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Abstract:  Deep  learning  (DL)  algorithms  used  for  DOTATATE  PET  lesion  detection  typically 

require large, well‐annotated training datasets. These are difficult to obtain due to low incidence of 

gastroenteopancreatic neuroendocrine tumors (GEP‐NETs), and the high cost of manual annotation. 

Furthermore,  networks  trained  and  tested  with  data  acquired  from  site  specific  PET/CT 

instrumentation, acquisition and processing protocols have reduced performance when tested with 

offsite data. This lack of generalizability requires even larger, more diverse training datasets. The 

objective of this study is to investigate the feasibility of improving DL algorithm performance by 

better matching the background noise  in training datasets to higher noise, out‐of‐domain testing 

datasets. 68Ga‐DOTATATE PET/CT datasets were obtained from two scanners: Scanner1, a state‐of‐

the‐art digital PET/CT (GE DMI PET/CT; n=83 subjects), and Scanner2, an older‐generation analog 

PET/CT (GE STE; n=123 subjects). Set1, the data set from Scanner1 was reconstructed with standard 

clinical  parameters  (5 minutes; Q.Clear)  and  list‐mode  reconstructions  (VPFXS  2,  3,  4,  and  5‐

minutes).  Set2,  data  from  Scanner2,  representing  out‐of‐domain  clinical  scans,  used  standard 

iterative reconstruction (5 minutes; OSEM). A deep neural network was trained with each dataset: 

Network1 for Scanner1 and Network2 for Scanner2. DL performance (Network1) was tested with 

out‐of‐domain test data (Set2). To evaluate the effect of training sample size, we tested DL model 

performance using a fraction (25%, 50%, and 75%) of Set1 for training. Scanner1, list‐mode 2‐minute 

reconstructed data demonstrated the most similar noise level compared that of Set2, resulting in the 

best  performance  (F1=0.713).  This  was  not  significantly  different  compared  to  the  highest 

performance, upper‐bound limit using in‐domain training for Network2 (F1=0.755; p‐value=0.103). 

Regarding sample size,  the F1 score significantly  increased  from 25%  training data  (F1=0.478)  to 

100%  training  data  (F1=0.713;  p<0.001).  List‐mode  data  from  modern  PET  scanners  can  be 

reconstructed to better match the noise properties of older scanners. Using existing data and their 

associated annotations dramatically reduces  the cost and effort  in generating these datasets, and 

significantly  improves the performance of existing DL algorithms. List‐mode reconstructions can 

provide an efficient, low‐cost method to improve DL algorithm generalizability.   
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1. Introduction 

Gastroenteropancreatic neuroendocrine tumors (GEP‐NETs) are most accurately imaged with 
68Ga‐ and  64Cu‐DOTATATE positron emission  tomography  / computed  tomography  (DOTATATE 

PET/CT), which are standard‐of‐care imaging modalities for tumor detection and staging [1–3]. Many 

computerized methods have been applied to automatic lesion detection and/or quantification in PET 

images  [4],  leading  to  improved  objectivity  and  efficiency  compared  with  manual  tumor 

identification. 

In  recent years,  the use of Deep Learning  (DL) methods  to  identify  and quantify  lesions  in 

PET/CT images has become a growing area of research. Deep neural networks have recently shown 

excellent performance [4,5] in quantifying uptake from a variety of radiopharmaceuticals including 
18F‐FDG  [6–8],  18F‐PSMA  [9,10],  68Ga‐PSMA  [11],  and  68Ga‐  and  64Cu‐DOTATATE  [12].  Previous 

studies have shown impressive results when the training data and the test data are from the same 

domain, which means  they  have  the  same  or  similar  data  distribution. However,  training  the 

networks usually requires a large amount of well‐annotated data. In real‐world clinical practice, it is 

difficult to collect and annotate enough data for model training because GEP‐NETs are rare tumors, 

and lesion annotation in PET images is costly and challenging. When training a model based on a 

well‐annotated dataset from a different site/scanner, the model usually typically shows degradation 

in  performance when  tested  on  a  different  unseen  target  dataset.  This  is  because  datasets  from 

different sites/scanners usually exhibit different data distributions,  i.e., domain shift. This domain 

shift is derived from several image parameters, such as differences in spatial resolution, image noise, 

and image processing [13]. In PET images, it has been shown that background activity and noise have 

a  significant  impact  on  the detectability  of  lesions  [14]. Collecting  and  annotating  another  large 

dataset with similar properties to the out‐of‐domain target dataset is extremely time and resource 

consuming, making this effectively infeasible. 

