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Abstract: This paper presents a study of the 2D roughness profiles on a flat surface generated on a steel work
piece, by ball nose end milling, with linear equidistant tool paths (pick-intervals). The milled surface
exploration with a surface roughness tester (on pick and feed directions) produces usually 2D roughness
profiles having periodical evolutions. These evolutions can be seen as time-dependent signals, describable as
a sum of sinusoidal components (the wavelength of each component being regarded as a period). In order to
detect a well approximated description of these components, two appropriate signal processing techniques are
used in this work: first technique provides a direct mathematical (analytical) description and is based on
computer aided curve (signal) fitting (more accurate), the second technique (providing an indirect and
incomplete description) is based on the spectrum generated by fast Fourier transform (less accurate). This study
can be seen as a way for a better understanding the interaction between the tool and the work piece or to
achieve a mathematical description of the machined surface microgeometry in terms of roughness (e. g. its
description being a collection of closely spaced 2D roughness profiles).

Keywords: 2D roughness profiles; milling; ball nose end mill; curve (signal) fitting; fast Fourier
transform

1. Introduction

The surface roughness of machined steel work pieces by milling with ball nose end mills is
obviously strictly related with the interaction between tool and work piece. Mainly it depends by
cutting tool shape, geometry and position (tilt angle, axial depth of cut, effective cutting diameter),
cutting machining parameters (cutting speed, feed rate and direction) milling strategy (tool path
patterns, step over distance) and cutting forces (involved in tool elastic deformations). Some non-
systematic phenomena are occasionally also involved in the definition of this roughness: tool work
piece relative vibrations, self-excited vibrations, local variation of hardness on work piece material,
tool wear, cutting edge adhesions or fractures, etc. Therefore, in the most appropriate milling
conditions, the roughness is mainly characterized by a microgeometry with a regular (periodical)
shape with equidistant pick (path)-interval and feed-interval scallops [1] on pick and feed directions.

A better understanding of tool-work piece interaction during any cutting process supposes a
deep investigation of the surfaces roughness. First approach in this investigation is the experimental
sampling of surfaces roughness description using appropriate equipment. The most common method
to achieve this sampling is to use contact profilometers [2-8] as reliable but time-consuming method.
Some other methods use the non-contact surface exploration by lasers [9], laser interferometry [10,
11], laser confocal microscopes [12], optical systems [13, 14] or machine vision systems [15].

Because generally the description of a 3D surface roughness by sampling is obtained by joining
many 2D roughness profiles (e. g. as a grid on pick and feed directions), the investigation of these
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surfaces means mainly a study on each of these 2D roughness profiles (2DRPs), frequently as having
a periodic evolution [2, 4, 5, 8, 9, 13, 14 and 16]. Some investigation techniques on this topic are
available in literature, most of these revealing the existence of numerous permanent sinusoidal
components inside these 2DRPs (as wavinesses [16], with dominants and some harmonics). Some
previous studies indicate the availability of component finding description techniques using
synthetic rather than analytic methods, the 2DRPs being treated mainly as digital time-dependent
signals. The easiest synthetic description of components can be obtained by digital filtering [17],
particularly using a selective band pass filtering [8]. A relative better approach in this synthetic
description is possible using the power spectral density (by fast Fourier transform, FFT) of 2DRPs as
signals [2, 7, 8, 15 and 16]. On a FFT spectrum (with amplitude on y-axis and conventional frequency
as the inverse of the wavelength on x-axis) each significant sinusoidal component inside a 2DRP is
described as a peak. However, the availability of FFT is seriously affected generally by a small
resolution of conventional frequency (R¢) on spectra. The using of a high sampling rate (or sampling
frequency f: as well) for 2DRP description (in order to have a high Nyquist limit fns = f:/2) should be
mandatory accompanied by a high number (N) of samples (or a big size, length, of 2DRP) in order to
have a small resolution of conventional frequency R = f/N. If this resolution is not small enough,
some peaks in spectrum are missing or have wrong described amplitude (smaller than normal). This
is a major inconvenient of FFT, not yet resolved in these previous approaches. However, there is a
supplementary inconvenient of analysis by FFT: the synthetic description of sinusoidal components
is incomplete (their phases at the origin of time are missing).

In some cases the 2DRPs, seen as time-dependent signals, contains short sinusoidal components
which don’t persist permanently. For these situations (not considered in our work), when generally
short oscillations (waves) occurs temporarily, the FFT analysis is not at all appropriate, but there are
available other specific investigation techniques (inspired by the study of vibrations), e. g. based on
Wavelet Transform (as Continuous Wavelet Transform [7], Frequency Normalized Wavelet
Transform [18, 19] and Wavelet Packet Transform [20]).

The main purpose of this work is focused on the investigation of periodical 2DRPs (seen as time-
dependent signals) in order to find out the best analytical approximation of them, as close as possible
to experimental evolutions, as a sum of significant sinusoidal components. Each sinusoidal
component (analytically defined by the amplitude, a conventional frequency and a phase at the
conventional origin of time) is a description of a waviness on the machined surface of work piece.
The inverse of the conventional frequency (as conventional period) is the waviness wavelength.

