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B W N e

Abstract: Ophthalmological services face global inadequacies, especially in low- and middle-income
countries, which are marked by a shortage of both practitioners and equipment. This study employed
a portable slit-lamp microscope with video capabilities and cloud storage for a more equitable global
diagnostic resource distribution. To enhance accessibility and quality of care, this study targeted
corneal opacity, a global cause of blindness. To boost the online diagnosis efficiency, an Al pipeline
was developed using anterior segment videos to detect corneal opacity. First, we extracted image
frames from videos and learned them using a Convolutional Neural Network(CNN) model. Second,
we manually annotated to extract only the corneal margins, adjusted the contrast with CLAHE, and
learned using the CNN model. Finally, we performed semantic segmentation of the cornea using
the annotated data. The results showed an accuracy of 0.8 for image frames, and 0.96 for corneal
margins. Dice and IoU were 0.94 for semantic segmentation of corneal margins. While corneal opacity
detection from video frames seemed challenging in the early stages of this study, manual annotation,
corneal extraction, and CLAHE contrast adjustment significantly improved accuracy. Integrating
manual annotation into the Al pipeline through semantic segmentation achieved a high accuracy in
detecting corneal opacity.

Keywords: corneal opacity; corneal opacity detection; Al pipeline

1. Introduction

Despite the global increase in the number of ophthalmologists, a significant shortage remains in
developing countries [1].This shortage is compounded by the limited access to appropriate surgical
technologies and diagnostic tools [2,3]. Deployment of local ophthalmologists is considered a
cost-effective solution. However, the scarcity of professionals in developing countries remains a
challenge [4].

The Smart Eye Camera (SEC) [5] used in this study to photograph the anterior segment of the
eye was invented and developed by an active ophthalmologist to solve the problems encountered in
ophthalmology treatment in Japan and developing countries, an ophthalmic medical device that has
been successfully put into practical used as a medical device. SEC is a smartphone attachment that
enables observation of various anterior segment structures of the eyes, including the eyelid, conjunctiva,
cornea, anterior chamber, iris, lens, and anterior vitreous. This device mirrors the functionalities of
conventional slit-lamp microscopy [6,7]. Furthermore, SEC facilitates the preliminary estimation and
identification of several anterior segment pathologies such as cataracts [8], primary angle closure [9],
allergic conjunctivitis [10], and dry eye disease [11,12]. Its integration with smartphone technology
not only enhances accessibility, but also potentially expands the scope of ophthalmologic diagnostics
in various settings. Additionally, an image-filing system using a dedicated application was used to
enable remote ophthalmology treatment. The development of SEC has made it possible for anyone to
perform eye examinations at any time regardless of location. We are diagnosing videos of the anterior
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segment of the eye sent via the cloud, and we are conducting research and development to perform
the diagnosis using Al to support the diagnosis of ophthalmologists.

