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Abstract: In recent years, machine learning (ML) techniques have emerged as an efficient and 

effective technology within the petroleum industry. This paper focuses on the current application 

of ML in enhanced oil recovery (EOR) through CO2 injection, which exhibits promising economic 

and environmental benefits of climate-change mitigation strategy. Our comprehensive review 

explores the diverse use cases of ML techniques in CO2-EOR, including aspects such as minimum 

miscible pressure (MMP) prediction, well location optimization, oil production and recovery factor 

prediction, multi-objective optimization, Pressure-Volume-Temperature (PVT) properties 

estimation, Water Alternating Gas (WAG) analysis, and CO2-foam EOR, from 101 reviewed papers. 

In this comprehensive review, we catalog relative information, including the input parameters, 

objectives, data sources, train/test/validate information, results, evaluation, and rating score for each 

area based on criteria such as data quality, ML building process, and analysis of results. We also 

briefly summarized the benefits and limitations of ML methods in petroleum industry applications. 

Our detailed and extensive study could serve as an invaluable reference for employing ML 

techniques in the petroleum industry. Based on the review, we found that ML techniques offer great 

potential in solving problems in the majority of CO2-EOR areas involving prediction and regression. 

With the generation of massive amounts of data in the everyday oil and gas industry, machine 

learning techniques can provide efficient and reliable preliminary results for the industry.  

Keywords: CO2-EOR; machine learning; minimum miscible pressure (MMP); water-alternating-gas 

(WAG); system review 

 

1. Introduction 

Petroleum resources have been deemed as the principal source of fossil-fuel-based energy to 

meet the world’s energy demands since the early 20th century. The importance of enhancing oil 

reservoir extraction efficiency has grown due to the restricted supply of reserves. Over two-thirds of 

the original oil in place (OOIP) remains trapped after primary and secondary recovery processes. 

Besides, extracting the remaining oil from mature reservoirs in complicated geological formations is 

more challenging. EOR methods are initiated to recover the remaining oil from reservoirs after both 

primary and secondary recovery methods are exhausted. Surfactant flooding, chemical flooding, 

polymer flooding, steam stimulation, microbial flooding, gas injection, and so forth (Green & 

Willhite, 1998; Yang et al., 2018) are the common EOR approaches. Carbon dioxide (CO2) is very 

successful since it increases oil production by increasing mobility and reducing oil viscosity and 

saturation, which works well with both conventional and some unconventional formations. CO2-EOR 

is one of the popular techniques, occupying around 20% of 1120 worldwide EOR projects (Error! 

Reference source not found.). It may recover 15% to 25% of the OOIP of light or medium oil fields 

that are close to depletion due to flooding (Yongmao et al., 2004).  
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Figure 1. Distribution of different EOR projects worldwide (Cheraghi et al., 2021.) 

The utilization of CO2 in EOR can significantly improve oil recovery; at the same time, it plays 

an essential role in environmental preservation. The importance of CO2-EOR as part of carbon 

capture, use, and storage (CCUS) schemes becomes more vital as the petroleum industry works 

toward decarbonization to mitigate green house gas emissions. If reinjection is not considered, 

approximately 60% of injected CO2 can be trapped in the reservoir at the CO2 breakthrough 

(Gozalpour et al., 2005). This approach, efficiently utilizing CO2 in oil recovery, aligns with an 

environmentally friendly protocol while simultaneously enhancing resource efficiency and 

contributing substantially to sustainability goals (Hasan et al., 2015). 

Machine learning (ML) approaches have drawn considerable interest as emerging technologies 

in the oil and gas industry over the past 20 years. Applying the ML approaches to examine issues in 

the oilfield development process has acquired new life with the advent of intelligent oilfields and big 

data technology. Indeed, ML shows the feasibility of offering a more straightforward and quicker 

method than rigorous and numerous simulations or experiments. Many ML correlations have 

emerged with the development of computer tools, particularly in reservoir characterization, CO2 

storage, production, and drilling operations (Ghoraishy et al., 2008; Liu et al., 2023; Nait Amar & 

Zeraibi, 2020; You & Lee, 2022). 

Many literature reviews have been conducted in the past to summarize the application of ML in 

the oil and gas industry (Ng et al., 2023). However, no study on global research trends analyzed the 

dominant input parameters and evaluated the research work on CO2-EOR projects. The evaluations 

could help researchers get a preliminary idea about the current research trend on CO2-EOR and 

whether their recent research impacts a particular field. Furthermore, few studies have systematically 

summarized and examined all the literature on ML for CO2-EOR. Few reviews find the most critical 

topics, objectives, input parameters, evaluations, and research gaps in ML for CO2-EOR. This study 

aims to offer insight into current trends and technological development indicators, which will help 

identify the viewpoint for the following research areas and prospects. Thus, data extraction analysis 

was carried out to ascertain the research advancement and trends in ML for CO2-EOR, whereby a 

systematic review accomplishes the closure of research gaps on this subject. 

This paper aims to summarize and evaluate the various ML models in CO2-EOR and provide 

insightful analysis with 101 papers reviewed. The rest of the paper is organized as follows: Section 2 

describes the mechanisms and processes of CO2-EOR. Section 3 briefs the most popular ML and 

optimization methods employed in the literature. Section 4 summarizes the work that applied ML in 

the CO2-EOR process, including MMP prediction, WAG, well placement optimization, oil production 

or recovery factor prediction, multiple objectives optimization, PVT properties estimation, and CO2-

foam. Section 5 outlines the benefits and limitations of the application of ML in the CO2-EOR process 

before ending this survey paper with concluding remarks.  
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2. Mechanisms and process of CO2-EOR 

CO2 is generally injected into the reservoir under the following conditions: (a) miscible injection; 

(b) immiscible front displacement after water flooding; (c) water alternating gas (WAG) 

displacement; and (d) CO2 dissolved in brine flooding, also referred to as carbonated water injection 

(CWI) (Kumar et al., 2022). Miscible displacement has been successful over the years. It occurs at 

pressures above a minimum miscible pressure (MMP) of the oil, where the injected gas and the 

hydrocarbons are entirely miscible and form a single-phase fluid. The main advantages of miscible 

displacement are that it can promote oil swelling, reduce fluid viscosity, increase mobility, reduce 

remaining oil saturation, and improve oil production.  

CO2 has been historically favored over other gases due to its low MMP. Furthermore, CO2 gas 

injection can potentially mitigate greenhouse gas emissions while improving oil recovery. CO2 

miscible flooding, whether initiated upon first contact or multiple contacts, the remaining oil and CO2 

become miscible, resulting in near zero interfacial tension (IFT), no capillary pressure, and improved 

volumetric sweep (Ev) and displacement efficiency (Ed) (Satter & Thakur, 1994). Conversely, in the 

case of CO2 immiscible flooding, the IFT is not near zero, maintaining the capillary pressure and 

causing some residual oil saturation. The oil recovery efficacy is contingent upon the efficiency of 

fluid displacement, volumetric sweep, and CO2 solubility in the oleic phase, consequently increasing 

oil mobility. These characteristics are influenced by various factors, including gravity, rock 

wettability, reservoir heterogeneity, crude oil phase behavior, and phenomena such as viscous 

fingering, etc. (Yang & Li, 2020; Kumar et al., 2022). 

3. Summary of machine learning approaches 

Machine learning (ML) involves the development of computational models and algorithms 

capable of learning patterns and making data-driven predictions or decisions without being explicitly 

programmed. ML algorithms employ data to automatically identify and generalize patterns, which 

may be applied for classification, regression, clustering, and more tasks. ML can be categorized into 

four main types: supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning. Error! Reference source not found. provides some examples of different ML 

algorithms. Among these various algorithms, supervised learning is most applied in the oil and gas 

industry (Ng et al., 2023). 

 

Figure 2. Examples of different machine learning algorithms. 

Furthermore, the enhancement of the ML process involves the optimization techniques to 

determine optimal values for control parameters, including the spreading coefficient, number of 
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neurons, biases, and weights. Several optimization methods, such as the Levenberg-Marquardt (LM) 

algorithm, genetic algorithm (GA), and smart nature-inspired swarm algorithms like particle swarm 

optimization (PSO), grey wolf optimization (GWO), and ant colony optimization (ACO), have 

demonstrated their efficacy in achieving significant improvements in these tasks. There are two 

categories in intelligent optimization algorithms: single-objective optimization and multi-objective 

optimization (Error! Reference source not found.). 

 

Figure 3. Representative intelligent optimization algorithms (Wang et al., 2023.) 

