Submitted:
20 February 2024
Posted:
20 February 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Patients selection and breast tumor samples
2.2. HER2 FISH assay
2.3. Assessment of HER2 intratumoral heterogeneity
2.4. Statistical analyzes
2.5. Data availability
3. Results
3.1. Association between HER2 intratumoral heterogeneity and patient Characteristics
3.2. HER2 intratumoral heterogeneity and patient prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IJzerman, M.J.; Berghuis, A.S.; Bono, J.S. de; Terstappen, L.W. Health Economic Im- pact of Liquid Biopsies in Cancer Management. Expert review of pharmacoeconomics & outcomes research 2018, 18, 593–599. [Google Scholar]
- Dagogo-Jack, I.; Shaw, A.T. Tumour Heterogeneity and Resistance to Cancer Ther- apies. Nature reviews Clinical oncology 2018, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Ramón y Cajal, S.; Sesé, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz- Cano, S.J.; Hernández-Losa, J.; Castellvı́, J. Clinical Implications of Intratumor Het- erogeneity: Challenges and Opportunities. Journal of Molecular Medicine 2020, 98, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Beca, F.; Polyak, K. Intratumor Heterogeneity in Breast Cancer. Novel biomarkers in the continuum of breast cancer 2016, 169–189. [Google Scholar]
- Marusyk, A.; Polyak, K. Tumor Heterogeneity: Causes and Consequences. Biochim- ica et Biophysica Acta (BBA)-Reviews on Cancer 2010, 1805, 105–117. [Google Scholar] [CrossRef]
- Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer cell 2020, 37, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Hayes, D.F. HER2 and Breast Cancer—a Phenomenal Success Story. New England Journal of Medicine 2019, 381, 1284–1286. [Google Scholar] [CrossRef]
- Hanna, W.M.; Rüschoff, J.; Bilous, M.; Coudry, R.A.; Dowsett, M.; Osamura, R.Y.; Penault-Llorca, F.; Van De Vijver, M.; Viale, G. HER2 in Situ Hybridization in Breast Cancer: Clinical Implications of Polysomy 17 and Genetic Heterogeneity. Modern Pathology 2014, 27, 4–18. [Google Scholar] [CrossRef]
- Von Minckwitz, G.; Procter, M.; Azambuja, E. de; Zardavas, D.; Benyunes, M.; Viale, G.; Suter, T.; Arahmani, A.; Rouchet, N.; Clark, E.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. New England Journal of Medicine 2017, 377, 122–131. [Google Scholar] [CrossRef]
- Cameron, D.; Piccart-Gebhart, M.J.; Gelber, R.D.; Procter, M.; Goldhirsch, A.; Azambuja, E. de; Castro, G.; Untch, M.; Smith, I.; Gianni, L.; et al. 11 Years’ Follow-up of Trastuzumab After Adjuvant Chemotherapy in HER2-Positive Early Breast Cancer: Final Analysis of the HERceptin Adjuvant (HERA) Trial. The Lancet 2017, 389, 1195–1205. [Google Scholar] [CrossRef]
- Marchiò, C.; Annaratone, L.; Marques, A.; Casorzo, L.; Berrino, E.; Sapino, A. Evolving Concepts in HER2 Evaluation in Breast Cancer: Heterogeneity, HER2-Low Carcinomas and Beyond. In Proceedings of the Seminars in cancer biology; Elsevier, 2021; Vol. 72; pp. 123–135. [Google Scholar]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical On- cology/College of American Pathologists Clinical Practice Guideline Focused Update. Archives of pathology & laboratory medicine 2018, 142, 1364–1382. [Google Scholar]
