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Abstract: This paper presents a study of the 2D roughness profiles on a flat surface generated on a steel work 

piece,  by  ball  nose  end  milling,  with  linear  equidistant  tool  paths  (pick‐intervals).  The  milled  surface 

exploration with  a  surface  roughness  tester  (on pick  and  feed directions) produces usually  2D  roughness 

profiles having periodical evolutions. These evolutions can be seen as time‐dependent signals, describable as 

a sum of sinusoidal components (the wavelength of each component being regarded as a period). In order to 

detect a well approximated description of these components, two appropriate signal processing techniques are 

used  in  this work:  first  technique provides  a direct mathematical  (analytical) description  and  is based on 

computer  aided  curve  (signal)  fitting  (more  accurate),  the  second  technique  (providing  an  indirect  and 

incomplete description) is based on the spectrum generated by fast Fourier transform (less accurate). This study 

can be seen as a way  for a better understanding  the  interaction between  the  tool and  the work piece or  to 

achieve a mathematical description of  the machined surface microgeometry  in  terms of roughness  (e. g.  its 

description being a collection of closely spaced 2D roughness profiles). 

Keywords: 2D  roughness profiles; milling; ball nose end mill; curve  (signal)  fitting;  fast Fourier 

transform 

 

1. Introduction 

The  surface  roughness of machined  steel work pieces by milling with ball nose end mills  is 

obviously strictly related with the  interaction between tool and work piece. Mainly  it depends by 

cutting tool shape, geometry and position (tilt angle, axial depth of cut, effective cutting diameter), 

cutting machining parameters  (cutting  speed,  feed  rate and direction) milling  strategy  (tool path 

patterns, step over distance) and cutting forces (involved  in tool elastic deformations). Some non‐

systematic phenomena are occasionally also involved in the definition of this roughness: tool work 

piece relative vibrations, self‐excited vibrations, local variation of hardness on work piece material, 

tool wear,  cutting  edge  adhesions  or  fractures,  etc.  Therefore,  in  the most  appropriate milling 

conditions,  the roughness  is mainly characterized by a microgeometry with a regular  (periodical) 

shape with equidistant pick (path)‐interval and feed‐interval scallops [1] on pick and feed directions.   

A better understanding of  tool‐work piece  interaction during any cutting process supposes a 

deep investigation of the surfaces roughness. First approach in this investigation is the experimental 

sampling of surfaces roughness description using appropriate equipment. The most common method 

to achieve this sampling is to use contact profilometers [2‐8] as reliable but time‐consuming method. 

Some other methods use the non‐contact surface exploration by lasers [9], laser interferometry [10, 

11], laser confocal microscopes [12], optical systems [13, 14] or machine vision systems [15]. 

Because generally the description of a 3D surface roughness by sampling is obtained by joining 

many 2D roughness profiles (e. g. as a grid on pick and feed directions), the investigation of these 
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surfaces means mainly a study on each of these 2D roughness profiles (2DRPs), frequently as having 

a periodic evolution  [2, 4, 5, 8, 9, 13, 14 and 16]. Some  investigation  techniques on  this  topic are 

available  in  literature, most  of  these  revealing  the  existence  of  numerous  permanent  sinusoidal 

components  inside these 2DRPs  (as wavinesses [16], with dominants and some harmonics). Some 

previous  studies  indicate  the  availability  of  component  finding  description  techniques  using 

synthetic rather than analytic methods, the 2DRPs being treated mainly as digital time‐dependent 

signals.    The easiest synthetic description of components can be obtained by digital filtering  [17], 

particularly using  a  selective band pass  filtering  [8]. A  relative better  approach  in  this  synthetic 

description is possible using the power spectral density (by fast Fourier transform, FFT) of 2DRPs as 

signals [2, 7, 8, 15 and 16]. On a FFT spectrum (with amplitude on y‐axis and conventional frequency 

as the inverse of the wavelength on x‐axis) each significant sinusoidal component inside a 2DRP is 

described  as  a  peak. However,  the  availability  of  FFT  is  seriously  affected  generally  by  a  small 

resolution of conventional frequency (Rcf) on spectra. The using of a high sampling rate (or sampling 

frequency fs as well) for 2DRP description (in order to have a high Nyquist limit fNq = fs/2) should be 

mandatory accompanied by a high number (N) of samples (or a big size, length, of 2DRP) in order to 

have a small resolution of conventional frequency Rcf =  fs/N. If this resolution is not small enough, 

some peaks in spectrum are missing or have wrong described amplitude (smaller than normal). This 

is a major inconvenient of FFT, not yet resolved in these previous approaches. However, there is a 

supplementary inconvenient of analysis by FFT: the synthetic description of sinusoidal components 

is incomplete (their phases at the origin of time are missing). 

In some cases the 2DRPs, seen as time‐dependent signals, contains short sinusoidal components 

which don’t persist permanently. For these situations (not considered in our work), when generally 

short oscillations (waves) occurs temporarily, the FFT analysis is not at all appropriate, but there are 

available other specific investigation techniques (inspired by the study of vibrations), e. g. based on 

Wavelet  Transform  (as  Continuous  Wavelet  Transform  [7],  Frequency  Normalized  Wavelet 

Transform [18, 19] and Wavelet Packet Transform [20]). 

The main purpose of this work is focused on the investigation of periodical 2DRPs (seen as time‐

dependent signals) in order to find out the best analytical approximation of them, as close as possible 

to  experimental  evolutions,  as  a  sum  of  significant  sinusoidal  components.  Each  sinusoidal 

component  (analytically defined  by  the  amplitude,  a  conventional  frequency  and  a phase  at  the 

conventional origin of time) is a description of a waviness on the machined surface of work piece. 

The inverse of the conventional frequency (as conventional period) is the waviness wavelength. 