4. Application of ML in CO2-EOR 

4.1. Minimum miscibility pressure (MMP) 

In miscible gas injection, MMP is one of the most important parameters to determine the 

accuracy of miscible CO2 flooding into the reservoir. Traditionally, MMP is defined as the pressure 

at which 80% of the OOIP is extracted from the reservoir upon the breakthrough of CO2 (Holm & 

Josendal, 1974). Because CO2 flooding is more expensive than waterflooding, an accurate estimation 

of MMP can help better design miscible CO2 flooding, ultimately leading to cost savings. In the 

literature, researchers have proposed various MMP estimation approaches, including: 

a) experimental methods such as slim-tube tests (Yellig & Metcalfe, 1980), rising-bubble apparatus 

(Christiansen & Haines, 1987), vanishing interfacial tension (Rao & Lee, 2002); 

b) empirical correlations (Alston et al., 1985; Orr & Jensen, 1984; Shokir, 2007; Yellig & Metcalfe, 

1980) and computational techniques such as single mixing-cell and multiple mixing-cell 

approaches (Ahmadi & Johns, 2011). 

However, though accurate and reliable, experimental methods are time-consuming and 

expensive. Most empirical correlations and computation techniques do not consider different 

thermodynamic and reservoir properties. Moreover, they exhibit limitations in accurately estimating 

the trend of MMP concerning their input parameters (Lv et al., 2023). In contrast, the advent of ML 

has provided various robust algorithms in problems involving regression/classification. 

Consequently, considerable research studies dedicated to the precise modeling of MMP and the 

successful application of ML in this domain have been well-documented.  

The earliest application of ML on CO2-EOR MMP can be traced back to 2003, when Huang et al. 

first introduced ANN into this field. Subsequently, Emera and Sarma (2005) employed the GA to 

optimize the MMP prediction processes. Following the year 2010, there has been a gradual increase 

in the adoption of ML algorithms and optimization techniques, accompanied by a significant 

expansion of the available dataset. Nowadays, the application of ML in predicting MMP has evolved 

into a more mature state. A comprehensive survey of the literature review in the field of CO2-oil MMP 

estimation applying ML, spanning the period from 2003 to the present, is summarized in Error! 

Reference source not found.. Each reviewed paper is scrutinized and synthesized with respect to the 

employed algorithms, dataset size, data splitting methods, input variables, outcomes, our 

assessment, and a rating score. The rating score is determined through an evaluation encompassing 

criteria that consider the quality of data, the ML process, and the depth of results analysis. 
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Table 1. Summary of ML applications on CO2-EOR MMP. 

Authors Methods Dataset Train/Test/Validate Inputs Results Evaluation Limitations Rating* 

Huang et al. (2003) ANN N/A N/A 
Pure CO2 (T

R
, x

vol
, MW

C5+
, x

int
), 

impure CO2 (y
H2S,

 y
N2

, y
CH4, 

y
SO2

→F
imp

) 
ANN can predict MMP. 

First applied ANN. ANN 

is better than other 

statistical models. 

Need to separate pure CO2 

and impure CO2.  
7 

Emera & Sarma (2005) GA N/A N/A 
T

R
, MW

C5+
, x

vol
/(y

C1
 + y

H2S
 + y

CO2 + y
N2

 + 

y
C2-C4

). 

GA is best for predicting 

MMP and impurity 

factors. 

First used GA. Limited 

input parameters (only 3 

variables). 

Pure CO2. MW
C7+ 

only up to 

268. 
7 

Dehghani et al. (2006) GA 55 80% train + 20% test T
R
, T

C,
 MW

C5+
, x

vol
/x

int.
 GA is better than 

conventional methods. 

Can predict pure and 

impure CO2. But limited 

input parameters and 

data points.  

Limited input parameters 

and data points.  
6 

Shokir, (2007) ACE 45 50% train+ 50% test 
T

R
, MWC5+, y

CO2
, y

H2S
, y

N2
, y

C1
, y

C2-C4
, 

x
C1

+
N2

, xint 

Can predict relatively 

accurate MMP for pure 

and impure CO2.  

Can predict pure and 

impure CO2. But very 

limited data points. It 

may have overfitting. 

valid only for C1, N2, H2S, 

and C2–C4 contents in the 

injected CO2 stream. 

6 

Dehghani et al. (2008) ANN-GA 46 N/A 
T

R
, MW

C5+
, y

CO2
, y

H2S
, y

N2
, y

C1
, y

C2-C4
, 

x
C1

+
N2

, x
int

 

GA-ANN is better than 

Shokir (2007), Emera 

and Sarma (2005). 

It can be applied to both 

CO2 and natural gas 

streams. 

Limited data points and only 

ANN architecture is tested. 
6 

Nezhad et al. (2011) ANN 179 N/A T
R
, x

vol
, MW

C5+
, y

CO2
, y

volatile,
 y

intermediate
 ANN is acceptable 

Acceptable data points 

but not detailed 

explanations. 

Local minima or overfitting 8 

Shokrollahi et al. (2013) LSSVM 147 
80% train + 10% test + 

10% validate 

T
R
, x

vol
, MW

C5+
, y

CO2
, y

C1,
 y

H2S,
 y

N2
, y

C2-

C5
 First applied LSSVM. 

It can be used for both 

pure and impure CO2. 

Also applied outlier 

analysis 

Valid only for the impurity 

contents of C1, N
2
, H

2
S, and 

C2-C5
.
 

8 

Tatar et al. (2013) RBFN 147 80% train + 20% test 
T

R
, MW

C5+
, y

CO2
, y

H2S
, y

N2
, y

C1
, y

C2-C5
, 

(x
C1 

+ x
N2

)/(x
C2

-
C4

+ x
H2S 

+ x
CO2

) 

Better than Emera and 

Sarma’s model. 

Compared with almost 

all available empirical 

correlations. 

Limited data points 8 

Zendehboudi et al. (2013) ANN-PSO 350 71% train + 29% test 
T

R
, x

vol
, MW

C5+
, y

CO2
, y

C1,
 y

H2S,
 y

N2
, y

C2-

C4
 ANN-PSO is best. 

Though it has large 

datasets, but only 

suitable for fixed input 

parameters. 

Only valid for specific 

conditions 
8 

Chen et al. (2013) ANN 83 70% train + 30% test 
T

R
, MW

C5+
, x

vol
, x

int
, y

CO2
, y

H2S
, y

C1
, and 

y
N2

 

ANN provides the least 

errors. 
May have overfitting. Small datasets 7 

Asoodeh et al. (2014) CM (NN-SVR) 55 N/A 
T

R
, MW

C5+
, x

vol
/x

int
, y

C2-C4,
 y

CO2
, y

H2S
, 

y
C1

, and y
N2

 

CM is better than NN 

and SVR. 

Limited data points and 

may have overfitting. 
Small datasets 6 

Rezaei et al. (2013) GP 43 N/A T
R
, MW

C5+
, x

vol
/x

int
  GP provides the best 

estimation. 

Limited data points and 

may have overfitting. 

Small datasets and only 

consider pure CO2. 
6 
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Chen et al. (2014) GA-BPNN 85 75% train + 25% test 
T

R
, MW

C7+
, x

vol
, x

C5-C6
, y

CO2
, y

H2S
, y

N2
, 

y
C1

, y
C2-C4

, x
int

 

Both pure and impure 

CO2, better than other 

correlations. 

It can be applied to both 

pure and impure CO2 

but may have overfitting. 

Limited data points. 

GA is time-consuming. 
7 

Ahmadi & Ebadi (2014) FL 59 93% train + 7% test T
R
, MW

C5+
, x

vol
/x

int
, T

C
 

The curve shape 

membership function 

has the lowest error. 

Limited data points and 

a high possibility of 

overfitting. 

Only four experimental 

results for testing. 
6 

Sayyad et al. (2014) ANN-PSO 38 N/A 
T

R
, x

vol
, MW

C5+
, y

CO2,
 y

H2S,
 y

C1
, y

N2
, y

C2-

C5
 

Better than Emera and 

Sarma, Shokir. 

Only valid for fixed 

inputs 
Limited data points 6 

Zargar et al. (2015) GRNN N/A N/A 
T

R
, MW

C5+
, x

vol
/x

int
, y

C2-C4,
 y

CO2
, y

H2S
, 

y
C1

, and y
N2

. 

GRNN is an efficient 

computational structure. 

GA reduces the runs of 

GRNNs. 

Though compared with 

most known correlations, 

but unknown about the 

data source. 

Need more information 

about the treatment of data. 
6 

Kamari et al. (2015) GEP 135 
80% train + 10% test + 

10% validate 

T
R
, MW

C5+
, x

vol
/x

int
, x

C2-C4,
 y

CO2
, y

H2S
, 

y
C1

, y
N2

. 

GEP provides better 

prediction 

First use GEP, compared 

with correlations. 
AARD is a little high, at 10%. 8 

Bian et al. (2016) SVR-GA 150 
67% train + 23% test 

83% train + 17% test 
T

R
, MW

C5+
, x

vol
, y

CO2
, y

H2S
, y

C1
, y

N2
. Better than other 

empirical correlations 

Can be used for pure and 

impure CO2 and low 

AARD. 

Separate pure and impure 

CO2. 
9 

Hemmati-Sarapardeh et al. 

(2016) 
MLP 147 

70% train + 15% test + 

15% validate 
T

R
, T

C, MW
C5+

, x
vol

/x
int

  Can predict both pure 

and impure CO2. 
Simple and reliable. 