- Zardavas, D.; Irrthum, A.; Swanton, C.; Piccart, M. Clinical Management of Breast Cancer Heterogeneity. Nature reviews Clinical oncology 2015, 12, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Assenov, Y.; Brocks, D.; Gerhäuser, C. Intratumor Heterogeneity in Epigenetic Pat- terns. In Proceedings of the Seminars in cancer biology; Elsevier, 2018; Vol. 51, pp. 12–21. [Google Scholar]
- Wolff, A.C.; Hammond, M.E.H.; Schwartz, J.N.; Hagerty, K.L.; Allred, D.C.; Cote, R.J.; Dowsett, M.; Fitzgibbons, P.L.; Hanna, W.M.; Langer, A.; et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommen- dations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer. Archives of pathology & laboratory medicine 2007, 131, 18–43. [Google Scholar]
- Allison, K.H.; Dintzis, S.M.; Schmidt, R.A. Frequency of HER2 Heterogeneity by Flu- orescence in Situ Hybridization According to CAP Expert Panel Recommendations: Time for a New Look at How to Report Heterogeneity. American journal of clinical pathology 2011, 136, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Malowany, J.I.; Mazurkiewicz, J.; Wood, M. ‘Genetic Heterogeneity’in HER2/Neu Testing by Fluorescence in Situ Hybridization: A Study of 2522 Cases. Modern pathology 2012, 25, 683–688. [Google Scholar] [CrossRef]
- Miglietta, F.; Griguolo, G.; Bottosso, M.; Giarratano, T.; Lo Mele, M.; Fassan, M.; Cacciatore, M.; Genovesi, E.; De Bartolo, D.; Vernaci, G.; et al. Evolution of HER2- Low Expression from Primary to Recurrent Breast Cancer. NPJ Breast Cancer 2021, 7, 137. [Google Scholar] [CrossRef] [PubMed]
- Sapino, A.; Goia, M.; Recupero, D.; Marchiò, C. Current Challenges for HER2 Testing in Diagnostic Pathology: State of the Art and Controversial Issues. Frontiers in oncology 2013, 3, 129. [Google Scholar] [CrossRef] [PubMed]
- Denkert, C.; Seither, F.; Schneeweiss, A.; Link, T.; Blohmer, J.-U.; Just, M.; Wim- berger, P.; Forberger, A.; Tesch, H.; Jackisch, C.; et al. Clinical and Molecular Characteristics of HER2-Low-Positive Breast Cancer: Pooled Analysis of Individual Patient Data from Four Prospective, Neoadjuvant Clinical Trials. The Lancet Oncol- ogy 2021, 22, 1151–1161. [Google Scholar] [CrossRef]
- Hou, Y.; Nitta, H.; Li, Z. HER2 Intratumoral Heterogeneity in Breast Cancer, an Evolving Concept. Cancers 2023, 15, 2664. [Google Scholar] [CrossRef]
- Hamilton, E.; Shastry, M.; Shiller, S.M.; Ren, R. Targeting HER2 Heterogeneity in Breast Cancer. Cancer Treatment Reviews 2021, 100, 102286. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Sukov, W.R.; Eckel-Passow, J.E.; Sakai, Y.; Walsh, F.J.; Lonzo, M.; Wiktor, A.E.; Dogan, A.; Jenkins, R.B. Comparison of Fluorescence in Situ Hybridization (FISH) and Dual-ISH (DISH) in the Determination of HER2 Status in Breast Cancer. American journal of clinical pathology 2013, 139, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, B.N.; Jasani, B.; De Brot, L.; Vassallo, J.; Damascena, A.; Cirullo-Neto, J.; Neves, J.I.; Soares, F.A.; Gobbi, H.; Rocha, R.M. Evaluation