Particularly, these 2DRPs are experimentally sampled in feed and pick directions (using a
contact profilometer) on a theoretically flat surface milled with a ball nose end mill. A curve fitting
procedure in Matlab (based on Curve fitting Toolbox) will be privileged in this approach. As opposed
to the FFT procedure (also addressed here), now even relative small size (length) 2DRPs are
appropriate for curve fitting procedure, high accuracy in analytical description of sinusoidal
components being attainable. Similarly with FFT procedure, the curve fitting procedure has the same
Nyquist limit (fng= f+/2), in other words it is not possible to find out the analytical descriptions of
sinusoidal components having conventional frequency above the Nyquist limit fxs. The curve fitting
procedure allows an interesting approach: a 2DRP in analytical description can be artificially resized
by mathematical extrapolation (increasing the number N of samples, keeping the same sampling rate
f5)- The accuracy of the FFT spectrum of this resized 2DRP is significantly improved due a smaller
conventional frequency resolution, so now the FFT spectrum is more appropriate to describe
synthetically the contents (in sinusoidal components) of a 2DRP.

The next sections of this paper are organized as it follows: Section 2 presents the materials and
methods, Section 3 presents the results and discussions and Section 4 presents the conclusions.

2. Materials and Methods

A flat surface was milled on a work piece made by 90MnCrV8 steel (60 HRC hardness) using a
carbide 12 mm 3 flute ball nose end mill, TiAIN coated (as GARANT Diabolo solid carbide ball nose
slot drill HPC 12 mm, from Hoffmann Group), tilted with 25 degrees to the pick direction and
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perpendicular to the feed direction, with these cutting regime parameters: 5200 rpm, 1560 mm/min
feed rate, constant 0.1 mm axial depth of cutting and 0.4 mm step over (with theoretical equals pick-
interval scallops height [21]). Figure 1 presents a down milling process conceptual description (with
the work piece in cyan color, the tool in red, the feed direction in green, the rotation sense in blue).
The magenta colored straight line (d1) depicts the pick direction; the black colored line (d2) depicts
the feed direction, both used conventionally for experimentally sampling of 2DRP (with a SURFTEST
SV-2100W4 contact profilometer, from Mitutoyo). Figure 2 presents a view of tool and work piece
(with the cutting process stopped) on a vertical machining center CNC OKUMA GENOS M460R-VE.

Figure 2. A view on milling setup.

Figure 3 presents a view on the roughness sampling setup, with the flat milled surface placed in
horizontal position (here for sampling in pick direction).

Figure 3. A view on the roughness sampling setup.

The numerical description of a 2DRP is delivered as a two-column .txt files describing 8,000
equidistant samples (Ax = 0.5 um sampling interval between samples on x-axis, for 4 mm total
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distance). This file is easy loadable in Matlab and analyzable as time-depending signal (by FFT and
curve (signal) fitting). Figure 4 presents a 4 mm length 2DRP, sampled in pick direction (drawn in
Matlab). As expected, there is a dominant periodical component inside. A rough estimation on Figure
4 indicates 10 periods, each period being equal to the milling step over (400 micrometers) and an

average pick-interval scallop height of 2.5 micrometers.
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Figure 4. Graphical description of a 2DRP sampled on work piece, in pick direction.

Figure 5 presents a partial view of the FFT spectrum of this 2DRP with real amplitudes (in
Matlab). The 2DRP from Figure 4 was processed in FFT as a time-dependent signal (the x-coordinates
of samples are seen as signal samples time; the y-coordinates are seen as signal level). The sampling
interval Ax on x-axis (Ax=0.5 um) is seen as conventional sampling period At on t-axis. An x-
coordinate on the abscissa of Figure 5 is the equivalent of a conventional frequency or the inverse of
a conventional period or an inverse of a wavelength as well. A peak on FFT spectrum (e. g. the highest
peak , depicted by an x-coordinate of 0.0025 pm™ and a y-coordinate of 1.138 um) indicates that in
the 2DRP exists a dominant sinusoidal component having the wavelength A=1/x (e. g. A1=1/0.0025 =
400 pm for the peak 1). This is exactly the step over value (pick feed) previously highlighted. On
Figure 5 some other relevant peaks (2, 3, 4 and 5) depict sinusoidal components, harmonically
correlated with the dominant, the i harmonic (with i =1, 2, 3 and 4) having the wavelengths Ai=
Ai/(i+2) as 200, 133.(3), 100 and 80 um. The conventional sampling period At = 0.5um depicts the
sampling frequency (rate) fs = 1/ At=2 um so a conventional Nyquist limit (frequency) of fny = /2 =
1um. In other words, the smaller synthetic describable wavelength of a sinusoidal component inside
the 2DRP by FFT spectrum is defined as Amin= (fng)? = (fs/2)1 =1 um.
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Figure 5. A partial view on the FFT spectrum of 2DRP from Figure 4.
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However, as it is clear indicated on Figure 5, the conventional frequency resolution Re = f/N =
2/8000 = 0.00025 um is not small enough in order to describe an accurate spectrum. On the spectrum
from Figure 5 there are only 0.02/R¢ = 0.02/0.00025 = 80 samples. There are certainly other higher
harmonics that are not visible in spectrum. A longer 2DRP (obtained by increasing the number of
samples and keeping the same sampling frequency) reduces significantly the conventional
resolution. It must be stated again that the FFT spectrum doesn’t provide the phase at origin of
conventional time (¥=0) for sinusoidal components.