List‐mode  reconstructions  allow  existing  data  and  their  associated  annotations  to  be 

retrospectively reconstructed with numerous variations to better match differences in other unseen 

datasets properties. Changing  the reconstruction parameters can simulate different out‐of‐domain 

properties  [15–17]. Thus, using  existing datasets  and  their  associated  annotations with  list‐mode 

reconstructions may  dramatically  reduce  the  cost  and  effort  to  generate  these  better matching 

datasets. The purpose of this study is to investigate the feasibility of using list‐mode reconstructions 

to better match  image noise between  training and out‐of‐domain  testing datasets  to  improve  the 

performance of lesion detection using deep neural networks in DOTATATE PET. In this study, we 

generated a set of list‐mode reconstructed datasets with different acquisition times based on the same 

dataset, such that only the noise level is different between these reconstructed datasets. In addition, 

we also  investigated  the effect of  training  sample  size on  the  cross‐domain performance of deep 

neural networks. Based on the findings in this manuscript, reconstructing the existing PET data helps 

to significantly improve the performance of DL algorithms, in a low‐cost and efficient manner. In this 

article, we introduce materials and methods in Section 2. The results are in Section 3, followed by our 

discussion in Section 4, and our conclusion in Section 5. 

2. Materials and Methods 

Image Acquisition and Datasets 

This  study  was  approved  and  performed  under  a  waiver  of  informed  consent  from  the 

Institutional Review Board at the University of Colorado Anschutz Medical Campus. All consecutive 

DOTATATE studies from our institution were de‐identified using a three‐digit numerical ID.    The 

standard  clinical  acquisition  and  processing  protocols  were  used  as  previously  described  [12].   

Briefly, subjects with normal liver uptake, and those with 10 or fewer non‐confluent hepatic lesions 
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were  included.  Two  separate  68Ga‐DOTATATE  PET  image  datasets  from  two  different  PET/CT 

scanners were  included. The  first dataset  (Set1) was  comprised of  83  subjects, of which  42 were 

normal, and 41 were abnormal  scans with 134 hepatic  lesions acquired  from Scanner1: a modern 

digital PET/CT scanner (GE Discovery MI PET/CT, GE HealthCare, Waukesha, WI). This scanner has 

time‐of‐flight  (TOF)  temporal  resolution of  approximately  380 ps. The  second dataset  (Set2) was 

comprised of 123  68Ga‐DOTATATE PET/CTs with 233 hepatic  lesions acquired  from Scanner2: an 

older generation, photomultiplier tube‐based PET/CT scanner (GE Discovery STE, GE HealthCare, 

Waukesha, WI) [12]. Set2  included 56 abnormal cases and 67 normal subjects. Following previous 

reports    [12,18], we randomly split each dataset into 60%, 20% and 20% for training, validation, and 

testing, respectively. 

For  Set1,  images were  reconstructed with  the  full  5 minutes  of data using  block  sequential 

regularized  expectation‐maximization  penalized‐likelihood  TOF  reconstruction  (BSREM,  aka 

Q.Clear, GE HealthCare, Waukesha, WI) with a Beta value of 400, a 256 × 256 matrix, and a 70 cm 

reconstructed diameter resulting in voxels with dimensions of 2.73 mm × 2.73 mm × 2.79 mm. CT 

based attenuation correction was applied along with time‐of‐flight correction, point spread function 

recovery, and  scatter and decay  corrections. Following  the  clinical  reconstruction,  list‐mode data 

were utilized to generate additional TOF reconstructions with data‐acquisition times of 2, 3, 4 and 5 

minutes using conventional  iterative  reconstruction  (TOFOSEM‐PSF, aka VPFXS, GE HealthCare, 