Treatment of inputs may be 

too simple. 
8 

Zhong & Carr (2016) MKF-SVM 147 90% train + 10% test T
R
, T

C, MW
C5+

, x
vol

/x
int

  
The mixed kernel 

provides better 

performance. 

Treatment of inputs may 

be too simple.  

Did not consider the effect of 

N2, H2S. 
8 

Fathinasab & Ayatollahi 

(2016) 
GP 270 80% train + 20% test T

R
, T

cm, MW
C5+

, x
vol

/x
int

 GP provides the best 

prediction. 

Relatively large datasets 

but may simplify the 

inputs. 

AARE is a little high 

(11.76%). 
7 

Alomair & Garrouch (2016) GRNN 113 80% train + 20% test 
T

R
, MW

C5+
, MW

C7+
, x

C1
, x

C2,
 x

C3, xC4, xC5, 

x
C6, 

x
C7+,

 x
CO2

, x
H2S

, x
N2

. 

GRNN is better than five 

empirical correlations 

Too many inputs and no 

further comparison 

between GRNN and 

other ML methods. 

Does not consider the purity 

of CO2. 
7 

Karkevandi-Talkhooncheh 

et al. (2017) 
ANFIS 270 80% train + 20% test T

R
, T

C, MW
C5+

, x
vol

, x
int

  
ANFIS-PSO is the best 

among the five 

optimization methods. 

Very comprehensive 

comparison with 

available models and 

different optimizations. 

Further applicability may be 

needed. 
9 

Ahmadi et al. (2017) GEP N/A N/A T
R
, T

cm, MW
C5+

, x
vol

/x
int

 GEP is better than 

traditional correlations. 

Unknown about 

datasets.  

Further validation may be 

needed. 
6 

Karkevandi-Talkhooncheh 

et al. (2018) 

RBF-GA/ 

PSO/ICA/ACO/D

E 

270  80% train + 20% test 
T

R
, MW

C5+
, x

vol
, x

C2-C4,
 y

CO2
, y

H2S
, y

C1
, 

y
N2

. 
ICA-RBF is best 

Comparable large 

datasets. Five algorithms 

were applied. 

Further applicability may be 

needed. 
9 

Tarybakhsh et al. (2018) 
SVR-GA, MLP, 

RBF, GRNN 
135 92.5% train + 7.5% test 

T
R
, MW

C2-C6 (OIL)
, MW

C7+
, SG

C7+
, MW

C2-

C6 (GAS),
 y

CO2
, y

H2S
, y

C1
, y

N2
. 

SVT-GA is best. 
Too many input 

parameters may cause a 

The R2 is as high as 0.999. 

Too perfect to be reliable. 
6 
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high possibility of 

overfitting. 

Dong et al. (2019) ANN 122 82% train + 18% test H2S, CO2, N2, C1, C2… C36+ 
ANN can be used to 

predict MMP. 

Too many inputs. No 

dominant input 

selection. 

Input variables were 

assumed based on the 

availability of data. 

7 

Hamdi & Chenxi (2019) ANFIS 48 73% train + 27% test T
R
, MW

C5+
, x

vol
, x

int
  

Gaussian MF is the best 

among the five MFs. 

ANFIS is better than 

ANN. 

Though applied five MF 

but limited data points. 

Limited data points and does 

not consider the existence of 

CO2. 

6 

Khan et al. (2019) ANN, FN, SVM 51 70% train + 30% test T
R
, MW

C7+
, x

C1
, x

C2-C6,
 MW

C2+
, x

C2
 ANN is best 

Compared three 

methods but input 

parameters are 

overlapping. 

Limited data points and does 

not consider the existence of 

CO2. 

6 

Choubineh et al. (2019) ANN 251 
75% train + 10% test + 

15% validate 
T

R
, MW

C5+
, x

vol
/x

int
, SG 

ANN is best compared 

with empirical 

correlations 

Relatively large dataset. 

Use gas SG instead. 

Further applicability may be 

needed. 
8 

Li et al. (2019) 
NNA, GFA, 

MLR, PLS 
136 N/A 

T
R
, T

C,
 MW

C5+
, x

vol
/x

int
, y

C2-C5,
 y

CO2
, y

H2S
, 

y
C1

, y
N2

. 

ANN is best among both 

empirical and other 

algorithms. 

Unclear about how to 

split the data.  

Further applicability may be 

needed. 
8 

Hassan et al. (2019) 
ANN, RBF, 

GRNN, FL 
100 70% train + 30% test T

R
, MW

C7+
, x

C2-C6
 RBF provides the 

highest accuracy. 

Only three input 

parameters may simplify 

the model. 

Does not consider the purity 

of CO2 and the limited 

dataset. 

7 

Sinha et al. (2020) 

Linear 

SVM/KNN/RF/A

NN 

N/A 67% train + 33% test 
T

R
, MW

C7+
, MW

Oil
, x

C1
, x

C2,
 x

C3, xC4, xC5, 

x
C6, 

x
C7+,

 x
CO2

, x
H2S

, and x
N2

. 

Modified correlation 

with linear SVR and 

hybrid method with RF 

is best. 

Only need oil 

composition and TR. 

Does not consider the 

purity of CO2. 

MMP range 1000 - 4900 pis. 7 

Nait Amar & Zeraibi (2020) SVR-ABC 201 87% train + 13% test T
R
, T

C, 
MW

C5+
, x

vol
/x

int
, x

C2-C4
 SVR-ABC is better SVR-

TE 

The choice of inputs is 

limited 
Limited comparison. 8 

Dargahi-Zarandi et al. 

(2020) 

AdaBoost SVR, 

GDMH, MLP 
270 67% train + 33% test 

T
R
, T

C
, MW

C5+
, x

vol
, x

C2-C4,
 y

CO2
, y

H2S
, 

y
C1

, y
N2

. 
AdaBoost SVR is best. 

Create a 3-D plot for 

better visualization. 

Further applicability was 

limited 
9 

Tian et al. (2020) 

BP-NN (GA, 

MEA, PSO, ABC, 

DA) 

152 80% train + 20% test 
T

R
, MW

C5+
, x

C1
, x

C2,
 x

C3, xC4, xC5, xC6, xC7+,
 

y
CO2

, y
H2S

, y
N2

. 

DA-BP has the highest 

accuracy. 

Compared with 

empirical correlations 

and GA-SVR.  

Too many input parameters 

may have overfitting. 
8 

Ekechukwu et al. (2020) GPR 137 90% train + 10% test T
R
, T

C, MW
C5+

, x
vol

/x
int

  GPR has higher accuracy 

than other models. 

Very comprehensive 

comparison. A larger 

dataset may be better. 

Further validation with 

experiments may be needed. 
8 

Saeedi Dehaghani & 

Soleimani (2020) 

SGB, ANN, 

ANN-PSO, 

ANN-TLBO 

144 75% train + 25% test T
R
,
 
MW

C5+
, x

vol
, x

int
, y

CO2
, y

C1
, y

int,
 y

N2
. 

PSO and TLBO can help 

improve the accuracy of 

the ANN model. SGB is 

better than ANN. 

First applied SGB. Maybe 

compared with other 

optimization methods 

will be better. 

Further validation with 

experiments may be needed. 
8 
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Dong et al. (2020) FCNN 122 82% train + 18% test 
x

CO2
, x

H2S
, x

N2
, x

C1
, x

C2,
 x

C3, xC4, xC5, 

x
C6,…,xC36+.

  

L2 regularization and 

Dropout can help reduce 

overfitting. 

Alleviate overfitting but 

small datasets. 
Small datasets. 7 

Chen et al. (2021) SVM 147 80% train + 20% test 
T

R
,
 
MW

C7+
, x

vol
, x

C2-C4
, x

C5-C6
, y

CO2
, y

HC
, 

y
C1

,
 
and y

N2
. 

POLY kernel is more 

accurate. MW
C7+ 

and
 
x

C5-

C6 
should not be 

considered.  

Very complete and 

comprehensive. Includes 

optimization and 

evaluation. 

More persuasive with a large 

dataset. 
9 

Ghiasi et al. (2021) 
ANFIS, 

AdaBoost-CART 
N/A 90% train + 10% test 

T
R
, T

C, 
MW

C5+
, x

vol
/x

int
, y

CO2
, y

H2S
, y

C1-C5
, 

and y
N2

 

The novel AdaBoost- 

The CART model is the 

most reliable. 

The size of the dataset is 

unknown. First one to 

use AdaBoost.  

May have overfitting and 

validation is not strong. 
7 

Chemmakh et al. (2021) ANN, SVR-GA 
147 (pure CO2), 

200 (impure CO2) 
NA T

R
, T

C, 
MW

C5+
, x

vol
/x

int
  ANN and SVR-GA are 

reliable to use.  

The novelty of work is 

not clear. 

Only compared with 

empirical correlations. 
7 

Pham et al. (2021) FCNN 250 80% train + 20% test T
R
, x

vol
/x

int, MW, yC1
, y

C2+, 
y

CO2
, y

H2S
, y

N2
 

Multiple FCN together 

with Early Stopping and 

K-fold cross validation 

has high prediction of 

MMP. 