A better approach proposed in this paper considers that inside the y(x) 2DRP is a consistent
deterministic part yi(x) and a less significant non deterministic part yua(x), with y(x) = ya(x) + yna(x).
Generally, for periodical 2DRPs, this deterministic part ya(x) is describable as a sum of 1 sinusoidal
components:

Va(x) = Z Vaj(x) = Z Aj- Sin(“)j "X+ @j) €Y
j=1 j=1

In Eq. (1) Aj are amplitudes, w; are conventional angular frequencies (related by wavelengths A,
with wj=2m/A;j) and ¢@; are conventional phase shifts at origin (x = 0). Here x (the current position of
the profilometer stylus on x- axis) plays the role of time.

The curve (signal) fitting procedure (using Curve fitting tool from Matlab) allows finding out with
a good approximation the coefficients Aj, wj and @;. A sine model (f(x)=al*sin(b1*x+cl) was used for
a first fitting with x as X data and y as Y data. In this model al, b1 and c1 plays the role of A1, w: and
@1 coefficients in definition of first sinusoidal component yu1(x). The first curve fitting produces the
results A1=1.151 um, w1 = 0.01558 rad/um and @ 1=4.1871 rad (usually this fitting procedure find the
description of the highest amplitude component). This first sinusoidal component yai(x) is depicted
in blue color on Figure 6 (as dominant), overlaid on y(x), depicted in red color (an evolution already
described in Figure 4). Thus the component ya1(x) can be mathematically described as:

Yar(x) = A; - sin(w; - x + ¢;) = 1.151 - sin(0.01557 - x + 4.1871) 2)

The description of ya(x) from Eq. (1) allows the mathematical removing from y(x), with the result
depicted in Figure 7, as the first residual (r1(x)) 2DRP, r1(x) = y(x)-ya1(x) after first curve fitting (drawn
at the same scale with Figure 6). The decrease of y-coordinates of the residual profile is a
supplementary proof of the quality of y.:(x) mathematical description.
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Figure 6. The 2DRP from Figure 4 (in red) and the first sinusoidal component (y«1(x)) found by curve
(signal) fitting (in blue), Eq. (2).
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Figure 7. The first residual 2DRP after first analysis by curve fitting (as r1(x) = y(x)-yai(x)).

It is obvious that the dominant component ya1(x) really fits with y(x). Its amplitude A1is close by
this depicted in FFT spectrum (peak 1), its wavelength A1= 2m/w:1 =271/0.01558 = 403.285 pm, is close
by the step over value or pick feed (400 um) during the milling process. The conventional frequency
of yai(x) is 1/A1 = 0.002479 pm-!, more accurately described by comparison with Figure 5, related to
the first peak (there 1/A: =0.0025 um). Related by the difference between A1=403.285 um (determined
by curve fitting) and the pick feed (400 um), a logical conclusion must be drawn: we rather suspect
the imprecise control of the x-movement of the contact profilometer during measurement than the
pick feed control during milling process.

It is clear that this procedure can be repeated identically (automatically, by programming in
Matlab) many times, the mathematical description of the y4j(x) sinusoidal component can be found
by curve fitting of the (j-1)" residual of 2DRP, as 7;-1(x), described with:

j-1

@ =y = Y yalo) 3)
k=1

Of course, in curve fitting procedure (as in the case of the FFT spectrum) the exceeding of the
Nyquist limit is forbidden (w;<27tfng or Aj> (fng) 7).

Hypothetically, considering that ynx(x) = 0, a perfect mathematically description of ya(x) (after n
curve fitting similar steps), should produce an r«(x) = 0 for the n' residual of 2DRP (graphically
representable as a straight line placed on the x-axis).

The viability of this method of determining the mathematical description of a roughness profile
(by a similar curve fitting method developed in Matlab) has been demonstrated before [22] in the
analysis of other types of complex signals (vibrations, active electrical power, instantaneous angular
speed, etc.) containing many sinusoidal components.

3. Results and Discussions

3.1. The Analysis of 2D Roughness Profiles in Pick Direction by Curve Fitting

The analysis of the 2DRP already sampled before (Figure 4) has been done similarly by this curve
fitting procedure another 121 times. The mathematical description of 122 sinusoidal components
inside y(x) was found. Figure 8 presents the 2DRP (already depicted in red color on Figures 4 and 6)
overlaid on an approximation of ya(x) by mathematical addition of these 122 sinusoidal components
(in blue color). On the same Figure is overlaid the 122t residual of 2DRP (r122(x)), depicted in purple
color. Figure 9 presents a zoom-in detail in area A from Figure 8.
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Figure 8. The 2DRP (in red), an approximation of yi(x) with yam(x) having 122 components (in blue)
and the 122t residual ri22(x), (in purple).
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Figure 9. A zoom-in detail in area A from Figure 8.

It is obvious that there is a good fit between the approximation of ya(x) and y(x). By comparison
with Figure 7 there is a significant smaller residual of 2DRP, mainly describing the nondeterministic
content yna(x) of y(x).