Deep learning has been applied in various ways to diagnose conditions that affect the anterior
segment of the eye. Applications range from detecting angle-closure in anterior segment optical
coherence tomography (AS-OCT) images to diagnosing dry eye disease (DED) and identifying
peripheral anterior synechia (PAS). For instance, a deep learning system was developed for
angle-closure detection in AS-OCT images, which surpassed previous methods by utilizing a multilevel
deep network that captured subtle visual cues from the global anterior segment structure, local iris
region, and anterior chamber angle (ACA) patch [13]. Another study evaluated a deep learning-based
method to autonomously detect DED in AS-OCT images, which showed promising results compared
to standard clinical dry eye tests [14]. Deep learning classifiers have also been used to measure
peripheral anterior synechia based on swept-source optical coherence tomography (SS-OCT) images,
demonstrating good diagnostic performance for gonioscopic angle closure and moderate performance
for PAS detection [15]. In addition, deep learning classifiers have been developed to detect gonioscopic
angle closure and primary angle closure disease (PACD) based on a fully automated analysis of
AS-OCT images, showing effective detection capabilities [16]. Another study focused on the diagnostic
performance of deep learning for predicting plateau iris in patients with primary angle-closure disease
using AS-OCT images, which revealed a high performance in predicting plateau iris [17]. Finally, a
deep learning model was developed for automated detection of eye laterality in anterior segment
photographs, which achieved high accuracy and outperformed human experts [18]. In summary,
deep learning has shown significant potential in the diagnosis of various anterior eye conditions,
offering automated, accurate, and noninvasive methods that could enhance clinical evaluations and
improve access to eye care in high-risk populations [13-18]. Deep learning models have shown
significant promise in the field of biomedicine, particularly for the diagnosis of systemic diseases.
However, there are several challenges associated with their application. One of the primary concerns
is the need to guarantee the performance of deep-learning systems once they are deployed in a
clinical setting. The inherent flexibility and strength of deep learning also present difficulties in
ensuring consistent and reliable outcomes [19]. Moreover, there is a critical need to establish trust
among stakeholders, including clinicians and regulators who require transparent and interpretable
decision-making processes. The complexity of deep learning models often leads to a ‘black box’
scenario, where the rationale behind their predictions is not easily understood or explained. This lack
of transparency can hinder the adoption of deep learning in clinical practice [19]. In ophthalmology,
deep learning has demonstrated potential in automated image analysis for detecting diseases, such as
diabetic retinopathy, age-related macular degeneration, and glaucoma. Despite the high accuracy in
the initial studies, further testing and research are necessary to validate these technologies clinically.
This highlights the challenge of moving from research and development to practical and clinical
applications [20]. A systematic review and meta-analysis comparing the diagnostic accuracy of deep
learning algorithms and healthcare professionals found that, while deep learning models can match the
performance of healthcare professionals, there is a scarcity of studies that provide externally validated
results. Additionally, the review identified the prevalent issue of poor reporting in deep learning
studies, which undermines the ability to reliably interpret diagnostic accuracy. The establishment
of new reporting standards that address the unique challenges of deep learning is essential for
improving the quality of future studies and fostering greater confidence in technology [21]. In
summary, the challenges of applying deep learning models to diagnose systemic diseases include
ensuring reliable performance, establishing trust through transparency and interpretability, clinically
validating technology, and improving the quality of reporting in deep learning studies [19-21]. Deep
learning models have shown significant promise in the field of ophthalmology, particularly for the
detection and diagnosis of ocular diseases. However, these models have several limitations that must
be considered. One of the primary limitations of this study was the need for further testing and
clinical validation. Although deep learning models have demonstrated high accuracy in automated
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image analysis of fundus photographs and optical coherence tomography images, additional research
is required to validate these technologies in clinical settings [22]. Another limitation is the lack of
disease specificity and the public generalizability of the models. Despite the decent performance
reported in previous studies, most deep learning models developed for identifying systemic diseases
based on ocular data lack the specificity required for individual diseases and are not yet generalizable
to the broader public for real-world applications [23]. Furthermore, deep-learning models can be
computationally expensive, and deploying them on edge devices may pose a challenge. This is
particularly relevant when considering the variety of available models and the potential need for a
combination of models to solve a given task. The computational demands of these models may limit
their practicality in certain clinical settings [24]. Lastly, while deep learning models can predict the
development of diseases such as glaucoma with reasonable accuracy, they may miss certain cases,
especially those with visual field abnormalities, but not glaucomatous optic neuropathy. This indicates
that although DL models are powerful tools, they may not yet be able to fully replace the nuanced
judgment of trained medical professionals [25]. In summary, while deep learning models hold great
potential for revolutionizing the diagnosis of ocular diseases, their limitations in terms of clinical
validation, disease specificity, computational demands, and potential to miss certain cases must be
addressed before they can be fully integrated into clinical practice.

