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Abstract: Deep learning (DL) algorithms used for DOTATATE PET lesion detection typically
require large, well-annotated training datasets. These are difficult to obtain due to low incidence of
gastroenteopancreatic neuroendocrine tumors (GEP-NETs), and the high cost of manual annotation.
Furthermore, networks trained and tested with data acquired from site specific PET/CT
instrumentation, acquisition and processing protocols have reduced performance when tested with
offsite data. This lack of generalizability requires even larger, more diverse training datasets. The
objective of this study is to investigate the feasibility of improving DL algorithm performance by
better matching the background noise in training datasets to higher noise, out-of-domain testing
datasets. 8Ga-DOTATATE PET/CT datasets were obtained from two scanners: Scannerl, a state-of-
the-art digital PET/CT (GE DMI PET/CT; n=83 subjects), and Scanner2, an older-generation analog
PET/CT (GE STE; n=123 subjects). Setl, the data set from Scannerl was reconstructed with standard
clinical parameters (5 minutes; Q.Clear) and list-mode reconstructions (VPEXS 2, 3, 4, and 5-
minutes). Set2, data from Scanner?, representing out-of-domain clinical scans, used standard
iterative reconstruction (5 minutes; OSEM). A deep neural network was trained with each dataset:
Networkl for Scannerl and Network?2 for Scanner2. DL performance (Networkl) was tested with
out-of-domain test data (Set2). To evaluate the effect of training sample size, we tested DL model
performance using a fraction (25%, 50%, and 75%) of Set1 for training. Scannerl, list-mode 2-minute
reconstructed data demonstrated the most similar noise level compared that of Set2, resulting in the
best performance (F1=0.713). This was not significantly different compared to the highest
performance, upper-bound limit using in-domain training for Network?2 (F1=0.755; p-value=0.103).
Regarding sample size, the F1 score significantly increased from 25% training data (F1=0.478) to
100% training data (F1=0.713; p<0.001). List-mode data from modern PET scanners can be
reconstructed to better match the noise properties of older scanners. Using existing data and their
associated annotations dramatically reduces the cost and effort in generating these datasets, and
significantly improves the performance of existing DL algorithms. List-mode reconstructions can
provide an efficient, low-cost method to improve DL algorithm generalizability.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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1. Introduction

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are most accurately imaged with
%8Ga- and #Cu-DOTATATE positron emission tomography / computed tomography (DOTATATE
PET/CT), which are standard-of-care imaging modalities for tumor detection and staging [1-3]. Many
computerized methods have been applied to automatic lesion detection and/or quantification in PET
images [4], leading to improved objectivity and efficiency compared with manual tumor
identification.

In recent years, the use of Deep Learning (DL) methods to identify and quantify lesions in
PET/CT images has become a growing area of research. Deep neural networks have recently shown
excellent performance [4,5] in quantifying uptake from a variety of radiopharmaceuticals including
BE-FDG [6-8], 8F-PSMA [9,10], #Ga-PSMA [11], and %Ga- and #Cu-DOTATATE [12]. Previous
studies have shown impressive results when the training data and the test data are from the same
domain, which means they have the same or similar data distribution. However, training the
networks usually requires a large amount of well-annotated data. In real-world clinical practice, it is
difficult to collect and annotate enough data for model training because GEP-NETs are rare tumors,
and lesion annotation in PET images is costly and challenging. When training a model based on a
well-annotated dataset from a different site/scanner, the model usually typically shows degradation
in performance when tested on a different unseen target dataset. This is because datasets from
different sites/scanners usually exhibit different data distributions, i.e., domain shift. This domain
shift is derived from several image parameters, such as differences in spatial resolution, image noise,
and image processing [13]. In PET images, it has been shown that background activity and noise have
a significant impact on the detectability of lesions [14]. Collecting and annotating another large
dataset with similar properties to the out-of-domain target dataset is extremely time and resource
consuming, making this effectively infeasible.