Applied deep learning – 

multiple FCN to predict 

MMP. Limited 

comparisons and 

validations. 

Only compared with 

decision tree and random 

forest. 

7 

Haider et al. (2022) ANN 201 70% train + 30% test 
T

R
, MW

C7+
, x

CO2
, x

C1
, x

C2,
 x

C3, xC4, xC5, 

x
C6, xC7,

 y
CO2

, y
H2S

, y
C1

, y
N2

. 

An empirical correlation 

is developed based on 

ANN. 

Too many inputs and a 

high possibility of 

overfitting. 

Need further validation with 

other reservoir fluid and 

injected gas. 

7 

Huang et al. (2022) CGAN-BOA 180 
60% train + 20% test + 

20% validate 

T
R
, MW

C7+
, x

CO2
, x

C1
, x

C2,
 x

C3, xC4, 
x

C5, 

x
C6, 

x
C7+,

 x
N2, 

y
CO2

, y
H2S

, y
N2

, y
C1

, y
C2,

 y
C3, 

y
C4, 

y
C5, 

y
C6, 

y
C7+.

 

CGAN-BOA and ANN 

are better than SVR-RBF 

and SVR-POLY 

Proved deep learning 

has the potential for 

predicting MMP. 

May have overfitting 

problems given 21 input 

parameters. 

8 

He et al. (2023) GBDT-PSO 195 85% train + 15% test 
T

R
, x

CO2
, x

C1
, x

C2,
 x

C3, 
x

C4, 
x

C5, 
x

C6, 
x

C7+,
 

x
N2,

 

GBDT is better than LR, 

RR, RF, MLP 

Improved GBDT by 

using PSO. But not a 

comprehensive 

comparison. 

Only GBDT was optimized. 

Other algorithms could also 

be tuned and compared. 

7 

Hou et al. (2022) GPR-PSO 365 80% train + 20% test 
T

R
, T

C,
 MW

C5+
, x

vol
/x

int
, y

CO2
, y

H2S
, y

C1
, 

y
C2-C5,

 y
N2

. 

GPR-PSO provides the 

highest accuracy. 

Comprehensive 

comparison and large 

datasets.  

The model was only 

validated with literature 

data. 

9 

Rayhani et al. (2023) 
SFS, SBS, SFFS, 

SBFS, LR, RFFI 
812 80% train + 20% test T

R
, T

C,
 MW

C7+
, MW

gas
, x

C5, 
x

C6, 
x

C2-C6
 SBFS provides the 

highest accuracy 

Large datasets. 

Comprehensive data 

selection and model 

comparison. 

Further applicability with 

field data or commercial 

simulation was limited.  

9 

Shakeel et al. (2023) ANN, ANFIS 105 70% train + 30% test 
T

R
, MW

C7+
, x

vol
, x

C2-C4
, x

C5-C6
, y

CO2
, y

H2S
, 

y
C1

, y
HC,

 y
N2

. 

ANN is better than 

ANFIS; the trainlm 

performs best. 

Demonstrated good 

accuracy but lack of 

uncertainty analysis. 

Limited dataset and only 

two ML algorithms were 

tested. 

7 

Shen et al. (2023) 

XGBoost, 

TabNet, KXGB, 

KTabNet 

421 80% train + 20% test 
T

R
, MW

C5+
, x

vol
/x

int
, y

CO2
, y

H2S
, y

C1
, y

C2-

C5,
 y

HC,
 and y

N2
 

KXGB is best. KTabNet 

can be used as an 

alternative.  

Large datasets. 

Comprehensive model 

comparison. New 

Need improvement of 

feature comprehensiveness. 
9 
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insights into deep 

learning. 

Lv et al. (2023) 

XGBoost, 

CatBoost, LGBM, 

RF, deep MLN, 

DBN, CNN 

310 80% train + 20% test T
R
, T

C, MW
C5+

, x
vol

/x
int

  
CatBoost outperforms 

than other AI 

techniques. 

Comprehensive model 

comparison and 

evaluation. New insights 

into deep learning. 

The accuracy depends on the 

databank. A larger dataset 

will be more robust. 

9 

Hamadi et al. (2023) 

MLP-Adam, 

SVR-RBF, 

XGBoost 

193 84% train + 16% test T
R
, T

C, MW
C5+

, x
vol

/x
int

  
XGBoost provides the 

best prediction for both 

pure and impure CO2. 

Not comprehensive 

comparison and a 

limited dataset. 

Limited dataset and only 

two ML algorithms were 

tested 

7 

Huang et al. (2023) 1D-CNN, SHAP 193 NA 

T
R
, MW

C7+
, x

CO2
, x

C1
, x

C2,
 x

C3, 
x

C4, 
x

C5, 
x

C6, 

x
C7+,

 x
N2, 

y
CO2

, y
H2S

, y
N2

, y
C1

, y
C2,

 y
C3, 

y
C4, 

y
C5,

 y
C6, yC7+.

 

MMPs from the slim 

tube and rising bubble 

are different. 1D-CNN 

performs best. 

It is novel in the SHAP 

application, but the 

comparison with other 

ML models is limited. 

Further applicability with 

field data or commercial 

simulation was limited.  

8 

Al-Khafaji et al. (2023) 
MLR, SVR, DT, 

RF, KNN 

147 (type 1), 197 

(type 2), 28 (type 

3) 

80% train + 20% test 

Type 1: T
R
, MW

C5+
, x

vol
/x

int 

Type 2: MW
C7+

, x
vol

, x
int, xC5-C6, xC7+,

 

y
CO2

, y
H2S

, y
N2

, y
C1

, y
C2-C6, yC7+. 

Type 3: T
R
, MW

C6+
, x

vol
, x

int, xC6+, API, 

sp.gr, Pb. 

KNN has the highest 

efficient accuracy and 

lowest complexity.  

Have a broad range of 

data including both 

experimental and field 

data. Performed 

thorough comparisons. 

Only pure CO2. 9 

Sinha et al. (2023) Light GBM 205 80% train + 20% test 
T

R
, MW

C7+
, MW

Oil
, x

C1
, x

C2,
 x

C3, 
x

C4, 
x

C5, 

x
C6, xC7+,

 x
CO2

, x
H2S

, x
N2

. 

An expanded range is 

developed with Light 

GBM. 

Compared with 

empirical and EOS 

correlations. First used 

Light GBM in MMP 

prediction. 

Further applicability with 

field data or commercial 

simulation was limited.  

8 

*: The rating for each paper is from the authors’ perspective.
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Figure 5 presents a statistical analysis from 56 research papers. The reveals a remarkable surge 

in the adoption of ML methodologies within this domain. ANN and GA have emerged as the most 

favored choices among many ML and optimization algorithms. ANNs, particularly RBFNN and 

MLP, are prominently employed. We have provided a separate categorization for RBFNN and MLP 

to afford a more detailed perspective on their individual utilization patterns. 

Furthermore, an essential factor impacting the efficacy of ML models in MMP predictions is the 

size of the dataset. It is widely recognized that an inadequately sized dataset can lead to overfitting, 

potentially compromising the model's generalizability. A substantial proportion of the examined 

papers (64%) have datasets with fewer than 200 data points, with a noteworthy subset (21%) relying 

on datasets with fewer than 100 data points. This stark discrepancy in dataset size necessitates 

critically examining the quality and robustness of models trained on such limited data. Therefore, it 

becomes paramount to consider the trade-offs between the advantages of ML applications and the 

constraints posed by data scarcity in the context of MMP prediction. 

As summarized in Error! Reference source not found., the most dominant parameters affecting 

pure CO2 MMP are reservoir temperature, molecular weight of C5+ or C7+, mole fraction of volatile oil 

elements, and mole fraction of intermediate oil elements. While for impure CO2 MMP, additional 

parameters such as mole fraction of gas, including C1 to C4, CO2, N2, and H2S, are also considered. 

Some studies included volatile oil components (C1 and N2) as well. 

  
(a) (b) 

 
(c) 

Figure 4. (a) Rise of ML application papers in MMP prediction; (b) Occurrence of different ML 

algorithms; (c) Distribution of dataset size. 

4.2. Water-alternating-gas (WAG) 

WAG injection, a widely adopted method in EOR techniques, cyclically injects water and gas, 

typically CO2 or CO2-hydrocarbon blends, to increase sweep efficiency and maximize oil recovery. 

Optimizing parameters such as WAG ratio, duration of each cycle, and reservoir properties is pivotal 
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for achieving favorable economic outcomes. The application of ML methods on WAG has been 

developed more recently. The earliest application of ML in WAG started in 2016, Hosseinzadeh 

Helaleh & Alizadeh employed SVM together with three optimization methods, ACO, PSO, and GA, 

to predict fractional oil recovery. In 2018, Nait Amar et al. used time-dependent multi-ANN to predict 

the total field oil production. Later on, Nait Amar & Zeraibi (2020) successfully applied SVR to 

construct a dynamic proxy of a field in Algeria, complemented by Genetic Algorithms (GA) for 

optimizing water-alternating-CO2 gas parameters. A more detailed summary is listed in Error! 

