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Abstract: In recent years, machine learning (ML) techniques have emerged as an efficient and
effective technology within the petroleum industry. This paper focuses on the current application
of ML in enhanced oil recovery (EOR) through CO: injection, which exhibits promising economic
and environmental benefits of climate-change mitigation strategy. Our comprehensive review
explores the diverse use cases of ML techniques in CO2-EOR, including aspects such as minimum
miscible pressure (MMP) prediction, well location optimization, oil production and recovery factor
prediction, multi-objective optimization, Pressure-Volume-Temperature (PVT) properties
estimation, Water Alternating Gas (WAG) analysis, and CO2-foam EOR, from 101 reviewed papers.
In this comprehensive review, we catalog relative information, including the input parameters,
objectives, data sources, train/test/validate information, results, evaluation, and rating score for each
area based on criteria such as data quality, ML building process, and analysis of results. We also
briefly summarized the benefits and limitations of ML methods in petroleum industry applications.
Our detailed and extensive study could serve as an invaluable reference for employing ML
techniques in the petroleum industry. Based on the review, we found that ML techniques offer great
potential in solving problems in the majority of CO2-EOR areas involving prediction and regression.
With the generation of massive amounts of data in the everyday oil and gas industry, machine
learning techniques can provide efficient and reliable preliminary results for the industry.

Keywords: CO:-EOR; machine learning; minimum miscible pressure (MMP); water-alternating-gas
(WAG); system review

1. Introduction

Petroleum resources have been deemed as the principal source of fossil-fuel-based energy to
meet the world’s energy demands since the early 20% century. The importance of enhancing oil
reservoir extraction efficiency has grown due to the restricted supply of reserves. Over two-thirds of
the original oil in place (OOIP) remains trapped after primary and secondary recovery processes.
Besides, extracting the remaining oil from mature reservoirs in complicated geological formations is
more challenging. EOR methods are initiated to recover the remaining oil from reservoirs after both
primary and secondary recovery methods are exhausted. Surfactant flooding, chemical flooding,
polymer flooding, steam stimulation, microbial flooding, gas injection, and so forth (Green &
Willhite, 1998; Yang et al., 2018) are the common EOR approaches. Carbon dioxide (COy) is very
successful since it increases oil production by increasing mobility and reducing oil viscosity and
saturation, which works well with both conventional and some unconventional formations. CO2-EOR
is one of the popular techniques, occupying around 20% of 1120 worldwide EOR projects (Error!
Reference source not found.). It may recover 15% to 25% of the OOIP of light or medium oil fields
that are close to depletion due to flooding (Yongmao et al., 2004).

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Distribution of different EOR projects worldwide (Cheraghi et al., 2021.)

The utilization of CO2 in EOR can significantly improve oil recovery; at the same time, it plays
an essential role in environmental preservation. The importance of CO:-EOR as part of carbon
capture, use, and storage (CCUS) schemes becomes more vital as the petroleum industry works
toward decarbonization to mitigate green house gas emissions. If reinjection is not considered,
approximately 60% of injected CO: can be trapped in the reservoir at the CO: breakthrough
(Gozalpour et al.,, 2005). This approach, efficiently utilizing CO:z in oil recovery, aligns with an
environmentally friendly protocol while simultaneously enhancing resource efficiency and
contributing substantially to sustainability goals (Hasan et al., 2015).

Machine learning (ML) approaches have drawn considerable interest as emerging technologies
in the oil and gas industry over the past 20 years. Applying the ML approaches to examine issues in
the oilfield development process has acquired new life with the advent of intelligent oilfields and big
data technology. Indeed, ML shows the feasibility of offering a more straightforward and quicker
method than rigorous and numerous simulations or experiments. Many ML correlations have
emerged with the development of computer tools, particularly in reservoir characterization, CO:
storage, production, and drilling operations (Ghoraishy et al., 2008; Liu et al., 2023; Nait Amar &
Zeraibi, 2020; You & Lee, 2022).

Many literature reviews have been conducted in the past to summarize the application of ML in
the oil and gas industry (Ng et al., 2023). However, no study on global research trends analyzed the
dominant input parameters and evaluated the research work on CO2-EOR projects. The evaluations
could help researchers get a preliminary idea about the current research trend on CO2-EOR and
whether their recent research impacts a particular field. Furthermore, few studies have systematically
summarized and examined all the literature on ML for CO2-EOR. Few reviews find the most critical
topics, objectives, input parameters, evaluations, and research gaps in ML for CO2-EOR. This study
aims to offer insight into current trends and technological development indicators, which will help
identify the viewpoint for the following research areas and prospects. Thus, data extraction analysis
was carried out to ascertain the research advancement and trends in ML for CO2-EOR, whereby a
systematic review accomplishes the closure of research gaps on this subject.

This paper aims to summarize and evaluate the various ML models in CO2-EOR and provide
insightful analysis with 101 papers reviewed. The rest of the paper is organized as follows: Section 2
describes the mechanisms and processes of CO2-EOR. Section 3 briefs the most popular ML and
optimization methods employed in the literature. Section 4 summarizes the work that applied ML in
the CO2-EOR process, including MMP prediction, WAG, well placement optimization, oil production
or recovery factor prediction, multiple objectives optimization, PVT properties estimation, and CO»-
foam. Section 5 outlines the benefits and limitations of the application of ML in the CO2-EOR process
before ending this survey paper with concluding remarks.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2024 d0i:10.20944/preprints202402.1118.v1

2. Mechanisms and process of CO2-EOR

CO:is generally injected into the reservoir under the following conditions: (a) miscible injection;
(b) immiscible front displacement after water flooding; (c) water alternating gas (WAG)
displacement; and (d) CO: dissolved in brine flooding, also referred to as carbonated water injection
(CWI) (Kumar et al., 2022). Miscible displacement has been successful over the years. It occurs at
pressures above a minimum miscible pressure (MMP) of the oil, where the injected gas and the
hydrocarbons are entirely miscible and form a single-phase fluid. The main advantages of miscible
displacement are that it can promote oil swelling, reduce fluid viscosity, increase mobility, reduce
remaining oil saturation, and improve oil production.

CO: has been historically favored over other gases due to its low MMP. Furthermore, CO: gas
injection can potentially mitigate greenhouse gas emissions while improving oil recovery. CO2
miscible flooding, whether initiated upon first contact or multiple contacts, the remaining oil and CO:
become miscible, resulting in near zero interfacial tension (IFT), no capillary pressure, and improved
volumetric sweep (Ev) and displacement efficiency (Ed) (Satter & Thakur, 1994). Conversely, in the
case of CO2 immiscible flooding, the IFT is not near zero, maintaining the capillary pressure and
causing some residual oil saturation. The oil recovery efficacy is contingent upon the efficiency of
fluid displacement, volumetric sweep, and CO:z solubility in the oleic phase, consequently increasing
oil mobility. These characteristics are influenced by various factors, including gravity, rock
wettability, reservoir heterogeneity, crude oil phase behavior, and phenomena such as viscous
fingering, etc. (Yang & Li, 2020; Kumar et al., 2022).

3. Summary of machine learning approaches

Machine learning (ML) involves the development of computational models and algorithms
capable of learning patterns and making data-driven predictions or decisions without being explicitly
programmed. ML algorithms employ data to automatically identify and generalize patterns, which
may be applied for classification, regression, clustering, and more tasks. ML can be categorized into
four main types: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning. Error! Reference source not found. provides some examples of different ML
algorithms. Among these various algorithms, supervised learning is most applied in the oil and gas
industry (Ng et al., 2023).

‘ Machine learning types ‘
Supervised Unsupervised Semi-supervised Reinforcement
learning learning learning learning
| Regression ‘ ‘ Classification | ‘ Clustering ‘ | Association | ‘ Classification | | Clustering | ‘ Classification ‘ | Control |
Decision tree K-Means Label Propagation Q-learning
Random forest Hierarchical clustering Self-training Deep Q-Network
Naive Bayes Classifier Apriori Algorithm Semi-Supervised SVM Monte Carlo Methods
Linear regression PCA
K-nearest neighbor
SVM

Logistic regression
Support vector regression
Time series regression
ANN
XGBoost

Figure 2. Examples of different machine learning algorithms.