The purpose of this study was to develop an Al pipeline to determine the presence of corneal
opacity using anterior segment videos captured using a portable sitting microscope and deep
learning techniques.

2. Materials and Methods

This study was conducted in strict accordance with the principles of the Declaration of Helsinki.
Ethical approval for the study protocol was obtained from the Institutional Ethics Review Board of the
Minamiaoyama Eye Clinic, Tokyo, Japan (IRB No. 15000127. Approved No. 202101). Owing to the
retrospective design of the study and the use of anonymized data, the board waived the requirement
for written informed consent from the participants.

Anterior segment videos were captured using a portable slit-lamp microscope (Smart Eye Camera;
SEC. SLM-i07 /SLM-i08SE, OUI Inc., Tokyo, Japan; 13B2X10198030 101/13B2X10198030201) (Figure 1).
By attaching this device to a smartphone, it will be possible to perform eye examinations in the
same way as with existing slit-lamp microscopes. There is evidence that they do not require battery
replacement or charging, are easy to carry, and exhibit the same performance and safety as existing
medical devices in several regions [6,7].
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Figure 1. Smart Eye Camera.

Data acquisition for this study was centralized at a singular ophthalmological facility, namely,
the Yokohama Keiai Eye Clinic. The recordings, systematically obtained between July 2020 and
December 2021, were subsequently collated on a dedicated cloud server, thus constituting the dataset
for this study. The recording process entailed skilled ophthalmologists directing SEC towards the
cornea of the patients, leveraging the device’s feature of emitting a white diffused light to facilitate
clear visualization. The video capture protocol was aligned with the methodologies conventionally
associated with slit-lamp microscopes, ensuring standardization of the visual data. To further emulate
the conditions of routine clinical assessments, patients were advised to avoid blinking during the video
recording phase to enhance the consistency and clinical relevance of the collected video data.

First, 30 diffuse light videos were decomposed into images, and the images that could be used as
validation data were selected. A total of 5996 images, 1617 positive frames and 4379 negative frames
were used to detect corneal opacity. The resolution of all images was 1280 pixels horizontally and
720 pixels vertically. Using these verified images, we attempted to detect corneal opacity by performing
image classification. EfficientNet-B4 [26] was used as the convolutional neural network (CNN) model,
and cross-validation was performed, but almost no correct positive frames could be detected.

Therefore, to improve the detection accuracy, we manually annotated the cornea, which is
the region of interest (ROI), extracted an image of only the cornea, adjusted the contrast using
contrast-limited adaptive histogram equalization (CLAHE) [27], and used a convolutional neural
network. Image classification was performed again using EfficientNet-B4 as a (CNN) model. The data
structures used for the learning and prediction are presented in Table 1. The proportion of underlying
diseases in the data is shown in the pie chart in Figure 2, the cornea extraction procedure is shown in
Figure 3, and the contrast changes before and after CLAHE image processing are shown in Figure 4.

This confirmed that corneal opacity could be detected in the anterior segment images. However,
to incorporate it into an Al automated prediction system, which we call an Al pipeline, it is necessary
to automate the manual annotation of the process of extracting the cornea and ROI from the anterior
eye image.

The hyperparameters at training were 30 for the number of epochs, 8 for the batch size, and 0.0001
for the learning rate, with default values for EfficientNet-B4 for the rest. Data augmentation during
training included resizing (512 x 512), flipping up and down with a 1/2 probability, and flipping left
and right with a 1/2 probability.
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Therefore, we performed semantic segmentation learning to segment the cornea from the anterior
segment image by reusing the annotation mask used to extract the cornea from the anterior segment
image and original extracted image as learning data. U-Net [28]/EfficientNet-B4 was adopted as the
semantic segmentation model.