Reference source not found.. Error! Reference source not found. provides statistical analysis based 

on 26 papers. Similar to MMP, the most popular ML algorithm is ANN, and the most preferred 

optimization is GA. 

 

Figure 5. Occurrence of ML algorithms in WAG. 

4.3. Well placement optimization (WPO) 

WPO plays an essential role in reservoir management and development for many reasons. It can 

help maximize oil recovery and economic considerations (because drilling and maintaining wells are 

expensive). However, it has been considered one of the most challenging tasks due to the necessity 

of evaluating numerous computation scenarios to identify the optimal location for wells and achieve 

maximum production. The complexity of geological heterogeneities, such as variations in 

permeability and porosity, the existence of multiple facies, and stratigraphic and structural boundary 

conditions, requires extensive computational efforts. Besides, small changes in well locations can lead 

to significant changes in oil recovery prediction, making the optimization more challenging. 

Numerous simulations for hundreds or thousands of scenarios need to be run to make the best 

decision.  

In recent years, studies suggest the integration of ML approaches has been proposed in the 

literature as the potential solution. It holds the potential to accelerate computation processes, 

enabling quicker attainment of accurate scenarios within numerical simulations. Despite the 

recognized importance of optimizing well placement, the investigations of CO2 injector locations for 

optimal oil recovery and storage are relatively infrequent (Error! Reference source not found.). Most 

research is focused on waterflood injector selection (Xiong & Lee, 2020). 
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Table 2. Summary for ML applications on WAG. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Hosseinzadeh 

Helaleh & 

Alizadeh (2016) 

SVM (ACO, GA, 

PSO) 
200 80% train + 20% test Fractional oil recovery 

RL
C
, RL

D
, N

gAO
, N

gGO
, 

M
SWAG

, N
C
, SGR, N

Pe
, 

N
SCon

, N
B
, N

α
, N

σ
, λ*

Dx
, N

n
, 

He 

ACO has high accuracy 

and low computational 

time compared to ANN, 

GA, and PSO. 

Evaluate with both 

experiments and 

simulations. Limited to a 

similar geological model. 

Only has SVM model. 8 

Le Van & Chon 

(2017) 
ANN 

223 

(simulation) 

45% train + 20% test + 35% 

validation 

Oil recovery factor, oil 

rate, GOR, 

accumulative CO2 

production, net CO2 

storage 

Swi, kv/kh, WAG ratio, 

duration of each cycle 

ANN models can support 

numerical simulation of 

CO2-EOR projects. WAG 

ratio less than 1.5 is best.  

Evaluated multiple 

objectives but only 

limited to ANN. 

Only have simulation 

results as trained data.  
8 

Van & Chon (2018) ANN 
263 

(simulation) 

50% train + 20% test + 30% 

validation 

Oil recovery + net CO2 

storage + cumulative 

gaseous CO2 

production 

Kv/Kh, WAG ratio, Sw, 

well distance between 

each injector, T 

ANN can help estimate oil 

recovery and CO2 storage. 

25 injection cycle is best. 

Evaluate different WAG 

ratios but limited to 

ANN models only. 

Only have simulation 

results as trained data. 
7 

Mohagheghian et 

al. (2018) 
GA, PSO 

2000 

(simulation) 
NA 

NPV + incremental 

recovery factor 

Water and gas injection 

rates, BHP of producers, 

cycle ratio, cycle time, 

injected gas composition, 

total WAG period. 

PSO is capable of 

optimizing WAG 

variables and projects at 

field scale. 

First used GA in WAG at 

field scale. Evaluated 

with three case studies. 

Limited to specific 

geological models.  

Only GA and PSO are 

evaluated. Specific to E-

segment. 

9 

Nwachukwu, 

Jeong, Sun, et al. 

(2018) 

XGBoost, MADS 
1000 

(simulation) 
50% train + 50% test 

Oil/water/gas 

production rates, well 

locations, NPV 

Well x-coordinates, well 

y-coordinates, water/gas 

injection rates, well block 

ϕ/k, well block Swi 

The new model combined 

XGBoost and MADS 

provided high accuracy. 

Demonstrated with a 

case study in which 

underlying geology is 

uncertain. Limited to 

one model. 

Only XGBoost is 

employed. 
8 

Nait Amar et al. 

(2018) 
ANN/GA, ACO 85 88% train + 12% test 

Field oil production 

total 

Gas/water injection rates, 

gas/water injection half-

cycle, WAG ratio, and 

slug size. 

Both GA and ACO are 

highly effective in the 

optimization of the WAG 

process. 

Demonstrated the 

application of a time-

dependent proxy model 

for the WAG process. 

Without further 

application of the case 

study. 

Restricted to specific 

geological models. 

Limited simulation runs 

8 

Belazreg et al. 

(2019) 
Regression, GDMH 4290 70% train + 30% test 

Incremental recovery 

factor 

kh, kv, API, gas gravity, 

water viscosity, solution 

GOR, WAG ratio, WAG 

cycle, land coefficient, 

reservoir pressure, PV of 

injected water, PV of 

injected gas. 

GMDH performed better 

in selecting effective input 

parameters and 

optimizing the model 

structure. 

Novel approach but 

didn’t apply real field 

WAG pilot data to 

validate. 

Limited to two ML 

methods. 
8 
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Jaber et al. (2019) CCD 81 NA Oil recovery 

k, ϕ, kv/kh, cyclic length, 

BHP, WAG ratio, CO2 

slug size 

The new proxy model can 

predict oil recovery. The 

optimum WAG ratio is 

1.5.  

Developed a new proxy 

model based on CCD, 

But limited to one 

model. 

Limited data points and 

only from simulation 

runs. 

7 

Menad & 

Noureddine (2019) 

MLP (LMA, BR, 

SCG) + NSGA-II 

From 2010 to 

2018 
NA FOPR, FWPR 

Time, FWIR, FGIR, the 

value of the needed 

parameter at the previous 

time step 

MLP-LMA has the highest 

accuracy and lowest 

computation time. 

Developed a dynamic 

proxy model for 

multiple objectives. But 

limited to one geological 

model. 

The database was 

generated based on 

multiple runs of the 

simulation. 

8 

Nait Amar & 

Zeraibi (2020) 
SVR, GA 75 NA 

Field oil production 

total 

Injection rates of water 

and gas, half-cycle 

injection time, WAG ratio, 

slug size, initialization 

time of the process 

SVR-GA provides high 

accuracy and reasonable 

CPU time. 

Established a dynamic 

proxy model based on 

SVR-GA, but no 

comparison with other 

algorithms. 

Limited data points and 

only one model 

evaluated. 

7 

Yousef et al. (2020) ANN 
8 years * 37 

wells 
85% train + 15% test 

Oil/gas/water 

production rate, GOR, 

infill well location 

Well trajectory data, well 

logs, seismic data, 

production and injection 

history, reservoir 

pressure, choke opening, 

and WHP history. 

Implementing ANN 

for top-down 

modeling can predict 

reservoir performance 

under WAG. 

Can predict the reservoir 

performance 3 months 

ahead. But simplify the 

data gathering, 

modeling, and 

validation process. 

Unknown about specific 

input data. No 

comparison with other 

models or field case 

studies. 

6 

Belazreg & 

Mahmood (2020) 
GDMH 177 70% train + 30% test 

Incremental oil 

recovery factor 

Rock type, WAG process 

type, reservoir horizontal 

permeability, API, oil 

viscosity, reservoir 

pressure and temperature, 

and hydrocarbon pore 

volume of injected gas. 

GDMH models can 

predict three WAG 

incremental recovery 

factors: sandstone 

immiscible gas injection, 

sandstone miscible gas 

injection, and carbonate 

miscible gas injection 

Proved GDMH can 

model the WAG process 

and has good potential. 

More data and 

validation are needed to 

improve model 

robustness and 

applicability. 

Limited published WAG 

pilot data. 
8 

You et al. (2020) ANN 820 
80% train + 10% test + 10% 

validation 

Oil recovery, CO2 

storage, and project 

NPV 

Water injection time, CO2 

injection time, producer 

BHP, water injection rate. 

The ANN proxy model 

can help improve the 

prediction performance. 

Could handle two or 

three objectives very 

well when a limited 

number of control 

parameters 

Only suitable for limited 

input parameters. 
8 

You et al. (2021) Gaussian SVR - PSO 217 NA 

Hydrocarbon 

recovery + CO2 

sequestration volume 

+ NPV 

FOPR*2, gas cycle*5, 

water cycle *5  

The proposed method can 

optimize the WAG 

process with high 

accuracy. 

Nice sensitivity studies 

of CO2 price and oil 

price on NPV. Limited 

comparison with other 

ML models. 