Furthermore, the enhancement of the ML process involves the optimization techniques to
determine optimal values for control parameters, including the spreading coefficient, number of
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neurons, biases, and weights. Several optimization methods, such as the Levenberg-Marquardt (LM)
algorithm, genetic algorithm (GA), and smart nature-inspired swarm algorithms like particle swarm
optimization (PSO), grey wolf optimization (GWO), and ant colony optimization (ACO), have
demonstrated their efficacy in achieving significant improvements in these tasks. There are two
categories in intelligent optimization algorithms: single-objective optimization and multi-objective
optimization (Error! Reference source not found.).

Intelligent optimization algorithms

Single objective
optimization algorithms

Multi-objective
optimization algorithms

| :
| | | l

NSGAII MOPSO MOEA-I} HPS0

Figure 3. Representative intelligent optimization algorithms (Wang et al., 2023.)
4. Application of ML in CO2-EOR

4.1. Minimum miscibility pressure (MMP)

In miscible gas injection, MMP is one of the most important parameters to determine the
accuracy of miscible CO2 flooding into the reservoir. Traditionally, MMP is defined as the pressure
at which 80% of the OOIP is extracted from the reservoir upon the breakthrough of CO: (Holm &
Josendal, 1974). Because CO:z flooding is more expensive than waterflooding, an accurate estimation
of MMP can help better design miscible CO: flooding, ultimately leading to cost savings. In the
literature, researchers have proposed various MMP estimation approaches, including:

a) experimental methods such as slim-tube tests (Yellig & Metcalfe, 1980), rising-bubble apparatus
(Christiansen & Haines, 1987), vanishing interfacial tension (Rao & Lee, 2002);

b) empirical correlations (Alston et al., 1985; Orr & Jensen, 1984; Shokir, 2007; Yellig & Metcalfe,
1980) and computational techniques such as single mixing-cell and multiple mixing-cell
approaches (Ahmadi & Johns, 2011).

However, though accurate and reliable, experimental methods are time-consuming and
expensive. Most empirical correlations and computation techniques do not consider different
thermodynamic and reservoir properties. Moreover, they exhibit limitations in accurately estimating
the trend of MMP concerning their input parameters (Lv et al., 2023). In contrast, the advent of ML
has provided various robust algorithms in problems involving regression/classification.
Consequently, considerable research studies dedicated to the precise modeling of MMP and the
successful application of ML in this domain have been well-documented.

The earliest application of ML on CO2-EOR MMP can be traced back to 2003, when Huang et al.
first introduced ANN into this field. Subsequently, Emera and Sarma (2005) employed the GA to
optimize the MMP prediction processes. Following the year 2010, there has been a gradual increase
in the adoption of ML algorithms and optimization techniques, accompanied by a significant
expansion of the available dataset. Nowadays, the application of ML in predicting MMP has evolved
into a more mature state. A comprehensive survey of the literature review in the field of CO2-0il MMP
estimation applying ML, spanning the period from 2003 to the present, is summarized in Error!
Reference source not found.. Each reviewed paper is scrutinized and synthesized with respect to the
employed algorithms, dataset size, data splitting methods, input variables, outcomes, our
assessment, and a rating score. The rating score is determined through an evaluation encompassing
criteria that consider the quality of data, the ML process, and the depth of results analysis.
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Table 1. Summary of ML applications on CO2-EOR MMP.
Authors Methods Dataset Train/Test/Validate Inputs Results Evaluation Limitations Rating*
Pure COz (T, x,,, MW, %, ), First applied ANN. ANN
Huang et al. (2003) ANN N/A N/A impure CO el o lF ANN can predict MMP.  is better than other Need :)ds'enlz ararte ggre o 7
—> .
impure CO2 (V6 Vi Yeru YsorFimp) statistical models. and impure L2
To MW, X, /(Vey * Vs + Yeon * Yaa +GA is best f01j predi.cting _First used GA. Limited Pure CO2. MW,_,_only up to
Emera & Sarma (2005) GA N/A N/A ) MMP and impurity — input parameters (only 3
Yercs) factors. variables). 268.
Can predict pure and
GA is better th i COz. But limited Limited i t T
Dehghani et al. (2006) GA 55 80% train +20% test T Te, MWy X, /%, 18 better than - tmpure L%, but iumted - Limited MpUL parameters - o
conventional methods.  input parameters and and data points.
data points.
Can predict relatively Can predict pure and valid only for C1, N2, HaS
T MWGss, Yo Yine Yoo Yer Yeocnr . , N2, 125,
Shokir, (2007) ACE 45 50% train+ 50% test 8 COYTITINT T I 4 ccurate MMP for pure lfnPure O Bu.t Ve and C2-C4 contents in the 6
X .+, Xint . limited data points. It L.
CINZ and impure COs2. L injected CO2 stream.
may have overfitting.
T MW, Yoo Vg Yaor Yo Veocw GA-ANN is better than It can be applied to both _ . . .
Dehghani et al. (2008) ANN-GA 46 N/A w e Jeor s I devIecy g i 0007), Emera CO2and natural gas  imited data pointsand only
X .+, X, ANN architecture is tested.
CLNZ Tint and Sarma (2005). streams.
Acceptable data points
Nezhad et al. (2011) ANN 179 N/A Te %0 MW, Yoy Yoolatite, Yintermediate ~ ANN is acceptable but not detailed Local minima or overfitting 8
explanations.

It can be used for both  yjlid only for the impurity

80% train + 10% test +  Tg X, 0 MWeo, Yoo Yoy Yins Yn Yoo First applied LSSVM. pure and impure CO2 contents of C1, N,, H.S, and 8

Shokrollahi et al. (2013 LSSVM 147
okrollahi et al. (2013) 10% validate cs Also applied outlier CoCs
analysis :
T MW, Yoo Ying Yaor Yo Veocor Compared with almost
Tatar et al. (2013) RBFN 147 80% train +20% test 8 cov Jeox s Iy Yo dezes Better thar”l Emera and all available empirical Limited data points 8
ey + X)) Foyeat Yo+ Xcon) Sarma’s model. correlations.
Though it has large
T, x, ,MW_, , , . "
Zendehboudi etal. 2013)  ANN-PSO 350 71% train +29% test K v o Yeor Ya Yios Yz Ve \NNLPSO s best. datasets, but only Only valid for specific 8
ca suitable for fixed input conditions
parameters.
Ty MW v Xvor Yiny Yeor Yy Yer and ANN ides the 1 t
Chen et al. (2013) ANN 83 70% train +30% test < e Teor Ty Tt providesthe feas May have overfitting. Small datasets 7
Yo errors.
T MWes, X /%0 Yercy Yoor Vi CMiis better than NN Limited data points and
Asoodeh et al. (2014) CM (NN-SVR) 55 N/A ’ L. Small datasets 6
Yoy and yy, and SVR. may have overfitting.
Rezaei et al. (2013) GP 43 N/A T MW, X, /%, GP provides the best Limited data pointsand ~ Small datasets and only 6

