chemical water quality status of a surface water body. To evaluate
the representativeness of the sampling strategy under the OGewV, high-frequency online monitoring data is
investigated under different sampling scenarios and compared with current, monthly grab sampling strategy.
About 23 million data points were analyzed for this study, three chemical parameters (dissolved oxygen, nitrate-
nitrogen, chloride concentration) and discharge data were selected from four catchment of different sizes
ranging from 51391 km? to 84 km? (Elbe, Vereinigte Mulde, Neifle and two stations at Lockwitzbach). In this
paper we proposed short-term online-monitoring (STOM) as a sampling alternative. STOM considers the
placement of online sensors over a limited duration and return interval. In general we: (I) compare the results of
conventional grab sampling with STOM, (II) investigate the different performance of STOM and grab sampling
using discharge data as proxy for analyzing event-mobilized pollutants and (IIl) investigate the related
uncertainties and costs of both sampling methods. Results show, that STOM outperforms grab sampling for
parameters where minimum/maximum concentrations are required by law as the probability to catch a single
extreme value is higher with STOM. Furthermore, parameters showing a pronounced diurnal pattern, like
dissolved oxygen, are also captured considerably better. The performance of STOM showed no substantial
improvements for parameters with small concentration variability, as nitrogen-nitrate The analysis of discharge
events as a proxy parameter for event-mobilized pollutants proved that the probability of capturing samples
during events is significantly increased by STOM.

Keywords: Online monitoring; Sampling; Water Framework Directive; Event Analysis; Water Quality; Events

1. Introduction

The European Parliament and the Council established a framework for community action
in the field of water policy called Water Framework Directive (WFD) in 2000, aiming at
maintaining and improving the aquatic environment. The goal of the third implementation cycle
(2022-2027) is that the member states achieve a good ecological, hydro-morphological and
chemical status of their water bodies by 2027. Regulations for monitoring efforts are based on
article 8 and Annex V of the WFD, translated into German law, found in § 10 and Annex 10 of
the Ordinance for the Protection of Surface Waters, OGewV (Oberflichengewasserverordnung).
Detailed explanation for the implementation and procedures can be found in a practitioners
guideline [1]. River Basin Management Plans and Programmes of Measures are required, where
decisions on improving the status are based on monitoring results of water quality parameters
(chemical) as well as biological and hydro-morphological (ecological) parameters in
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combination with supporting quality elements (e.g. physico-chemical parameters). This study

focused on the assessment of the chemical status, for which the WFD developed a guidance for

water chemical monitoring systems to support the design of a comprehensive monitoring
network (Guidance No. 19, 7; [2,3]). The WED Article 7 distinguishes the monitoring objectives
as surveillance monitoring, operational monitoring and investigating monitoring respectively.

Surveillance monitoring should identify the status of the water body, recognize long-term

changes and provide guidance for future monitoring campaigns. Operational monitoring

surveils waterbodies, which fail or are at risk of failing their environmental objective as well as
to verify the effectiveness of measures. Investigative monitoring intends to identify the reason
for unknown degradations of the water quality, e.g. during accidents leading to leakage or spills
of pollutants.

Researchers have identified and summarized several weak points in the implementation of

the WFD monitoring strategy [5-8]. In this work we focus on sampling strategies. The Annex V

1.3.4 of the WFD, suggests a sampling frequency for physico-chemical quality elements of three

months, except for priority substances which should be sampled on a monthly basis. However,

those intervals serve only as orientation values. The member states can adapt intervals “based
on technical knowledge and expert judgement”, as long as “sufficient data for a reliable
assessment of the status of the relevant quality element” is provided (Annex V, 1.3.4. Frequency
of monitoring, WED). Exact values for reliability are not defined, however certain intervals are
suggested by the WFD. Furthermore, “frequencies shall be chosen so as to achieve an acceptable
level of confidence and precision”, and the achieved confidence and precision should be stated
in the river basin management plan. According to the WFD, the German OGewV defines a
sampling frequency of four up to 13 times per year for physico-chemical parameters and
monthly sampling for chemical parameters in rivers. To our understanding, these frequencies
are mainly a compromise between the practical feasibility of the executing authorities and the
vast amount of water bodies that have to be monitored. Whether current sampling regimes
provide a reliable assessment of the water quality status is under discussion. According to

Carstensen (2007) [9] the precision of classification depends on (1) the confidence level chosen,

(2) the magnitude of random variation, and (3) the number of observations. He calculated error

rates up to + 50-70% on weekly datasets and suggested the need to use up to 500 observations

for nutrients and phytoplankton measurements to characterize a water body and to ensure a

precise classification. This suggests substantially higher required monitoring efforts than the

ones envisaged in WFD. Previous research showed that the required minimum sampling
frequency depends on sampling location [10,11], the analyte [11,12] and temporal variability

[9,13-15]. Skeffington et al. (2015) [15] demonstrated the difficulties related to a reliable

assessment of the five quality classes with a systematic resampling of a high temporal resolved

time series where “In some cases, monthly sampling for a year could result in the same water
body being assigned to three or four of the WFD classes with 95% confidence, due to random
sampling effects. In the most extreme case, the same water body could have been assigned to
any of the five WFD quality classes.”

We want to demonstrate two applied limitations of the current sampling regime by
comparing grab samples with high resolution online monitoring data:

e Limitation 1: Grab sampling is usually carried out by staff of the governmental
environmental agencies, employed with regular working hours. Thereby, it is rare to have
nighttime samples. Especially for parameters that have a diurnal pattern like dissolved
oxygen (DO), pH or NOs-N only daytime sampling introduces systematic errors and leads
to an over- or underestimation of the true value [16]. For example, Minaudo et al. (2015) [17]
showed that the diurnal amplitude for the DO concentration can be of several mg/l during
summer, especially for eutrophic rivers. As DO is highest during light periods, those rivers
would be categorized better than they are [11].

e Limitation 2: (Heavy) rainfall events cause discharge higher than baseflow, mobilizing
particles and particle bound nutrients/pollutants within the catchment or the stream bed.
Such events may cause considerable variation in the concentrations of particle-bound
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compounds. They often account for the majority of the annual load of pollutants in large
and also smaller river systems [18-20]. Depending on many factors including land use,
season, length of the antecedent dry weather period and others, they can reach considerable
concentrations and loads in creeks and streams [21,22]. Rabiet et al. 2010 showed that more
than 89% of the total load of the herbicide diuron was mobilized during storms in August
2007; Glaser et al. 2020 and Zhou et al. 2022 obtained similar results for the load
mobilization of PAHs and pesticides [19,23,24]. Particle mobilizing events occur rarely and
with a short duration, which reduces the probability to capture them with a monthly grab
sampling regime. Skarbovik et al. (2012) [25] analyzed the effect of sampling frequency of
suspended sediments, on the load calculation and showed that weekly sampling resulted
in error rates as high as 70%, monthly sampling could yield errors up to 400%. However,
other studies, e.g. by Torres et al. (2022) [26] indicated that even constituents easily
transported by water (such as sediments and nutrients) require more than 50 samples/year
to provide a small error (< 10%, 95% confidence interval).