Waukesha, WI) with 3 iterations/16 subsets, a 192 × 192 matrix, and 70 cm reconstructed diameter 

resulting in voxels of 3.64 mm × 3.64 mm × 2.79 mm. Again, CT based attenuation correction was 

applied along with point spread function recovery, and scatter and decay corrections. Additionally, 

these reconstructions were smoothed with a 5 mm Gaussian post‐reconstruction filter. From Set1, we 

have 5 different sets of reconstructions: VPFXS 2 min, VPFXS 3 min, VPFXS 4 min, VPFXS 5 min, and 

Q.Clear. 

For Set2, PET images from clinical 68Ga DOTATATE PET/CT were also acquired with 5 minutes 

of acquisition time per bed position. These images were reconstructed using the full 5 minutes of data 

using ordered subset expectation maximization reconstruction (OSEM) with 3 iterations/16 subsets, 

a 128 × 128 matrix, and 60 cm reconstructed diameter resulting in voxels of 4.69 mm × 4.69 × 3.27 mm. 

Again,  CT‐based  attenuation  correction  was  applied  along  with  scatter  and  decay  corrections 

followed by a 5 mm Gaussian post‐reconstruction  filter.    Point spread  function recovery was not 

used as it was not available on this older scanner model. 

Image Segmentation and Lesion Contours 

Lesion segmentation was performed on all clinical reconstructions using a semiautomated MIM 

workflow  (MIM version 7.03) as previously described  [12]. This  tool utilizes a modified PERCIST 

threshold based on  regions of  interest  (ROI) placed  in normal  liver background which provides 

SUVmean and  standard  deviation  of  68Ga DOTATATE  activity.  Lesions were  identified  using  this 

threshold, defined as 1.5 times SUVmean plus 2 standard deviations of normal liver background. Once 

lesions were detected and visually confirmed, contours were refined using a commercially available 

gradient edge detection tool (PET Edge plus; MIM software 7.0.3). For the training and validation 

sets  of  reconstructions,  contours  generated  using  the  high  quality  Q.Clear  reconstruction were 

transferred to each of the VPFXS reconstructions. 

Quantification of Image Noise 

To quantify the difference in image noise, SUV measurements from the background ROIs from 

each reconstruction were used.    The same number of subject samples (n=25) was used to calculate 

the  background  noise  characteristics  from  reconstructions  of  Set1  and  Set2.    The  SUVmean  and 

standard  deviation  in  normal  liver  background were  recorded  for  each  reconstruction  and  the 

coefficient of variation (COV) was calculated as the standard deviation of the ROI divided by SUVmean. 

The average and standard deviation of the COV across all subjects within each reconstruction type 

was also calculated. To determine if differences in COV between reconstructions were statistically 
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significant,  a  series  of  paired  t‐tests  was  performed,  comparing  COV  for  each  subject’s 

reconstructions between each combination of two reconstruction approaches. 

Network Architecture 

The lesion detection network in this study was built on a modified U‐Net architecture [12], which 

has shown impressive performance for lesion identification in PET images (Supplementary Figure 

S1). It consists of four residual learning blocks [19] in the downsampling path and the upsampling 

path, respectively. It also has two transposed convolutional layers [20] in the upsampling path for 

contextual information aggregation [21]. We optimized this network using a linear combination of a 

binary cross‐entropy loss and a Dice loss [22], which helped handle the imbalance of the input data 

in our problem. 