estimation. may have overfitting. consider pure COo.
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To MW, X,y Xes.co Yeor Yiny Yn Both pure and impure It can be applied to both o .
Chen et al. (2014) GA-BPNN 85 75% train + 25% test 7 SO TCOr TSI 0y trer than other  pure and impure CO, _Limited data points. 7
Yer Yercw Xint . . GA is time-consuming.
correlations. but may have overfitting.
The curve shape Limited data points and Onlv four experimental
Ahmadi & Ebadi (2014) FL 59 93% train + 7% test T, MW, x, /x,, T, membership function  a high possibility of y pers 6
- results for testing.
has the lowest error. overfitting.
T,x , MW TN i i
Sayyad et al. (2014) ANN-PSO 38 N/A v Fuor M s Yoz Vs Yer Yz V. Better than Emeraand — Only valid for fixed Limited data points 6
5 Sarma, Shokir. inputs
GRNN is an efficient Though compared with
Zargar et al. (2015) GRNN N/A N/A To MWes X/ %ine Yea.cy, Yeor Yins computational structure.most known correlations, Need more information 6
Yep and Yy, GA reduces the runs of but unknown about the about the treatment of data.
GRNNSs. data source.
o . 0 T,MW__,x /x ,x . .
() 1 () 4 + ““vol " in |, y 4 y 4 EP F EP,
Kamari et al. (2015) GEP 135 80% train + .O % test + R c5 1 Yine *c-ca, I cor THos G pI‘OV.ldG.}S better  First 1.15e G co.mpared AARD s a little high, at 10%. 8
10% validate Yer Yoo prediction with correlations.
Can be used for pure and
67% train + 23% test Better than other Separate pure and impure
) i To MW , %,y Yeor Ying Yer Ynor i P F P
Bian et al. (2016) SVR-GA 150 83% train + 17% test R csv Yvor Yooy Yz Yer Iz empirical correlations impure CO2and low COa2. ?
AARD.
Hemmati-Sarapardeh et al. 70% train + 15% test + Can predict both pure . . Treatment of inputs may be
LP 147 T To MW, X/, 1 liable.
(2016) M 15% validate e O el Tint and impure CO2. Simple and reliable too simple. 8
The mixed kernel
T fi Di i he effect of
Zhong & Carr (2016) MKE-SVM 147 90% train + 10% test T, T. MW, x /X, provides better reatment of inputs may Did not consider the effect of
¢ be too simple. N2, H2S.
performance.
. . . Relatively large datasets . .
Fathinasab & Ayatollahi . GP provides the best Lo, AARE is a little high
% % T, T MW__, x /[x
(2016) GP 270 80% train +20% test ® Lem, csv Xyoll Xint prediction. but ma?f simplify the (11.76%). 7
inputs.
Too many inputs and no
T, MW, MW _ , x., X, X0y Xoy X : 3 . : .
Alomair & Garrouch (2016) GRNN 13 80% train + 20% test  © cs crv e e, e, ey, cs,GRNN }s better thaTl five further comparison  Does not consider the purity ”
X6 Xore, Xcor Yiny e empirical correlations between GRNN and of COa.
other ML methods.
. Very comprehensive
ANFIS-PSO is the best
Karkevandi-Talkhooncheh . . comparison with Further applicability may be
% % T, T. MW, x_, x.
et al. (2017) ANFIS 270 80% train + 20% test RoC GO 7ol it among the five available models and needed. ?
optimization methods. .. .
different optimizations.
EP is better th. nk bout Furth lidati b
Ahmadi etal. (2017) GEP N/A N/A Te Tom, MWea 2,0/, G. P is better than Unknown abou urther validation may be 6
traditional correlations. datasets. needed.
. RBF-GA/ T MW x . x Yoo Vi Comparable large -
Karkevandi-Talkhooncheh gy 100 ) coyp 270 80% train +20% test O O erevTcoramsTa ICA-RBFisbest  datasets. Five algorithms | Wrer applicability may be -
et al. (2018) Yo ) needed.
E N2 were applied.
- Tp MW, S MW_ ,SG_,, MW_, : 5 .
Tarybakhsh et al. 2018) > x-oA MLE, 135 92.5% train + 7.5% test O ORI TG GUTLGA is best. Too many input The R?is as high as 0.999. =
RBF, GRNN o @as), Yeor Yiny Yer Yna parameters may causea Too perfect to be reliable.
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high possibility of
overfitting.
Too many inputs. No Input variables were
ANN can b d t
Dong et al. (2019) ANN 122 82% train + 18% test H-2S, CO2, N2, C1, C2... C36+ ca.n ¢ used to dominant input assumed based on the
predict MMP. . .
selection. availability of data.
ian MF is th
mong the fve s Though applied fve e Ited data points and docs
Hamdi & Chenxi (2019) ANFIS 48 73% train +27% test T MW, x, X0 & . ) u.g . PP . not consider the existence of
ANFIS is better than  but limited data points.
COa.
ANN.
rrf:t)}rl I(Jiasrgdtﬂi':eet Limited data points and does
Khan et al. (2019) ANN, EFN, SVM 51 70% train + 30% test T MW, Xy X0y 06 MW, X, ANN is best utmpu not consider the existence of
' parameters are CO,
overlapping. )
ANN is best compared
. 75% train + 10% test + . . Relatively large dataset. Further applicability may be
h h et al. (201 A 251 T, MW, x /x. , SG h 1
Choubineh et al. (2019) NN > 15% validate K €5 Tyl Tint wit empirica Use gas SG instead. needed.
correlations
ANN i h
. NNA, GFA, T Te, MW, X%, Yoo, Yeor Yinsr NN 1s. ‘t.>est among bot Unclear about how to  Further applicability may be
Li et al. (2019) 136 N/A empirical and other .
MLR, PLS Yer Yn . split the data. needed.
algorithms.
. Only three input Does not consider the purity
ANN, RBF, o . o RBF provides the : . e
Hassan et al. (2019) GRNN, FL 100 70% train + 30% test T MW, X0y 6 highgst accuracy. parameters may simplify  of CO2 and the limited
the model. dataset.
Linear Modified correlation Only need oil
To MW, MW ., X, Xy X3 Xy X ith li R . TR
Sinha etal. (2020)  SVM/KNN/RF/A N/A 67% train + 3% test X O/ ovieriesefate  withlinearSVRand - compositionand TR. -y pyp oo 1000 - 4900 pis.
NN X6, Xz, Xcop Yipy and X, hybrid method with RE  Does not consider the
is best. purity of COz.
R-ABCi R- The choice of i i
Nait Amar & Zeraibi (2020) ~ SVR-ABC 201 87% train + 13% test Ty To MW, X, /X Ko ) RABC ITS; etter SV ec Ollicrii(t’ecllnputs ' Limited comparison.
; ; T,T,MW__, x  x scabili
Dargahi-Zarandietal. =~ AdaBoost SVR, . R csv Yvor Xea.ca, Yoo Yiny . Create a 3-D plot for Further applicability was
7! 7% %o AdaB R .
(2020) GDMH, MLP 270 677% train +33% test Yer Yoo daBoost SVR is best better visualization. limited
BP-NN (GA, T, MW X X XX X X X . Compared with .
Tianetal. 2020)  MEA, PSO, ABC, 152 80% train + 20% test X O < ie e Te T DA BP:::Z::: highest . 1\ pirical correlations TO‘K;"‘E;L‘;I’;:ezzﬁ‘;‘eters
DA) Yoor Yrast Y Y and GA-SVR. Y &
. Very comprehensive - .
PR has high Furth lidat th
Ekechukwu et al. (2020) GPR 137 90% train + 10% test T Te MW, x/x, GFR has higher accuracy -\ arison. Alarger | riner validation wi
’ than other models. experiments may be needed.
dataset may be better.
SGB. ANN PSO and TLBO can help First applied SGB. Maybe
Saeedi Dehaghani & § ’ . improve the accuracy of compared with other Further validation with
ANN-P 144 75% t 25% test T MWy X0 X0 Yooy Yer Yin, Yno
Soleimani (2020) AI\I;II\l\TI_ TLSI(; (') 5% train + 25% tes K csv Mot Tine Yeor Yer Yin na the ANN model. SGB is optimization methods experiments may be needed.

better than ANN. will be better.
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L2 regularization and