List-mode reconstructions allow existing data and their associated annotations to be
retrospectively reconstructed with numerous variations to better match differences in other unseen
datasets properties. Changing the reconstruction parameters can simulate different out-of-domain
properties [15-17]. Thus, using existing datasets and their associated annotations with list-mode
reconstructions may dramatically reduce the cost and effort to generate these better matching
datasets. The purpose of this study is to investigate the feasibility of using list-mode reconstructions
to better match image noise between training and out-of-domain testing datasets to improve the
performance of lesion detection using deep neural networks in DOTATATE PET. In this study, we
generated a set of list-mode reconstructed datasets with different acquisition times based on the same
dataset, such that only the noise level is different between these reconstructed datasets. In addition,
we also investigated the effect of training sample size on the cross-domain performance of deep
neural networks. Based on the findings in this manuscript, reconstructing the existing PET data helps
to significantly improve the performance of DL algorithms, in a low-cost and efficient manner. In this
article, we introduce materials and methods in Section 2. The results are in Section 3, followed by our
discussion in Section 4, and our conclusion in Section 5.

2. Materials and Methods

Image Acquisition and Datasets

This study was approved and performed under a waiver of informed consent from the
Institutional Review Board at the University of Colorado Anschutz Medical Campus. All consecutive
DOTATATE studies from our institution were de-identified using a three-digit numerical ID. The
standard clinical acquisition and processing protocols were used as previously described [12].
Briefly, subjects with normal liver uptake, and those with 10 or fewer non-confluent hepatic lesions
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were included. Two separate %Ga-DOTATATE PET image datasets from two different PET/CT
scanners were included. The first dataset (Set1) was comprised of 83 subjects, of which 42 were
normal, and 41 were abnormal scans with 134 hepatic lesions acquired from Scannerl: a modern
digital PET/CT scanner (GE Discovery MI PET/CT, GE HealthCare, Waukesha, WI). This scanner has
time-of-flight (TOF) temporal resolution of approximately 380 ps. The second dataset (Sef2) was
comprised of 123 ¥Ga-DOTATATE PET/CTs with 233 hepatic lesions acquired from Scanner2: an
older generation, photomultiplier tube-based PET/CT scanner (GE Discovery STE, GE HealthCare,
Waukesha, WI) [12]. Set2 included 56 abnormal cases and 67 normal subjects. Following previous
reports [12,18], we randomly split each dataset into 60%, 20% and 20% for training, validation, and
testing, respectively.

For Setl, images were reconstructed with the full 5 minutes of data using block sequential
regularized expectation-maximization penalized-likelihood TOF reconstruction (BSREM, aka
Q.Clear, GE HealthCare, Waukesha, WI) with a Beta value of 400, a 256 x 256 matrix, and a 70 cm
reconstructed diameter resulting in voxels with dimensions of 2.73 mm x 2.73 mm x 2.79 mm. CT
based attenuation correction was applied along with time-of-flight correction, point spread function
recovery, and scatter and decay corrections. Following the clinical reconstruction, list-mode data
were utilized to generate additional TOF reconstructions with data-acquisition times of 2, 3, 4 and 5
minutes using conventional iterative reconstruction (TOFOSEM-PSF, aka VPEXS, GE HealthCare,
Waukesha, WI) with 3 iterations/16 subsets, a 192 x 192 matrix, and 70 cm reconstructed diameter
resulting in voxels of 3.64 mm x 3.64 mm x 2.79 mm. Again, CT based attenuation correction was
applied along with point spread function recovery, and scatter and decay corrections. Additionally,
these reconstructions were smoothed with a 5 mm Gaussian post-reconstruction filter. From Set1, we
have 5 different sets of reconstructions: VPFXS 2 min, VPFXS 3 min, VPFXS 4 min, VPFXS 5 min, and
Q.Clear.

For Set2, PET images from clinical $¥Ga DOTATATE PET/CT were also acquired with 5 minutes
of acquisition time per bed position. These images were reconstructed using the full 5 minutes of data
using ordered subset expectation maximization reconstruction (OSEM) with 3 iterations/16 subsets,
a 128 x 128 matrix, and 60 cm reconstructed diameter resulting in voxels of 4.69 mm x 4.69 x 3.27 mm.
Again, CT-based attenuation correction was applied along with scatter and decay corrections
followed by a 5 mm Gaussian post-reconstruction filter. Point spread function recovery was not
used as it was not available on this older scanner model.