In comparison to research on the effect of sampling frequency focusing on a load calculation
[12,27-31], the effects of frequency on regulatory parameters are underrepresented [9,11,14]. We
want to address this research gap in our study and evaluate alternatives to the current sampling
strategy that could reduce monitoring costs and efforts and increase information on critical
ecologic conditions in streams. Therefore, we propose “short-term online-monitoring” (STOM)
as compromise between the current grab sampling regime and a continuous monitoring station.
According to Capodaglio and Callegari (2009) [32] online monitoring is usually defined as the
unattended sampling, analysis and reporting of a parameter. It produces a sequence of data at
much greater frequency than that permitted by manual (grab) sampling and it allows real-time
feedback for either process control, water quality characterization for operational or regulatory
purposes, and alert/alarm purposes. Unlike discharge, online monitoring for river water quality
is rarely used by governmental for monitoring purposes, and mainly focus on big river
catchments. Besides the costs for sensors and their maintenance, limitations in the available set
of parameters are reasons for the infrequent use. We propose STOM as an alternative to grab
sampling. STOM considers the installation of a continuously monitoring sensor only for defined
intervals and for a limited duration. To simulate STOM, we selected four parameters (i.e.
dissolved oxygen, nitrate-nitrogen, chloride and discharge) and processed highly resolved data
from five monitoring stations at four watersheds of different sizes in Saxony. The parameters
were chosen due to different mobilization, transport and reactivity properties. DO has a strong
diurnal and seasonal pattern, Nitrate also has a pronounced seasonal amplitude mobilized from
different sources, while chloride is considered as a non-reactive geogenic background signal.
Discharge events were selected from the flow data and used as a proxy signal for event mobilized
compounds.

2. Materials and Methods
Catchments and monitoring sites

The data evaluated in this study originates from five monitoring stations in Saxony,
Germany (Figure 1 and Table 1). The large (sub-) catchments of Elbe (51 387 km?), Mulde (6207
km?) and Neife (1418 km?) are monitored by the Saxon State Operational Agency for
Environment and Agriculture (BfUL), data was provided by the Saxon State Office for the
Environment, Agriculture and Geology (LfULG). The same agencies are also in charge of the
grab sampling program to comply with the German translation of the WFD. At Lockwitzbach
(84 km?) there are two stations operated by the Chair for Urban Water Management of TU
Dresden [33]. The stations are about 6 km apart from each other, one is located before the stream
reaches the city of Dresden (MS6, upstream Dresden), the other shortly before the confluence
with Elbe (MS4, downstream Dresden). According to the results of the latest river management
plan period, all four waterbodies fail to a good chemical status, especially due to the exceedance
of annual average concentration limits of total-phosphorus, Mercury, Polycyclic Aromatic
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Hydrocarbons [34].

Table 1. Station and catchment characteristics, land cover data taken from CORINE Land Cover 2012 [35],
baseflow index (BFI) calculated from sub-hourly discharge data.

Land Cover Type (%)

Drai
rainage Agriculture and  Fores BFI

Stati Catch t
ation atchment rea [km?| Settlements

pastures t
MS6 LOCkZ;’I“Zba 73.3 9.2 72.8 180 0.71
MS4 LOCkV;':thaC 84.0 18.0 67.5 145 0.70
Gorlitz "SI 637 130 51.0 350 0.81
Neisse
Bad  Vereinigte
Ditben Mulde 6169.9 11.8 55.7 320 0.78
Schona Elbe 51391.0 6.4 54.9 376 0.77
Bad.Diiben
1 Saxony
. Gorlitz
™~ A Monitoring Station
[ Mulde Catchment
[ Elbe Catchment 0 25 50 75 km
[ Lausitzer NeiBe Catchment I .
[ Lockwitzbach Catchment

Figure 1. Catchments of the investigated streams and location of the monitoring stations.

Water quality and discharge data

The study evaluates the concentrations of nitrate-nitrogen (NOs-N), dissolved oxygen (DO)
and chloride (Cl), recorded with a temporal resolution of 10 min. nitrate-nitrogen was measured
by adsorption spectrometry (Nitratax, Hach & ColorPlus 3 Nitrat, Sigrist), dissolved oxygen by
luminescence (FDO 700 IQ, WTW). Chloride concentration was derived by a linear model from
grab sample chloride concentration and electric conductivity using an Ordinary Least Squares
approach (Appendix, Figure 10). Electric conductivity is measured by Direct Current method
(TetraCon 700 IQ, WTW).

At Lockwitzbach we (Chair of Urban Water Management) measure dissolved oxygen with
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a LDO sc probe (Hach), nitrate-nitrogen was measured optically (spectro:lyser, s::can) and
furthermore with an ion-selective probe (ANISE sc, Hach), which also records chloride at an
interval of 10 min. For NOs-N we mainly used the optical measurement results from the
spectro::lyser and filled gaps with ANISE sc data. Mean yearly and seasonal concentrations of

the five monitoring stations and their standard deviation and diurnal ranges can be found in
Table 2.

Table 2. Mean concentrations, calculated from the entire dataset with standard deviation during summer (May-

September) and winter (October-April) and during day and night (from 6 am to 6 pm).

NOs-N [mg/1] Cl [mg/1] O:[mg/1]
Summer Winter Summer Winter Summer Winter
Nigh Nigh Nigh Nigh
Day ltg Day ltg Day Night Day Night Day ltg Day ltg
Schmilka /| 3.1+0.8 3.1+1. | 4.9+1.1 49+1. | 414484  40.7+£10. | 40.6£10. 40.6x10. | 9.4+1.8 9.3+1. | 11.8+ 11.8+
Elbe 1 1 5 5 5 3 1.3 1.2
Bad Diiben / | 2.8+0.6 2.8+0. | 3.6+0.9 3.6+0. | 29.7+4.5 29.4+44 | 30.1+4.4 30.5+4.4 | 8.3+1.8 8.5+1. | 11.7+ 11.7+
Mulde 9 9 5 1.6 1.6
Gorlitz / Neifle | 2.4+0.5 2.4+0. | 3x0.7 3+40. 37.2+10.  36.8+10. | 344104  33.5+10. | 8.4+1.1 8.1+1. | 11.8+  11.6¢
7 7 9 4 6 3 1.3 1.3
Ms6 / | 5.8£0.9 5.7+2. | 7.9+2.3 7.8+2. | 44.749.1  44.7+12. | 41.4+12.  41.3+12. | 9.7+0.8 9.2+1. | 121+ 11.7¢
Lockwitzbach 3 3 2 2 3 2 1.2 1.3
Ms4 /| 4714 4.6+2. | 7.5+2.6 7.5+2. | 44.629.4  43.7+12 | 39.9+#12.  39.6+12. | 10.5+2.3  7.7+1. | 12.9+ 11.2+
Lockwitzbach 5 5 3 3 3 9 1.9 1.7