Particularly,  these  2DRPs  are  experimentally  sampled  in  feed  and  pick  directions  (using  a 

contact profilometer) on a theoretically flat surface milled with a ball nose end mill. A curve fitting 

procedure in Matlab (based on Curve fitting Toolbox) will be privileged in this approach. As opposed 

to  the  FFT  procedure  (also  addressed  here),  now  even  relative  small  size  (length)  2DRPs  are 

appropriate  for  curve  fitting  procedure,  high  accuracy  in  analytical  description  of  sinusoidal 

components being attainable. Similarly with FFT procedure, the curve fitting procedure has the same 

Nyquist  limit  (fNq =  fs/2),  in other words  it  is not possible  to  find out  the analytical descriptions of 

sinusoidal components having conventional frequency above the Nyquist limit fNq. The curve fitting 

procedure allows an interesting approach: a 2DRP in analytical description can be artificially resized 

by mathematical extrapolation (increasing the number N of samples, keeping the same sampling rate 

fs). The accuracy of the FFT spectrum of this resized 2DRP is significantly improved due a smaller 

conventional  frequency  resolution,  so  now  the  FFT  spectrum  is  more  appropriate  to  describe 

synthetically the contents (in sinusoidal components) of a 2DRP. 

The next sections of this paper are organized as it follows: Section 2 presents the materials and 

methods, Section 3 presents the results and discussions and Section 4 presents the conclusions. 

2. Materials and Methods 

A flat surface was milled on a work piece made by 90MnCrV8 steel (60 HRC hardness) using a 

carbide 12 mm 3 flute ball nose end mill, TiAlN coated (as GARANT Diabolo solid carbide ball nose 

slot drill HPC  12 mm,  from Hoffmann Group),  tilted with  25 degrees  to  the  pick direction  and 
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perpendicular to the feed direction, with these cutting regime parameters: 5200 rpm, 1560 mm/min 

feed rate, constant 0.1 mm axial depth of cutting and 0.4 mm step over (with theoretical equals pick‐

interval scallops height [21]). Figure 1 presents a down milling process conceptual description (with 

the work piece in cyan color, the tool in red, the feed direction in green, the rotation sense in blue). 

The magenta colored straight line (d1) depicts the pick direction; the black colored line (d2) depicts 

the feed direction, both used conventionally for experimentally sampling of 2DRP (with a SURFTEST 

SV‐2100W4 contact profilometer, from Mitutoyo). Figure 2 presents a view of tool and work piece 

(with the cutting process stopped) on a vertical machining center CNC OKUMA GENOS M460R‐VE. 

 

Figure 1. A conceptual description of cutting process. 

 

Figure 2. A view on milling setup. 

Figure 3 presents a view on the roughness sampling setup, with the flat milled surface placed in 

horizontal position (here for sampling in pick direction).   

 

Figure 3. A view on the roughness sampling setup. 

The numerical description of a 2DRP  is delivered as a  two‐column  .txt  files describing 8,000 

equidistant  samples  (Δx  =  0.5  μm  sampling  interval  between  samples  on  x‐axis,  for  4 mm  total 
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distance). This file is easy loadable in Matlab and analyzable as time‐depending signal (by FFT and 

curve (signal) fitting). Figure 4 presents a 4 mm length 2DRP, sampled in pick direction (drawn in 

Matlab). As expected, there is a dominant periodical component inside. A rough estimation on Figure 

4  indicates 10 periods, each period being equal to the milling step over (400 micrometers) and an 

average pick‐interval scallop height of 2.5 micrometers. 

 

Figure 4. Graphical description of a 2DRP sampled on work piece, in pick direction. 

Figure 5 presents a partial view of  the FFT  spectrum of  this 2DRP with  real amplitudes  (in 

Matlab). The 2DRP from Figure 4 was processed in FFT as a time‐dependent signal (the x‐coordinates 

of samples are seen as signal samples time; the y‐coordinates are seen as signal level). The sampling 

interval  Δx  on  x‐axis  (Δx=0.5  μm)  is  seen  as  conventional  sampling  period  Δt  on  t‐axis. An  x‐

coordinate on the abscissa of Figure 5 is the equivalent of a conventional frequency or the inverse of 

a conventional period or an inverse of a wavelength as well. A peak on FFT spectrum (e. g. the highest 

peak , depicted by an x‐coordinate of 0.0025 μm‐1 and a y‐coordinate of 1.138 μm) indicates that in 

the 2DRP exists a dominant sinusoidal component having the wavelength λ=1/x (e. g. λ1 = 1/0.0025 = 

400 μm  for  the peak 1). This  is exactly  the step over value  (pick  feed) previously highlighted. On 

Figure  5  some  other  relevant  peaks  (2,  3,  4  and  5)  depict  sinusoidal  components,  harmonically 

correlated with  the dominant,  the  ith harmonic  (with  i =1, 2, 3 and 4) having  the wavelengths λi = 

λ1/(i+2) as 200, 133.(3), 100 and 80 μm. The conventional  sampling period Δt = 0.5μm depicts  the 

sampling frequency (rate) fs = 1/ Δt = 2 μm‐1 so a conventional Nyquist limit (frequency) of fNq = fs/2 = 

1μm‐1. In other words, the smaller synthetic describable wavelength of a sinusoidal component inside 

the 2DRP by FFT spectrum is defined as λmin = (fNq)‐1 = (fs/2)‐1 = 1 μm. 

 

Figure 5. A partial view on the FFT spectrum of 2DRP from Figure 4. 
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However, as it is clear indicated on Figure 5, the conventional frequency resolution Rcf = fs/N = 

2/8000 = 0.00025 μm‐1 is not small enough in order to describe an accurate spectrum. On the spectrum 

from Figure 5  there are only 0.02/Rcf   = 0.02/0.00025 = 80 samples. There are certainly other higher 

harmonics that are not visible in spectrum. A longer 2DRP (obtained by increasing the number of 

samples  and  keeping  the  same  sampling  frequency)  reduces  significantly  the  conventional 

resolution.  It must be  stated again  that  the FFT  spectrum doesn’t provide  the phase at origin of 

conventional time (x=0) for sinusoidal components.     

A better approach proposed  in  this paper considers  that  inside  the y(x) 2DRP  is a consistent 

deterministic part yd(x) and a less significant non deterministic part ynd(x), with y(x) = yd(x) + ynd(x). 