Image Segmentation and Lesion Contours

Lesion segmentation was performed on all clinical reconstructions using a semiautomated MIM
workflow (MIM version 7.03) as previously described [12]. This tool utilizes a modified PERCIST
threshold based on regions of interest (ROI) placed in normal liver background which provides
SUVuen and standard deviation of $Ga DOTATATE activity. Lesions were identified using this
threshold, defined as 1.5 times SUVuew plus 2 standard deviations of normal liver background. Once
lesions were detected and visually confirmed, contours were refined using a commercially available
gradient edge detection tool (PET Edge plus; MIM software 7.0.3). For the training and validation
sets of reconstructions, contours generated using the high quality Q.Clear reconstruction were
transferred to each of the VPFXS reconstructions.

Quantification of Image Noise

To quantify the difference in image noise, SUV measurements from the background ROIs from
each reconstruction were used. The same number of subject samples (n=25) was used to calculate
the background noise characteristics from reconstructions of Setl and Set2. The SUVuen and
standard deviation in normal liver background were recorded for each reconstruction and the
coefficient of variation (COV) was calculated as the standard deviation of the ROI divided by SUVean.
The average and standard deviation of the COV across all subjects within each reconstruction type
was also calculated. To determine if differences in COV between reconstructions were statistically
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significant, a series of paired t-tests was performed, comparing COV for each subject’s
reconstructions between each combination of two reconstruction approaches.

Network Architecture

The lesion detection network in this study was built on a modified U-Net architecture [12], which
has shown impressive performance for lesion identification in PET images (Supplementary Figure
S1). It consists of four residual learning blocks [19] in the downsampling path and the upsampling
path, respectively. It also has two transposed convolutional layers [20] in the upsampling path for
contextual information aggregation [21]. We optimized this network using a linear combination of a
binary cross-entropy loss and a Dice loss [22], which helped handle the imbalance of the input data
in our problem.

Statistical Analysis

To investigate the effect of training set noise, we used each of the list-mode sets of
reconstructions for Set1 to train lesion-detection models using 5 separate runs with different random
seeds. Then we evaluated their performance on the testing set of Network2. For the effect of training
sample size, we trained lesion detection models based on 25%, 50%, 75%, and 100% of each
acquisition in Set1. For the 5 runs on each training dataset, we used the same Set1 validation set and
Set?2 test set for validation and out-of-domain evaluation, respectively. In the testing stage, we directly
applied each NetworkI-trained model on the Set2 testing set to produce a prediction map for each
input image, and used a threshold (i.e., 0) to binarize the map to identify lesions. Then we applied a
noise filter of 20 pixels and excluded predictions below that threshold. We used positive predictive
value, sensitivity and Fi score as model evaluation metrics [12,18]. With a connected component
analysis, we used the Hungarian algorithm [23] to match gold-standard annotations with automated
predictions to handle potentially multiple lesions per subject. A detected lesion was considered true
positive (TP) if the intersection over union (IoU) between this lesion and a gold-standard lesion
annotation was greater than zero [12,18]; otherwise, the detected lesion was viewed as false positive
(FP). Any gold-standard lesion with no matched detection is defined as false negative (FN). With
these definitions, we calculated positive predictive value PPV = TP/(TP +FP), sensitivity = TP/(TP
+FN), and Fiscore F1= (2 x PPV x sensitivity)/(PPV + sensitivity), for the test set.

3. Results

The patient demographics for Setl are shown in Table 1, and those for the Set2 have been
previously reported [12]. When evaluating Network1-trained DL models with the Set2 testing dataset
(Table 2 and Figure 2), the Fiscore progressively improved with decreasing acquisition time, i.e.,
higher noise level images showed improved performance, with Fiscore increasing from 0.657 at 5-
min acquisition to 0.713 at 2-min acquisition. This demonstrates an improved Fi score approaching
the upper-bound limit model (F1 = 0.755) of performance. This upper bound limit, indicating best
possible performance, uses training data from Set2 and tests the model with the in-domain Set2
testing dataset. Similarly, PPV increased with decreasing acquisition time, while sensitivity only
slightly decreased. The Fiscore of the DL model trained with the original clinical reconstruction from
Set1 (Q.Clear; F1= 0.614) was significantly worse compared to the model trained with Set1’s 2-min
reconstructed dataset (VPEXS 2 min; Fi= 0.713; p-value = 0.006). In addition, as the Fiscore of the
noisier images was better on the out-of-domain test data, the highest noise 2-min VPFXS images
showed performance comparable to and not significantly different than the upper-bound model,
with (F1=0.713 vs 0.755; p-value = 0.103). Similarly, there was no significant difference between the
upper-bound model and model trained with the VPFXS 3 min (p-value = 0.087); whereas the Fiscore
of VPFXS 4 min model, that of VPFXS 5 min model, and that of Q.Clear model were all significantly
smaller than that of upper-bound model (p-value = 0.013, 0.026, 0.006, respectively).
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Table 1. Patient demographics and baseline characteristics. Value for mean age is mean (standard
deviation). Values for other parameters are number (percentage).