Discharge data was selected from flow gauges at the respectively shortest distance to the
water quality stations. At Elbe, Vereinigte Mulde and Lausitzer Neifie, the BfUL operates flow
gauges not further away than 7 km from the water quality stations. At Lockwitzbach flow rates
were established at the monitoring sites. Monitoring periods of the water quality recordings
were between five years (Lockwitzbach) to ten (Mulde) and 14 years (Elbe, Neifse). On average,
seven percent of the three water quality parameters (nitrate-nitrogen, chloride and dissolved
oxygen) were missing every year. The recorded discharge data is more complete with of 2%
missing data per year. Highest gap was found for MS4 in 2019 with 16% of missing data. About
23 million measurement points were evaluated, the length of the datasets as well as its
completeness are shown in Figure 2.

Lockwitzbach / MS 4
Discharge I I
Oxygen
Choiride
Nitrate

Yearly data gaps [%]

Lockwitzbach / MS 6
| B ]

0 ] e S S
O T N .
I N
NeiBle / Gorlitz
L —————————————————————————————te— L et
S mImin . IEEEEEEII EDIENIND] SEEEEENEEEEEIEEEEEEE IIEINEEEIEE 0§ EEEE I a
. DEIEIEI DI INEEEEE I DD SO EEEEENIEE EEIEEEEENE NI EEEENIEIE] 0 ([0 EEIEEIIIEE
o0 0 DEIEENED 70T | I T R I IR ST 1] CINEE Y T 0

Elbe / Schmilka

B e —
IEIIEEIE I TN EET 1 (NIl 00D IEEREEIE NI N
DEIEIEEN GIEEE I 0TI PINDD PIEIEINNIEITY IEE TN N EEERERD I (NETNT I T SRR iR e | v
INIIEEIE 1N NEEN NS FEET I IEETNINI D IS SEEEENE ¥ BmE I (R

Mulde / Bad Diben
I D I

I NN U NN DN | N N B SRR (1T [ DN [IE I 0] | B I I
D e IR = ] )l L R R
 EEEEEEIIEEDE | DEREEET EEEIEE I TR EIE I BRI m

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure 2. Data availability of the investigated parameters.
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The importance of the investigated parameters as well as the thresholds for the classification
for a waterbody are stated in §5 and §6 OGewV referring to the appendices 3,4,7 and 8. Dissolved
oxygen and chloride are considered as physico-chemical components. These parameters serve
as supporting parameters for defining the ecological status of a waterbody, while the biological
and chemical components are the main criteria. Based on the river type the threshold
concentrations for the mean annual minimum dissolved oxygen concentration varies between 9
mg/l (Lockwitzbach) and 8 mg/1 for all other investigated streams to reach a very good status;
for a good status 8 / 7 mg/l are required. The annual mean of the chloride concentration needs
to be equal or below 50 mg/1 for a very good status and below 200 mg/1 for a good status at all
river types. The mean annual nitrate concentration threshold is given in Appendix 8 with 50 mgy/1
NOs (11.3 mg/l NOs-N). The parameter is among 46 compounds that are used to define the
chemical status. If one of them is exceeding the environmental quality standard the waterbody
fails a good status.

The “real or reference concentrations” were calculated according to the guidelines of the
OGewV, which states different ways to calculated the concentrations for classification: The
yearly mean value of nitrogen-nitrate is required, similarly the arithmetic mean value for
chloride should be taken, however for chloride a series of three consecutive years can be used
for the calculation for a mean value. The same applies for dissolved oxygen, but with the mean
of a window of three consecutive yearly minimum values. This allows to reduce the effect of
outliers on the water quality status. For simplification, we omitted this rule addressing the three-
year-window except for the DO concentrations at Lockwitzbach / MS4, where we observed close
to zero DO concentration in two years, respectively 2018 / 2020. In 2018 there was a severe CSO
event that lead to close to zero DO concentration that lasted for about half an hour. On six days
in August 2020 discharge in Lockwitzbach dropped to almost zero and we observed anoxic
condition during night hours.

Modelling of the sampling strategies

With the previously described data was systematically subsampled to evaluate the
following sampling strategies:

Modelling of grab sampling

The OGewV requires quarterly to monthly grab samples for determining physico-chemical
parameters and monthly sampling for priority compounds of the OGewV listed in appendix 8.
Based on this and the information on sampling routine by the LEULG we decided to randomly
sample the time series with a frequency of once every month, on working days and between 9
am and 5 pm.

Modelling of short-term online-monitoring - STOM

In contrast to grab sampling, STOM obtains continuous monitoring data in defined, limited
intervals and for limited durations. The duration of the STOM application was selected between
one and 21 days (the term sensor application duration is used for this dimension in the following).
For application intervals the limits were set from once per month to once every six months (the
term return interval is used for this dimension in the following). For these time series we applied
the previous explained regulations according to the OGewV guidelines. We varied the two
parameters (application duration & return interval) and obtained a 6x21 matrix for every year
and parameter at a monitoring station.

Modelling of sampling during events

To find out, weather STOM or grab sampling was carried out during a high discharge event,
we had to carry out an event selection. Therefore, a base flow time series was calculated by a
graphical method, based on the work of Gustard et al. (1992) [37] and events were
subsequentially selected by flow being 10% higher than the calculated baseflow. In general there
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are many different approaches to identify base flow (for an overview on base flow calculation
e.g. [38]). We used a graphical method as for the event selection since it provides a precise in
time selection of events.