Xcon Yiny Xno Xor Xeo Xos Xy X . L
Dong et al. (2020) FCNN 122 82% train + 18% test cor TR Al T 1o T e Dropout can help reduce Alleviate overfitting but Small datasets.
X, X, - small datasets.
oy, 36 overfitting.
POLY kernel is more Very complete and
T, MW X,op Xcocw Xcs.ce Yeor Yuor accurate. MW and x . : : ;
Chen et al. (2021) SUM 147 80% train + 20% test R crv Hvor Fercy toscer Yo Inc cr cs compre.he_nsn{e. Includes More persuasive with a large
Yepand y,. < Should not be optimization and dataset.
considered. evaluation.
T, T MW, X, /%, Yooy Yins Yercs The novel AdaBoost- The size of the dataset is -
Ghiasi et al. (2021) ANFIS, N/A 90% train + 10% test Koe < I in FCOY T FaCs The CART model is the unknown. First one to Ma){ ha\.ze o_verﬁthng and
AdaBoost-CART and y, ) validation is not strong.
N2 most reliable. use AdaBoost.
147 A R-GA Th Ity of ki 1 ith
Chemmakh etal. 2021) ANN, SVR-GA ‘(pure COy), NA T To MWy, X, /%, NN a.nd SVR-GA are e novelty of work is On .y'compared wit
200 (impure CO2) ’ reliable to use. not clear. empirical correlations.
Multiple FCN together Applied deep learning —
with Early Stopping and multiple FCN to predict Only compared with
Pham et al. (2021) FCNN 250 80% train +20% test T, X, /- Yine, MW, Yer Yeon, Yeor Ying Yno K-fold cross validation MMP. Limited decision tree and random
has high prediction of comparisons and forest.
MMP. validations.
T, MW, Xy Yoy ¥y e Yo Xes An empirical correlation Too many inputs and a Need further validation with
Haider et al. (2022) ANN 201 70% train + 30% test ‘ x © 77 7 isdeveloped based on high possibility of other reservoir fluid and
o6 o7, Yeor Yras Yor Iner ANN. overfitting. injected gas.
60% train + 20% test + T MW7 Xeor ¥er ¥er %3 ¥ai, ¥es CGAN-BOA and ANN  Proved deep learning May have overfitting
Huang et al. (2022) CGAN-BOA 180 ? 20% vali daote X, Xcrs, Yo, Yoor Yensy Yny Yer Yo, Yos, are better than SVR-RBF  has the potential for problems given 21 input
? Yeu Yes Yoo Yer and SVR-POLY predicting MMP. parameters.
Improved GBDT by ..
T, X X X X X X X X . . Only GBDT was optimized.
He et al. (2023) GBDT-PSO 195 85% train + 15% test 7V @ @ aie e e, GBDTisbetter than LR, - using PSO. Butnota 0 210 ihme could also
X RR, RF, MLP comprehensive
N2, . be tuned and compared.
comparison.
T Te MW, X, /%y Yooy Yins Yor  GPR-P . h Comprehensive The model was only
Hou et al. (2022) GPR-PSO 365 80% train +20% test voe e ol Tine Jcox T Jer - G hi hS OtPI;(;VlrdiS the comparison and large  validated with literature
Yeros Yner ghest accutacy. datasets. data.
Large datasets. o .
. . Further applicability with
. SFS, SBS, SFFS, o . o T T MW. MW . x x x SBEFS provides the Comprehensive data X X
Rayhani et al. (2023) SBFS, LR, RFFI 812 80% train +20% test ® ic o gas’ X5, X6, Xca-co highest accuracy selection and model f1.e1d dat.a or com.me.rc1al
. simulation was limited.
comparison.
T MW, X, Xy Xescer Yooy Yins ANN is better than Demonstrated good Limited dataset and only
Shakeel et al. (2023) ANN, ANFIS 105 70% train + 30% test ANFIS; the trainlm accuracy but lack of two ML algorithms were
Yer Yue Yner performs best. uncertainty analysis. tested.
XGBoost, T, MW % /X Y Y Yo,V KXGB is best. KTabNet Large datasets. .
Shen et al. (2023) TabNet, KXGB, 421 80% train +20% test : et 302 e Terie can be used as an Comprehensive model f I;Iueed 1mpr0x}71eme'nt of
KTabNet cs, Y, AN alternative. comparison. New CAtUTe ComPprENensiveness.
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insights into deep
learning.
XGB hensi 1
CatBoCc;)s:)isCt;BM CatBoost outperforms COTE;e ai?:;‘;ea:é)de The accuracy depends on the
Lv et al. (2023) i § 310 80% train +20% test To To MW, x  fx, than other Al . p L databank. A larger dataset 9
RF, deep MLN, g techniques evaluation. New insights will be more robust
DBN, CNN ques. into deep learning. )
MLP-Adam, XGBoost provides the ~ Not comprehensive Limited dataset and only
Hamadi et al. (2023) SVR-RBF, 193 84% train + 16% test To To MW, x /3, best prediction for both ~ comparison and a two ML algorithms were 7
XGBoost pure and impure CO2. limited dataset. tested
MW B T T T U O e appiiation butthe Fentherapplcabilty with
Huangetal. (2023)  1D-CNN, SHAP 193 NA Xy Yo Yeow Vi Yno Yer Yoo Yes Yeu & PP 4 field data or commercial 8

are different. 1D-CNN  comparison with other
Yes Yo Yer. performs best. ML models is limited.
Type 1: T, MW, x_/x,

int

simulation was limited.

vol’

Have a broad range of

Type22MW_,, x_, X, . X X, ; : ;
MLR, SVR, DT, 147 (type 1), 197 7 v *int, *cs.ce, 7+, KNN has the highest data including both

Al-Khafaji et al. (2023) RE, KNN (type 2), 28 (type ~ 80% train + 20% test Yeor Ying Yne Yer Yeacs, Yoo, efficient accuracy and ~ experimental and field Only pure COz. 9

3) Type 3: Ty, MW, X, X, %o AP, lowest complexity. data. Performéd

thorough comparisons.
sp.gr, Pb.
Compared with
T MW, MW, X, Xey Xos X, Xes An expanded range is empirical and EOS Further applicability with
Sinha et al. (2023) Light GBM 205 80% train +20% test o1 x " 7 developed with Light  correlations. First used  field data or commercial 8
€6, C7+, T COY TH2S TN’ GBM. Light GBM in MMP simulation was limited.
prediction.

*: The rating for each paper is from the authors’ perspective.
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Figure 5 presents a statistical analysis from 56 research papers. The reveals a remarkable surge
in the adoption of ML methodologies within this domain. ANN and GA have emerged as the most
favored choices among many ML and optimization algorithms. ANNs, particularly RBFNN and
MLP, are prominently employed. We have provided a separate categorization for RBFNN and MLP
to afford a more detailed perspective on their individual utilization patterns.

Furthermore, an essential factor impacting the efficacy of ML models in MMP predictions is the
size of the dataset. It is widely recognized that an inadequately sized dataset can lead to overfitting,
potentially compromising the model's generalizability. A substantial proportion of the examined
papers (64%) have datasets with fewer than 200 data points, with a noteworthy subset (21%) relying
on datasets with fewer than 100 data points. This stark discrepancy in dataset size necessitates
critically examining the quality and robustness of models trained on such limited data. Therefore, it
becomes paramount to consider the trade-offs between the advantages of ML applications and the
constraints posed by data scarcity in the context of MMP prediction.

As summarized in Error! Reference source not found., the most dominant parameters affecting
pure CO2 MMP are reservoir temperature, molecular weight of Cs+ or C7+, mole fraction of volatile oil
elements, and mole fraction of intermediate oil elements. While for impure CO2 MMP, additional
parameters such as mole fraction of gas, including C1 to Cs, CO2, N2, and H:S, are also considered.
Some studies included volatile oil components (C1 and Nz) as well.

25 23 18
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20 . 14
12

15 =
é 1 E 10
S s

=} £

S1o
6
5 4
2 3 5
Lm :
2005 2010 2015 2020 2023 ANN GA SVR PSO RBFN GRNN MLP SVM ANFIS
Year Algorithms
(a) (b)

ENA m<50 m50-100 100-200 m200-300 m300-400 m=>400

(©)

Figure 4. (a) Rise of ML application papers in MMP prediction; (b) Occurrence of different ML
algorithms; (c) Distribution of dataset size.

4.2. Water-alternating-gas (WAG)

WAG injection, a widely adopted method in EOR techniques, cyclically injects water and gas,
typically CO2 or COz-hydrocarbon blends, to increase sweep efficiency and maximize oil recovery.
Optimizing parameters such as WAG ratio, duration of each cycle, and reservoir properties is pivotal
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for achieving favorable economic outcomes. The application of ML methods on WAG has been
developed more recently. The earliest application of ML in WAG started in 2016, Hosseinzadeh
Helaleh & Alizadeh employed SVM together with three optimization methods, ACO, PSO, and GA,
to predict fractional oil recovery. In 2018, Nait Amar et al. used time-dependent multi-ANN to predict
the total field oil production. Later on, Nait Amar & Zeraibi (2020) successfully applied SVR to
construct a dynamic proxy of a field in Algeria, complemented by Genetic Algorithms (GA) for
optimizing water-alternating-CO2 gas parameters. A more detailed summary is listed in Error!
Reference source not found.. Error! Reference source not found. provides statistical analysis based
on 26 papers. Similar to MMP, the most popular ML algorithm is ANN, and the most preferred
optimization is GA.
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Figure 5. Occurrence of ML algorithms in WAG.

4.3. Well placement optimization (WPO)

WPO plays an essential role in reservoir management and development for many reasons. It can
help maximize oil recovery and economic considerations (because drilling and maintaining wells are
expensive). However, it has been considered one of the most challenging tasks due to the necessity
of evaluating numerous computation scenarios to identify the optimal location for wells and achieve
maximum production. The complexity of geological heterogeneities, such as variations in
permeability and porosity, the existence of multiple facies, and stratigraphic and structural boundary
conditions, requires extensive computational efforts. Besides, small changes in well locations can lead
to significant changes in oil recovery prediction, making the optimization more challenging.
Numerous simulations for hundreds or thousands of scenarios need to be run to make the best
decision.