Statistical Analysis 

To  investigate  the  effect  of  training  set  noise,  we  used  each  of  the  list‐mode  sets  of 

reconstructions for Set1 to train lesion‐detection models using 5 separate runs with different random 

seeds. Then we evaluated their performance on the testing set of Network2. For the effect of training 

sample  size,  we  trained  lesion  detection  models  based  on  25%,  50%,  75%,  and  100%  of  each 

acquisition in Set1. For the 5 runs on each training dataset, we used the same Set1 validation set and 

Set2 test set for validation and out‐of‐domain evaluation, respectively. In the testing stage, we directly 

applied each Network1‐trained model on the Set2 testing set to produce a prediction map for each 

input image, and used a threshold (i.e., 0) to binarize the map to identify lesions. Then we applied a 

noise filter of 20 pixels and excluded predictions below that threshold. We used positive predictive 

value,  sensitivity  and F1 score  as model  evaluation metrics  [12,18]. With  a  connected  component 

analysis, we used the Hungarian algorithm [23] to match gold‐standard annotations with automated 

predictions to handle potentially multiple lesions per subject. A detected lesion was considered true 

positive  (TP)  if  the  intersection over union  (IoU) between  this  lesion  and  a gold‐standard  lesion 

annotation was greater than zero [12,18]; otherwise, the detected lesion was viewed as false positive 

(FP). Any gold‐standard  lesion with no matched detection  is defined as false negative  (FN). With 

these definitions, we calculated positive predictive value PPV = TP/(TP +FP), sensitivity = TP/(TP 

+FN), and F1 score F1 = (2 × PPV × sensitivity)/(PPV + sensitivity), for the test set. 

3. Results 

The  patient demographics  for  Set1  are  shown  in Table  1,  and  those  for  the  Set2  have  been 

previously reported [12]. When evaluating Network1‐trained DL models with the Set2 testing dataset 

(Table 2 and Figure 2),  the F1 score progressively  improved with decreasing acquisition  time,  i.e., 

higher noise level images showed improved performance, with F1 score increasing from 0.657 at 5‐

min acquisition to 0.713 at 2‐min acquisition. This demonstrates an improved F1 score approaching 

the upper‐bound  limit model  (F1 = 0.755) of performance. This upper bound  limit,  indicating best 

possible performance, uses  training data  from Set2  and  tests  the model with  the  in‐domain Set2 

testing dataset.  Similarly, PPV  increased with decreasing  acquisition  time, while  sensitivity only 

slightly decreased. The F1 score of the DL model trained with the original clinical reconstruction from 

Set1 (Q.Clear; F1 = 0.614) was significantly worse compared to the model trained with Set1’s 2‐min 

reconstructed dataset (VPFXS 2 min; F1 = 0.713; p‐value = 0.006). In addition, as the F1 score of the 

noisier  images was better on  the out‐of‐domain  test data,  the highest noise 2‐min VPFXS  images 

showed performance  comparable  to and not  significantly different  than  the upper‐bound model, 

with (F1 = 0.713 vs 0.755; p‐value = 0.103). Similarly, there was no significant difference between the 

upper‐bound model and model trained with the VPFXS 3 min (p‐value = 0.087); whereas the F1 score 

of VPFXS 4 min model, that of VPFXS 5 min model, and that of Q.Clear model were all significantly 

smaller than that of upper‐bound model (p‐value = 0.013, 0.026, 0.006, respectively). 
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Table 1. Patient demographics and baseline characteristics. Value  for mean age  is mean  (standard 

deviation). Values for other parameters are number (percentage). 

Parameter  Value 

Mean age (years)  61.4 (14.09) 

       Women  61.4 

       Men  61.2 

Sex (no. of patients)   

       Women  40 (48%) 

       Men  43 (52%) 

Tumor present in liver   

       Yes  41 (49%) 

       No  42 (51%) 

Primary tumor site   

        Small bowel  32 (38%) 

        Pancreas  25 (30%) 

        Stomach  5 (6.5%) 

        Lung  5 (6.5%) 

       Head and neck  5 (6.5%) 

        Large bowel  2 (2%) 

       Adrenal  3 (3%) 

       None (normal scan)  6 (7.5%) 

Ki‐67 index   

        Low/intermediate grade ( 20%)  51 (62%) 

       High grade (>20%)  1 (1%) 

       No pathology report  31 (37%) 

Table 2. Lesion detection evaluation on the unseen Set2: effect of noise levels. Each method was run 

5 times, and the mean and standard deviation (SD) of each metric are reported: mean (SD). We also 

present  the noise  level of each dataset  in  terms of COV of SUV: mean  (SD). “*” means significant 

difference compared with Scanner2 F1 score. 