Gustard et al. (1992) developed his method for daily resolution discharge data, however we
applied it to data with a high temporal resolution (5 and 15 mins). Therefore, we varied the
window widths used to calculate the daily mean values in way that events with a duration below
one day could be also separated from baseflow. That was of higher importance for smaller
catchments, where event durations are considerably shorter than in bigger watersheds like Elbe.
Hence, depending on the size of the catchment, we used shorter windows widths to calculate
the mean values: between four and 24 hours in hydrological summer and 12-36 hours in
hydrological winter, instead of one day window. The following procedure is similar to Gustard
et al. (1992) who calculated the local minima of five-day non-overlapping consecutive periods
and identified subsequently turning points by restricting increases by gradient filtering with the
previously calculated, higher resolved minima-time series. These turning points are connected
by linear interpolation, they form a base flow hydrograph. To identify events, we split the time
series into hydrological winter and summer. We defined thresholds of different parameter sets
considering: 1) events having a discharge 10% higher than base flow; 2) minimum duration and
3) minimum discharge difference between event minimum and maximum (e.g. Figure 3).

Total Number of events: 143

Discharge [m?/s]

) l'u\
o \N.‘\“\\.k. .JM“ \M .

' ' '
2018 2020 2022

N

R

Figure 3. Results of event detection algorithm at Lockwitzbach - MS6.

To compare STOM and grab sampling strategies we simulated 500 sampling realizations
and calculated the reference concentration according to the OGewV guideline. The Performance
is then defined as the logarithmic quotient of the sampling accuracy of STOM and grab sampling.
The sampling accuracy was calculated using the absolute difference between the “real
concentration” and the model results of STOM and grab sampling (compare formula in Figure
4). We log transformed the values to indicate whether STOM or grab sampling was yielded better
results, e.g. Negative Performance indicates that grab sampling achieves results closer to the
“real concentration” than STOM. To identify an unambiguous threshold for the parameter
settings that lead to a surpass of the performance of STOM over grab sampling a model was
fitted to the data and used to identify the point where the Performance it close to zero (indicating
a similar result of STOM and grab sampling). For the model a linear relation between
Performance and application duration was identified, for return interval and Performance the
values followed a logarithmical trend, regression was done using the least square method and
yielded a mean coefficient of determination (R?) of 0.9.

For the discharge signal we used the number of samples that were taken during an event
and compared this with the amount of total detected events every year. All calculations were
carried out with R, functions and scripts can be found on github (see credentials) [39].
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Online water quality data Online flow data
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* (I estimated from electr. conductivtiy close to the water quality monitoring
stations

Establishing reference data accoring to . Event detection based on a graphical

OGewV guidelines from entire online data set baseflow calculation

Modelling on basis of online-monitoring data (500 Runs each):

Grab sampling Short-term online-monitoring Sampling during events
Simulation of monthlygrab ~ (STOM) Probability of sample taken
sampling during working days Simulation of different during an event by different
(9am-5pm) application scenarios with sampling strategies (grab
variable measurment sampling and STOM)

intervalls equally distributed
over the year (1-6 months)
and application durations (1-
21 days)

Evaluation and Comparison

Water Quality
Comparison of STOM and grab sample by calculating:

1. Mean of results from modell runs for each year
2. Absolute difference between reference data, grab sample & STOM
3. Divide differences & logarithm:

[AGrap Samplin g| e.g. negative values indicate worse

Performance = log( ) performance of STOM than grab sampling

[Astoml
Event Dynamics

1. Mean of caughtevents from all modell runs (grab sampling and STOM)
2. Division by total number of events within the observation period

Figure 4. Overview of schemes for comparing different sampling approaches.

Uncertainty of sampling strategies

Similarly to the Performance-comparison, we analyzed the uncertainty of both sampling
strategies by their relative standard deviation. The modelling results of both STOM and grab
sampling for every station and parameter were used. Therefore, we took the average of the
yearly standard deviations divided by the yearly mean concentration. The comparison was
carried out by the quotient of the relative standard deviations of STOM and grab sampling. A
value greater than one indicates that conventional sampling has a smaller standard deviation,
whereas a value below one indicates the opposite. In a similar way to the pervious comparison
of the results from STOM grab sampling a log-linear regression was fitted to identify the turning
point where the quotient is below one.

Cost Calculation

In order to show how STOM behaves from an economic perspective, we performed a rough
cost estimation. As an example, we used the previously analyzed water quality parameters at
the five monitoring sites. We met the following assumptions to estimate yearly monitoring costs:

Grab sampling;:

e  Grab sampling is assumed to be carried out 12 times per year

e 8 € per sample for the analysis of NOs-N and Cl, O2 is measured on site with a hand-held
for 642 € per year (4500 € over seven years depreciation period)

e  Driving costs of 4.5 € per site and 240 € personnel costs per sampling day (8 hours with an
hourly wage of 30€)

STOM:
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e Intervals for STOM are varying on the different application scenarios

e  Multi Parameter Probe (15 000 €) with a depreciation period of seven years (2143 €/year).
Number of sensors is depending on return intervals and duration of sensor application.

e Driving and personnel costs based on the values of grab sampling but multiplied by two,
since the sensor needs to be installed and picked up.

3. Results
Water quality parameters

For a general overview of the comparison between STOM and grab sampling, the mean of
all yearly Performances (according to Figure 4) were calculated and concluded as a heat map.
Results for single years can be found in the supporting material. The parameters were chosen
from the 6 x 21 matrix (1-6 months return interval and 1-21 days of sensor application duration)
and selected to favor a lower interval of return interval over the duration of the sensor
application. For example, if a similar Performance of zero was achieved for either a 3 month
return interval and 20 days of sensor application or for 2 month return interval and 2 days of
sensor application the first parameter set was chosen (as a longer application is easier feasibly
than a regular installation of the sensor). The predicted intercepts, or break even points, where
STOM becomes more accurate than grab sampling, are marked in the following graphs with a
black frame. Differences between empirical (number in the box) and fitted intercepts of the
Performance index are caused by deviation between the mixed linear regression model and
resampling data. The results of the five monitoring stations are sorted by parameter and
catchment area:

Nitrate

Elbe / Schmilka (z = -0.477 x log(y) + 0.008 x x + 0.116 ; R2= 0.97)

Muide / Bad Duben (z = -0.524 x logfy) + 0.007 x x + 0.142 ; R*= 0.98)

o B EEEREE e Ee s EE e - (5 I
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Figure 5. Comparison of STOM and grab sampling for nitrogen-nitrate, values were calculated
according to Figure 4, break even points from regression model are highlighted with black frames.

For nitrogen-nitrate monthly grab sampling lead to 3.0% mean absolute deviation or
assessment error from the complete data set. Mean grab sampling errors were similar among all
catchments ranging from 2.5 to 3.5%, with a tendency to get reduced by increasing watershed
size.

As Figure 5 concludes, STOM outperformed grab sampling at similar duration-interval
combinations in all catchments. Return intervals were monthly or bi-monthly, whereas a
duration of one day sufficed in four out of five catchments. For all catchments, the resampling-
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based Performance yielded similar or better Performance with monthly one-day STOM.