In recent years, studies suggest the integration of ML approaches has been proposed in the
literature as the potential solution. It holds the potential to accelerate computation processes,
enabling quicker attainment of accurate scenarios within numerical simulations. Despite the
recognized importance of optimizing well placement, the investigations of CO: injector locations for
optimal oil recovery and storage are relatively infrequent (Error! Reference source not found.). Most
research is focused on waterflood injector selection (Xiong & Lee, 2020).
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Table 2. Summary for ML applications on WAG.
Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating*
Hosseinzadeh RLo Ry Nypor Nygor ACO has high accuracy Evaluate with both
VM (Al A, Mgyao No SGR, N 1 ional i
Helaleh & SYM(ACO, GA, 200 80% train + 20% test Fractional oil recovery SWAGT ¢ e ?nd ow computationa _oxpe rlmer}ts .and Only has SVM model. 8
. PSO) N_,N, N, A* N, timecompared to ANN, simulations. Limited to a
Alizadeh (2016) SCon’ VB Nl Nof MDY o .
He GA, and PSO. similar geological model.
il f, il
o reiozleeré Oa;tor, ot ANN models can support Evaluated multiple
Le Van & Chon 223 45% train + 20% test + 35% are 7 Swi, kv/kh, WAG ratio, numerical simulation of V,a L‘IE.i whp Only have simulation
ANN . ) 1 accumulative CO2 . . objectives but only . 8
(2017) (simulation) validation . duration of each cycle ~ CO2-EOR projects. WAG D results as trained data.
production, net COz . . limited to ANN.
ratio less than 1.5 is best.
storage
il
. Oil recovery + net COZ Kv/Kh, WAG ratio, Sw, ANN can help estimate oil Evaluate different WAG . .
263 50% train +20% test + 30% storage + cumulative . . . Only have simulation
Van & Chon (2018) ANN . . L well distance between recovery and COz storage.  ratios but limited to . 7
(simulation) validation gaseous CO2 .. L . results as trained data.
. each injector, T 25 injection cycle is best. ~ ANN models only.
production
Water and gas injection PSO is capable of First used GA in WAG at
BHP of fiel le. Eval ly GA P
Mohagheghian et 2000 NPV + incremental rates, © prodl}cers, optimizing WAG ” d scale. Eva uatc.ad Only GA and .S.O are
GA, PSO . . NA cycle ratio, cycle time, . . with three case studies. evaluated. Specific to E- 9
al. (2018) (simulation) recovery factor .. L. variables and projects at .. e
injected gas composition, . Limited to specific segment.
. field scale. .
total WAG period. geological models.
Well x-coordinates, well Demonstrated with a
Nwachukwu, 1000 Oil/water/gas —coordinates wate,r Joas The new model combined case study in which Onlv XCBoost is
Jeong, Sun, etal. XGBoost, MADS . . 50% train + 50% test production rates, well y-eoo ’ & XGBoost and MADS underlying geology is Y 8
(simulation) . injection rates, well block . . L oo employed.
(2018) locations, NPV . provided high accuracy.  uncertain. Limited to
d/k, well block Swi
one model.
Demonstrated the
lication of a time-
Gas/water injection rates, Both GA and ACO are application of a time . ”
Nait Amar et al Field oil production gas/water injection half-  highly effective in the dependent proxy model - Restricted to specific
" ANN/GA, ACO 85 88% train + 12% test P 8 ject eny e for the WAG process. geological models. 8
(2018) total cycle, WAG ratio, and  optimization of the WAG . .2 . .
. Without further Limited simulation runs
slug size. process. -
application of the case
study.
kh, kv, API, gas gravity,
water viscosity, solution GMDH performed better Novel approach but
GOR, WAG ratio, WAG in selecting effective input . ", pp . L.
Belazreg et al. . o . Y Incremental recovery - didn’t apply real field Limited to two ML
Regression, GDMH 4290 70% train + 30% test cycle, land coefficient, parameters and : 8
(2019) factor . . WAG pilot data to methods.
reservoir pressure, PV of  optimizing the model validate

injected water, PV of
injected gas.

structure.
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Th 1 Devel
k, ¢, kv/kh, cyclic length, reegiec‘;vori); i:cyor:eideT;aen ;‘;Zglp;is dnce):iv Cp (T:CI);Y Limited data points and
Jaber et al. (2019) CCD 81 NA Oil recovery BHP, WAG ratio, CO2 prec - .. " only from simulation 7
. optimum WAG ratio is But limited to one
slug size runs.
1.5. model.
. Developed a dynamic
Time, FWIR, FGIR, the The database was
’ ’ ! MLP-LMA has the high 1 f
Menad & MLP (LMA, BR, From 2010 to NA FOPR. FWPR value of the needed accurac :Ii(; lzwleit est m II: :C)l);yor;"zgtfvecs)rB " generated based on 8
Noureddine (2019) SCG) + NSGA-II 2018 ! parameter at the previous Hracy ane o o P ) . multiple runs of the
. computation time.  limited to one geological b .
time step simulation.
model.
Injection rates of water Established a dynamic
. . . . and gas, half-cycle SVR-GA provides high  proxy model based on Limited data points and
Nait Amar & Field oil product
ait Amar SVR, GA 75 NA 1EIQ O Proquetion 4 iection time, WAG ratio, accuracy and reasonable  SVR-GA, but no only one model 7
Zeraibi (2020) total s . . .
slug size, initialization CPU time. comparison with other evaluated.
time of the process algorithms.
11 traj 11 i i
We tra]ect.ory. data, we [mplementing ANN Can predict the reservoir Unknown about specific
. logs, seismic data, performance 3 months .
8 years * 37 Ollfgasiwater . duction and injection for top-down head. But simplify the __"P1t data- No
Yousef et al. (2020) ANN yea 85% train + 15% test production rate, GOR, p ! 2 e modeling can predict ahead. Bu p fy comparison with other 6
wells e . history, reservoir . data gathering, )
infill well location . reservoir performance . models or field case
pressure, choke opening, modeling, and .
. under WAG. L studies.
and WHP history. validation process.
GDMH models can Proved GDMH can
Rock t WAG
ock type, WA process predict three WAG ~ model the WAG process
type, reservoir horizontal . .
ermeability, AP, oil incremental recovery  and has good potential.
Belazreg & . Incremental oil permea’ e factors: sandstone More data and Limited published WAG
GDMH 177 70% train + 30% test viscosity, reservoir . . . . 8
Mahmood (2020) recovery factor immiscible gas injection, validation are needed to pilot data.
pressure and temperature, . .
sandstone miscible gas improve model
and hydrocarbon pore .. |
L. injection, and carbonate robustness and
volume of injected gas. . S A,
miscible gas injection applicability.
Could handle two or
il injection ti The A 1 h jecti
80% train + 10% test + 10% Qil recovery, CQz V.\/éter‘m]ec.tlon time, CO2 e ANN proxy mode three ob]ectlve.:s very Only suitable for limited
You et al. (2020) ANN 820 S storage, and project injection time, producer can help improve the well when a limited : 8
validation L . input parameters.
NPV BHP, water injection rate. prediction performance. number of control
parameters
Hydrocarbon The proposed method can N;Cfecsgns;li\;:};;;ugilles
2
FOPR*2 le* timize the WA Restricted t ifi
Youetal. 2021) Gaussian SVR-PSO 217 NA recovery + CO2 OPR2, gas cycle™s, optimize the WAG s NPV. Limited  estricted tospecific g
sequestration volume water cycle *5 process with high . . geological models.
+ NPV accurac comparison with other
Y ML models.
. 4 Production 25 inputs 1.r1Clud1r1g ANN Prov1de? a faster Nice pro']ect desxgn and Limitations were
Enab & Ertekin 80% train + 10% test + 10% - reservoir rock prediction for fish-bone economic analysis, but . -
ANN 2000 - prediction, . . . imposed by defining the 8
(2021) validation characteristics, initial structure in low limited to ANN model

production schemes range of each variable.

conditions, oil permeability reservoirs. only.
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design, history
matching

composition, well design
parameters, and injection
strategy parameters.