As is well known [23], any evolution of a signal in time (or similar, e. g. this 2DRP in pick
direction) can be well approximated as a sum of sinusoidal components. In our approach it is more
interesting to find its approximated analytical description (strictly related by milling process) as a
sum of harmonically correlated sinusoidal components (as yan(x)) with a fundamental on 0.01557
rad/pum as conventional angular frequency w: (Eq. (2)) related by pick feed or step over and some
harmonics (on 2:0.01557 rad/um, 3-0.01557 rad/um frequency, so on). In other words, the deterministic
part of y(x) should be seen as yi(x) = yan(x) + yan(x), with yan(x) as a sum of sinusoidal non-
harmonically correlated components. Of course, this new type of approximation is available here
because yan(x) is dominant (ya(x) = yan(x)).

Among the 122 identified sinusoidal components, 30 components were found to be well
harmonically correlated (and involved in yan(x) definition from Eq. (4)) with a good approximation,
with the values Ani, whiand @i given in Table 1.

30
Yan(x) = Z Ap; - sin(wy; * x + @) 4)

i=1
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Table 1. The values of constants involved in the mathematical description of 30 well harmonically

correlated sinusoidal components inside ydh(x) of the 2DRP, in pick direction.

Harmonic | Amplitude Ani Conventional angular Wavelength Phase @i at
# [pm] frequency wHi AHi =21/ wi origin (x=0)
(Hi) [rad/pm] [um] [rad]
H1 An1=1.148 wu1=0.01557 An1=403.544 u1 =4.2031
H?2 0.2459 0.03118 (as 2.0025- wHz) 201.53 (as Ax1/2.0024) 1.412
H3 0.09367 0.04669 (as 2.9987- wHz) 134.57 (as An1/2.9988) 4.3261
H4 0.1116 0.06239 (as 4.0070- wHz) 100.70 (as An1/4.0074) 2.456
H5 0.02461 0.07848 (as 5.0404- wHz) 80.061 (as An1/5.0405) 3.085
H7 0.03816 0.1092 (as 7.0138- wkz1) 57.538 (as Au1/7.0135) 4.785
H8 0.009202 0.1245 (as 7.9961 wkz1) 50.467 (as Au1/7.9962) 5.8120
H9 0.0236 0.1404 (as 9.0173 wHz1) 44.752 (as Au1/9.0173) 3.4731
H10 0.02267 0.1558 (as 10.0064- wHz) 40.328 (as An1/10.0065) 4.6591
H11 0.0129 0.1714 (as 11.0083- wHz) 36.658 (as An1/11.0083) 121
H12 0.01171 0.1873 (as 12.0295- wHz) 33.546 (as An1/12.0296) 5.3275
H13 0.01317 0.2027 (as 13.0186* wHz) 30.997 (as An1/13.0188) 1.796
H14 0.01174 0.2181 (as 14.0077- wHz) 28.808 (as An1/14.0081) 5.8364
Hi5 0.01097 0.2337 (as 15.0096- wHz) 26.885 as An1/15.0100) 5.3481
Hi6 0.01386 0.2493 (as 16.0016* wHz) 25.203 (as An1/16.0117) 3.097
H18 0.01152 0.2805 (as 18.0154- wHz) 22.399 (as A1/18.0162) 5.5279
H19 0.0192 0.2961 (as 19.0173- wHz) 21.219 (as An1/19.0180) 0.628
H22 0.01029 0.3425 (as 21.9974- wHz) 18.345 (as Au1/21.9975) 3.9651
H23 0.008842 0.3586 (as 23.0315- wHz) 17.521 (as Au1/23.0320) 2.8171
H24 0.02065 0.3741 (as 24.0270- wHz) 16.795 (as Au1/24.0276) 4.3321
H25 0.009471 0.3896 (as 25.0225- wHz) 16.127 (as Au1/25.0229) 1.299
H26 0.01693 0.4053 (as 26.0308- wHz) 15.502 (as Au1/26.0317) 1.822
H27 0.01081 0.4208 (as 27.0263- wHz) 14.931 (as Au1/27.0273) 4.2351
H28 0.009238 0.4365 (as 28.0347- wHz) 14.394 (as Au1/28.0356) 1.563
H29 0.007853 0.4524 (as 29.0559- wHz) 13.888 (as Au1/29.0570) 0.7781
H31 0.01326 0.4833 (as 31.0405- wHz) 13.000 (as Au1/31.0418) 0.5155
H32 0.01014 0.4985 (as 32.0167- whz 12.604 (as Au1/32.0171) 3.9471
H38 0.008485 0.5924 (as 38.0475- wHz) 10.606 (as Au1/38.0487) 5.7423
H41 0.02497 0.6392 (as 41.0533- wHz) 9.829 (as An1/41.0565) 1.478
H42 0.01782 0.6548 (as 42.0552- wHz) 9.595 (as An1/42.0577) 0.9996

Some harmonics are missing (e. g. H6, H17, H20, H21, etc.).
Figure 10 presents an equivalent of Figure 8 but with an approximation of ya(x) with ya(x)
according with Eq. (4) and Table 1. Figure 11 presents a zoom in detail in area A on Figure 10
(similarly with Figure 9).
A comparison of Figures 10 and 11 with Figures 8 and 9 proves that the fitting is acceptable but
less good as before, aspect well highlighted by the evolution of the residual (r30(x)). Especially in some
areas (e. g. B, C and D on Figure 10) the fit between y(x) and yai(x) is locally less good. There are some
reasons for this misfit. Firstly, we should consider the angular position of the milling tool (due to its
rotation). This position was not rigorously the same each time when its axis intersects the line (e. g.
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(d1) on Figure 1) where the 2DRP was sampled (the pick-interval scallops geometry on this line from
working piece is slightly different). Secondly, there are variable flexional deformation of the milling
tool on the direction of this line (on pick feed direction).