The coefficient for STOM sampling duration were extracted from the mixed linear
regression model and ranged from 0.007 to 0.01, with lowest value at Mulde river and highest at
Neifie river, the two intermediate size rivers in the study. This indicates a systematic
improvement of the relative STOM Performance with increasing sampling duration. Notably,
the Performance improvement is more pronounced at shorter return intervals. The coefficient of
log-transformed sampling interval ranged from -0.44 to -0.52, again with Mulde (lowest) and
Neifle (highest) defining the range. Hence, for Mulde river STOM Performance appeared more
sensitive to return interval while for NeifSe sampling duration was more decisive.

Results of STOM for single years did also not exceed a return period of two months, only in
2013 Neifie STOM showed the best outcome, that is indicated by the earliest break-even point
among all stations with a return interval of three months and an application duration of 15 days.

Chloride

Elbe / Schmilka (z =-0.412 x Jog(y) + 0.009 x x + 0.138 ; R*=0.97)

Muide / Bad Diben (z =-0.375 x log(y) + 0.009 x x + 0.069 ; R = (.98)
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Figure 6. Comparison of STOM and grab sampling for chloride, values were calculated according to
Figure 4, break even points from regression model are highlighted with black frames.

The overall mean values for chloride did exhibit similar patterns as nitrogen-nitrate.
Monthly grab sampling lead to 3.6% mean absolute deviation or assessment error from the
complete data set. While the smallest catchment (Lockwitzbach, Neifle) showed the highest
mean absolute errors (4.2% & 4.3%) the error margin got reduced towards bigger rivers to 3.5%
at Mulde and 2.0% at Elbe.

For all catchments a return-intervals of two months provided better Performance of STOM
than grab sampling. Application durations at the break-even point, ranged between 12 to 21 days
(Figure 6). Combinations of monthly one-day sampling or bi-monthly 15-day sampling always
outperformed grab sampling.

The coefficient for STOM sampling duration ranged from 0.009 to 0.011, with lowest value
at Mulde river and highest at Lockwitzbach / MS6 river. Indicating a slightly stronger
improvement of the relative STOM Performance with increasing sampling duration, as
compared to nitrate results. The coefficient of log-transformed sampling interval ranged from -
0.35 at Lockwitzbach / MS6 to -0.41 at Elbe, this corresponds to the smallest and largest
catchments in the study. Hence, for chloride sampling, return-interval is more decisive in large
than in small catchments, despite larger summer-winter differences at Lockwitzbach (compare
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Table 2).

STOM showed the best Performance compared to grab sampling among all stations and all
years with a return interval of three months and 17 days in 2014 at the monitoring station in
Gorlitz (Neifle) and at MS6 (2018). However, the worst scenarios were found at Elbe/Schmilka
for several years with a similar Performance than nitrogen-nitrate (one month return interval
and one day of application) in 2014, 2015, 2016, 2017, 2018, 2020 and in Mulde/Bad Diiben in
2009, 2013, 2014, 2016 and 2017.

Oxygen
Elbe / Schmitka (z = -0.484 x log(y) + 0.021 x x + 0.487 ; R*= 0.94) Muide / Bad Dilben (z =-0.464 x log(y) + 0.022 x x + 0.659 ; R* = 0.94)
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Figure 7. Comparison of STOM and grab sampling for dissolved oxygen, values were calculated
according to Figure 4, break even points from regression model are highlighted with black frames.

Monthly grab sampling lead to 80.4% mean absolute deviation or assessment error from the
complete data set. Lockwitzbach showed both, the highest and smallest mean absolute errors
(MS6: 20% & 246%). No effect of catchment size on the error could be identified, the Neifse in
Gorlitz showed an error of 42.6%, the Elbe in Schmilka 31.2% and at Mulde in Bad Diiben 61.8%.

DO sampling Performance underlines the potential of STOM, for all catchments a return-
interval of half a year was sufficient with an application duration between 1 to 19 days,
depending on the stream, to be as good as monthly grab sampling (Figure 7). In all cases a STOM
regime of 3-monthly sampling during one day or five-monthly sampling during twelve days
outperforms monthly grab sampling.

The coefficient for STOM sampling duration ranged from 0.014 to 0.022, with lowest value
at Lockwitzbach / MS 6 and very similar values at the larger water bodies. Hence, of all three
water constituents, dissolved oxygen sampling accuracy benefits most from longer STOM
sampling duration. The higher coefficients at both Lockwitzbach stations coincide with more
pronounced day-night differences there. The coefficients of log-transformed sampling interval
ranged from -0.21 at Lockwitzbach / MS4 to -0.48 at Elbe, suggesting that oxygen sampling at the
larger rivers benefits more from a reduced return-interval than sampling at the smaller stream.

For several years the rarest option (six month return interval and one day of monitoring)
were reached at Mulde/Bad Diiben (2018) and MS4 (2018,2019,2020). For Elbe/Schmilka and
Neifse/Gorlitz five months return intervals and 18/21 days of sensor application were the worst
Performances in 2009 and 2012 respectively. According to the OGewV, the yearly minimum DO
concentrations or the mean of max. three consecutive yearly minima need to be selected for the
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classification. Results from STOM with frequent return intervals and long application duration
frequently detected the “real” yearly minimum value according to the OGewV regulation. These
values were omitted for the calculation of the presented mean values, as well as in the
uncertainty assessment, since they would yield “infinite” Performance (Astom= 0, division by
zero, see Figure 4).

Sampling during events

On average, the Lockwitzbach catchment shows the highest yearly number of events and as
well as the highest standard deviation between the years (28.6 +8 events at MS4, 27.8 +9 at MS6),
followed by Neifie and Mulde (18.2 +7 and 10 +4). A mean of 7.4 +2 events per year was calculated
for Elbe. Summarizing the duration of all events per year at Lockwitzbach resulted in 81.4 +19
and 83.6 +22 (MS6/MS4) days on average. At Elbe and Mulde these values were higher with 109.3
+41 and 105.8 +44 days. NeifSe has the shortest event duration of 70 +32 days per annum. Results
of the simulation show, that taking a grab sample once per month during an event is very
unlikely, for all monitoring stations an average probability of 0.3% was calculated (Elbe: 0.52%,
Mulde: 0.51%, NeifSe: 0.21% and 0.03/0,1% for Lockwitzbach MS6/MS4). A relation between the
yearly event duration or the number of events per year and an increase in probability of an event-
grab sampling could not be found. Contrary to that, the results of the simulation using STOM
show, that the probability to take a sample during an event is significantly higher (Figure 8).
Under the most labor-intensive setting (monitoring every month for 21 days), about 52+2% at
MS6 to 92+13% at Elbe (long lasting events at Elbe lead to multiple detections during one event)
of yearly events were caught over all monitored years (75+13% Mulde, 55+7% at Neifse and 53+4%

at MS4).
Elbe / Schmilka (z = -33.65 x In(y) + 1.04 x x + 57.42 ; R = 0.94) Mulde / Bad Diiben (z = -27.11 x In(y) + 0.94 x x + 45.14 ; R? = 0.93)