Generally, for periodical 2DRPs, this deterministic part yd(x) is describable as a sum of n sinusoidal 

components: 

𝑦ௗሺ𝑥ሻ ൌ ෍ 𝑦ௗ௝ሺ𝑥ሻ
௡

௝ୀଵ

ൌ ෍ 𝐴௝

௡

௝ୀଵ

∙ sin൫𝜔௝ ∙ 𝑥 ൅ 𝜑௝൯                                     ሺ1ሻ 

In Eq. (1) Aj are amplitudes, 𝜔j are conventional angular frequencies (related by wavelengths λj, 

with 𝜔j =2π/λj) and φj are conventional phase shifts at origin (x = 0). Here x (the current position of 

the profilometer stylus on x‐ axis) plays the role of time. 

The curve (signal) fitting procedure (using Curve fitting tool from Matlab) allows finding out with 

a good approximation the coefficients Aj, 𝜔j and φj. A sine model (f(x)=a1*sin(b1*x+c1) was used for 

a first fitting with x as X data and y as Y data. In this model a1, b1 and c1 plays the role of A1, 𝜔1   and 
φ1 coefficients in definition of first sinusoidal component yd1(x). The first curve fitting produces the 

results A1 = 1.151 μm, 𝜔1   = 0.01558 rad/μm and φ 1 = 4.1871 rad (usually this fitting procedure find the 
description of the highest amplitude component).    This first sinusoidal component yd1(x) is depicted 

in blue color on Figure 6 (as dominant), overlaid on y(x), depicted in red color (an evolution already 

described in Figure 4). Thus the component yd1(x) can be mathematically described as: 

𝑦ௗଵሺ𝑥ሻ ൌ  𝐴ଵ ∙ sin൫𝜔௝ ∙ 𝑥 ൅ 𝜑௝൯ ൌ 1.151 ∙ sinሺ0.01557 ∙ 𝑥 ൅ 4.1871 ሻ                 ሺ2ሻ 
The description of yd1(x) from Eq. (1) allows the mathematical removing from y(x), with the result 

depicted in Figure 7, as the first residual (r1(x)) 2DRP, r1(x) = y(x)‐yd1(x) after first curve fitting (drawn 

at  the  same  scale  with  Figure  6).  The  decrease  of  y‐coordinates  of  the  residual  profile  is  a 

supplementary proof of the quality of yd1(x) mathematical description. 

 

Figure 6. The 2DRP from Figure 4 (in red) and the first sinusoidal component (yd1(x)) found by curve 

(signal) fitting (in blue), Eq. (2). 
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Figure 7. The first residual 2DRP after first analysis by curve fitting (as r1(x) = y(x)‐yd1(x)). 

It is obvious that the dominant component yd1(x) really fits with y(x). Its amplitude A1 is close by 

this depicted in FFT spectrum (peak 1), its wavelength λ1 = 2π/𝜔1 =2π/0.01558 = 403.285 μm, is close 
by the step over value or pick feed (400 μm) during the milling process. The conventional frequency 

of yd1(x) is 1/λ1   = 0.002479 μm‐1, more accurately described by comparison with Figure 5, related to 

the first peak (there 1/λ1   = 0.0025 μm). Related by the difference between λ1 = 403.285 μm (determined 

by curve fitting) and the pick feed (400 μm), a logical conclusion must be drawn: we rather suspect 

the imprecise control of the x‐movement of the contact profilometer during measurement than the 

pick feed control during milling process. 

It  is clear  that  this procedure can be  repeated  identically  (automatically, by programming  in 

Matlab) many times, the mathematical description of the ydj(x) sinusoidal component can be found 

by curve fitting of the (j‐1)th    residual of 2DRP, as rj‐1(x), described with:   

𝑟௝ିଵሺ𝑥ሻ ൌ 𝑦ሺ𝑥ሻ െ ෍ 𝑦ௗ௞ሺ𝑥ሻ

௝ିଵ

௞ୀଵ

                                                     ሺ3ሻ 

Of course, in curve fitting procedure (as in the case of the FFT spectrum) the exceeding of the 

Nyquist limit is forbidden (𝜔j <2πfNq or λj > (fNq)‐1).   
Hypothetically, considering that ynd(x) = 0, a perfect mathematically description of yd(x) (after n 

curve  fitting  similar  steps),  should produce an  rn(x) = 0  for  the nth  residual of 2DRP  (graphically 

representable as a straight line placed on the x‐axis). 

The viability of this method of determining the mathematical description of a roughness profile 

(by a similar curve fitting method developed  in Matlab) has been demonstrated before [22] in the 

analysis of other types of complex signals (vibrations, active electrical power, instantaneous angular 

speed, etc.) containing many sinusoidal components. 

3. Results and Discussions 

3.1. The Analysis of 2D Roughness Profiles in Pick Direction by Curve Fitting 

The analysis of the 2DRP already sampled before (Figure 4) has been done similarly by this curve 

fitting procedure  another  121  times. The mathematical description of 122  sinusoidal  components 

inside y(x) was found. Figure 8 presents the 2DRP (already depicted in red color on Figures 4 and 6) 

overlaid on an approximation of yd(x) by mathematical addition of these 122 sinusoidal components 

(in blue color). On the same Figure is overlaid the 122th residual of 2DRP (r122(x)), depicted in purple 

color. Figure 9 presents a zoom‐in detail in area A from Figure 8. 
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Figure 8. The 2DRP (in red), an approximation of yd(x) with ydh(x) having 122 components (in blue) 

and the 122th residual r122(x), (in purple). 

 

Figure 9. A zoom‐in detail in area A from Figure 8. 

It is obvious that there is a good fit between the approximation of yd(x) and y(x). By comparison 

with Figure 7 there is a significant smaller residual of 2DRP, mainly describing the nondeterministic 

content ynd(x) of y(x). 

As  is well known  [23], any  evolution of a  signal  in  time  (or  similar,  e. g.  this 2DRP  in pick 

direction) can be well approximated as a sum of sinusoidal components. In our approach it is more 

interesting to find its approximated analytical description (strictly related by milling process) as a 

sum of harmonically  correlated  sinusoidal  components  (as ydh(x)) with a  fundamental on 0.01557 

rad/μm as conventional angular frequency 𝜔1 (Eq. (2)) related by pick feed or step over and some 

harmonics (on 2∙0.01557 rad/μm, 3∙0.01557 rad/μm frequency, so on). In other words, the deterministic 

part  of  y(x)  should  be  seen  as  yd(x)  =  ydh(x)  +  ydnh(x), with  ydnh(x)  as  a  sum  of  sinusoidal  non‐

harmonically correlated components. Of course,  this new  type of approximation  is available here 

because ydh(x) is dominant (yd(x) ≈ ydh(x)). 