of Reliability of FISH Versus Brightfield Dual-Probe in Situ Hy-Bridization (BDISH) for Frontline Assess- ment of HER2 Status in Breast Cancer Samples in a Community Setting: Influence of Poor Tissue Preservation. The American journal of surgical pathology 2012, 36, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Babic, A.; Loftin, I.R.; Stanislaw, S.; Wang, M.; Miller, R.; Warren, S.M.; Zhang, W.; Lau, A.; Miller, M.; Wu, P.; et al. The Impact of Pre-Analytical Processing on Staining Quality for h&e, Dual Hapten, Dual Color in Situ Hybridization and Fluorescent in Situ Hybridization Assays. Methods 2010, 52, 287–300. [Google Scholar] [PubMed]
- Seol, H.; Lee, H.J.; Choi, Y.; Lee, H.E.; Kim, Y.J.; Kim, J.H.; Kang, E.; Kim, S.-W.; Park, S.Y. Intratumoral Heterogeneity of HER2 Gene Amplification in Breast Cancer: Its Clinicopathological Significance. Modern pathology 2012, 25, 938–948. [Google Scholar] [CrossRef]
- Shen, T.; Nitta, H.; Wei, L.; Parwani, A.V.; Li, Z. HER2 Intratumoral Heterogeneity Is Independently Associated with Distal Metastasis and Overall Survival in HER2- Positive Breast Carcinomas. Breast cancer research and treatment 2020, 181, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Furrer, D.; Sanschagrin, F.; Jacob, S.; Diorio, C. Advantages and Disadvantages of Technologies for HER2 Testing in Breast Cancer Specimens. American journal of clinical pathology 2015, 144, 686–703. [Google Scholar] [CrossRef] [PubMed]
- Torrenté, L. de; Zimmerman, S.; Suzuki, M.; Christopeit, M.; Greally, J.M.; Mar, J.C. The Shape of Gene Expression Distributions Matter: How Incorporating Dis- tribution Shape Improves the Interpretation of Cancer Transcriptomic Data. BMC bioinformatics 2020, 21, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Patkulkar, P.A.; Subbalakshmi, A.R.; Jolly, M.K.; Sinharay, S. Mapping Spatiotem- poral Heterogeneity in Tumor Profiles by Integrating High-Throughput Imaging and Omics Analysis. ACS omega 2023, 8, 6126–6138. [Google Scholar] [CrossRef]
- Radziuviene, G.; Rasmusson, A.; Augulis, R.; Lesciute-Krilaviciene, D.; Laurinavi- ciene, A.; Clim, E.; Laurinavicius, A. Automated Image Analysis of HER2 Fluores- cence in Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue. BioMed research international 2017, 2017. [Google Scholar] [CrossRef]
- Prabakaran, I.; Wu, Z.; Lee, C.; Tong, B.; Steeman, S.; Koo, G.; Zhang, P.J.; Gu- vakova, M.A. Gaussian Mixture Models for Probabilistic Classification of Breast Can- cer. Cancer research 2019, 79, 3492–3502. [Google Scholar] [CrossRef]
- Skibinski, A.; Kuperwasser, C. The Origin of Breast Tumor Heterogeneity. Oncogene 2015, 34, 5309–5316. [Google Scholar] [CrossRef] [PubMed]