The hyperparameters for learning the semantic segmentation were 40 epochs and 10 batch sizes.
The learning rate started at 0.001 and decreased to 0.0001 after 25 epochs. All other values were set to
the U-Net/EfficientNet-B4 default. Data Augmentation during training included resizing (256x256),
flipping left/right with 1/2 probability, Affin transformation, padding the edges according to image
size, cropping at random, Gaussian noise with a probability of 1/5, and perspective transformation
with a probability of 1/2. In addition, one set of augmentations among the following three was
performed with a probability of 9/10:1st set includes CLAHE, brightness adjustment, and gamma
transformation, 2nd set includes sharpening, blur, and motion blur, 3rd set includes contrast adjustment
and hue, saturation, and luminance change.

This study was conducted on a Windows 11 system with the following specifications: CPU: Intel
Core i7-11700KE, memory: 128GB, and GPU: RTX 4070.

In this way, an Al pipeline was completed that uses semantic segmentation to extract the
ROI and cornea from anterior segment images, and uses deep learning to classify images to detect
corneal opacity.

Table 1. Data structure.

negative positive total

train/val 188 188 376
test 47 47 94
unknown

keratoconus
bullous keratopathy

pterygium

Phlyctenular Keratoconjunctivitis

Senilis

Figure 2. Ratio of underlying deseases. Bullous keratopathy and senilis account for the majority of the
underlying diseases.
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Figure 3. The upper left panel shows the original image frame extracted from the movie. The upper
right panel shows the annotated mask of the cornea. The lower left corner is the cornea extracted using
an annotated mask. The lower right corner is the extracted cornea (ROI only) and is an input image for
training. The size of the input image is smaller than that of the original image.

Figure 4. The upper left panel shows the extracted cornea image. The upper right is after CLAHE
processing of the left image. The lower left panel shows the other extracted cornea image. The lower
right is after CLAHE processing of the left image. It can be observed that the contrast of both images
was improved.

3. Results

Table 2 shows the results of manually annotating the cornea as a region of interest (ROI), extracting
only the cornea, adjusting the contrast with CLAHE, and learning with CNN (EfficientNet-B4).
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Table 2. Confusion Matrix.

True positive(45)  False negative(2)

False positive(2)  True negative(45)

Table 3 lists the metrics derived from the outcomes predicted by the model. The evaluation
yielded commendable results across several key indicators: sensitivity, specificity, accuracy, and the
Area Under the Curve (AUC). The values obtained were as follows: sensitivity of 0.96 (95% Confidence
Interval [CI]: 0.97-0.99), specificity of 0.96 (95% CI: 0.97-0.99), accuracy of 0.96 (95% CI: 0.97-0.99), and
an AUC of 0.98 (95% CI: 0.98-0.99).

Table 3. Performance of the model.

sensitivity  0.96 (95%CI 0.97-0.99)
specificity  0.96 (95%CI 0.97-0.99)
accuracy  0.96 (95%CI 0.97-0.99)

AUC 0.98 (95%CT 0.98-0.99)

Figure 5 depicts the Receiver Operating Characteristic (ROC) curve, illustrating the diagnostic
ability of the model across various threshold settings.

1.0 1

0.8

0.6

TPR

0.4

0.2

0.0 - — EfficientNet-B4

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Figure 5. Receiver operating characteristic curve for prediction.

Table 4 shows the outcomes of the corneal semantic segmentation, as predicted by the model.
The Dice coefficient, also referred to as the F1 score, had a substantial value of 0.94. Furthermore,
Intersection over Union (IoU), another critical metric for segmentation performance, similarly
registered a notable value of 0.94.
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Table 4. Dice and IoU of semantic segmentation.

dice 094
IoU 0.94

The Dice coefficient is called the "Serensen-Dice index" or the "Serensen-Dice coefficient.” The

Dice coefficient DSC(A,B) for set A and set B is defined by the following equation:
2|ANB|
DSC(A,B) AT+ 1B (1)

The Dice coefficient represents the ratio of the average number of elements in the two sets to the
number of elements they have in common and is a value between zero and one. The larger the Dice
coefficient, the more similar the two sets are.