Training set  COV  F1  PPV  Sensitivity 

Set1 Q.Clear  0.091 (0.027)  0.614* (0.052)  0.706 (0.119)  0.565 (0.111) 

Set1 VPFXS 5 min  0.098 (0.027)  0.657* (0.033)  0.637 (0.105)  0.695 (0.059) 

Set1 VPFXS 4 min  0.102 (0.027)  0.673* (0.027)  0.663 (0.087)  0.694 (0.048) 

Set1 VPFXS 3 min  0.110 (0.029)  0.690 (0.034)  0.707 (0.087)  0.681 (0.025) 

Set1 VPFXS 2 min  0.121 (0.030)  0.713 (0.028)  0.758 (0.087)  0.680 (0.039) 

Set2  0.198 (0.040)  0.755 (0.043)  0.817 (0.036)  0.706 (0.070) 

The results of the DL models with different training sample sizes are shown in Table 3. The F1 

score progressively increased from 0.478 (25% training set) to 0.713 (100% training set). The F1 score 

of the model trained with 100% VPFXS 2‐min dataset was significantly higher than that trained with 

25% VPFXS 2‐min dataset (p‐value ≤ 0.001). Additionally, the F1 score increased as the sample size 

increased, with p‐value=0.012 between 25% and 50%, p‐value = 0.046 between 50% and 75%, and p‐

value = 0.049 between 75% and 100%.   
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Table 3. Lesion detection evaluation on the unseen test dataset: effect of training sample size. Each 

method was run 5 times, and the mean and standard deviation (SD) of each metric are reported: mean 

(SD). “*” means significant difference compared with 100% Scanner1 F1 score. 

Training sample size  F1  PPV  Sensitivity 

25% Set1 VPFXS 2 min  0.478* (0.044)  0.620 (0.049)  0.392 (0.055) 

50% Set1 VPFXS 2 min  0.616* (0.046)  0.882 (0.028)  0.475 (0.054) 

75% Set1 VPFXS 2 min  0.662* (0.019)  0.745 (0.051)  0.598 (0.031) 

100% Set1 VPFXS 2 min  0.713 (0.028)  0.758 (0.087)  0.680 (0.039) 

Several examples are shown in Figure 1. In the qualitative prediction results of the VPFXS 2‐min 

model  (Figure  1),  the  “True  Positive”  columns  from  Subjects A & B  are  examples  of which  the 

prediction  (Row  2)  agree with  the  corresponding  gold  standard  (Row  3).  Similarly,  the  “False 

Negative” and “False Positive” examples in Subjects B & C are also presented. 

 

Figure 1. Examples of DL lesion detection in transaxial 68Ga DOTATATE PET. Lesion predictions and 

gold‐standard  annotations  are  marked  in  red.  (Top  row)  Original  images,  (middle  row)  DL 

prediction, and (bottom row) Gold standard. (A‐C) Three different patient examples: (A) true positive 

and false negative, (B) true positive and false positive, and (C) false positive. 

 

Figure 2. The F1 score of  the  lesion detection model with different values of  (left) COV(SUV), and 

(right) sample size. 
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4. Discussion 

This study demonstrates the feasibility of addressing domain shift by better noise matching. In 

this study, the out‐of‐domain PET images from the Set2 are much noisier compared to those from the 

original Set1. The level of domain shift between the original clinical Set1 Q.Clear dataset (F1 = 0.614) 

and Set2 (F1 = 0.755) was significant (p‐value=0.006). With list‐mode reconstruction, we generated PET 

images with higher levels of noise by choosing shorter acquisition times. List‐mode reconstructions 

of  Set1 with different  shorter  acquisition  times demonstrated  significantly  improved  F1 score  on 

unseen reconstructions from Set2 from 5 minutes (0.614) to 2 minutes (0.713). Finally, the performance 

of  this  2‐minute  acquisition  (F1 =  0.713)  improved  to  a  level  that was  not  significantly  different 

compared  to  the  performance  of  the  upper‐bound  limit  (Set2,  F1  =  0.755;  p‐value  =  0.103).  This 

demonstrates the potential of eliminating the domain shift by better matching noise properties. 