Among  the  122  identified  sinusoidal  components,  30  components  were  found  to  be  well 

harmonically correlated (and involved in ydh(x) definition from Eq. (4)) with a good approximation, 

with the values AHi, 𝜔Hi and φHi given in Table 1. 

𝑦ௗ௛ሺ𝑥ሻ ൌ ෍ 𝐴ு௜

ଷ଴

௜ୀଵ

∙ sinሺ𝜔ு௜ ∙ 𝑥 ൅ 𝜑ு௜ሻ                                     ሺ4ሻ 
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Table 1. The values of constants involved in the mathematical description of 30 well harmonically 

correlated sinusoidal components inside ydh(x) of the 2DRP, in pick direction. 

Harmonic 

# 

(Hi) 

Amplitude AHi 

[μm] 

Conventional angular 

frequency 𝜔Hi   
[rad/μm] 

Wavelength   

λHi =2π/𝜔i   
[μm] 

Phase φHi at 

origin (x=0) 

[rad] 

H1  AH1=1.148  𝜔H1=0.01557    λH1=403.544  φH1 =4.2031 

H2  0.2459  0.03118 (as 2.0025∙ 𝜔H1)  201.53 (as λH1/2.0024)  1.412 

H3  0.09367  0.04669 (as 2.9987∙ 𝜔H1)  134.57 (as λH1/2.9988)  4.3261 

H4  0.1116  0.06239 (as 4.0070∙ 𝜔H1)  100.70 (as λH1/4.0074)  2.456 

H5  0.02461  0.07848 (as 5.0404∙ 𝜔H1)  80.061 (as λH1/5.0405)  3.085 

H7  0.03816  0.1092 (as 7.0138∙ 𝜔H1)  57.538 (as λH1/7.0135)  4.785 

H8  0.009202      0.1245 (as 7.9961∙ 𝜔H1)  50.467 (as λH1/7.9962)  5.8120         

H9  0.0236      0.1404 (as 9.0173∙ 𝜔H1)    44.752 (as λH1/9.0173)  3.4731         

H10  0.02267        0.1558 (as 10.0064∙ 𝜔H1)  40.328 (as λH1/10.0065)  4.6591 

H11  0.0129      0.1714 (as 11.0083∙ 𝜔H1)    36.658 (as λH1/11.0083)  1.21     

H12  0.01171    0.1873 (as 12.0295∙ 𝜔H1)      33.546 (as λH1/12.0296)  5.3275         

H13  0.01317      0.2027 (as 13.0186∙ 𝜔H1)      30.997 (as λH1/13.0188)  1.796     

H14  0.01174      0.2181 (as 14.0077∙ 𝜔H1)      28.808 (as λH1/14.0081)  5.8364     

H15  0.01097      0.2337 (as 15.0096∙ 𝜔H1)      26.885 as λH1/15.0100)  5.3481       

H16  0.01386      0.2493 (as 16.0016∙ 𝜔H1)      25.203 (as λH1/16.0117)    3.097     

H18  0.01152      0.2805 (as 18.0154∙ 𝜔H1)      22.399 (as λ1/18.0162)  5.5279         

H19  0.0192      0.2961 (as 19.0173∙ 𝜔H1)      21.219 (as λH1/19.0180)  0.628     

H22  0.01029      0.3425 (as 21.9974∙ 𝜔H1)      18.345 (as λH1/21.9975)  3.9651 

H23  0.008842      0.3586 (as 23.0315∙ 𝜔H1)      17.521 (as λH1/23.0320)  2.8171         

H24  0.02065      0.3741 (as 24.0270∙ 𝜔H1)      16.795 (as λH1/24.0276)  4.3321 

H25  0.009471      0.3896 (as 25.0225∙ 𝜔H1)      16.127 (as λH1/25.0229)  1.299         

H26  0.01693      0.4053 (as 26.0308∙ 𝜔H1)      15.502 (as λH1/26.0317)  1.822 

H27  0.01081      0.4208 (as 27.0263∙ 𝜔H1)      14.931 (as λH1/27.0273)  4.2351 

H28  0.009238    0.4365 (as 28.0347∙ 𝜔H1)      14.394 (as λH1/28.0356)  1.563     

H29  0.007853      0.4524 (as 29.0559∙ 𝜔H1)      13.888 (as λH1/29.0570)  0.7781         

H31  0.01326      0.4833 (as 31.0405∙ 𝜔H1)      13.000 (as λH1/31.0418)  0.5155 

H32  0.01014    0.4985 (as 32.0167∙ 𝜔H1      12.604 (as λH1/32.0171)  3.9471     

H38  0.008485      0.5924 (as 38.0475∙ 𝜔H1)      10.606 (as λH1/38.0487)  5.7423     

H41  0.02497      0.6392 (as 41.0533∙ 𝜔H1)      9.829 (as λH1/41.0565)  1.478     

H42  0.01782      0.6548 (as 42.0552∙ 𝜔H1)      9.595 (as λH1/42.0577)  0.9996       

Some harmonics are missing (e. g. H6, H17, H20, H21, etc.).   

Figure  10 presents  an  equivalent of Figure  8 but with  an  approximation of  yd(x) with  ydh(x) 

according with Eq.  (4)  and Table  1. Figure  11 presents  a  zoom  in detail  in  area A on Figure  10 

(similarly with Figure 9). 

A comparison of Figures 10 and 11 with Figures 8 and 9 proves that the fitting is acceptable but 

less good as before, aspect well highlighted by the evolution of the residual (r30(x)). Especially in some 

areas (e. g. B, C and D on Figure 10) the fit between y(x) and ydh(x) is locally less good. There are some 

reasons for this misfit. Firstly, we should consider the angular position of the milling tool (due to its 

rotation). This position was not rigorously the same each time when its axis intersects the line (e. g. 
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(d1) on Figure 1) where the 2DRP was sampled (the pick‐interval scallops geometry on this line from 

working piece is slightly different). Secondly, there are variable flexional deformation of the milling 

tool on the direction of this line (on pick feed direction). 