However, in this approach, the ya(x) evolution (depicted separately in Figure 12) provides one
of the best characterizations of the 2DRP, systematically related by the interaction between milling
tool and work piece.

Due to a small imprecision of curve (signal) fitting process, there is not a perfect harmonic
correlation between the 30 components inside yan(x), as it is clear indicated on Table 1 (with whi=H;

‘wH1 or Ani~Ani/Hias well), the yan(x) evolution from Figure 12 is not strictly periodical, as expected.
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Figure 10. The 2DRP (in red), an approximation of yi(x) with a ya(x) profile having 30 components
described in Table 1 (in blue) and the 30t residual rs0(x) (in purple).
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Figure 11. A zoom-in detail in area A from Figure 10.

This inconvenient can be simply avoided, roughly considering in Eq. (4) wui =Hi ‘wH1. A
rigorously approach, is the replacing in wsi=Hi-wHx: the conventional angular frequency wn: with a
more probable equivalent value wrei, calculated as:

30
AHl -1, AHi Hi
Oy = (Z e ) s e - — 0.0155785 rad/um (5)

In whe the welghtmg (by amphtude Ani) of conventional angular frequency wsiof each harmonic,
relative to the amplitude An: of the first harmonic H1 (as dominant) is considered. However there is
no significant difference between wn: and wre:.

With this value wrer the description of yar(x) from Eq. (4) can be rewritten as yar(x) according to
Eq. (6) and graphically depicted according to Figure 13.
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30
Yane(x) = Z Ay - sin(H; * Wyer * X + @p;) (6)

i=1
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Figure 12. The evolution of ya(x) profile.
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Figure 13. The evolution of yan(x) profile.

This yar(x) profile can be accepted as a systematic characterization (pattern) of the 2DRP in pick
direction. Even a more interesting characterization is done if this yae(x) profile is described
considering that the origin on x-axis (x=0) is artificially moved in the abscissa (27t-@u1)/wne of the first
zero-crossing point (from negative to positive values) of the dominant sinusoidal component (H1 in
Table 1). Now yane(x) profile becomes yano(x), mathematically described with Eq. (7) and graphically
depicted in blue color on Figure 14. There the curve depicted with magenta color describes the
dominant component (H1), moved in new origin (as H1o), with w1 replaced with wHer.

30
. 2n—¢

Yaneo(X) = Z Ay sin[H; - wyer - (x + —Hl) + ouil @)
= WHe1

With Eq. (7) rewritten as Eq. (8), this move in a new origin is an equivalent of a positive shift of
phase (Hi(2mt-@H1)) at origin for all the components:
30

Yaneo(x) = Z Ay * Sin[H; * Wper " X + @y + Hy * (21 — 1)) ©)
i=1
Figure 15 presents a zoom in detail of Figure 14, with a first period of yano(x) profile and the
component Hlo.
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Figure 14. The evolution of yao(x) profile (in blue) overlaid on the evolution of the dominant

component Hlo (in magenta).

e
=] wn

e
o
T

Profile height [micrometers]

L L I I I . I
a 50 100 150 200 250 300 350 400
Distance [micrometers]

Figure 15. A zoom in detail of Figure 14 with first period of yano(x) profile.

This yaro(x) type of 2DRP is useful when two (or more) 2DRPs sampled in similar condition are
compared. In this approach, a second 2DRP was sampled on the same flat milled surface on a straight
line parallel with (d1) on pick direction, a randomly chosen distance between (several millimeters).

As an equivalent of Figure 10, Figure 16 presents this new 2DRP (as y(x), in red) having the same
number of samples (8,000) and sampling interval (Ax=0.5 um), overlapped with the yan(x) profile (in
green) and the residual (in purple). This time only 12 harmonically related sinusoidal components
inside ya(x) were found (Table 2) among the 122 sinusoidal components in ya(x).

Table 2. The values of constants involved in the mathematical description of 12 well harmonically
correlated sinusoidal components inside yan(x) of the 27 2DRP, sampled in pick direction.

Harmonic | Amplitude An Conventional angular Wavelength Phase ¢mi at
# [pum] frequency wsi Ani =27t/ wi origin (x=0)
(Hi) [rad/pum] [pm] [rad]
H1 An=1.124 wn1=0.01552 An1=404.8444 @1 =0.4821
H2 0.2406 0.03099 (as 1.9968- wni) | 202.7488 (as Au1/1.9968) 0.407
H3 0.08159 0.04671 (as 3.0097- wr1) | 134.5148 (as Au1/3.0097) 5.2621
H4 0.1232 0.06224 (as 4.0103-wr1) 100.9509 (as Am1/4.0103) 6.1897
H5 0.0234 0.07745 (as 4.9903- wHz) 81.1257 (as Ar1/4.9903) 4.9971
Hé6 0.008268 0.09263 (as 5.9604- wHz) 67.8310 (as An1/5.9684) 0.205
H7 0.03793 0.1088 (as 70103 wH1) 57.7499 (as An1/7.0103) 3.7771
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H9 0.01861 0.1404 (as 9.0464- wr1) 44.7520 (as Au1/9.0464) 0.1429
H10 0.02616 0.1558 (as 10.0387- wmz) 40.3285 (as An1/10.0387) 3.6981
Hi11 0.01256 0.1712 (as 11.0309- wHz) 36.7008 (as Ax1/11.0309) 2.608
Hi13 0.01106 0.2026 (as 13.0541- wnz) 31.0128 (as Ax1/13.0541) 2.05
H22 0.0107 0.3425 (as 22.0683- wu1) | 18.3451 (as An1/22.0683) 1.326