Parameter Value
Mean age (years) 61.4 (14.09)
Women 61.4
Men 61.2
Sex (no. of patients)
Women 40 (48%)
Men 43 (52%)
Tumor present in liver
Yes 41 (49%)
No 42 (51%)
Primary tumor site
Small bowel 32 (38%)
Pancreas 25 (30%)
Stomach 5 (6.5%)
Lung 5 (6.5%)
Head and neck 5 (6.5%)
Large bowel 2 (2%)
Adrenal 3 (3%)
None (normal scan) 6 (7.5%)
Ki-67 index
Low/intermediate grade (<20%) 51 (62%)
High grade (>20%) 1 (1%)
No pathology report 31 (37%)

Table 2. Lesion detection evaluation on the unseen Set2: effect of noise levels. Each method was run
5 times, and the mean and standard deviation (SD) of each metric are reported: mean (SD). We also
present the noise level of each dataset in terms of COV of SUV: mean (SD). “*” means significant
difference compared with Scanner2 Fiscore.

Training set COV F1 PPV Sensitivity
Set1 Q.Clear 0.091 (0.027)  0.614* (0.052)  0.706 (0.119) 0.565 (0.111)
Set1 VPFXS 5 min 0.098 (0.027)  0.657* (0.033)  0.637 (0.105) 0.695 (0.059)
Set1 VPFXS 4 min 0.102 (0.027)  0.673* (0.027)  0.663 (0.087) 0.694 (0.048)
Set1 VPFXS 3 min 0.110 (0.029)  0.690 (0.034)  0.707 (0.087) 0.681 (0.025)
Set1 VPFXS 2 min 0.121 (0.030)  0.713 (0.028)  0.758 (0.087) 0.680 (0.039)
Set2 0.198 (0.040)  0.755 (0.043)  0.817 (0.036) 0.706 (0.070)

The results of the DL models with different training sample sizes are shown in Table 3. The F1
score progressively increased from 0.478 (25% training set) to 0.713 (100% training set). The F1 score
of the model trained with 100% VPFXS 2-min dataset was significantly higher than that trained with
25% VPEXS 2-min dataset (p-value < 0.001). Additionally, the F1score increased as the sample size
increased, with p-value=0.012 between 25% and 50%, p-value = 0.046 between 50% and 75%, and p-
value = 0.049 between 75% and 100%.
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Table 3. Lesion detection evaluation on the unseen test dataset: effect of training sample size. Each
method was run 5 times, and the mean and standard deviation (SD) of each metric are reported: mean

(SD). “*” means significant difference compared with 100% Scanner1 F1score.

Training sample size F1 PPV Sensitivity
25% Set1 VPEXS 2 min 0.478* (0.044) 0.620 (0.049) 0.392 (0.055)
50% Set1 VPFXS 2 min 0.616* (0.046) 0.882 (0.028) 0.475 (0.054)
75% Set1 VPEXS 2 min 0.662* (0.019) 0.745 (0.051) 0.598 (0.031)
100% Set1 VPEXS 2 min 0.713 (0.028) 0.758 (0.087) 0.680 (0.039)

Several examples are shown in Figure 1. In the qualitative prediction results of the VPFXS 2-min
model (Figure 1), the “True Positive” columns from Subjects A & B are examples of which the
prediction (Row 2) agree with the corresponding gold standard (Row 3). Similarly, the “False
Negative” and “False Positive” examples in Subjects B & C are also presented.