Restricted to specific 

geological models. 
8 

Enab & Ertekin 

(2021) 
ANN 2000 

80% train + 10% test + 10% 

validation 

Production 

prediction, 

production schemes 

25 inputs including 

reservoir rock 

characteristics, initial 

conditions, oil 

ANN provides a faster 

prediction for fish-bone 

structure in low 

permeability reservoirs. 

Nice project design and 

economic analysis, but 

limited to ANN model 

only. 

Limitations were 

imposed by defining the 

range of each variable. 

8 
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design, history 

matching 

composition, well design 

parameters, and injection 

strategy parameters. 

Afzali et al. (2021) GEP 96 67% train + 33% test Recovery factor 

Oil viscosity, gas/water 

injection rates, k, PVI, 

number of cycles 

The developed model is 

successful when 

compared with 

experimental results. 

Novelty in using GEP. 

The dataset is from 

mathematical 

correlation. 

Limited and less 

supportive dataset.  
8 

Lv et al. (2021) ANN-PSO 2100 
70% train + 15% test + 15% 

validation 
Oil production 

So, Pi, k, ϕ, h, Pwf, water 

injection rate, water cut 

before gas flooding, gas 

injection rate, water 

injection volume, cycle 

time, water injection time, 

production rate, grid size 

ANN-PSO provides a 

good model for parameter 

optimization of CO2 

WAG-EOR. 

Routine procedures, not 

too much novelty in 

applying ANN-PSO. 

No comparison with 

other ML models. 
7 

Nait Amar et al. 

(2021) 

MLP-LM, RBFNN-

ACO/GWO 
82 88% train + 12% test 

Field oil production 

total 

Water/gas injection rates, 

injection half-cycle, 

downtime, WAG ratio, 

gas slug size 

MLP-LMA is best. The 

proxy model can 

significantly reduce 

simulation time and 

conserve high accuracy.  

The application of GWO 

is novel. Limited runs 

and may have 

overfitting problems. 

Water cut is limited to 

50%. Reservoir pressure 

must be higher than 

MMP. 

8 

Junyu et al., (2021) Gaussian-SVR 1400 NA 

Cumulative oil 

production and 

cumulative CO2 

storage. 

Water/gas cycle, producer 

BHP, water injection rate, 

etc. (91 variables in total) 

Gaussian-SVR performs 

best. 

Showed the possibility 

to design a CO2-WAG 

project using as many 

inputs as possible.  

Given the large number 

of input parameters, the 

dataset may not be large 

enough. 

7 

Sun et al. (2021) SVR, MLNN, RSM 600 83% train + 17% test 
Oil production, CO2 

storage, NPV. 

Duration of CO2 and 

water injection cycles, 

water injection rate, 

production well 

specifications, oil price, 

CO2 price, etc. (62 

parameters) 

The MLNN model can 

handle problems with 

large input and output 

dimensions. 

Compared three 

different methods. But 

only suitable for specific 

geological models. 

The average reservoir 

pressure must be 

between 3700 – 5400 psi. 

8 

Huang et al. (2021) LSTM 5404 90% train + 10% test 
Oil production, GOR, 

water cut 

Daily liquid rate, daily 

oil/gas/water rate, GIR, 

WIR, reservoir pressure, 

WHFP, choke size of 

producers. 

The calculation time of 

LSTM is 864% less than 

the simulation, while the 

prediction error of the 

LSTM method is 261% 

less than the simulation. 

The model is based on 

real reservoir data over 

15 years. But limited to 

one ML model. 

Only one ML model is 

considered. No 

comparison with other 

models. 

7 

H. Li et al. (2022) RF 216 70% train + 30% test 

Cumulative oil 

production, CO2 

storage amount, CO2 

storage efficiency 

CO2-WAG period, CO2 

injection rate, water-gas 

ratio, reservoir properties, 

oil properties, depth, layer 

thickness, Soi, well 

operation 

CO2-WAG cycle time has 

a slight influence on oil 

production. Random 

forest can predict oil 

production and CO2 

storage. 

Proved RF has high 

computation efficiency 

and accuracy in CO2-

WAG projects. But no 

comparison of different 

ML models. 

Small dataset and only 

one ML model is 

studied.  

7 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 February 2024                   doi:10.20944/preprints202402.1118.v1



 15 

 

Andersen et al. 

(2022) 

LSSVM – 

PSO/GA/GWO/GSA 
2500 

70% train + 15% test + 15% 

validation 
Oil recovery factor 

Water-oil and gas-oil 

mobility ratios, water-oil 

and gas-oil gravity 

numbers, reservoir 

heterogeneity factor, two 

hysteresis parameters, 

and water fraction. 

LSSVM with GWO or PSO 

performed better than GA 

or GSA. 

Very detailed and 

thorough study. The 

dataset is relatively 

large. Some limitations 

of input parameters. 

Several important 

parameters were not 

varied much. 

9 

Singh et al. (2023) DNN - GA 2200 70/80% train + 30/20% test Maximize oil recovery 
Water injection rates, gas-

to-water ratio, slug size. 

DNN-GA workflow can 

identify improved WAG 

parameters over the 

baseline recovery, with 

incremental increases of 

0.5-2%. 

Presents a novel 

workflow for WAG 

optimization using ML. 

Requires a large number 

of simulation runs (2200 

here) to initially train 

DNN. 

Limited to optimizing 

WAG parameters.  
7 

Asante et al. (2023) LSTM 2345*3 80% train + 20% test 
Oil production rate, 

oil recovery factor 

Bottom-hole pressure at 

injector and producer, 

water and gas injection 

volumes, WAG cycle. 

LSTM can model complex 

time-series data without 

the use of the geological 

model. 

Shows the ability of 

LSTM to perform time 

series analysis. But the 

input parameters are 

restricted. 

Requires large amounts 

of quality field data. 
7 

Matthew et al. 

(2023) 
ANN-NSGA-II 68 + 97 NA 

Maximize oil 

produced and CO2 

storage 

Water and gas injection 

rate, half-cycle length, 

time step. 

The developed proxy 

model can predict both 

simple and complex 

models. 

Developed a dynamic 

proxy model for 

multiple objectives. But 

the dataset size is 

limited. 

Limited simulation runs. 

Has a high possibility of 

overfitting. 

7 

*: The rating for each paper is from the author’s perspective. 

Table 3. Summary of ML applications in well location optimization. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Nwachukwu 

et al. (2018) 
XGBoost 

200, 500, 

1000 
NA 

Total profit, cumulative 

oil/gas produced, net 

CO2 stored 

Well-to-well pairwise connectivity, 

injector block k and ϕ, initial injector 

block saturations 

Quick evaluation of well placement using 

well-to-well connectivity was successful 

with 1000 simulation runs and R2 = 0.92. 

No co-optimization 

of oil recovery and 

CO2 storage, only 

ML proxy usage. 

The dataset is from 

simulation runs. Only 

suitable for one 

geological model. 

8 

Selveindran 

et al. (2021) 

AdaBoost, 

RF, ANN 

3000, 2000, 

1000 
70% train + 30% test 

Incremental oil 

production  

K, ϕ, PV, initial fluid saturation, 

pressure, time of flight, well-to-well 

distances, distance to the injector, 

injection rate, and injection depth. 

Stacked learner is better than an individual 

learner. ML helps rapidly identify the areas 

that are optimal for injection. 

Detailed and 

comprehensive 

analysis, including 

posterior sampling. 

Heavily rely on the 

geological model. 
8 

*: The rating for each paper is from the authors’ perspective. 
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4.4. Oil production/recovery factor 

The recovery factor, defined as the ratio of produced oil to OOIP, is one of the most crucial 

success metrics for evaluating all EOR projects, as it determines how much incremental oil or ultimate 

oil is produced. Accurately predicting the recovery factor is challenging because it depends on 

diverse factors, including reservoir characteristics and heterogeneity, fluid properties, well design, 

injection condition, and composition of injected fluid. Reservoir simulations, together with laboratory 

experiments at reservoir conditions, can help predict recovery factor. After that, a small-scale pilot 

test is conducted before undertaking larger-scale operations (Ding et al., 2017). Although this 

approach may provide solutions to numerous problems, it is costly and time-consuming. Therefore, 

ML methods emerge as more practical, affordable, rapid, and accurate alternatives.  

Alternatively, ML methods have obtained popularity in predicting oil recovery. For example, 

Ahmadi et al. (2018) applied LSSVM to predict the ultimate oil recovery factor of the miscible CO2-

EOR injection operations at the different rock, fluids, and process conditions. Karacan (2020) 

employed fuzzy logic to predict recovery factors of the major past and existing U.S. field applications 

of miscible CO2-EOR. Error! Reference source not found. provides further information on ML 

applications on the CO2-EOR recovery factor. 

4.5. Multi-objective optimization 

As the name indicates, multi-objective optimization optimizes multiple objections 

simultaneously, such as oil recovery factor or cumulative oil production, CO2 storage, and net present 

value (NPV). For each objective, running high-fidelity numerical models provides possible solutions 

to figure out the optimum. However, finding optimal solutions to all objectives simultaneously is not 

always guaranteed since objectives can compete with each other. For example, to maximize oil 

recovery, more CO2 may be needed, leading to higher oil production. However, this might also mean 

more CO2 is used, potentially increasing the project's cost, which will also adversely affect the project 

NPV (You, Ampomah, Sun, et al., 2020). It requires sophisticated optimization techniques to identify 

solutions that balance these objectives, considering all the constraints involved in the problem. 