6 8 9 9 11 11 11 12 12 13 13 14 14 15 15 17 17 17 18 19 19 18 6 6 7 7 8 8 9 10 10 11 11 11 12 12 13 13 14 15 15 16 16 17
5 10 10 11 11 12 13 13 14 14 15 16 16 16 18 18 19 19 20 21 21 22 5 7 8 8 8 9 10 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17
4 13 14 14 15 16 17 17 19 19 20 21 21 23 23 24 25 26 28 28 28 28 4 10 10 12 12 13 14 14 14 15 16 17 18 18 19 20 21 21 22 23 24 24
3 18 18 190 20 22 22 23 25 25 26 27 28 30 30 31 33 33 34 36 36 37 3 13 15 15 16 17 18 19 20 21 22 23 24 25 25 26 28 28 20 30 31 32
2 26 27 29 |30 32 (33 [35 (36 [37 |30 40| 40| [43] |44 6 47 67 5 5G] B2 B 2 19 20 22 23 25 26 27 20 30 30 32 32 35 34 36 37 38 38 |40 41 42
 EEEEEEDDEEDEDDBEERRERIE o 6 6 e = S EE 6 E A R B R E R

12 3 4 5 6 7 8 9 10 11 12 13 14 156 16 17 18 19 20 21 102 8 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20 21

NeiRe / Gorlitz (z = -17.09 x In(y) + 0.99 x x + 24.7 ; Rz = 0.91) Lockwitzbach / MSB (z = -16.38 x Infy) + 1.01 x x + 22.88 ; R2 = 0.9)
6 3 3 4 4 4 5 6 6 7 7 8 8 8 8 10 10 10 11 12 12 13 6 2 3 3 4 4 5 5 6 6 7 7 8 8 8 8 10 10 11 11 12 12
5 3 3 4 4 5 6 6 7 7 8 8 9 89 10 10 11 11 11 12 12 13 5 2 2 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 11 12 12 13
4 4 5 5 6 7 8 9 9 10 11 11 13 13 14 14 15 16 16 17 18 18 4 3 4 5 5 6 7 8 9 9 10 11 11 12 13 13 14 15 16 16 17 18
3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 20 21 22 23 24 3 4 5 6 7 B 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 8 9 11 12 13 15 16 18 19 20 22 23 24 25 26 28 28 30 31 32 32 2 6 8 10 11 12 14 16 17 18 19 21 22 23 25 26 27 28 30 30 31 33
1 15 18 21 24 26 29 31 34 36 38 40 42 44 45 ...... 1 12 16 19 22 25 27 29 32 34 36 38 40 42 44 .......

12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Lockwitzbach / MS4 (z =-16.27 x In(y) + 0.99 x x + 23,33 ; R2=0,91)
6 2 3 3 4 45 5 6 6 7 8 8 9 9 1010 10 11 12 12 12 Percent of caught events: -
5 2 3 4 4 5 6 6 7 7 8 8 8 8 101111 12 12 12 13 14 0 B %
4 3 4 5 6 7 7 8 9 10 10 11 12 13 14 14 15 16 16 17 18 18 Horizontal Axis
3 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 21 21 22 22 23 Application duration in days (x)
2 7 9 10 12 13 14 16 17 19 20 20 22 25 25 26 26 28 20 30 |30 32 Vertical Axis:
1 14 17 20 23 25 28 30 32 34 |36 (38| (30 |42 [43) 5] 7] 48] [56] [54] 52 B3 Return-interval of sensor installation
in months (y)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 8. Average percentage of events caught per year with STOM at the gauges at/close to the
monitoring stations.

Uncertainty of the sampling strategies

The application duration and the return interval for the break-even point of the quotients of
the relative standard deviation do not coincide with the previously gained results from the
Performance comparison (Figure9, Figure 10, Figure 11). In general, a shorter return interval and
a longer application duration decrease the relative standard deviation in all cases. Nitrate-
nitrogen reaches a smaller quotient of standard deviation earlier at all monitoring stations (than
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in Performance comparison), chloride slightly later. Dissolved oxygen, that had a high
Performance, requires shorter measurement intervals to reach an equal standard deviation than
grab sampling.
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Figure 9. Quotient between the relative standard deviation of STOM and grab sampling for NOs-N,

similar standard deviations between both sampling strategies are highlighted with black frames.
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Figure 10. Quotient between the relative standard deviation of STOM and grab sampling for chloride,

similar standard deviations between both sampling strategies are highlighted with black frames.
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Figure 11. Quotient between the relative standard deviation of STOM and grab sampling dissolved
oxygen, similar standard deviations between both sampling strategies are highlighted with black
frames.

Cost calculation

According to the chosen assumptions, one year of grab sampling costs about 3673 € for the
three investigated parameters at the five monitoring sites. Costs for STOM vary between 14 439
and 3121 €, the highest prices are occurring with highest return intervals and the longest sensor
application durations. Especially for long application durations, more multi parameters sensors
would be necessary to fit to the monitoring framework, leading to exponentially rising costs. A
matrix with the yearly monitoring costs for STOM can be found in the appendix (Table 2)

4. Discussion
Water Quality Parameters
Estimation of chloride concentration

We were using a linear regression model to calculate the chloride concentration from the
electrical conductivity. The obtained regression equations revealed similar parameters
(Appendix: Figure 10) between the catchments and were in accordance with values reported in
literature [40,41]. Other studies found, that the linear relation between electrical conductivity
and chloride are different for lower concentrations, due to a change in the composition of solutes
and their effect on the electrical conductivity of water. To overcome this issue Perera et al. (2009)
[42] used a second linear regression for this specific value range. Our dataset did not show
evidence for such a breaking point, most probable because of the lack of grab sample data with
low conductivity/chloride concentrations.

Performance of STOM in comparison to grab sampling

We defined, that grab sampling happens during workdays from 9 am to 5 pm to be close to
regular working hours. Increasing this time frame further by including the weekend did not lead
to significant improvements, on average the break-even point between grab sampling and STOM
got extended by half a day of sensor application. If grab sampling would take place during the
whole day (24 h), nitrogen-nitrate and chloride will not show significant improvements as well
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but the monitoring of DO will be considerably better. This resulted in a prolongation of the
break-even point with STOM by an average amount of five days at all monitoring stations,
ranging from two days in Schmilka to nine days at MS4. The graphs similar to Figure 5, Figure
6 and Figure 7 for those cases can be found in the appendix.