However, in this approach, the ydh(x) evolution (depicted separately in Figure 12) provides one 

of the best characterizations of the 2DRP, systematically related by the interaction between milling 

tool and work piece. 

Due  to  a  small  imprecision of  curve  (signal)  fitting process,  there  is not  a perfect harmonic 

correlation between the 30 components inside ydh(x), as it is clear indicated on Table 1 (with 𝜔Hi ≈Hi 
∙𝜔H1 or λHi ≈ λH1/Hi as well), the ydh(x) evolution from Figure 12 is not strictly periodical, as expected. 

 

Figure 10. The 2DRP (in red), an approximation of yd(x) with a ydh(x) profile having 30 components 

described in Table 1 (in blue) and the 30th residual r30(x) (in purple). 

 

Figure 11. A zoom‐in detail in area A from Figure 10. 

This  inconvenient  can  be  simply  avoided,  roughly  considering  in  Eq.  (4)  𝜔Hi  =Hi  ∙𝜔H1.  A 
rigorously approach, is the replacing in 𝜔Hi =Hi ∙𝜔H1 the conventional angular frequency 𝜔H1 with a 

more probable equivalent value 𝜔He1, calculated as: 

𝜔ு௘ଵ ൌ ሺ෍
𝐴ு௜
𝐴ுଵ

ଷ଴

௜ୀଵ

ሻିଵ ∙෍
𝐴ு௜
𝐴ுଵ

ଷ଴

௜ୀଵ

 
𝜔ு௜

𝐻௜
ൌ  0.0155785 rad/μm                              ሺ5ሻ 

In 𝜔He1 the weighting (by amplitude AHi) of conventional angular frequency 𝜔Hi of each harmonic, 

relative to the amplitude AH1 of the first harmonic H1 (as dominant) is considered. However there is 

no significant difference between 𝜔H1 and 𝜔He1. 
With this value 𝜔He1 the description of ydh(x) from Eq. (4) can be rewritten as ydhe(x) according to 

Eq. (6) and graphically depicted according to Figure 13. 
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𝑦ௗ௛௘ሺ𝑥ሻ ൌ ෍ 𝐴ு௜

ଷ଴

௜ୀଵ

∙ sinሺ𝐻௜ ∙ 𝜔ு௘ଵ ∙ 𝑥 ൅ 𝜑ு௜ሻ                                     ሺ6ሻ 

 

 

Figure 12. The evolution of ydh(x) profile. 

 

Figure 13. The evolution of ydhe(x) profile. 

This ydhe(x) profile can be accepted as a systematic characterization (pattern) of the 2DRP in pick 

direction.  Even  a  more  interesting  characterization  is  done  if  this  ydhe(x)  profile  is  described 

considering that the origin on x‐axis (x= 0) is artificially moved in the abscissa (2π‐φH1)/𝜔He1 of the first 
zero‐crossing point (from negative to positive values) of the dominant sinusoidal component (H1 in 

Table 1). Now ydhe(x) profile becomes ydhe0(x), mathematically described with Eq. (7) and graphically 

depicted  in  blue  color  on Figure  14. There  the  curve depicted with magenta  color describes  the 

dominant component (H1), moved in new origin (as H10), with 𝜔H1 replaced with 𝜔He1. 

𝑦ௗ௛௘଴ሺ𝑥ሻ ൌ ෍ 𝐴ு௜

ଷ଴

௜ୀଵ

∙ sinሾ𝐻௜ ∙ 𝜔ு௘ଵ ∙ ሺ𝑥 ൅
2𝜋 െ 𝜑ுଵ
𝜔ு௘ଵ

ሻ ൅ 𝜑ு௜ሿ                               ሺ7ሻ 

With Eq. (7) rewritten as Eq. (8), this move in a new origin is an equivalent of a positive shift of 

phase (Hi∙(2π‐φH1)) at origin for all the components: 

𝑦ௗ௛௘଴ሺ𝑥ሻ ൌ ෍ 𝐴ு௜

ଷ଴

௜ୀଵ

∙ sinሾ𝐻௜ ∙ 𝜔ு௘ଵ ∙ 𝑥 ൅ 𝜑ு௜ ൅ 𝐻௜ ∙ ሺ2𝜋 െ 𝜑ுଵሻሻሿ                       ሺ8ሻ 

Figure 15 presents a zoom  in detail of Figure 14, with a first period of ydhe0(x) profile and the 

component H10. 
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Figure  14.  The  evolution  of  ydhe0(x)  profile  (in  blue)  overlaid  on  the  evolution  of  the  dominant 

component H10 (in magenta). 

 

Figure 15. A zoom in detail of Figure 14 with first period of ydhe0(x) profile. 

This ydhe0(x) type of 2DRP is useful when two (or more) 2DRPs sampled in similar condition are 

compared. In this approach, a second 2DRP was sampled on the same flat milled surface on a straight 

line parallel with (d1) on pick direction, a randomly chosen distance between (several millimeters).   

As an equivalent of Figure 10, Figure 16 presents this new 2DRP (as y(x), in red) having the same 

number of samples (8,000) and sampling interval (Δx=0.5 μm), overlapped with the ydh(x) profile (in 

green) and the residual (in purple). This time only 12 harmonically related sinusoidal components 

inside ydh(x) were found (Table 2) among the 122 sinusoidal components in yd(x). 

Table 2. The values of constants involved in the mathematical description of 12 well harmonically 

correlated sinusoidal components inside ydh(x) of the 2nd 2DRP, sampled in pick direction. 