- Horii, R.; Nitta, H.; Nojima, M.; Maruyama, R.; Ueno, T.; Ito, Y.; Ohno, S.; Banks, P.; Kanda, H.; Akiyama, F. Predictive Significance of HER2 Intratumoral Hetero- geneity, Determined by Simultaneous Gene and Protein Analysis, for Resistance to Trastuzumab-Based Treatments for HER2-Positive Breast Cancer. Virchows Archiv 2021, 479, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Nitta, H.; Wei, L.; Banks, P.M.; Portier, B.; Parwani, A.V.; Li, Z. HER2 Intratumoral Heterogeneity Is Independently Associated with Incomplete Response to Anti-HER2 Neoadjuvant Chemotherapy in HER2-Positive Breast Carcinoma. Breast cancer research and treatment 2017, 166, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Zhang, S.; Yazdanparast, A.; Li, M.; Pawar, A.V.; Liu, Y.; Inavolu, S.M.; Cheng, L. Comprehensive Comparison of Molecular Portraits Between Cell Lines and Tumors in Breast Cancer. BMC genomics 2016, 17, 281–301. [Google Scholar] [CrossRef]
- Bui, M.M.; Riben, M.W.; Allison, K.H.; Chlipala, E.; Colasacco, C.; Kahn, A.G.; Lac- chetti, C.; Madabhushi, A.; Pantanowitz, L.; Salama, M.E.; et al. Quantitative Image Analysis of Human Epidermal Growth Factor Receptor 2 Immunohistochemistry for Breast Cancer: Guideline from the College of American Pathologists. Archives of pathology & laboratory medicine 2019, 143, 1180–1195. [Google Scholar]
- Yousif, M.; Huang, Y.; Sciallis, A.; Kleer, C.G.; Pang, J.; Smola, B.; Naik, K.; McClintock, D.S.; Zhao, L.; Kunju, L.P.; et al. Quantitative Image Analysis as an Adjunct to Manual Scoring of ER, PgR, and HER2 in Invasive Breast Carcinoma. American Journal of Clinical Pathology 2022, 157, 899–907. [Google Scholar] [CrossRef]
- Farahmand, S.; Fernandez, A.I.; Ahmed, F.S.; Rimm, D.L.; Chuang, J.H.; Reisenbich- ler, E.; Zarringhalam, K. Deep Learning Trained on Hematoxylin and Eosin Tumor Region of Interest Predicts HER2 Status and Trastuzumab Treatment Response in HER2+ Breast Cancer. Modern Pathology 2022, 35, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Helin, H.O.; Tuominen, V.J.; Ylinen, O.; Helin, H.J.; Isola, J. Free Digital Image Analysis Software Helps to Resolve Equivocal Scores in HER2 Immunohistochemistry. Virchows Archiv 2016, 468, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. Journal of Clinical Oncology 2020, 38, 1951–1962. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. New England Journal of Medicine 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. DS-8201a, a Novel HER2-Targeting ADC with a Novel DNA Topoisomerase i Inhibitor, Demonstrates a Promising An- titumor Efficacy with Differentiation from t-DM1Preclinical Efficacy of DS-8201a, a Novel HER2-Targeting ADC. Clinical Cancer Research 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [PubMed]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander Killing Effect of DS-8201a, a Novel Anti-Human Epidermal Growth Factor Receptor 2 Antibody–Drug Conjugate, in Tumors with Human Epidermal Growth Factor Re- ceptor 2 Heterogeneity. Cancer science 2016, 107, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Deluche, E.; Lusque, A.; Le Bescond, L.; Filleron, T.; Pradat, Y.; Ducoulombier, A.; Pistilli, B.; Bachelot, T.; Viret, F.; et al. Trastuzumab Derux- tecan in Metastatic Breast Cancer with Variable HER2 Expression: The Phase 2 DAISY Trial. Nature medicine 2023, 29, 2110–2120. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy Versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open- Label, Randomised Controlled Trial. The Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Johnson, A.M.; Dumbrava, E.E.I.; Raghav, K.; Balaji, K.; Bhatt, M.; Murthy, R.K.; Rodon, J.; Piha-Paul, S.A. Advances in HER2-Targeted Therapy: Novel Agents and Opportunities Beyond Breast and Gastric Cancer. Clinical Cancer Research 2019, 25, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, J.T.; Winther, H.; Askaa, J.; Andresen, L.; Olsen, D.; Mollerup, J. A Companion Diagnostic with Significant Clinical Impact in Treatment of Breast and Gastric Cancer. Frontiers in Oncology 2021, 11, 676939. [Google Scholar] [CrossRef]
- Grillo, F.; Fassan, M.; Sarocchi, F.; Fiocca, R.; Mastracci, L. HER2 Heterogeneity in Gastric/Gastroesophageal Cancers: From Benchside to Practice. World journal of gastroenterology 2016, 22, 5879. [Google Scholar] [CrossRef]
- Bang, K.; Cheon, J.; Park, Y.S.; Kim, H.-D.; Ryu, M.-H.; Park, Y.; Moon, M.; Lee, H.; Kang, Y.-K. Association Between HER2 Heterogeneity and Clinical Outcomes of HER2-Positive Gastric Cancer Patients Treated with Trastuzumab. Gastric cancer 2022, 25, 794–803. [Google Scholar] [CrossRef]


| Number | (%) | Number | (%) | ||
| Menopause | ER | ||||
| pre | 96 | (38.2) | Positive | 167 | (66.5) |
| post | 155 | (61.8) | Negative | 84 | (33.5) |
| Histological type | PgR | ||||
| IDC | 244 | (97.2) | Positive | 99 | (39.4) |
| ILC | 7 | (2.8) | Negative | 152 | (60.6) |
| Histological type | HER2 IHC | ||||
| 1 | 26 | (10.4) | 3+ | 232 | (92.4) |
| 2 | 91 | (36.3) | 2+ | 19 | (7.6) |
| 3 | 134 | (53.4) | HER2 ratio | ||
| Tumor size | Mean | 4.8 ± 2.5 | |||
| T1 | 86 | (34.3) | HER2 heterogeneity | ||
| T2 | 139 | (55.4) | High (HH) | 46 | (18.3) |
| T3 or T4 | 26 | (10.4) | Low (LH) | 205 | (81.7) |
| Pretreatment LN metastasis | (Ex-High-Amplification LH | 102 | (49.8)) | ||
| Negative | 134 | (53.4) | (High-Amplification LH | 103 | (50.2)) |
| Positive | 117 | (46.6) | Stage | ||
| Resected LN metastasis | I | 68 | (27.1) | ||
| Yes | 116 | (46.2) | II | 161 | (64.1) |
| No | 135 | (53.8) | III | 22 | (8.8) |
| Neoadjuvant chemotherapy | |||||
| Negative | 185 | (73.7) | |||
| Positive | 66 | (26.3) | |||
| HER-2 heterogeneity | ||||
| Total | High(HH) | Low(LH) | P value | |
| n = 251, % | n = 46, % | n = 205, % | ||
| Menopause | ||||
| pre | 96 (38.2%) | 23 (50.0%) | 73 (35.6%) | 0.1 |
| post | 155 (61.8%) | 23 (50.0%) | 132 (64.4%) | |
| Histological type | ||||
| IDC | 244 (97.2%) | 43 (93.5%) | 201 (98.0%) | 0.118 |
| ILC | 7 ( 2.8%) | 3 ( 6.5%) | 4 ( 2.0%) | |
| Histological grade | ||||
| 1 | 26 (10.4%) | 3 ( 6.5%) | 23 (11.2%) | 0.421 |
| 2 | 91 (36.3%) | 20 (43.5%) | 71 (34.6%) | |
| 3 | 134 (53.4%) | 23 (50.0%) | 111 (54.1%) | |
| Tumor size | ||||
| T1 | 86 (34.3%) | 14 (30.4%) | 72 (35.1%) | 0.665 |
| T2-T4 | 165 (65.7%) | 32 (69.6%) | 133 (64.9%) | |
| Pretreatment LN metastasis | ||||
| Negative | 134 (53.4%) | 19 (41.3%) | 115 (56.1%) | 0.098 |
| Positive | 117 (46.6%) | 27 (58.7%) | 90 (43.9%) | |
| Resected LN metastasis | ||||
| Negative | 185 (73.7%) | 31 (67.4%) | 154 (75.1%) | 0.373 |