Our results revealed that the catchment size has no influence on the Performance between
STOM and grab sampling (according to Figure 4), only for dissolved oxygen a slight tendency
for a better performance at small catchments could be suspected. The interval of application, e.g.
if the sensor is placed once every month or every second month, has a significantly higher
influence on the performance of STOM than the duration of the sensor application. The relation
between an increase in Performance and the duration of the sensor application can be well
represented with a linear function. In contrast, the relation between the Performance and the
return interval follows a logarithmical trend, indicating a nonlinear Performance-improvement
with a shorter return interval. These findings are underlined with the factors of the regression
functions (see Figure 5, Figure 6 and Figure 7), which are consistently higher for the return
interval. Probably longer return intervals do not represent seasonal and inter-seasonal changes
of rivers sufficiently enough and cannot be compensated by longer sensor application time. The
variability of the relative standard deviation seems to be independent of the catchment size and
water quality parameter. The shown Performance is more variable between parameters and
watersheds mainly because we calculated the mean of the yearly values durations, which had a
high variability as well as a small sample size of 14, 10 and 5 years.

However, the analyzed parameters showed noticeable variations among each other.
Especially for DO, STOM leads to a considerable improvement of monitoring accuracy The
diurnal pattern of the dissolved oxygen concentration, controlled by photosynthesis and
respiration in the aquatic ecosystem, appears to get well recorded by STOM. Unlike for nitrate
and chloride, the OGewV defines the minimum DO concentration as threshold, which is also
more likely to be caught during longer application periods of continuous monitoring than by a
grab sample. Other researchers identified this fact before, like Halliday et al. (2015) [13]), who
recommend to establish specific sampling time windows for certain WFD parameters or to use
online sensors, stating that first experiences were already made in England at a number of sites
[43].

The small difference between grab sampling and STOM for nitrogen-nitrate and chloride
can be explained by the comparable low variability of both parameters that are mainly affected
by seasonal changes or by dilution during rain events. Fluctuations in nitrate concentration and
the effect of rainfall characteristic of were studied by Winter et al. (2022) [44] on six sub-
catchments of the Bode River, who found strong drivers in event magnitude and seasonality
which are controlling the relevant flow paths of nitrate within the land-to-stream connection.
Even though some publications mentioned that diurnal patterns were detected for nitrate, our
dataset did not show those trends or only marginal amplitudes were visible [27,45,46]. Vilmin et
al. (2018) [11] showed that with a grab sampling frequency of 25 days per year a good
representation of the mean nitrate concentration of the Seine in Paris can be achieved. Bieroza et
al. (2014) [27] stated a weekly and monthly sampling as adequate for their investigated
agricultural catchment in Sweden

Studies on the importance of sampling frequency for chloride concentration assessment are
rare. Harmeson and Barcelona (1981) [47] mention, that the average deviation of monthly
samples was found to be acceptable for chloride in Ilinois” watersheds. Generally, several papers
reported linkage between the chloride concentration and discharge, e.g. a dilution of chloride by
elevated streamflow and vice versa [48]. Especially from the northern hemisphere there are
manifold studies focusing on the additional input of salt during the winter months by road salt
applications [41,49,50]. By using a yearly mean value for classification instead a maximum value,
the OGewV rather neglects these spikes from road salt application. Reports in literature warn
about several adverse effects of increasing salinization in water bodies [51-53]. Only at
Lockwitzbach peaks above 200 mg/l for some hours were measured during winter, they are
below acute toxicity defined by CEQG (2011) or US EPA (1988) [54,55]).
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The two monitoring stations at Lockwitzbach (MS6 & MS4) also allow us to investigate the
influence of the sampling location on the classification in small streams. For chloride there is a
small difference between the monitoring stations recognizable with 3% on average over all years
relative to the mean concentration at MS6. Nitrate shows a slight reduction of 9% between the
stations, probably by increased nitrate uptake and denitrification during the summer months. If
a mean value would also be the rule for Oxygen according to OGewV, like for nitrate and
chloride, there would be hardly any difference cognizable (0.5%) between the two stations.
However, the rules for dissolved oxygen calculation are set by using the yearly minima for
classification, leading to a mean reduction of 63% between the two monitoring stations. The
decrease between the two monitoring station arises by pronounced day patterns of dissolved
oxygen at MS4, reaching considerable low concentration in the summer nights. Changes in the
catchment characteristics is leading to these results: The stream flows from a rather rural area
(MS6) through the city of Dresden. The station MS4 is located at the outlet of this urban section
shortly before the confluence with Elbe river. Within this urban section, the waterbody is lacking
natural shading by trees and bushes. The cross-section is comparably broad with shallow water
levels that expose high surface area to sunlight. According to the official information provided
by LfULG, one sampling location is used for the chemical classification of Lockwitzbach
(https://www.umwelt.sachsen.de/datenportal-ida-4626.html, Accessed 29.07.2023). This point is
located close to MS6 and would not indicate these large differences. Choosing sampling
locations based on an analysis of catchment land use types within the catchment would help to
overcome such underestimations and reveal potential for improvement measures in the
watershed.

STOM and event sampling

The catchment size seems to have an effect on the standard deviation of the number of
yearly events, showing higher variability of number of yearly events at smaller catchments.
Unlike to the investigated water quality parameters, there is a clear tendency for bigger
catchments to show a higher probability to catch a sample during an event using STOM
sampling. Comparing the regression equations from the previous Performance calculation, it
becomes obvious, that the application duration has a higher importance for event monitoring
while for water quality parameters the return interval had a more pronounced impact.

The simulation showed that there is no clear positive correlation at all catchments between
the number of sampled events by STOM and their duration or the number of yearly events. Even
under long exposure and regular installation of sensors only Neifle showed a correlation for both
and Elbe only for the event duration. Already mentioned in the previous chapter, datasets for
Lockwitzbach are considerably shorter than the ones of Elbe, Vereinigte Mulde and Lausitzer
Neifle and not suitable for a meaningful statistical analysis.