Oil viscosity, gas/water The developed modelis  Novelty in using GEP.
. . oL VISCOSLY, & successful when The dataset is from Limited and less
Afzali et al. (2021) GEP 96 67% train + 33% test Recovery factor injection rates, k, PVI, K K .
number of cvcles compared with mathematical supportive dataset.
Y experimental results. correlation.
So, Pi, k, ¢, h, Pwf, water
injection rate, water cut ANN-PSO provides a
70% train + 15% test + 15% before gas flooding, gas ood model fgr arameter Routine procedures, not No comparison with
Lv etal. (2021) ANN-PSO 2100 ° o °  Oil production injection rate, water 5000 oo 0P too much novelty in P
validation L optimization of CO2 . other ML models.
injection volume, cycle WAG-EOR applying ANN-PSO.
time, water injection time, ’
production rate, grid size
LP-LMA i . Th
Water/gas injection rates, M rome;SdlZ;sct 0 ¢ The application of GWO Water cut is limited to
Nait Amar etal. MLP-LM, RBFNN- 8 889% train + 12% test Field oil production injection half-cycle, sipni ﬁ}CI ntly re da e is novel. Limited runs  50%. Reservoir pressure
(2021) ACO/GWO o ? total downtime, WAG ratio, ,g anty recu and may have must be higher than
. simulation time and .
gas slug size . overfitting problems. MMP.
conserve high accuracy.
Cumulative oil Water/gas cycle, producer Showed the possibility Given the large number
i ’ ian-SVR perf i -WA f i h
Junyu etal, (2021)  Gaussian-SVR 1400 NA producn.on and BHP, water injection rate, Gaussian-SVR performs  to d.e51gn a CO2-WAG of input parameters, the
cumulative CO2 etc. (91 variables in total) best. project using as many dataset may not be large
storage. ) inputs as possible. enough.
Duration of CO2 and
o 1
Wv:zz;?zztcjt(i)z:ncz:ts X The MLNN model can Compared three The average reservoir
Sunetal. (2021) SVR, MLNN, RSM 600 83% train + 17% test Oil production, CO production well hand%e problems with dlffere'nt methods. But pressure must be
storage, NPV. L. o large input and output only suitable for specific .
specifications, oil price, . K K between 3700 — 5400 psi.
. dimensions. geological models.
CO2 price, etc. (62
parameters)
Dailv liquid rate. dail The calculation time of
oil/ Zs /?vater raté GH%, LSTM is 864% less than ~ The model is based on  Only one ML model is
. Qil production, GOR, & . ’ " the simulation, while the real reservoir data over considered. No
Huang et al. (2021) LST™M 5404 90% train + 10% test WIR, reservoir pressure, . .. . .
water cut WHEP. choke size of prediction error of the 15 years. But limited to comparison with other
1:0 ducers LSTM method is 261% one ML model. models.
P ) less than the simulation.
CO2-WAG period, CO2 CO2-WAG cycle time has  Proved RF has high
Cumulative oil injection rate, water-gas  a slight influence on 0il computation efficiency Small dataset and only
HL Li et al. (2022) RF 216 70% train + 30% test production, CO2  ratio, reservoir properties, production. Random and accuracy in COz- one ML model is

storage efficiency

storage amount, CO: oil properties, depth, layer

forest can predict oil
production and CO2
storage.

thickness, Soi, well
operation

WAG projects. But no
comparison of different
ML models.

studied.
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Water-oil and gas-oil
mobility ratios, water-oil Very detailed and
-oil i LSSVM with GW! P h h . Th li
Andersen et al. LSSVM — 70% train + 15% test + 15% . and gas-oi grav1ty SSVM with GWO or PSO ¢ orough study e Several important
2500 1 Qil recovery factor numbers, reservoir  performed better than GA  dataset is relatively parameters were not 9
(2022) PSO/GA/GWO/GSA validation . . .
heterogeneity factor, two or GSA. large. Some limitations varied much.
hysteresis parameters, of input parameters.
and water fraction.
DNN-GA workflow can Presents a novel
. o workflow for WAG
identify improved WAG . .
Water injection rates, gas-  parameters over the optimization using ML. Limited to optimizing
Singh et al. (2023) DNN - GA 2200 70/80% train + 30/20% test Maximize oil recovery ) ) . . ... Requires a large number 7
to-water ratio, slug size.  baseline recovery, with . . WAG parameters.
. . of simulation runs (2200
incremental increases of e .
0.5.29 here) to initially train
oo DNN.
h he ability of
Bottom-hole pressure at LSTM can model complex Shows the ability .O
Oil production rate,  injector and producer, time-series data without LSTM to perform time Requires large amounts
Asante et al. (2023) LSTM 2345*3 80% train +20% test P > M producer, OU" series analysis. But the oo 4TE 7
oil recovery factor ~ water and gas injection  the use of the geological of quality field data.
input parameters are
volumes, WAG cycle. model. .
restricted.
Devel i
L . The developed proxy eveloped a dynamic . . .
Matthew ot al Maximize oil Water and gas injection model can predict both proxy model for Limited simulation runs.
’ ANN-NSGA-II 68 +97 NA produced and CO2  rate, half-cycle length, ; P multiple objectives. But Has a high possibility of 7
(2023) . simple and complex .. -
storage time step. the dataset size is overfitting.
models. ..
limited.
*: The rating for each paper is from the author’s perspective.
Table 3. Summary of ML applications in well location optimization.
Authors  Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating*
N -optimizati The dataset is fi
Total profit, cumulative = Well-to-well pairwise connectivity, = Quick evaluation of well placement using O co-oprmuzation . TR dataset 1s trom
Nwachukwu 200, 500, . - AP . of oil recovery and simulation runs. Only
XGBoost NA oil/gas produced, net injector block k and ¢, initial injector ~ well-to-well connectivity was successful K 8
et al. (2018) 1000 . ) . . COz storage, only suitable for one
CO2 stored block saturations with 1000 simulation runs and R?=0.92. .
ML proxy usage. geological model.
. . K ¢ PV’, initial ﬂ.md saturation, Stacked learner is better than an individual Detailed an.d .
Selveindran AdaBoost, 3000, 2000, 70% train + 30% test Incremental oil pressure, time of flight, well-to-well 1 ML hel idlv identify th comprehensive Heavily rely on the 8
etal. (2021) RF, ANN 1000 o tram o e production distances, distance to the injector, carner. €'ps Tapicily 1Gently the areas analysis, including  geological model.

that are optimal for injection.

injection rate, and injection depth. posterior sampling.

*: The rating for each paper is from the authors’ perspective.
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4.4. Oil production/recovery factor

The recovery factor, defined as the ratio of produced oil to OOIP, is one of the most crucial
success metrics for evaluating all EOR projects, as it determines how much incremental oil or ultimate
oil is produced. Accurately predicting the recovery factor is challenging because it depends on
diverse factors, including reservoir characteristics and heterogeneity, fluid properties, well design,
injection condition, and composition of injected fluid. Reservoir simulations, together with laboratory
experiments at reservoir conditions, can help predict recovery factor. After that, a small-scale pilot
test is conducted before undertaking larger-scale operations (Ding et al., 2017). Although this
approach may provide solutions to numerous problems, it is costly and time-consuming. Therefore,
ML methods emerge as more practical, affordable, rapid, and accurate alternatives.

Alternatively, ML methods have obtained popularity in predicting oil recovery. For example,
Ahmadi et al. (2018) applied LSSVM to predict the ultimate oil recovery factor of the miscible CO2-
EOR injection operations at the different rock, fluids, and process conditions. Karacan (2020)
employed fuzzy logic to predict recovery factors of the major past and existing U.S. field applications
of miscible CO2-EOR. Error! Reference source not found. provides further information on ML
applications on the CO2-EOR recovery factor.

4.5. Multi-objective optimization

As the name indicates, multi-objective optimization optimizes multiple objections
simultaneously, such as oil recovery factor or cumulative oil production, CO: storage, and net present
value (NPV). For each objective, running high-fidelity numerical models provides possible solutions
to figure out the optimum. However, finding optimal solutions to all objectives simultaneously is not
always guaranteed since objectives can compete with each other. For example, to maximize oil
recovery, more CO2 may be needed, leading to higher oil production. However, this might also mean
more CO:z is used, potentially increasing the project's cost, which will also adversely affect the project
NPV (You, Ampomabh, Sun, et al., 2020). It requires sophisticated optimization techniques to identify
solutions that balance these objectives, considering all the constraints involved in the problem.
Therefore, ML techniques outperform other methods as an effective, reliable, and stable workflow to
co-optimize crude oil recovery, CO: sequestration, NPV, and related factors.