As an equivalent of Figure 14, Figure 17 presents the evolution of yano(x) profile (in green)
overlaid on the evolution of the dominant component H1o (in brown).

25
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[d] 500 1000

Figure 16. A new 2DRP (in red), an approximation of ya(x) with yax(x) profile having 12 components
(in green) and the 12% residual ri2(x), (in purple). An equivalent of Figure 10.
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Figure 17. The evolution of yano(x) profile (in green) overlaid on the evolution of the dominant

component H1o (in brown). An equivalent of Figure 14.

It is interesting here to highlight the similarities (by comparison) between the yano(x) profiles
(from Figure 14 and 17), by their overlapping, on Figure 18. This is possible because both profiles
start in a zero-crossing point (from negative to positive ordinates) of their dominant component Hlo.
A zoom-in detail on first period of Figure 18 is depicted in Figure 19.
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Figure 18. An overlapping of both yaro(x) profiles and their dominants Hlo.
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Figure 19. A zoom in detail of Figure 18 with first period of yano(x) profiles and dominants Hlo.

As is obvious on Figure 18 and especially in Figure 19, there are strong similarities between the
yareo(x) profiles (and between dominant components H1lo too). This proves that the proposal of this
yareo(x) pattern is a useful approach in a comparative analysis of 2DRPs sampled in similar conditions
(especially direction) on a flat milled surface with a ball nose end mill.

3.1.1. The Synthesis of a 2D Roughness Profile Pattern on a Period by Profile Averaging

There is another simple option to find out a synthetic (non-analytic) description of a pattern
useful to characterize the periodical 2DRPs describable with m conventional periods: the y-coordinate
of a point on this pattern (as ya(x)) being an average of the y-coordinates of m points on 2DRP. The
distance (measured on x-axis) between each two consecutive points is exactly the conventional period
of the dominant H1, as the equivalent wavelength Are calculated with Ane=2m/ wrer. A y-coordinate
value of this average pattern ya(x) is established by calculus as:

m

1
Yap(X) = m Z y(x +i-Ager) withx =0+ Ayeq 9
i=0
The length of this pattern is exactly the conventional period (the wavelength Axer). A better
approach is to describe this yw(x) pattern starting from the zero-crossing point of the dominant H1
(as yapo(x), Eq. (10)), this starting point having the x-coordinate (27t-@u1)/wre1.

m
1 2m —

Vapo(x) = — Z y(x + - Pm +i '/1He1) withx = 0 + Age (10)
m WHe1

i=0
Here x is the x-coordinate of a generic point on pattern yapo(x). In Eq. (10), in almost all previous
equations (except Eq. (5)) and in the sampled 2DRP, the x-coordinate is numerically described, as x=
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I Ax for the I sample, I=1+N. Here x+(27t-u1)/ awtert i-Ane and x+i-Ane in Eq. (9), are also x-coordinates
numerically described of samples placed on 2DRP.

Figure 20 presents this ywo(x) pattern, established by averaging, for the first sampled 2DRP (with
m=9). It is expected that this averaging (acting as a kind of digital filter) strongly attenuates the non-
sinusoidal components (noise) as well as the harmonically uncorrelated ones with the dominant H1.
In other words is expected that this yao(x) pattern is similar with the first period of yano(x) profile
(already depicted in Figure 15). This is fully confirmed in Figure 21, where the yao(x) pattern, the
yaneo(x) profile (first period) and the dominant H1o are overlapped.
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Figure 20. The yapo(x) pattern of the first 2DRP.
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Figure 21. The yqo(x) pattern of the first 2DRP, overlaid on the first period of yano(x) profile (in blue)
and the dominant, Hlo.

Similar considerations can be made for the yao(x) pattern of the 2nd 2DRP sampled in pick
direction, depicted in Figure 22.

There is an interesting utility of these y4o(x) patterns, similar with the utility of first periods from
yareo(x) profiles, already stated before in Figure 19: it allows us the synthetic characterization of the
roughness profiles, eventually by comparison. As example, Figure 23 depicts a graphical overlapping
of the yapo(x) patterns for both sampled 2DRPs, in pick direction. As expected, there is a very good
similarity between yao(x) patterns, even better than between yanro(x) profiles.
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Figure 22. The yao(x) pattern of the 27 2DRP.
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Figure 23. A graphical overlapping of yao(x) patterns: 1- for 1st 2DRP; 2 - for 2" 2DRP.

Certainly, an interesting and easier way to determine a more trustworthy description of a yaneo(x)
profile is the analysis by curve (signal) fitting of the extended ywo(x) pattern over m successive
periods.