Harmonic 

# 

(Hi) 

Amplitude AHi 

[μm] 

Conventional angular 

frequency 𝜔Hi   
[rad/μm] 

Wavelength   

λHi =2π/𝜔i   
[μm] 

Phase φHi at 

origin (x=0) 

[rad] 

H1  AH1=1.124        𝜔H1=0.01552      λH1=404.8444  φH1 =0.4821 

H2  0.2406      0.03099 (as 1.9968∙ 𝜔H1)  202.7488 (as λH1/1.9968)  0.407 

H3  0.08159    0.04671 (as 3.0097∙ 𝜔H1)  134.5148 (as λH1/3.0097)  5.2621         

H4  0.1232      0.06224 (as 4.0103∙𝜔H1)  100.9509 (as λH1/4.0103)  6.1897     

H5  0.0234          0.07745 (as 4.9903∙ 𝜔H1)  81.1257 (as λH1/4.9903)  4.9971       

H6  0.008268      0.09263 (as 5.9604∙ 𝜔H1)  67.8310 (as λH1/5.9684)  0.205         

H7  0.03793    0.1088 (as 70103∙ 𝜔H1)  57.7499 (as λH1/7.0103)  3.7771 
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H9  0.01861      0.1404 (as 9.0464∙ 𝜔H1)    44.7520 (as λH1/9.0464)  0.1429     

H10  0.02616      0.1558 (as 10.0387∙ 𝜔H1)  40.3285 (as λH1/10.0387)  3.6981     

H11  0.01256      0.1712 (as 11.0309∙ 𝜔H1)    36.7008 (as λH1/11.0309)  2.608       

H13  0.01106      0.2026 (as 13.0541∙ 𝜔H1)      31.0128 (as λH1/13.0541)  2.05           

H22  0.0107          0.3425    (as 22.0683∙ 𝜔H1)    18.3451 (as λH1/22.0683)  1.326         

As  an  equivalent  of Figure  14, Figure  17 presents  the  evolution of  ydhe0(x) profile  (in green) 

overlaid on the evolution of the dominant component H10 (in brown). 

 

Figure 16. A new 2DRP (in red), an approximation of yd(x) with ydh(x) profile having 12 components 

(in green) and the 12th residual r12(x), (in purple). An equivalent of Figure 10. 

 

Figure  17.  The  evolution  of  ydhe0(x)  profile  (in  green)  overlaid  on  the  evolution  of  the  dominant 

component H10 (in brown). An equivalent of Figure 14. 

It  is  interesting here to highlight  the similarities (by comparison) between the ydhe0(x) profiles 

(from Figure 14 and 17), by their overlapping, on Figure 18. This  is possible because both profiles 

start in a zero‐crossing point (from negative to positive ordinates) of their dominant component H10. 

A zoom‐in detail on first period of Figure 18 is depicted in Figure 19. 
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Figure 18. An overlapping of both ydhe0(x) profiles and their dominants H10. 

 

Figure 19. A zoom in detail of Figure 18 with first period of ydhe0(x) profiles and dominants H10. 

As is obvious on Figure 18 and especially in Figure 19, there are strong similarities between the 

ydhe0(x) profiles (and between dominant components H10 too). This proves that the proposal of this 

ydhe0(x) pattern is a useful approach in a comparative analysis of 2DRPs sampled in similar conditions 

(especially direction) on a flat milled surface with a ball nose end mill.   

3.1.1. The Synthesis of a 2D Roughness Profile Pattern on a Period by Profile Averaging 

There  is another simple option  to  find out a synthetic  (non‐analytic) description of a pattern 

useful to characterize the periodical 2DRPs describable with m conventional periods: the y‐coordinate 

of a point on this pattern (as yap(x)) being an average of the y‐coordinates of m points on 2DRP. The 

distance (measured on x‐axis) between each two consecutive points is exactly the conventional period 

of the dominant H1, as the equivalent wavelength λHe1 calculated with λHe1=2π/ 𝜔He1. A y‐coordinate 
value of this average pattern yap(x) is established by calculus as: 

𝑦௔௣ሺ𝑥ሻ ൌ
1
𝑚
෍ 𝑦ሺ𝑥 ൅ 𝑖 ൉ 𝜆ு௘ଵሻ     with 𝑥 ൌ 0 ൊ

௠

௜ୀ଴

 𝜆ு௘ଵ                                ሺ9ሻ 

The  length of  this pattern  is  exactly  the  conventional period  (the wavelength λHe1). A better 

approach is to describe this yap(x) pattern starting from the zero‐crossing point of the dominant H1 

(as yap0(x), Eq. (10)), this starting point having the x‐coordinate (2π‐φH1)/𝜔He1. 

𝑦௔௣଴ሺ𝑥ሻ ൌ
1
𝑚
෍ 𝑦൬𝑥 ൅

2𝜋 െ 𝜑ுଵ
𝜔ு௘ଵ

൅ 𝑖 ൉ 𝜆ு௘ଵ൰      with 𝑥 ൌ 0 ൊ

௠

௜ୀ଴

 𝜆ு௘ଵ                    ሺ10ሻ 

Here x is the x‐coordinate of a generic point on pattern yap0(x). In Eq. (10), in almost all previous 

equations (except Eq. (5)) and in the sampled 2DRP, the x‐coordinate is numerically described, as x= 
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l∙Δx for the lth sample, l=1÷N. Here x+(2π‐φH1)/𝜔He1+ i∙λHe1 and x+i∙λHe1 in Eq. (9), are also x‐coordinates 
numerically described of samples placed on 2DRP.   

Figure 20 presents this yap0(x) pattern, established by averaging, for the first sampled 2DRP (with 

m=9). It is expected that this averaging (acting as a kind of digital filter) strongly attenuates the non‐

sinusoidal components (noise) as well as the harmonically uncorrelated ones with the dominant H1. 

In other words  is expected that this yap0(x) pattern  is similar with the first period of ydhe0(x) profile 

(already depicted  in Figure 15). This  is fully confirmed  in Figure 21, where the yap0(x) pattern, the 

ydhe0(x) profile (first period) and the dominant H10 are overlapped.   

 

Figure 20. The yap0(x) pattern of the first 2DRP. 

 

Figure 21. The yap0(x) pattern of the first 2DRP, overlaid on the first period of ydhe0(x) profile (in blue) 

and the dominant, H10. 

Similar  considerations  can  be made  for  the  yap0(x)  pattern  of  the  2nd  2DRP  sampled  in  pick 

direction, depicted in Figure 22. 

There is an interesting utility of these yap0(x) patterns, similar with the utility of first periods from 

ydhe0(x) profiles, already stated before in Figure 19: it allows us the synthetic characterization of the 

roughness profiles, eventually by comparison. As example, Figure 23 depicts a graphical overlapping 

of the yap0(x) patterns for both sampled 2DRPs, in pick direction. As expected, there is a very good 

similarity between yap0(x) patterns, even better than between ydhe0(x) profiles. 
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Figure 22. The yap0(x) pattern of the 2nd 2DRP. 