| Positive | 66 (26.3%) | 15 (32.6%) | 51 (24.9%) | |
| ER | ||||
| Positive | 167 (66.5%) | 40 (87.0%) | 127 (62.0%) | 0.002 |
| Negative | 84 (33.5%) | 6 (13.0%) | 78 (38.0%) | |
| PgR | ||||
| Positive | 99 (39.4%) | 29 (63.0%) | 70 (34.1%) | 5.46E-04 |
| Negative | 152 (60.6%) | 17 (37.0%) | 135 (65.9%) | |
| HER2 IHC | ||||
| 3+ | 232 (92.4%) | 40 (87.0%) | 192 (93.7%) | 0.128 |
| 2+ | 19 ( 7.6%) | 6 (13.0%) | 13 ( 6.3%) | |
| HER2 ratio | ||||
| Mean | 4.8 ± 2.5 | 2.3 ± 0.4 | 5.4 ± 2.4 | 1.03E-43 |
| Neoadjuvant chemotherapy | ||||
| Yes | 116 (46.2%) | 27 (58.7%) | 89 (43.4%) | 0.086 |
| No | 135 (53.8%) | 19 (41.3%) | 116 (56.6%) | |
| Stage | ||||
| I | 68 (27.1%) | 8 (17.4%) | 60 (29.3%) | 0.094 |
| II | 161 (64.1%) | 31 (67.4%) | 130 (63.4%) | |
| III | 22 ( 8.8%) | 7 (15.2%) | 15 ( 7.3%) | |
| Univariate analysis | Multivariate analysis | |||||||
| Characteristic | N | Event(N) | HR | 95% CI | P value | HR | 95% CI | P value |
| cT | ||||||||
| T1 | 86 | 8 | 1 | 1 | ||||
| T2-T4 | 165 | 22 | 1.41 | 0.63 - 3.16 | 0.41 | 1.04 | 0.45 - 2.40 | 0.932 |
| ER | ||||||||
| Positive | 167 | 20 | 1 | 1 | ||||
| Negative | 84 | 10 | 0.99 | 0.46 - 2.12 | 0.985 | 1.63 | 0.62 - 4.29 | 0.326 |
| PgR | ||||||||
| Positive | 99 | 14 | 1 | 1 | ||||
| Negative | 152 | 16 | 0.76 | 0.37 - 1.56 | 0.452 | 0.95 | 0.39 - 2.33 | 0.918 |
| Pretreatment LN metastasis | ||||||||
| Negative | 134 | 10 | 1 | 1 | ||||
| Positive | 117 | 20 | 2.33 | 1.09 - 4.98 | 0.029 | 1.23 | 0.43 - 3.52 | 0.696 |
| Resected LN metastasis | ||||||||
| Negative | 185 | 16 | 1 | 1 | ||||
| Positive | 66 | 14 | 2.6 | 1.27 - 5.32 | 0.009 | 2.26 | 0.81 - 6.30 | 0.12 |
| HG | ||||||||
| 1 or 2 | 117 | 14 | 1 | 1 | ||||
| 3 | 134 | 16 | 1.04 | 0.51 - 2.13 | 0.919 | 1.24 | 0.59 - 2.63 | 0.57 |
| HER2 heterogeneity | ||||||||
| Low (LH) | 205 | 17 | 1 | 1 | ||||
| High (HH) | 46 | 13 | 3.8 | 1.84 - 7.83 | 2.95E-04 | 4.03 | 1.83 - 8.87 | 5.51E-04 |
| Univariate analysis | Multivariate analysis | |||||||
| Characteristic | N | Event(N) | HR | 95% CI | P value | HR | 95% CI | P value |
| cT | ||||||||
| T1 | 86 | 8 | 1 | 1 | ||||
| T2-T4 | 165 | 22 | 2.22 | 0.63 - 7.78 | 0.214 | 1.44 | 0.39 - 5.24 | 0.584 |
| ER | ||||||||
| Positive | 167 | 20 | 1 | 1 | ||||
| Negative | 84 | 10 | 0.67 | 0.22 - 2.07 | 0.485 | 0.78 | 0.21 - 2.94 | 0.715 |
| PgR | ||||||||
| Positive | 99 | 14 | 1 | 1 | ||||
| Negative | 152 | 16 | 0.88 | 0.33 - 2.36 | 0.797 | 1.67 | 0.53 - 5.26 | 0.382 |
| Pretreatment LN metastasis | ||||||||
| Negative | 134 | 10 | 1 | 1 | ||||
| Positive | 117 | 20 | 4.84 | 1.38 - 16.99 | 0.014 | 2.79 | 0.61 - 12.90 | 0.188 |
| Resected LN metastasis | ||||||||
| Negative | 185 | 16 | 1 | 1 | ||||
| Positive | 66 | 14 | 3.71 | 1.38 - 9.96 | 0.009 | 1.83 | 0.53 - 6.26 | 0.336 |
| HG | ||||||||
| 1 or 2 | 117 | 14 | 1 | 1 | ||||
| 3 | 134 | 16 | 0.7 | 0.26 - 1.88 | 0.482 | 0.84 | 0.31 - 2.33 | 0.745 |
| HER2 heterogeneity | ||||||||
| Low (LH) | 205 | 17 | 1 | 1 | ||||
| High (HH) | 46 | 13 | 3.55 | 1.32 - 9.54 | 0.012 | 3.1 | 1.06 - 9.08 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