3.1.2. An Approach on FFT Spectrum in 2D Roughness Profiles Description

There is another interesting resource that can be exploited related by the mathematical
description of ya(x) profile, particularly yar(x) profile. As already stated in Section I, the length of any
of two analytical profiles can be artificially increased by mathematical extrapolation (by increasing
the number of samples from N to p-N), keeping the same sampling rate f.. This way the conventional
frequency resolution (as Re) of the FFT spectrum for any of the two extrapolated profiles (Ree=f:/pN)
decreases significantly (by p times compared with the spectra of original profiles having Re=f/N
conventional frequency resolution), the Nyquist limit remains unchanged. The quality description of
the sinusoidal profile components by means of the FFT spectrum increases significantly.

As a first example, related by first 2DRP, Figure 24 depicts partially (in the 0 + 0.02 pum!
conventional frequency range) the FFT spectrum for y(x) profile (in red, a spectrum already presented
before in Figure 5) - and for extrapolated yar(x) profile (in blue, with p =10). Figure 25 presents the
both spectra on an extended range of conventional frequency (0 + 0.08 pm), with the first 27
harmonic correlated sinusoidal components (with wui=Hi-ws1).
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Figure 24. A partial view on the FFT spectra of y(x) profile (in red) and extrapolated yan(x) profile
with p=10 (in blue).
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Figure 25. An extended partial view on the FFT spectra of y(x) profile (in red) and extrapolated yune(x)
profile with p=10 (in blue).

Because in this approach the conventional angular frequencies wx: and wrer have very similar
values (Table 1 and Eq. (5)), the FFT spectrum of extrapolated yan(x) and yar(x) profiles are very
similar. The changing of origin of ya(x) profile (in order to produce the yaro(x) profile) does not
produce any change on the FFT spectrum (which is insensitive to phase shifting). The FFT spectrum
of extrapolated yan(x) and yaro(x) profiles are identical.

It is obvious that the FFT spectrum of extrapolated yur(x) profile can be used also as a pattern in
the comparison of two (or more) 2DRPs, sampled on the same surface, in similar conditions. The
similarities between the partial FFT spectra of extrapolated yar(x) profiles (with p =10) found in both
2DRPs analyzed before, are clearly highlighted in Figure 26, with a zooming on y-axis depicted in
Figure 27. For an easier comparison, the FFT spectrum of extrapolated yar(x) of 2" analyzed 2DRP
has been artificially moved with 0. 02 um up and 0.0005 um-' right.
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Figure 26. A partial view on the FFT spectra of extrapolated yan(x) profiles with p=10 (in blue for 1st
2DRP, in green for 2" 2DRP).
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Figure 27. A zoomed image on y-axis of the FFT spectra from Figure 26.

In a simpler and trustworthy approach, is possible the investigation of the resources provided
by the compared FFT spectra of extended yap0(x) patterns (related by both 2DRPs) over m successive
periods.

3.2. The Analysis of 2D Roughness Profiles in Feed Direction

A similar study is possible on the 2DRPs sampled on the same machined surface, in feed
direction, parallel with (d2), in identical conditions, number of samples and sampling rate. It is
expected that each of these 2DRPs describe a periodical succession of feed-interval scallops, as traces
left by the tips of the milling tool edges during its rotation and feed motion. With a milling tool having
three teeth, 5600 rpm rotation speed and 1560 mm/rot feed, the conventional period of these feed-
interval scallops should be equal with the feed per tooth fi= 0.1 mm.

Figure 28 presents a first 2DRP sampled in feed direction (colored in red), the deterministic part
harmonically correlated yan(x) (as a sum of 11 components, colored in blue) and the residual r:(x)
colored in purple. Figure 29 presents the overlapping of the first two periods from the dominant H1o
(curve 1), first two periods of profile yaro(x) (curve 2) and the pattern yao(x) -with m = 11-, extrapolated
on two periods (curve 3). As expected, there is a relative good fit between.
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Figure 28. A first 2DRP (in red), the yan(x) profile (in blue) having 11 components and the 11* residual
r11(x) (in purple).
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Figure 29. Two conventional periods from: 1 - the dominant component Hlo; 2 - the profile yaro(x); 3
— the pattern yapo(x).

Unexpectedly, the conventional angular frequency wwua = 0.020921 rad/um defines the
wavelength A= 2m/wner=300.32 um, as a conventional period, three times bigger than the feed per
tooth (100 um) but practically equal to the feed per milling tool rotation f-. This means that the 2DRP
in feed direction reveals an abnormal behavior of the milling tool, because it rotates off of its axis
(with run out, [3]) a single tooth is involved in cutting process. Obviously the theoretical 2DRP in
feed direction consists mainly from a group of 2D curve (trochoidal) arcs, as portions of the
trajectories of points on the teeth cutting edges. Figure 30 presents a conceptual simulation (without
milling tool run out) of these identical trochoidal trajectories (Trl, Tr2 and Tr3) at high feed rate (for
clarity of approach). Figure 31 describes these trajectories with a particularly run out on milling tool:
the rotation center is in opposite direction to the point involved in the generation of trajectory Tr2. In
both Figures, for down milling, the theoretical 2DRP is described by arcs between the lowest
intersection points of trajectories.
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Figure 30. A simulation of 2D trajectories of points placed on teeth cutting edges (no run out).
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Figure 31. A simulation of 2D trajectories of points placed on teeth cutting edges (with run out).