Therefore, ML techniques outperform other methods as an effective, reliable, and stable workflow to 

co-optimize crude oil recovery, CO2 sequestration, NPV, and related factors. 

Given the complexity of multi-objective optimization, the application of ML on CO2-EOR is very 

limited (Error! Reference source not found.Error! Reference source not found.) and is strongly 

restricted by the geological model. Once the reservoir characteristics change, the model must be 

rebuilt and retrained. The development of ML and optimization workflow is challenging and 

requires more effort in different oil and gas fields. 
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Table 4. Summary of ML applications on oil production/recovery factor. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Ahmadi et al. 

(2018) 
LSSVM 46 80% train + 20% test 

Oil recovery 

factor 

BHP of injection well, CO2 

injection rate, CO2 injection 

concentration, BHP of production 

well, oil production rate 

The hybridization of LSSVM and BBD 

is statistically correct for predicting RF. 

Provided the possibility of using 

ML and comparing it with 

commercial software. But limited 

dataset.  

Small dataset and only 

suitable for similar oil 

reservoirs. Only valid for 

the same input 

parameters range. 

7 

Chen & Pawar 

(2019) 

MARS, 

SVR, RF 

500, 

250, 100 
NA Recovery factor 

Thickness, depth, k, Sor, CO2 

injection rate, BHP of production 

well 

MARS has the best performance. 

Applied to 5 fields in Permian Basin 

and had good matches. Heavily 

relies on a base model and may not 

fully represent diverse ROZs. 

Significant assumptions 

are made regarding 

uncertain parameters like 

residual oil saturation. 

8 

Karacan (2020) FL 24 83% train + 17% test Recovery factor 

Lithology, API, ϕ, k, HCPV, 

depth, net pay, Pi, well spacing, 

Sorw 

FL provided a reasonably accurate 

prediction. 

Though a small dataset, but 

provides the possibility of using 

ML in recovery factor prediction. 

Too difficult to draw 

statistical conclusions 

from such a small 

dataset. 

7 

Iskandar & 

Kurihara (2022) 

AR, MLP, 

LSVM 

3653 * 8 

wells 

40% train + 20% test 

+ 40% validation 

Oil, gas, and 

water production 

ϕ, k, formation thickness, BHP, 

flow capacity, storage capacity 

The AR model is best, with long and 

consistent forecast horizons across 

wells. LSTM performs well but has 

shorter forecast horizons. MLP has high 

variability and short forecast horizons. 

First time series forecasting study. 

No model updating/retraining over 

time. Overall, it is a solid study. 

Limited hyperparameter 

tuning is done. Only 

three models were tested. 

9 

*: The rating for each paper is from the authors’ perspective. 

Table 5. Summary of ML applications on multi-objective optimizations. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Ampomah et al. (2017) GA NA NA 
Oil recover + CO2 

storage 
NA 

The proxy models to 

determine the optimal 

operational parameters, 

including 

injection/production rates, 

pressure, and WAG cycles 

First used proxy models and 

GA to optimize oil recovery 

and CO2 storage 

simultaneously. But relies 

heavily on having an accurate 

reservoir mode. 

Optimal parameters are 

specific to this reservoir - 

and not necessarily 

generalizable. 

7 

You, Ampomah, Sun, et 

al. (2019) 
RBFNN 160 N/A 

Cumulative oil 

production + CO2 

storage + NPV 

water cycle, gas cycle, 

BHP of producer, 

water injection rate 

The proxy model is built 

based on RBFNN for 

optimization. 

The overall prediction is 

acceptable, but the CO2 

storage prediction is much 

higher.  

The CO2 storage 

optimization is 18% higher 

than the baseline. 

7 

You, Ampomah, 

Kutsienyo, et al. (2019) 
ANN-PSO 

820 

(numerical 

model) 

80% train + 10% test + 10% 

validation 

Cumulative oil 

production + CO2 

storage + NPV 

water cycle, gas cycle, 

BHP of producer, 

water injection rate 

The optimization study 

showed promising results 

for multiple objectives. 

Developed a novel hybrid 

optimization for multiple 

objective functions. But only 

validated with field case. 

Only four input parameters 

are considered. 
7 
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Vo Thanh et al. (2020) ANN-PSO 

351 

(numerical 

model) 

80% train + 10% test + 10% 

validation 

Cumulative oil 

production + 

cumulative CO2 

storage 

+cumulative CO2 

retained 

ϕ, k, Sorg, Sorw, BHP 

of producer, CO2 

injection rate 

ANN can forecast the 

performance of CO2 EOR 

and storage in a residual oil 

zone 

The ANN provides R2 of 0.99 

and MSE of less than 2%, but 

the application in other types 

of reservoirs is questionable.  

Case specific.  7 

*: The rating for each paper is from the author’s perspective. 

Table 6. Summary of ML application on PVT properties. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Emera & Sarma 

(2008) 
GA 

106 (dead 

oil), 74 (live 

oil) 

NA 

CO2 solubility, oil 

swelling factor, CO2-oil 

density, and viscosity.  

API, Ps, T, 

MW 

The GA-base correlations 

provided the highest accuracy 

First applied GA in CO2-oil 

properties prediction. Will be more 

helpful if a full dataset is provided. 

Validated over a certain data 

range. May not be reliable if it is 

out of data range. 

8 

Rostami et al. 

(2017) 
ANN, GEP 

106 (dead 

oil), 74 (live 

oil) 

80% train + 20% test CO2 solubility 
Ps, T, MW, 

γ, Pb 

GEP is more accurate than 

ANN for dead oil.  

Compared with several empirical 

methods. More comparisons between 

ML models will be more persuasive.  

Limited dataset on live oil.  8 

Rostami et al. 

(2018) 
LSSVM 

106 (dead 

oil), 74 (live 

oil) 

70% train + 15% test 

+ 15% validation 
CO2 solubility 

Ps, T, MW, 

γ 

LSSVM showed higher 

accuracy compared to previous 

empirical correlations.  

More rigorous validation against 

experimental data equations of state 

models would be useful. 

Only a few literature models 

were compared.  
7 

Mahdaviara et al. 

(2021) 

MLP, RBF (GA, 

DE, FA), 

GMDH 

NA NA CO2 solubility 
Ps, T, MW, 

γ, Pb 

MLP-LM and MLP-SCG are 

better at predicting solubility. 

GMDH is better than LSSVM. 

Compared with various models and 

optimization methods. But unknown 

for the dataset. 

Not known for the dataset. 8 

Hamadi et al. 

(2023) 

MLP-Adam, 

SVR-RBF, 

XGBoost 

105 (dead 

oil), 74 (live 

oil) 

80% train + 20% test CO2 solubility, IFT 
Ps, T, MW, 

γ, Pb 

SVR-RBF provided the best 

accuracy 

Limited comparisons between 

different models. 

Given the year that this paper 

was published, the dataset is 

small. 

7 

*: The rating for each paper is from the author’s perspective. 
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4.6. PVT Properties  

For any CO2 flooding project, it is imperative to comprehend the intricate physical and chemical 

interactions between CO2 and the reservoir oil, even when primarily exploring recovery potential. 

Laboratory investigations and the utilization of available modeling or correlation packages serve as 

viable methods for analyzing the influence of CO2 on the physical properties of oil. Nonetheless, 

conducting a comprehensive laboratory study to obtain an extensive dataset is costly and time-

consuming. Furthermore, the available correlation packages are limited in their applicability, 

rendering them unsuitable for many scenarios.  

ML is being increasingly harnessed for tasks such as predicting CO2 solubility and Interfacial 

Tension (IFT), as briefly presented in Error! Reference source not found.. Intriguingly, a majority of 

the studies incorporated the same dataset sourced from Emera & Sarma (2008). Given the relatively 

small dataset size comprising only 106 data points, the risk of overfitting looms large, casting doubt 

on the accuracy and generalizability of their ML models. It is evident that a larger and more diverse 

dataset is required to facilitate a deeper comprehension of the performance of ML techniques in this 

context.  

4.7. CO2-foam flooding 

The implementation of CO2 injection in Enhanced Oil Recovery (EOR) demonstrates significant 

potential, but it is accompanied by inherent limitations, including suboptimal sweep efficiency, 

asphaltenes precipitation, and corrosion of well infrastructure. In response to these challenges, the 

utilization of CO2 foam has emerged as a promising strategy to enhance the effectiveness of CO2-EOR 

flooding. Foams offer distinct advantages, primarily due to their elevated viscosities compared to 

pure gases, a property that equips foams with the capability to displace oil from reservoir formations 

more efficiently (Iskandarov et al., 2022). Furthermore, by obstructing highly permeable pore 

pathways, foams redirect displaced fluids towards unswept reservoir regions, thereby improving 

both sweep efficiency and the storage capacity of CO2 within the reservoir matrix. While ML models 

have found extensive applications in EOR research, their application in the context of CO2-foam is 

still in its nascent stages, and the existing body of literature on this subject remains limited, as 

evidenced in Error! Reference source not found.. 
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Table 7. Summary of ML application on CO2-foam EOR. 

Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating* 

Moosavi et al. 

(2019) 

MLP, RBF (GA, 

COA) 
214 

80% train + 20% test 

75% train + 25% test 

90% train + 10% test 

Oil flow rate and 

recovery factor 

Surfactant kind, ϕ, K, PV of 

core, Soi, injected foam PV 

Both MLP and RBF provide 

high accuracy with R2 up to 

0.99. 

The earliest research on CO2-

foam EOR. Only focus on 

laboratory data. 

Only studied two methods, and 

there was no comparison among 

other ML algorithms. 

8 

Raha Moosavi 

et al. (2020) 

RBF (TLBO, 

PSO, GA, ICA) 
214 80% train + 20% test 

Oil flow rate and 

recovery factor 

Surfactant kind, ϕ, K, PV of 

core, Soi, injected foam PV 

RBF-TLBO provides the 

highest accuracy. 

Proved ML can provide high 

accuracy (R2 can reach 0.999), 

but is only limited to coreflood. 

Limited to laboratory 

experiments. 
8 

Iskandarov et 

al. (2022) 

DT, RF, ERT, 

GB, XGBoost, 

ANN 

145 70% train + 30% test 

Surfactant stabilized 

CO2 apparent foam 

viscosity  

Shear rate, Darcy velocity, 

surfactant concentration, 

salinity, foam quality, T, 

and pressure 

ML can provide reliable 

prediction, and ANN 

provides the highest 

accuracy. 

Proved ML can predict for both 

bulk and sandstone formation 

under various conditions. 

The dataset size is relatively 

small and may have overfitting. 
8 

Khan et al. 

(2022) 
XGBoost 200 70% train + 30% test Oil recovery factor 

Foam type, Soi, total PV 

tested, ϕ, K, injected foam 

PV 

XGBoost can provide high 

accuracy. 

Proved XGBoost can be used 

for CO2-foam. Limited to 

laboratory data. 

Only one ML is applied. No 

other comparisons. 
7 

Vo Thanh et al. 

(2023) 

GRNN, CFNN-

LM, CFNN-BR, 

XGBoost 

260 70% train + 30% test Oil recovery factor 
IOIP, TPVT, ϕ, K, injected 

foam PV 

Porosity is the most 

significant parameter. 

GRNN has the highest 

accuracy. 

Comprehensive and detailed 

description.  

Limited to laboratory 

experiments. 
9 

*: The rating for each paper is from the author’s perspective. 
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5. Benefits and limitations of ML 

ML exhibits high efficiency when compared with conventional reservoir simulators. Typically, 

these simulators are performed on 3-D grids comprising one million to several billion cells. The 

computations tend to be time-consuming, imposing constraints on the feasibility of conducting 

multiple iterations. Consequently, this limitation reduces the optimization potential for meticulous 

field development planning. A pivotal role of ML techniques is their capacity to speed up reservoir 

modeling computations. These models can predict time-dependent variables at 100 to 1000 times 

faster speeds than traditional simulators. This acceleration in computation velocity via ML methods 

maintains an equivalent level of functionality (Ng et al., 2023).  

Furthermore, extensive research findings have proved the impressive performance of ML 

methods, consistently yielding accuracy levels exceeding 90% based on statistical quality 

assessments. This high degree of accuracy demonstrates the confidence in ML's reliability and 

portends a promising future within the oil and gas industry. 

While the advantages of employing ML are widely acknowledged, it is imperative to recognize 

the associated limitations inherent in ML-based methodologies. A central challenge confronting 

researchers is obtaining authentic data from experimental and/or field sources. The limited 

availability of large datasets is also a concern, impacting both the training accuracy and the overall 

efficacy of the ML models. When faced with restricted data, researchers often use single-shot learning 

strategies, wherein models are pre-trained on similar datasets and subsequently refined through 

experience.  

Overfitting is a prevalent issue in ML applications, primarily driven by insufficient training data 

and the absence of well-defined stopping criteria during training. 12% of reviewed research papers 

contain datasets with fewer than 100 data points, heightening the risk of overfitting. Addressing this 

problem may involve adjusting the model's structure, including weight modifications. However, it is 

important to recognize that such alterations can increase model complexity, potentially limiting its 

generalization beyond the specific dataset.  

6. Conclusions 

In this work, we have investigated and summarized the employment of ML methods in the 

application of CO2-EOR from several areas: MMP, WAG, well location placement, oil 

production/recovery factor, multi-objective optimization, PVT properties, and CO2-foam. We list the 

input parameters, objectives, data sources, results, evaluation, and rating for each area based on the 

data quality, ML process, and results analysis. The key highlights of this work are as follows: 

1. Our literature review showed that most reports on model performance indicators are limited to 

the size of the data bank, making it difficult to accurately assess the quality of the model over 

time or track its drift with new data.  

2. Regarding validation and verification, the CO2-EOR has many reliable, dependable, and well-

established techniques for verification and validation procedures for ML models. The research 

highlights several issues with current machine learning models, including model scalability, 

validation and verification deficiencies, and an absence of published data regarding the 

establishment costs of ML models.  

3. Most CO2-EOR research focused on MMP predictions and WAG design. The applications in 

recovery factor, well placement optimization, and PVT properties are limited.  

4. We also found that ANN is the most employed ML algorithm, and GA is the most popular 

optimization algorithm based on 101 reviewed papers. ANN has been proven to be flexible 

enough to be implemented to build intelligent proxies.  

5. ML algorithms can greatly reduce the computational cost and time to perform compositional 

simulation runs. However, ML applications for well placement optimization in CO2-EOR are 

very limited. 

6. The reliability of coupled ML-metaheuristic paradigms based on reservoir simulation results 

needs further investigation. 
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Nomenclature 

AARD Average absolute relative deviation  

AARE Average absolute relative error 

ABC Artificial bee colony  

ACO Ant colony optimization 

ACE Alternating conditional expectation 

AR Auto-regressive 

ANN Artificial Neural Network 

ANFIS Adaptive neuro-fuzzy inference system 

BA Bee algorithm 

BOA Bayesian optimization algorithm 

BPNN Backpropagation algorithm neural network 

BR Bayesian regularization 

CatBoost Categorical boosting 

CCD Central composite design 

CFNN Cascade forward neural network 

CGAN Conditional generative adversarial network 

CM Committee machine 

CNN Convolutional neural network 

COA Cuckoo optimization algorithm 

CSO Cuckoo search optimization 

DA Dragonfly algorithm 

DBN Deep belief network 

DE Differential evolution 

DNN Dense neural network 

ERT Extremely randomized trees 

FCNN Fully connected neural network 

FGIR Field gas injection rate 

FL Fuzzy logic 

FN Functional network 

GA Genetic algorithm 

GB Gradient boosting 

GBDT Gradient boosting decision tree 

GBM Gradient boost method 

GEP Gene expression programming 

GFA Genetic function approximation 

GIR Gas injection rate 

GMDH Group method of data handling 

GP Genetic programming 

GPR Gaussian process regression 

GRNN Generalized regression neural network 

GSA Gravitational search algorithm 

GWO Grey wolf optimization 

He Hurst exponent 

HPSO Hybrid particle swarm optimization 

ICA Imperialist competitive algorithm 

KXGB Knowledge-based XGB 

LGBM light gradient boosting machine 

LM Levenberg – Marquardt 

LR Lasso regression 

LSSVM Least-squares support vector machine 

LSTM Long short-term memory 

MADS Mesh adaptive direct search 

MARS Multivariate Adaptive Regression Splines  

MASRD Mean absolute symmetric relative deviation 

MEA Mind evolutionary algorithm 

MF Membership function 

MKF Mixed kernels function 
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MLP Multi-layer perceptron 

MLR Multiple linear regression 

MLNN Multi-layer neural networks 

MOPSO Multi-objective particle swarm optimization 

MSE Mean squared error 

NNA Neural network analysis 

NPV Net present value 

NSGA-II Non-dominated sorting genetic algorithm version II 

PLS Partial least squares  

POLY Polynomial function 

PSO Particle swarm optimization 

RBFN Radial-based function networks 

RFFI Random forest feature importance 

RR Ridge regression 

RSM Response surface models 

SBFS Sequential backward floating selection 

SBS Sequential backward selection 

SCG Scaled conjugate gradient 

SFS Sequential forward selection 

SFFS Sequential forward floating selection 

SGB Stochastic gradient boosting 

SGR Solution gas ratio 

SHAP Shapley Additive explanations 

SVR Support vector regression 

SVM Support vector machine 

TLBO Teaching learning-based optimization 

TPVT Total pore volume tested 

WIR Water injection rate 

WHFP Well head flow pressure 

XGBoost Extreme gradient boosting 
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