Given the complexity of multi-objective optimization, the application of ML on CO2-EOR is very
limited (Error! Reference source not found.Error! Reference source not found.) and is strongly
restricted by the geological model. Once the reservoir characteristics change, the model must be
rebuilt and retrained. The development of ML and optimization workflow is challenging and
requires more effort in different oil and gas fields.
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Table 4. Summary of ML applications on oil production/recovery factor.
Authors Methods DatasetTrain/Test/Validate  Objectives Inputs Results Evaluation Limitations Rating*
BHP of injection well, CO2 Provided the possibility of using iﬁi;g?:;iie:iﬁiﬁzg
Ah i L il injecti injecti The hybridizati f LSSV BBD ML ing it with
madi et a LSSVM 46  80% train + 20% test Oil recovery 1n]ect10f1 rate, CO2 m]ectlon. The .yb.rldlzatlon of LSSVM .an.d ar.ld comparing it w.1t . reservoirs. Only valid for 7
(2018) factor concentration, BHP of production is statistically correct for predicting RF. commercial software. But limited ;
. . the same input
well, oil production rate dataset.
parameters range.
Thickness, depth, k, Sor, CO:z Applied to 5 fields in Permian ]%asin Significant assumptions
Chen & Pawar  MARS, = 500, NA Recovery factor injection rate, BHP of production =~ MARS has the best performance and had good matches. Heavily are made regarding 8
(2019) SVR, RF 250, 100 y ) / oll P P " relies on a base model and may not uncertain parameters like
W fully represent diverse ROZs. residual oil saturation.
Too difficult to d
Lithology, APL ¢, k, HCPV, FL provided a reasonably accurate Though a small dataset, but st;)t(i)stilcallcroncTusEXs
Karacan (2020)  FL 24 83% train + 17% test Recovery factor depth, net pay, Pi, well spacing, P . y provides the possibility of using 7
prediction. . . from such a small
Sorw ML in recovery factor prediction.
dataset.
The AR model is best, with long and
Iskandar & AR, MLP, 3653 * 840% train +20% test  Oil, gas, and &, k, formation thickness, BHP, consistent forecast horizons across  First time serles.forecastl.ng study. lelt?d I’fyperparameter
Kurihara (2022) LSVM  wells +40% validation water production flow capacity, storage capacit wells. LSTM performs well but has  No model updating/retraining over tuning is done. Only ?
P pactty, 8¢ CAPACY shorter forecast horizons. MLP has high time. Overall, it is a solid study. three models were tested.
variability and short forecast horizons.
*: The rating for each paper is from the authors’ perspective.
Table 5. Summary of ML applications on multi-objective optimizations.
Authors Methods Dataset Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating*
The proxy models to First used proxy models and
determine the optimal GA to optimize oil recovery =~ Optimal parameters are
il ional ifi i ir -
Ampomah et al. (2017) CA NA NA Qil recover + CO2 NA operatl.ona pz.irameters, . and CO: storage . specific to this reservoir 7
storage including simultaneously. But relies and not necessarily
injection/production rates, heavily on having an accurate generalizable.
pressure, and WAG cycles reservoir mode.
You. A h's " Cumulative oil ~ water cycle, gas cycle, The proxy model is built The OZGSH iridtl}ftl(ggs The CO:z storage
oty Ampomat, Sull € pRENN 160 N/A production+CO2  BHP of producer, based on RBFNN for acceptabre, b e e optimization is 18% higher 7
al. (2019) e . storage prediction is much .
storage + NPV water injection rate optimization. higher than the baseline.
L . Developed a novel hybrid
2 lat 1 i 1 le, The opt t tud
You, Ampomah, 8 0, 80% train + 10% test + 10% Cumu aiveor - waer cyce, gas cyce, € optirmzation stucy optimization for multiple ~ Only four input parameters
. ANN-PSO  (numerical e production+CO2  BHP of producer, = showed promising results o . . 7
Kutsienyo, et al. (2019) validation e . 2 objective functions. But only are considered.
model) storage + NPV water injection rate for multiple objectives. . 1 e
validated with field case.
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Cumulative oil
production + ANN can forecast the ~ The ANN provides R? of 0.99
351 . . &, k, Sorg, Sorw, BHP
9 109 109 1 f f EOR MSE of 1 han 29
Vo Thanh et al. 2020) ANN-PSO  (numerical 80% train +. OA.) test+10%  cumulative CO:2 of producer, CO2 per ormanc.e o C(?z O : and S. o . ess. than 2%, but Case specific. ”
validation storage S and storage in a residual oil the application in other types
model) . injection rate .. .
+cumulative CO2 zone of reservoirs is questionable.
retained
*: The rating for each paper is from the author’s perspective.
Table 6. Summary of ML application on PVT properties.
Authors Methods Dataset  Train/Test/Validate Objectives Inputs Results Evaluation Limitations Rating*
Emera & Sarma ?06 (dee?d CQz solubility, oil APLPs T, The GA-base correlations FirsF appliec'i QA in COz-oil Validated over a celttain c'laita'
GA oil), 74 (live NA swelling factor, CO2-oil . . properties prediction. Will be more range. May not be reliable ifitis 8
(2008) . . L MW provided the highest accuracy . . .
oil) density, and viscosity. helpful if a full dataset is provided. out of data range.
. 106 (dead . Compared with several empirical
R L Ps, T, , EP . . . .
ostami eta ANN, GEP  oil), 74 (live 80% train +20% test CO:z2 solubility 5T, MW,  GEP is more accurat? than methods. More comparisons between  Limited dataset on live oil. 8
(2017) . v, Pb ANN for dead oil. . .
oil) ML models will be more persuasive.
1 L h high i lidati i
Rostami et al. .06 (deéd 70% train + 15% test . Ps, T, MW, SSVM showed hig er MOr.e rigorous va 1dat1f)n agamst Only a few literature models
LSSVM oil), 74 (live 1 COz solubility accuracy compared to previous experimental data equations of state 7
(2018) . +15% validation Y .. . were compared.
oil) empirical correlations. models would be useful.
Mahdaviara et al MLP, RBF (GA, Ps T. MW MLP-LM and MLP-SCG are  Compared with various models and
(2021) ’ DE, FA), NA NA COz2 solubility ’ ,Pb " better at predicting solubility. optimization methods. But unknown  Not known for the dataset. 8
GMDH Y GMDH is better than LSSVM. for the dataset.
. MLP-Adam, 105 (dead . - . Given the year that this paper
Hamadietal. - “cyp RBE,  oil), 74 (live 80% train +20% test  COs solubility, IFT L - MW, SVR-RBF provided thebest - Limited comparisons between " iched the datasetis 7
(2023) . Y, Pb accuracy different models.
XGBoost oil) small.

*: The rating for each paper is from the author’s perspective.
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4.6. PVT Properties

For any CO: flooding project, it is imperative to comprehend the intricate physical and chemical
interactions between CO: and the reservoir oil, even when primarily exploring recovery potential.
Laboratory investigations and the utilization of available modeling or correlation packages serve as
viable methods for analyzing the influence of CO:z on the physical properties of oil. Nonetheless,
conducting a comprehensive laboratory study to obtain an extensive dataset is costly and time-
consuming. Furthermore, the available correlation packages are limited in their applicability,
rendering them unsuitable for many scenarios.

ML is being increasingly harnessed for tasks such as predicting CO: solubility and Interfacial
Tension (IFT), as briefly presented in Error! Reference source not found.. Intriguingly, a majority of
the studies incorporated the same dataset sourced from Emera & Sarma (2008). Given the relatively
small dataset size comprising only 106 data points, the risk of overfitting looms large, casting doubt
on the accuracy and generalizability of their ML models. It is evident that a larger and more diverse
dataset is required to facilitate a deeper comprehension of the performance of ML techniques in this
context.