The Intersection over Union (IoU) is an evaluation metric used in object detection and represents
the percentage of image overlap. Specifically, it has a maximum value of 1 when the detected and true
areas completely overlap and a minimum value of zero when there is no overlap at all. The IoU for
Regions A and B can be calculated using the following formula:

|ANB|

I =
U= 1403

(2)

4. Discussions

We believe that these three approaches contributed to the improved prediction accuracy for
corneal opacity. First, the cornea, the ROI, was extracted from the anterior segment image; second, the
image resolution was reduced by changing the input image from the entire anterior segment image to
the corneal image, the ROI, thereby reducing the reduction in image features; and third, CLAHE was
applied as a contrast optimization.

It was also a good idea to reuse the anterior segment image used in the model training phase of
corneal opacity prediction and the mask image used to extract the cornea to perform corneal semantic
segmentation. The corneal semantic segmentation model eliminates the need to manually extract the
cornea and allows it to be integrated into the Al pipeline. The corneal opacity prediction Al pipeline
begins with the selection of anterior segment image frames from the video that were deemed suitable
for diagnosis, followed by the extraction of the cornea through semantic segmentation, resulting in an
accurate diagnosis of corneal opacity.

Despite the constraints presented by the limited size of the sampling dataset (comprising 5996
frames, with 1617 positive and 4379 negative frames), this study successfully developed a model with
high diagnostic accuracy for corneal opacity. It is noteworthy that previous research in the domain
of ocular image analysis often utilized datasets that exceeded thousands of annotated cases [29,30].
Conversely, the current study leveraged video data as the primary raw material, capitalizing on the
potential to extract multiple image frames from a single video sequence. This methodology aligns with
the techniques employed in prior research focused on the development of automated diagnostic Al
systems [31,32], wherein methods such as cropping, flipping, and other forms of data augmentation are
utilized to effectively expand the dataset from a single image. The implementation of these techniques,
particularly the strategic use of video data for frame extraction and image amplification [33], is posited
as a pivotal factor contributing to the development of a high-performance model despite the relatively
modest size of the dataset.

The current study had several limitations. First, limited scale of the sample size was small.
Despite the retrospective nature of the study, wherein the use of video recordings served to augment
the dataset, the scope of the data remained relatively constrained. To develop robust and adaptable Al
models, particularly those pertinent to imaging analysis, there is a significant need for more extensive
datasets. Therefore, the limited sample size in this study may represent a significant impediment to
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the generalizability and comprehensive applicability of the derived Al models. In addressing the
aforementioned limitation, this study drew inspiration from prior literature, which demonstrated
enhanced detection of keratitis through the augmentation of single anterior segment images [34].
Such augmentation involves a six-fold increase in data quantity achieved by methods such as flipping,
rotating, and cropping [34]. Similarly, our approach involved meticulous recording of digital anterior
segment videos, thereby facilitating amplification of the volume of raw data [31,32]. Second, the
dataset in this study was exclusively sourced from a single medical institution, which may limit
the external validity and generalizability of the findings. To ensure broader clinical applicability
and substantiate the robustness of the conclusions, it is essential for future research endeavors to
incorporate and validate the models against external datasets. Ideally, this validation process should
involve a large-scale cohort comprising data from multiple medical facilities. This comprehensive
approach will be instrumental in enhancing the reliability and relevance of Al models in diverse
clinical settings.