A B C
Subject C

Subject A

o . -

Subject B

Original

Gold

Standard
True False True False False
Positive Negative Positive Positive Positive

Figure 1. Examples of DL lesion detection in transaxial ®*Ga DOTATATE PET. Lesion predictions and
gold-standard annotations are marked in red. (Top row) Original images, (middle row) DL
prediction, and (bottom row) Gold standard. (A-C) Three different patient examples: (A) true positive
and false negative, (B) true positive and false positive, and (C) false positive.
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Figure 2. The F1 score of the lesion detection model with different values of (left) COV(SUV), and
(right) sample size.
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4. Discussion

This study demonstrates the feasibility of addressing domain shift by better noise matching. In
this study, the out-of-domain PET images from the Sef2 are much noisier compared to those from the
original Set1. The level of domain shift between the original clinical Set1 Q.Clear dataset (F1=0.614)
and Set2 (F1=0.755) was significant (p-value=0.006). With list-mode reconstruction, we generated PET
images with higher levels of noise by choosing shorter acquisition times. List-mode reconstructions
of Setl with different shorter acquisition times demonstrated significantly improved Fi score on
unseen reconstructions from Sef2 from 5 minutes (0.614) to 2 minutes (0.713). Finally, the performance
of this 2-minute acquisition (F1= 0.713) improved to a level that was not significantly different
compared to the performance of the upper-bound limit (Set2, F1= 0.755; p-value = 0.103). This
demonstrates the potential of eliminating the domain shift by better matching noise properties.

This deep lesion detection network for ¥Ga-DOTATATE PET dataset requires a relatively large
dataset to achieve better performance. In the experiments of training networks with different
percentages of the full training set, there is consecutively significant increase in Fiscore as the training
sample size increases, with F1from 0.478 to 0.616 (p-value=0.012) between 25% and 50%, F1from 0.616
to 0.662 (p-value = 0.046) between 50% and 75%, and F1from 0.662 to 0.713 (p-value = 0.049) between
75% and 100%. The improvement with larger dataset sizes emphasizes the potential for larger
training datasets to improve DL algorithm performance. Although an even larger dataset could
further improve the performance in our study, we attained a high level not significantly different
compared to the upper bound limit.

Another minor difference between standard clinical reconstructions and our list-mode
reconstructions was in the choice of reconstruction algorithm. A noisier reconstruction (VPFXS) was
chosen compared to the more contemporary and lower noise reconstruction (Q.Clear) used in clinical
scanning protocols. This demonstrates the ability to further alter the noise properties by using specific
reconstruction techniques. This feasibility study did not optimize other reconstruction parameters
(post-reconstruction filtering, depth dependent resolution recovery, time-of-flight, or other factors.)
which could be tested to further improve the matching of properties in the different datasets.

To our knowledge, this is the first report of using list-mode reconstructions to better match
training datasets to out of domain target datasets, which subsequently demonstrate improved DL
performance. Although this report is novel with respect to the use of list-mode data to improve PET
lesion detection, other reports have shown that image pre-processing can significantly improve
convolutional neural network performance in FDG PET lesion segmentation [29], and MRI lesion
characterization [30].

The ability to retrospectively reconstruct PET list-mode data with different imaging
characteristics may allow a much broader diversification of PET imaging properties in the training
data. Specific imaging properties could be applied to reconstruct PET images with varying levels of
image noise, image spatial resolution, and specific corrections such as scatter correction, time-of-
flight (TOF) corrections, depth dependent resolution recovery corrections, and post- reconstruction
filtering. Matching these properties to a target dataset may potentially further improve PET lesion
detection performance.

This work complements our prior work which demonstrated significantly improved PET lesion
detection performance with advanced DL techniques including domain adaptation, single domain
generalization, and 3-dimensional lesion detection [31-33]. These techniques were also combined
with previously established techniques such as region-guided generative adversarial network (RG-
GAN) for lesion-preserved image-to-image translation, and data augmentation [31]. Taken together,
both our data preprocessing techniques and our advanced DL techniques show great potential for
improvements in DL performance when testing datasets from outside institutions with differing PET
instrumentation, acquisition and processing protocols.

5. Conclusions

List-mode data from modern PET scanners can be reconstructed to better match the higher noise
properties of reconstructions from an older-generation PET scanner. Reuse of the existing data and
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their associated annotations can dramatically reduce the cost and effort to generate these better
matching datasets. These reconstructed datasets can significantly improve the performance of
existing DL algorithms, and thus, provide an efficient, low-cost method to rapidly improve DL
algorithm generalizability.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org. Figure S1: Model Training for Lesion Detection - Network architecture
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