This deep lesion detection network for 68Ga‐DOTATATE PET dataset requires a relatively large 

dataset  to  achieve  better  performance.  In  the  experiments  of  training  networks  with  different 

percentages of the full training set, there is consecutively significant increase in F1 score as the training 

sample size increases, with F1 from 0.478 to 0.616 (p‐value= 0.012) between 25% and 50%, F1 from 0.616 

to 0.662 (p‐value = 0.046) between 50% and 75%, and F1 from 0.662 to 0.713 (p‐value = 0.049) between 

75%  and  100%.  The  improvement with  larger  dataset  sizes  emphasizes  the  potential  for  larger 

training datasets  to  improve DL  algorithm performance. Although  an  even  larger dataset  could 

further  improve the performance  in our study, we attained a high  level not significantly different 

compared to the upper bound limit. 

Another  minor  difference  between  standard  clinical  reconstructions  and  our  list‐mode 

reconstructions was in the choice of reconstruction algorithm. A noisier reconstruction (VPFXS) was 

chosen compared to the more contemporary and lower noise reconstruction (Q.Clear) used in clinical 

scanning protocols. This demonstrates the ability to further alter the noise properties by using specific 

reconstruction techniques.    This feasibility study did not optimize other reconstruction parameters 

(post‐reconstruction filtering, depth dependent resolution recovery, time‐of‐flight, or other factors.) 

which could be tested to further improve the matching of properties in the different datasets.   

To our knowledge,  this  is  the  first  report of using  list‐mode  reconstructions  to better match 

training datasets to out of domain target datasets, which subsequently demonstrate  improved DL 

performance. Although this report is novel with respect to the use of list‐mode data to improve PET 

lesion  detection,  other  reports  have  shown  that  image  pre‐processing  can  significantly  improve 

convolutional neural network performance  in FDG PET  lesion segmentation  [29], and MRI  lesion 

characterization [30].   

The  ability  to  retrospectively  reconstruct  PET  list‐mode  data  with  different  imaging 

characteristics may allow a much broader diversification of PET imaging properties in the training 

data. Specific imaging properties could be applied to reconstruct PET images with varying levels of 

image noise,  image  spatial  resolution, and  specific corrections such as  scatter correction,  time‐of‐

flight (TOF) corrections, depth dependent resolution recovery corrections, and post‐ reconstruction 

filtering.   Matching these properties to a target dataset may potentially further improve PET lesion 

detection performance.   

This work complements our prior work which demonstrated significantly improved PET lesion 

detection performance with advanced DL techniques including domain adaptation, single domain 

generalization, and 3‐dimensional lesion detection [31–33].    These techniques were also combined 

with previously established techniques such as region‐guided generative adversarial network (RG‐

GAN) for lesion‐preserved image‐to‐image translation, and data augmentation [31]. Taken together, 

both our data preprocessing techniques and our advanced DL techniques show great potential for 

improvements in DL performance when testing datasets from outside institutions with differing PET 

instrumentation, acquisition and processing protocols.   

5. Conclusions 

List‐mode data from modern PET scanners can be reconstructed to better match the higher noise 

properties of reconstructions from an older‐generation PET scanner. Reuse of the existing data and 
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their  associated  annotations  can dramatically  reduce  the  cost  and  effort  to  generate  these  better 

matching  datasets.  These  reconstructed  datasets  can  significantly  improve  the  performance  of 

existing DL  algorithms,  and  thus,  provide  an  efficient,  low‐cost method  to  rapidly  improve DL 

algorithm generalizability. 
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