4.7. COz2-foam flooding

The implementation of CO: injection in Enhanced Oil Recovery (EOR) demonstrates significant
potential, but it is accompanied by inherent limitations, including suboptimal sweep efficiency,
asphaltenes precipitation, and corrosion of well infrastructure. In response to these challenges, the
utilization of CO2 foam has emerged as a promising strategy to enhance the effectiveness of CO2-EOR
flooding. Foams offer distinct advantages, primarily due to their elevated viscosities compared to
pure gases, a property that equips foams with the capability to displace oil from reservoir formations
more efficiently (Iskandarov et al., 2022). Furthermore, by obstructing highly permeable pore
pathways, foams redirect displaced fluids towards unswept reservoir regions, thereby improving
both sweep efficiency and the storage capacity of COz within the reservoir matrix. While ML models
have found extensive applications in EOR research, their application in the context of CO2-foam is
still in its nascent stages, and the existing body of literature on this subject remains limited, as
evidenced in Error! Reference source not found..
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Authors Methods  DatasetTrain/Test/Validate Objectives Inputs Results

Evaluation Limitations

Rating*

80% train + 20% test

Moosavi et al. MLP, RBF (GA, Oil flow rate and ~ Surfactant kind, ¢, K, PV of

Both MLP and RBF provide The earliest research on CO2-

Only studied two methods, and

214 75% train +25% test s high accuracy with R2upto  foam EOR. Only focuson  there was no comparison among 8
201 A f f PV
(2019) COA) 90% train + 10% test o O oY actor  core, Soi, injected foam 0.99. laboratory data. other ML algorithms.
. . . . Proved ML can provide high .
Raha Moosavi RBF (TLBO, Y i o Oil flow rate and ~ Surfactant kind, ¢, K, PV of RBE-TLBO provides the Limited to laboratory
214  80% train + 20% test . . accuracy (R? can reach 0.999), . 8
etal. (2020) PSO, GA,ICA) recovery factor  core, Soi, injected foam PV highest accuracy. . . experiments.
but is only limited to coreflood.
DT, RF, ERT, Surfactant stabilized 1 cor rate, Darcy velocity, - ML can provide reliable , 'y \pp con predict for both o ,
Iskandarov et . surfactant concentration, prediction, and ANN . The dataset size is relatively
GB, XGBoost, 145 70% train + 30% test CO2 apparent foam L. K K i bulk and sandstone formation . 8
al. (2022) R salinity, foam quality, T, provides the highest . o small and may have overfitting.
ANN viscosity under various conditions.
and pressure accuracy.
Foam type, Soi, total PV . . Proved XGBoost can be used . .
Kh 1. XGB high 1 L lied.
aneta XGBoost 200 70% train +30% test Oil recovery factor tested, ¢, K, injected foam GBoost can provide hig for COz-foam. Limited to Only one ML is app fed. No 7
(2022) PV accuracy. laboratory data other comparisons.
Vo Thanh et al GRNN, CFNN- I0IP, TPVT, ¢, K, injected siP ﬁ?fcl;itl ! j:;:;‘;ztr Comprehensive and detailed Limited to laborator
"LM, CFNN-BR, 260 70% train+30% test Oil recovery factor ’ » b, K inj & P . ) P L. . y 9
(2023) XGBoost foam PV GRNN has the highest description. experiments.
accuracy.

*: The rating for each paper is from the author’s perspective.
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5. Benefits and limitations of ML

ML exhibits high efficiency when compared with conventional reservoir simulators. Typically,
these simulators are performed on 3-D grids comprising one million to several billion cells. The
computations tend to be time-consuming, imposing constraints on the feasibility of conducting
multiple iterations. Consequently, this limitation reduces the optimization potential for meticulous
field development planning. A pivotal role of ML techniques is their capacity to speed up reservoir
modeling computations. These models can predict time-dependent variables at 100 to 1000 times
faster speeds than traditional simulators. This acceleration in computation velocity via ML methods
maintains an equivalent level of functionality (Ng et al., 2023).

Furthermore, extensive research findings have proved the impressive performance of ML
methods, consistently yielding accuracy levels exceeding 90% based on statistical quality
assessments. This high degree of accuracy demonstrates the confidence in ML's reliability and
portends a promising future within the oil and gas industry.

While the advantages of employing ML are widely acknowledged, it is imperative to recognize
the associated limitations inherent in ML-based methodologies. A central challenge confronting
researchers is obtaining authentic data from experimental and/or field sources. The limited
availability of large datasets is also a concern, impacting both the training accuracy and the overall
efficacy of the ML models. When faced with restricted data, researchers often use single-shot learning
strategies, wherein models are pre-trained on similar datasets and subsequently refined through
experience.

Overfitting is a prevalent issue in ML applications, primarily driven by insufficient training data
and the absence of well-defined stopping criteria during training. 12% of reviewed research papers
contain datasets with fewer than 100 data points, heightening the risk of overfitting. Addressing this
problem may involve adjusting the model's structure, including weight modifications. However, it is
important to recognize that such alterations can increase model complexity, potentially limiting its
generalization beyond the specific dataset.

6. Conclusions

In this work, we have investigated and summarized the employment of ML methods in the
application of CO2-EOR from several areas: MMP, WAG, well location placement, oil
production/recovery factor, multi-objective optimization, PVT properties, and CO2-foam. We list the
input parameters, objectives, data sources, results, evaluation, and rating for each area based on the
data quality, ML process, and results analysis. The key highlights of this work are as follows:

1. Our literature review showed that most reports on model performance indicators are limited to
the size of the data bank, making it difficult to accurately assess the quality of the model over
time or track its drift with new data.

2. Regarding validation and verification, the CO2-EOR has many reliable, dependable, and well-
established techniques for verification and validation procedures for ML models. The research
highlights several issues with current machine learning models, including model scalability,
validation and verification deficiencies, and an absence of published data regarding the
establishment costs of ML models.

3. Most CO2-EOR research focused on MMP predictions and WAG design. The applications in
recovery factor, well placement optimization, and PVT properties are limited.

4. We also found that ANN is the most employed ML algorithm, and GA is the most popular
optimization algorithm based on 101 reviewed papers. ANN has been proven to be flexible
enough to be implemented to build intelligent proxies.

5. ML algorithms can greatly reduce the computational cost and time to perform compositional
simulation runs. However, ML applications for well placement optimization in CO2-EOR are
very limited.

6. The reliability of coupled ML-metaheuristic paradigms based on reservoir simulation results
needs further investigation.
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Nomenclature
AARD Average absolute relative deviation
AARE Average absolute relative error
ABC Artificial bee colony
ACO Ant colony optimization
ACE Alternating conditional expectation
AR Auto-regressive
ANN Artificial Neural Network
ANFIS Adaptive neuro-fuzzy inference system
BA Bee algorithm
BOA Bayesian optimization algorithm
BPNN Backpropagation algorithm neural network
BR Bayesian regularization
CatBoost Categorical boosting
CCDh Central composite design
CFNN Cascade forward neural network
CGAN Conditional generative adversarial network
CM Committee machine
CNN Convolutional neural network
COA Cuckoo optimization algorithm
CSO Cuckoo search optimization
DA Dragonfly algorithm
DBN Deep belief network
DE Differential evolution
DNN Dense neural network
ERT Extremely randomized trees
FCNN Fully connected neural network
FGIR Field gas injection rate
FL Fuzzy logic
FN Functional network
GA Genetic algorithm
GB Gradient boosting
GBDT Gradient boosting decision tree
GBM Gradient boost method
GEP Gene expression programming
GFA Genetic function approximation
GIR Gas injection rate
GMDH Group method of data handling
GP Genetic programming
GPR Gaussian process regression
GRNN Generalized regression neural network
GSA Gravitational search algorithm
GWO Grey wolf optimization
He Hurst exponent
HPSO Hybrid particle swarm optimization
ICA Imperialist competitive algorithm
KXGB Knowledge-based XGB
LGBM light gradient boosting machine
LM Levenberg — Marquardt
LR Lasso regression
LSSVM Least-squares support vector machine
LSTM Long short-term memory
MADS Mesh adaptive direct search
MARS Multivariate Adaptive Regression Splines
MASRD Mean absolute symmetric relative deviation
MEA Mind evolutionary algorithm
MF Membership function

MKF Mixed kernels function
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MLP Multi-layer perceptron
MLR Multiple linear regression
MLNN Multi-layer neural networks
MOPSO Multi-objective particle swarm optimization
MSE Mean squared error
NNA Neural network analysis
NPV Net present value
NSGA-II Non-dominated sorting genetic algorithm version II
PLS Partial least squares
POLY Polynomial function
PSO Particle swarm optimization
RBFN Radjial-based function networks
RFFI Random forest feature importance
RR Ridge regression
RSM Response surface models
SBES Sequential backward floating selection
SBS Sequential backward selection
SCG Scaled conjugate gradient
SFS Sequential forward selection
SFFS Sequential forward floating selection
SGB Stochastic gradient boosting
SGR Solution gas ratio
SHAP Shapley Additive explanations
SVR Support vector regression
SVM Support vector machine
TLBO Teaching learning-based optimization
TPVT Total pore volume tested
WIR Water injection rate
WHEP Well head flow pressure
XGBoost Extreme gradient boosting
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