 

Figure 23. A graphical overlapping of yap0(x) patterns: 1‐ for 1st 2DRP; 2 ‐ for 2nd 2DRP. 

Certainly, an interesting and easier way to determine a more trustworthy description of a ydhe0(x) 

profile  is  the  analysis  by  curve  (signal)  fitting  of  the  extended  yap0(x)  pattern  over m  successive 

periods. 

3.1.2. An Approach on FFT Spectrum in 2D Roughness Profiles Description 

There  is  another  interesting  resource  that  can  be  exploited  related  by  the  mathematical 

description of ydh(x) profile, particularly ydhe(x) profile. As already stated in Section I, the length of any 

of two analytical profiles can be artificially increased by mathematical extrapolation (by increasing 

the number of samples from N to p∙N), keeping the same sampling rate fs. This way the conventional 

frequency resolution (as Rcfe) of the FFT spectrum for any of the two extrapolated profiles (Rcfe = fs/pN) 

decreases significantly  (by p  times compared with  the spectra of original profiles having Rcf = fs/N 

conventional frequency resolution), the Nyquist limit remains unchanged. The quality description of 

the sinusoidal profile components by means of the FFT spectrum increases significantly.       

As  a  first  example,  related  by  first  2DRP,  Figure  24  depicts  partially  (in  the  0  ÷  0.02  μm‐1 

conventional frequency range) the FFT spectrum for y(x) profile (in red, a spectrum already presented 

before in Figure 5) ‐ and for extrapolated ydhe(x) profile (in blue, with p =10). Figure 25 presents the 

both  spectra  on  an  extended  range  of  conventional  frequency  (0  ÷  0.08  μm‐1), with  the  first  27 

harmonic correlated sinusoidal components (with 𝜔Hi =Hi ∙𝜔H1). 
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Figure 24. A partial view on the FFT spectra of y(x) profile (in red) and extrapolated ydhe(x) profile 

with p=10 (in blue). 

 

Figure 25. An extended partial view on the FFT spectra of y(x) profile (in red) and extrapolated ydhe(x) 

profile with p=10 (in blue). 

Because in this approach the conventional angular frequencies 𝜔H1 and 𝜔He1 have very similar 

values  (Table 1 and Eq.  (5)),  the FFT  spectrum of  extrapolated ydh(x) and ydhe(x) profiles are very 

similar. The changing of origin of ydhe(x) profile  (in order  to produce  the ydhe0(x) profile) does not 

produce any change on the FFT spectrum (which is insensitive to phase shifting). The FFT spectrum 

of extrapolated ydhe(x) and ydhe0(x) profiles are identical.     

It is obvious that the FFT spectrum of extrapolated ydhe(x) profile can be used also as a pattern in 

the comparison of  two  (or more) 2DRPs, sampled on  the same surface,  in similar conditions. The 

similarities between the partial FFT spectra of extrapolated ydhe(x) profiles (with p =10) found in both 

2DRPs analyzed before, are clearly highlighted in Figure 26, with a zooming on y‐axis depicted in 

Figure 27. For an easier comparison, the FFT spectrum of extrapolated ydhe(x) of 2nd analyzed 2DRP 

has been artificially moved with 0. 02 μm up and 0.0005 μm‐1 right. 
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Figure 26. A partial view on the FFT spectra of extrapolated ydhe(x) profiles with p=10 (in blue for 1st 

2DRP, in green for 2nd 2DRP). 

 

Figure 27. A zoomed image on y‐axis of the FFT spectra from Figure 26. 

In a simpler and trustworthy approach, is possible the investigation of the resources provided 

by the compared FFT spectra of extended yap0(x) patterns (related by both 2DRPs) over m successive 

periods. 

3.2. The Analysis of 2D Roughness Profiles in Feed Direction 

A  similar  study  is  possible  on  the  2DRPs  sampled  on  the  same machined  surface,  in  feed 

direction, parallel with  (d2),  in  identical  conditions, number  of  samples  and  sampling  rate.  It  is 

expected that each of these 2DRPs describe a periodical succession of feed‐interval scallops, as traces 

left by the tips of the milling tool edges during its rotation and feed motion. With a milling tool having 

three teeth, 5600 rpm rotation speed and 1560 mm/rot feed, the conventional period of these feed‐

interval scallops should be equal with the feed per tooth ft = 0.1 mm.   

Figure 28 presents a first 2DRP sampled in feed direction (colored in red), the deterministic part 

harmonically correlated ydh(x) (as a sum of 11 components, colored  in blue) and the residual r11(x) 

colored in purple. Figure 29 presents the overlapping of the first two periods from the dominant H10 

(curve 1), first two periods of profile ydhe0(x) (curve 2) and the pattern yap0(x) ‐with m = 11‐, extrapolated 

on two periods (curve 3). As expected, there is a relative good fit between. 
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Figure 28. A first 2DRP (in red), the ydh(x) profile (in blue) having 11 components and the 11th residual 

r11(x) (in purple). 

 

Figure 29. Two conventional periods from: 1 ‐ the dominant component H10; 2 ‐ the profile ydhe0(x); 3 

– the pattern yap0(x). 

Unexpectedly,  the  conventional  angular  frequency  𝜔He1  =  0.020921  rad/μm  defines  the 
wavelength λHe1 = 2π/𝜔He1 = 300.32 μm, as a conventional period, three times bigger than the feed per 

tooth (100 μm) but practically equal to the feed per milling tool rotation fr. This means that the 2DRP 

in feed direction reveals an abnormal behavior of the milling tool, because  it rotates off of its axis 

(with run out, [3]) a single tooth is involved in cutting process. Obviously the theoretical 2DRP in 

feed  direction  consists  mainly  from  a  group  of  2D  curve  (trochoidal)  arcs,  as  portions  of  the 

trajectories of points on the teeth cutting edges. Figure 30 presents a conceptual simulation (without 

milling tool run out) of these identical trochoidal trajectories (Tr1, Tr2 and Tr3) at high feed rate (for 

clarity of approach). Figure 31 describes these trajectories with a particularly run out on milling tool: 

the rotation center is in opposite direction to the point involved in the generation of trajectory Tr2. In 

both  Figures,  for  down milling,  the  theoretical  2DRP  is  described  by  arcs  between  the  lowest 

intersection points of trajectories. 
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Figure 30. A simulation of 2D trajectories of points placed on teeth cutting edges (no run out). 