The German Working Group of the Federal States and the Government on Water Issues ([1],
recommends 12 samples per year for compounds that show a strong variance in their
concentration or that are introduced on basis of special occasions or sampling during the period
of usage. The results of the simulated grab sampling strategies for event monitoring shows, that
it is not possible to reliably monitor pollutants that are mobilized during rain events by taking a
sample once per month. These high flow periods are of further importance if particle bound
pollutants are considered as they mainly get transported during and especially at the beginning
of these events (chemodynamic transport or first flush phenomena [56]). Often the logKow
(octanol/water partitioning coefficient, a measure for hydrophobicity) is used for estimating
sorption coefficients of compounds to soil or sediments [57]. There are 46 compounds that are
used to classify the chemical status of a waterbody in Appendix 8 of the OGewV by using a
maximum mean concentration. For 30 out of those 46 compounds a maximum allowable
concentration is assigned, which is not allowed to be exceeded in any sample taken. A literature
research on the logKow values showed that only nitrate has a value below one, indicating high
solubility in water The rest is above one and has a higher probability to be attached to particles.
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Since these relevant compounds are supposed to be measured in the unfiltered sample - except
for the heavy metals: cadmium, lead, mercury and nickel —high solid concentrations during rain
events are of most ecological concern according to the chemical classification of OGewV. Their
environmental concentration is highly likely to be underestimated with the current monitoring
strategy. Furthermore, if most of the mobilized sediments get transported in the beginning of an
event, the probability for catching representative grab samples becomes even smaller. To
overcome this issue within the framework of the current grab sampling regime, special event
sampling programs are necessary. Usually automated samplers or sediment collectors like
centrifuges that are triggered during a discharge event. They are used to improve the accuracy
of the standard monitoring program. To operate and maintain such an extended program for all
streams is unrealistic in many ways — mainly by the amount of required personnel for handling
samplers and required capacity for the analysis of samples Furthermore there are several sources
of errors to be taken into account by auto samplers like limited sampling volume and
degradation processes [58].

STOM for modelling

Recent publications show the benefit of using different river models for the status
assessment of water bodies, parameter, sampling frequency and location [11,59-61]. We want to
emphasis the value of data generated by STOM for further improvement of the model quality
especially in the calibration and validation process. Among many studies, e.g. [30] showed the
benefits of model predictions of sediment and nutrient loads using high-frequency data and
more frequent sampling as a calibration source in an flashy Finnish watershed for several
parameters by improvements in KGE. Nafees Ahmad et al. (2011) [62] who showed that monthly
samples lead to a considerable underestimation of SWAT model results for sediment and
nitrogen loads during high precipitation events in comparison to a high resolved time series.
However, other studies found that nitrate measurement frequency (daily to fortnightly) do not
“have a significant effect on the total uncertainty of nitrate predictions, because the combination of model
structural error and measurement errors were much higher relative to parametric prediction uncertainty”
[60].

Cost Calculation

According to our assumption for sampling, personnel and travelling expense we found that
STOM is cheaper than grab sampling after a return interval of four months, irrespective of the
application duration. STOM costs are mainly affected by the rising costs for additional sensors,
which are most demanded for frequent and long lasting monitoring campaigns. However, this
is an example with simple assumptions to demonstrate the related costs for both approaches.
Conventional sampling regimes consist of a higher number of sampling sites and analytes,
leading to a more complex relation of personnel and travelling costs. The grab sampling regime
for operation monitoring in Saxony observes about 2240 monitoring sites, the analysis covers
about 420 compounds (120 industrial chemicals, 190 agricultural chemical or pesticides, 80
pharmaceuticals and 30 metals [34]).

Considering the very limited number of parameters that we can measured online with
affordable probes, STOM would not be able to replace completely grab sampling. However,
we consider that STOM can be smartly combined to extend the value of the gathered water
quality information to deepen our understanding of hydrological and chemical dynamics of
rivers [63,64]. Looking at the WFD-types of sampling an application of STOM aside of
operational monitoring seems promising. It can be used for investigative monitoring, which is
usually done less frequent but with more effort [6]. Among other examples, the federal state of
Saarland in Germany is doing investigative monitoring by using online monitoring over a
certain time span for , at-risk”-waterbodies successfully for several years to identify and evaluate
contributions of point sources and diffuse pollution, crosscheck the efficiency of measures to
improve ecosystem quality and capturing eutrophication state of a waterbody (www.gewaesser-
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monitoring.de/en/, [65,66]).

5. Conclusions

After comparing the simulated STOM and grab sampling strategies, results showed how
STOM would fundamentally improve the current approach for monitoring parameters with a
pronounced diurnal pattern (such as DO), especially when maximum and minimum
concentrations are requested by regulations or laws. For example, in case of DO, placing and
picking up a sensor once every three months instead of grab sampling every month can be an
alternative for gaining more information with less frequent sampling. This is a clear benefit of
STOM, since it takes advantages of continuous monitoring to improve the understanding of
contaminant transport patterns. . However, for chloride and nitrogen-nitrate we do not see big
improvements compared to a monthly grab sampling regime, because of their low variability
and the usage of mean concentrations for the assessment by the OGewV.

Furthermore, using discharge and high discharge events as a surrogate signal to analyze
event-mobilized pollutants, the STOM sampling strategy would increase the probability of
capturing pollution spikes by several orders of magnitude. We found evidence, that these results
are dependent on the catchment size in contrast to the Performance-comparison of the three
water quality parameters, where the results could not be directly linked to the size of the
watershed area and appear rather similar among all catchments. Taking into consideration that
grab sampling fails for monitoring event-mobilized pollutants it becomes obvious that sampling
strategies need to be adapted, which has been highlighted by many researchers already
[19,67,68]. Especially for those compounds, a faster development of online-sensors would be
desirable [5]. For several WFD-relevant parameters, technologies are available but still far away
from field application [69-72]. Alternative monitoring technologies and approaches can also help
to close this gap and efforts to implement them as standard tools for river monitoring should be
made. In this context, we proposed STOM as an alternative showing its potential to analyze the
chemical and ecological status of a surface water body.

Our research at the Lockwitzbach catchment, including the analyzes of two monitoring
points upstream and downstream an urban area, shows some of the challenges for monitoring
small streams and to assess their ecological quality. For example, the results from this watershed
showed that OGewV dissolved oxygen classification can be very variable within a short river
section depending on land use changes within the catchment. Looking at the event dynamics,
our data revealed that Lockwitzbach has a flashy hydrograph with a high number of events and
a considerable short duration in the summer months. This makes it further difficult for planning
and executing monitoring campaigns for event mobilized pollutants. This challenge can be better
addressed using STOM as a sampling strategy instead of grab sampling, since it demonstrated
a higher probability to depict event dynamics.

In order to further evaluate the benefits of STOM, future studies can include selecting other
proxy-parameters that can be easily measured with a high temporal resolution. Additionally,
comparing STOM with passive sampling for the estimation of mean concentrations might
provide insights about the potential of using less resource intensive sampling approaches.
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