If the run out is big enough, then the theoretically 2DRP is described by arcs placed on a single
trochoidal trajectory, Tr2 on Figure 31. Here (d) is the work piece surface reference line before milling.
A conventional period of the dominant component in 2DRP is equal with the feed per rotation (f)
and not with the feed per tooth (fi= fi/3). The points A, B from Figure 31 are found in the areas A, B
from Figure 29. As opposed to Figure 31, on Figure 29 there is no equality of scales on x and y-axis.

A similar and comparative study can be performed related to a second 2DRP sampled on a
straight line (feed direction) as parallel direction to (d2). As opposed to the analysis of 2DRP in pick
direction, now this second 2DRP was sampled along a straight line carefully placed as precisely as
possible over a whole number of pick-intervals. A correct comparison supposes that the first and
second theoretical 2DRP should be the result of the trajectories of the same points on the teeth cutting
edges.

The equivalent of Figures 28 is depicted in Figure 32; the equivalent of Figure 29 is depicted in
Figure 33. As expected, similarly with Figure 29, there is a relative good fit between the dominant
component Hlo, yano(x) profile and the pattern yapo(x).
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Figure 32. A second 2DRP (in red), the yan(x) profile (in green) having 11 components and the 11t
residual r11(x), (in purple).
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Figure 33. Two conventional periods from: 1 - the dominant component Hlo; 2 - the profile yaro(x); 3
— the pattern yapo(x).

As already stated before, related by first 2DRP in feed direction, the same abnormal behavior of
the milling tool persists, because the run out, a single tooth is involved in cutting process, the
conventional angular frequency being wre: = 0.020946 rad/um defines the wavelength Ane = 271/wHer =
299.97 um, as a conventional period or feed per rotation fr as well (very close on that determined for
first profile), three times bigger than the feed per tooth (100 um).

A comparison between Figures 29 and 33 indicates that, similarly with the study in pick
direction, there are also strong similarities between these two different 2DRPs sampled in feed
direction. Figure 34 depicts the overlapped profiles yao(x), Figure 35 depicts the overlapped of
extended patterns yapo(x), with two periods.
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Figure 34. An overlapping of yaro(x) profiles for 1st and 2"42DRP (1 and 2).
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Figure 35. An overlapping of ywo(x) patterns (two periods) for 1st and 2"42DRP (3 and 4).

However we should mention that the coincidence of these two yano(x) profiles (Figure 34) is less
good than in the case of the yano(x) profiles for 2DRPs sampled in pick direction (Figure 19). A
similarly conclusion is available for the coincidence of ywo(x) patterns (by comparison between
Figures 35 and 23). The main reason for these misfits is the lack of certainty that the two analyzed
2DRPs were generated by the same points of the tool edges.

It is possible also to perform a comparison between the FFT spectra of extrapolated yan(x) profiles
of both 2DRPs, with p =10, as Figure 36 indicates, with zooming on y-axis depicted in Figure 37. For
an easier comparison, the FFT spectrum of extrapolated yan(x) of 274 analyzed 2DRP has been
artificially moved with 0. 01 pum up and 0.0005 pm right.
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Figure 36. A partial view on the FFT spectra of extrapolated yare(x) profiles with p=10 (in blue for first
2DRP, in green for second 2DRP).
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The similarities between spectra of extrapolated ya(x) profiles are certain related by
conventional frequencies of peaks but less evident related by the peaks amplitudes.

4. Conclusions

The proposed method to analyze and to find (by curve/signal fitting) the mathematical
description of the periodical part of an experimental 2D roughness profile, 2DRP (as a sum of
sinusoidal components harmonically correlated), provides reliable results, experimentally
confirmed, useful to characterize the milled surface (as a sum of wavinesses on two perpendicular
directions) and the interaction between the tool and work piece during the milling process
(particularly of machined flat surfaces with ball nose end mill, constant step over).

This work proposes an analytical definition of a periodic profile, as a best systematically
characterization (pattern) of an experimental 2DRP, sampled with a contact profilometer (in pick and
feed directions). A very similar periodic profile (however without an analytical description) is
generated using a special kind of sample averaging inside the experimental 2DRP. These periodic
profiles are useful for comparison purposes between different experimental 2DRPs or to validate a
predictive model for 2DRP [10, 24 and 25] or to achieve the mathematical description of the
microgeometry of a milled surface. The shape of these periodic profiles can provide important clues
related to the discovery and description of some abnormalities in the milling process (e. g. the tool
run out, revealed in this work).

This work proves that the mathematical extrapolation of the analytical defined periodic profile
of 2DRP improves the availability of a known but underutilized method of roughness analyzes based
on the spectrum of the periodic profile (seen as a time-dependent signal) generated by fast Fourier
transform (FFT), with a low (conventional) frequency resolution.

Of course, a generalization of these results in the analysis of other types of milled surfaces
(eventually using other roughness sampling methods) is a fully feasible option.

As a future approach, we intend to extend this study to the investigation of the 3D mathematical
description of the roughness microgeometry of the complex milled surfaces, experimentally sampled
with an appropriate optical system.
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