 

Figure 31. A simulation of 2D trajectories of points placed on teeth cutting edges (with run out). 

If the run out is big enough, then the theoretically 2DRP is described by arcs placed on a single 

trochoidal trajectory, Tr2 on Figure 31. Here (d) is the work piece surface reference line before milling. 

A conventional period of the dominant component in 2DRP is equal with the feed per rotation (fr) 

and not with the feed per tooth (ft = fr/3). The points A, B from Figure 31 are found in the areas A, B 

from Figure 29. As opposed to Figure 31, on Figure 29 there is no equality of scales on x and y‐axis. 

A  similar and  comparative  study  can be performed  related  to a  second 2DRP  sampled on a 

straight line (feed direction) as parallel direction to (d2). As opposed to the analysis of 2DRP in pick 

direction, now this second 2DRP was sampled along a straight line carefully placed as precisely as 

possible over a whole number of pick‐intervals.   A correct comparison supposes that the first and 

second theoretical 2DRP should be the result of the trajectories of the same points on the teeth cutting 

edges. 

The equivalent of Figures 28 is depicted in Figure 32; the equivalent of Figure 29 is depicted in 

Figure 33. As expected, similarly with Figure 29, there is a relative good fit between the dominant 

component H10, ydhe0(x) profile and the pattern yap0(x). 
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Figure 32. A second 2DRP (in red), the ydh(x) profile (in green) having 11 components and the 11th 

residual r11(x), (in purple). 

 

Figure 33. Two conventional periods from: 1 ‐ the dominant component H10; 2 ‐ the profile ydhe0(x); 3 

– the pattern yap0(x). 

As already stated before, related by first 2DRP in feed direction, the same abnormal behavior of 

the milling  tool  persists,  because  the  run  out,  a  single  tooth  is  involved  in  cutting  process,  the 

conventional angular frequency being 𝜔He1 = 0.020946 rad/μm defines the wavelength λHe1 = 2π/𝜔He1 = 
299.97 μm, as a conventional period or feed per rotation fr as well (very close on that determined for 

first profile), three times bigger than the feed per tooth (100 μm). 

A  comparison  between  Figures  29  and  33  indicates  that,  similarly with  the  study  in  pick 

direction,  there  are  also  strong  similarities  between  these  two  different  2DRPs  sampled  in  feed 

direction.  Figure  34  depicts  the  overlapped  profiles  ydhe0(x),  Figure  35  depicts  the  overlapped  of 

extended patterns yap0(x), with two periods. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2024                   doi:10.20944/preprints202402.1238.v1



  21 

 

Figure 34. An overlapping of ydhe0(x) profiles for 1st and 2nd 2DRP (1 and 2). 

 

Figure 35. An overlapping of yap0(x) patterns (two periods) for 1st and 2nd 2DRP (3 and 4). 

However we should mention that the coincidence of these two ydhe0(x) profiles (Figure 34) is less 

good  than  in  the  case  of  the  ydhe0(x) profiles  for  2DRPs  sampled  in pick direction  (Figure  19). A 

similarly  conclusion  is  available  for  the  coincidence  of  yap0(x)  patterns  (by  comparison  between 

Figures 35 and 23). The main reason for these misfits is the lack of certainty that the two analyzed 

2DRPs were generated by the same points of the tool edges. 

It is possible also to perform a comparison between the FFT spectra of extrapolated ydh(x) profiles 

of both 2DRPs, with p =10, as Figure 36 indicates, with zooming on y‐axis depicted in Figure 37. For 

an  easier  comparison,  the  FFT  spectrum  of  extrapolated  ydh(x)  of  2nd  analyzed  2DRP  has  been 

artificially moved with 0. 01 μm up and 0.0005 μm‐1 right. 

 

Figure 36. A partial view on the FFT spectra of extrapolated ydhe(x) profiles with p=10 (in blue for first 

2DRP, in green for second 2DRP). 

 

Figure 37. A zoomed image on y‐axis of the FFT spectra from Figure 36. 
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The  similarities  between  spectra  of  extrapolated  ydhe(x)  profiles  are  certain  related  by 

conventional frequencies of peaks but less evident related by the peaks amplitudes.   

4. Conclusions 

The  proposed  method  to  analyze  and  to  find  (by  curve/signal  fitting)  the  mathematical 

description  of  the  periodical  part  of  an  experimental  2D  roughness  profile,  2DRP  (as  a  sum  of 

sinusoidal  components  harmonically  correlated),  provides  reliable  results,  experimentally 

confirmed, useful to characterize the milled surface (as a sum of wavinesses on two perpendicular 

directions)  and  the  interaction  between  the  tool  and  work  piece  during  the  milling  process 

(particularly of machined flat surfaces with ball nose end mill, constant step over).   

This work  proposes  an  analytical  definition  of  a  periodic  profile,  as  a  best  systematically 

characterization (pattern) of an experimental 2DRP, sampled with a contact profilometer (in pick and 

feed  directions).  A  very  similar  periodic  profile  (however without  an  analytical  description)  is 

generated using a special kind of sample averaging inside the experimental 2DRP. These periodic 

profiles are useful for comparison purposes between different experimental 2DRPs or to validate a 

predictive  model  for  2DRP  [10,  24  and  25]  or  to  achieve  the  mathematical  description  of  the 

microgeometry of a milled surface. The shape of these periodic profiles can provide important clues 

related to the discovery and description of some abnormalities in the milling process (e. g. the tool 

run out, revealed in this work). 

This work proves that the mathematical extrapolation of the analytical defined periodic profile 

of 2DRP improves the availability of a known but underutilized method of roughness analyzes based 

on the spectrum of the periodic profile (seen as a time‐dependent signal) generated by fast Fourier 

transform (FFT), with a low (conventional) frequency resolution. 

Of  course,  a generalization of  these  results  in  the  analysis of other  types of milled  surfaces 

(eventually using other roughness sampling methods) is a fully feasible option.   

As a future approach, we intend to extend this study to the investigation of the 3D mathematical 

description of the roughness microgeometry of the complex milled surfaces, experimentally sampled 

with an appropriate optical system. 
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