In the context of developing diagnostic Al programs for medical applications, determining the
optimal performance benchmarks, particularly for diagnostic goals, presents a substantial challenge.
This is exemplified in the realm of ophthalmology, where certain diseases are leading causes of
blindness globally. Previous investigations, including our own, have underscored the potential of
Al to achieve diagnostic accuracies comparable to, if not surpassing, those of human specialists. For
instance, our prior research indicated that Al-based diagnostics could achieve over 95% accuracy
in comparison with evaluations conducted by ophthalmologists in the context of a disease with
a significant worldwide blindness burden [29]. Furthermore, Hu et al. reported an impressive
diagnostic accuracy of 93.5% with an AUC of 0.9198 [35], indicating a high level of diagnostic precision.
Additionally, a cross-sectional study by Son et al. demonstrated Al’s robust diagnostic performance,
with an accuracy of 90.26% and an AUC of 0.9465 [36], further evidencing Al’s capability to accurately
diagnose medical conditions. Moreover, recent studies provide compelling evidence on the efficacy
of Al algorithms in distinguishing between infectious keratitis and immunological keratitis through
image analysis. A notable report highlights the exceptional performance of the Al algorithm, as
evidenced by AUC values of 0.986 for infectious keratitis and 0.960 for immunological keratitis [37].
These findings underscore the algorithm’s broad applicability not only in the identification of keratitis
subtypes, but also in its performance across a range of ocular conditions, including corneal scars, ocular
surface tumors, corneal deposits, acute angle-closure glaucoma, cataracts, and bullous keratopathy [37].
The deployment of this technology in ophthalmology clinics for professional use signifies a significant
advancement in the field. It enables healthcare providers to more accurately identify the underlying
causes of ocular diseases, thereby facilitating the determination of appropriate differential treatment
methods. This development represents a pivotal step toward integrating Al into clinical practice,
offering a promising tool for enhancing diagnostic accuracy and improving patient outcomes in
ophthalmology. These findings collectively suggest that high diagnostic accuracy should be a key
consideration in establishing performance benchmarks for Al systems aimed at diagnosing corneal
opacity. Such evidence supports the argument for setting ambitious yet achievable accuracy goals in
the development and evaluation of Al diagnostics, thereby enhancing their utility and reliability in
clinical settings.

In the existing literature, there is a scarcity of studies employing deep learning methodologies for
the identification of corneal opacity through images acquired via slit-lamp microscopy. Consequently,
this study is pioneering in its endeavor to develop a highly accurate model for the detection of
corneal opacity. Moreover, the application of Al to the diagnosis of ocular pathologies from medical
examination videos remains a nascent field. This research, therefore, holds significance because of its
innovative approach to both the development of a precision model for corneal opacity detection and
its exploration of Al-based diagnostic methodologies in ophthalmology. In addition, research on using
Al to diagnose eye diseases from medical examination videos is new, and we believe that this research
is significant in these two respects.
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5. Conclusions

The accuracy of the prediction model was improved by manually extracting only the cornea,
which is the ROI, from the images of the anterior segment of the eye to train the model to predict the
presence or absence of corneal opacity.

Furthermore, to incorporate it into the Al pipeline, rather than manually extracting the cornea,
we succeeded in performing semantic segmentation using the original and mask images that were
used to train a model to predict the presence or absence of corneal opacity.

The corneal opacity detection Al pipeline can seamlessly execute the process of extracting still
images from videos, extracting corneas from still images using semantic segmentation, and classifying
whether the cornea has opacity.

Additionally, if we develop and replace the corneal opacity detection module in this Al pipeline
with a detection module for other anterior segment diseases, there is potential for the future
construction of a general-purpose anterior segment diagnosis Al pipeline. If this can be achieved, it
will be possible to triage large numbers of anterior eye segment videos taken during health checkups
in a short period of time, which we believe will lead to a reduction in the burden on ophthalmologists.

To improve the completeness of this corneal opacity detection Al pipeline, we believe that the
following three issues need to be addressed. These include increasing the amount of training data to
improve the classification accuracy of the corneal opacity detection model, selecting images suitable
for diagnosis from images decomposed from videos, and classifying whether the anterior eye in the
image suitable for diagnosis is the right eye or the left eye.

We plan to continue this research to complete an anterior segment diagnostic Al pipeline.
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