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Abstract: Heart failure is a prevalent cardiovascular condition with significant health implications, 

necessitating effective diagnostic strategies for timely intervention. This study explores the potential 

of  continuous monitoring  of  non‐invasive  signals,  specifically  integrating Photoplethysmogram 

(PPG) and Electrocardiogram (ECG), for enhancing early detection and diagnosis of heart failure. 

Leveraging a dataset from the MIMIC‐III database, encompassing 682 heart failure patients and 954 

controls. Feature selection techniques were used to systematically select key features which were 

identified for their clinical relevance and significance in capturing cardiovascular dynamics and to 

reduce computational complexity and  to decrease  the chance of over‐fitting  the ML algorithms. 

These features are then utilized to train and evaluate machine learning algorithms, resulting in a 

model with an impressive accuracy of 98%, sensitivity of 97.60%, specificity of 96.90%, and precision 

of 97.20%. The integrated approach outperforms single‐signal strategies, showcasing its potential 

for early, precise, and non‐invasive heart failure diagnosis. Furthermore, the study underscores the 

significance of continuous monitoring through wearables, emphasizing the benefits of integrating 

multiple signals for a comprehensive evaluation of cardiovascular health. The proposed approach 

holds promise for implementation in hardware systems to enable continuous monitoring, aiding in 

early detection and prevention of critical health conditions. 
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1. Introduction 

Around  65 million  people worldwide  suffer  from  heart  failure,  a  chronic,  progressive,  and 

incurable illness that causes about 7 million deaths annually [1]. Heart failure can manifest due to 

various factors, including inadequate myocardial relaxation, impaired ejection, or a combination of 

these  issues.  Furthermore,  several  underlying  disorders  such  as  coronary  artery  disease, 

hypertension, atrial fibrillation, heart valve irregularities, excessive alcohol consumption, infections, 

and idiopathic cardiomyopathy, in addition to structural heart abnormalities, can precipitate heart 

failure [2]. In individuals with heart failure, the heart loses its ability to effectively pump a sufficient 

volume of blood to meet the bodyʹs organ and tissue oxygenation requirements [3]. 

The global incidence of heart failure is experiencing an upward trend, particularly in developed 

nations, constituting a significant public health concern [4]. In the United States, the present count of 

adults afflicted by heart failure stands at approximately 6.2 million, with a projected 46% increase 

anticipated by 2030 [5]. Factors contributing to this surge encompass an aging population, enhanced 

management  of  chronic  illnesses,  advancements  in  acute  coronary  syndrome  treatments,  and 

improved care for heart failure patients [6]. Europe is similarly affected, with an estimated 15 million 

individuals grappling with heart  failure,  leading  to over 3 million hospitalizations annually. The 

substantial prevalence and recurrent hospitalization patterns associated with heart  failure  impose 
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noteworthy  economic  burdens  on  both  healthcare  systems  and  society, with  annual  healthcare 

expenditures in the United States exceeding $30 billion [4]. 

Preventing  heart  failure  and  other  cardiovascular  diseases  (CVDs)  are  significantly  more 

successful when prevention and therapy are initiated promptly. Unfortunately, in the early stages of 

heart failure, many patients are asymptomatic, leading to missed opportunities for optimal treatment 

and  an  increased  risk  of  complications.  Nevertheless,  certain  physiological  signals,  such  as 

electrocardiogram  (ECG)  and  photoplethysmography  (PPG),  undergo  alterations  influenced  by 

blood pressure levels [7,8]. These changes primarily manifest as morphological shifts in physiological 

signals, providing insights into the functional status of the heart and vascular system.   

The integration of Photoplethysmography (PPG) and Electrocardiography (ECG) signals in our 

study serves to address the complementary nature of these modalities  in assessing cardiovascular 

health.  ECG  signals  primarily  focus  on  the  electrical  activity  of  the  heart,  providing  detailed 

information about arrhythmias, electrical abnormalities, and cardiac rhythm. However, ECG may 

lack direct insights into peripheral vascular resistance and the pulsatile component of blood flow. In 

contrast, PPG signals are sensitive to changes in peripheral vascular resistance and offer information 

about the pulsatile nature of blood flow [9]. By combining both signals, our assessment model aims 

to compensate  for  the  limitations of each modality. The  integration allows us  to comprehensively 

evaluate  both  electrical  and  hemodynamic  features,  providing  a more  accurate  assessment  and 

understanding of heart  function and contributing  to  the accuracy of heart  failure assessment. The 

rationale behind using both signals lies in their synergistic ability to capture a broader spectrum of 

physiological  features,  ensuring  a more  robust  evaluation  compared  to  relying  on  either  signal 

independently. For instance, in the case of heart failure, ECG might indicate arrhythmias, while PPG 

could unveil signs of impaired cardiac output. By coalescing these insights, the clinician gains a more 

comprehensive  understanding  of  the  heartʹs  performance  and  potential  issues.  Combining  the 

attributes  of both ECG  and PPG  signals  is  imperative  to harness  the  comprehensive  advantages 

derived  from  their respective  features. Figure 1 shows  the ECG and PPG signals graphically. The 

waveforms of the ECG signals are shown in Figure 1(a), where the primary ECG peaks are indicated 

by dark circles. The PPG signal and associated waveforms are shown in Figure 1(b), and the peaks 

corresponding to systole and diastole are shown by the dark circles in Subfigure (b). 

 

Figure 1. An ECG signal along with its corresponding PPG signal. 

Although so many researches have been conducted on heart failure, most of them apply either 

echocardiogram or photoplethysmogram signals in their study. A paper introduced the concept of a 

non‐invasive assessment method for the detection of ischemic heart disease patients from fingertip 

Photoplethysmogram (PPG) signal. A unified feature set pertaining to heart rate variability (HRV) 

and PPG waveform morphologies was  established  to differentiate between  individuals with and 

without CAD. For classification, they employed the Support Vector Machine (SVM). Using a corpus 

of  112  people  chosen  from  the MIMIC  II  dataset,  their  methodology  achieves  sensitivity  and 

specificity ratings of 82% and 88%, respectively, in identifying CAD patients. They also obtained 73% 

and 87% sensitivity and specificity ratings on a different dataset of 30 patients that was gathered from 

an urban hospital utilizing a commercial oximeter device [10]. A conditional Generative Adversarial 
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Network (GAN) model (P2E‐WGAN) was designed to reconstruct/synthesize realistic ECG signals 

from PPG signals, the results demonstrate the model’s potential for providing a paradigm shift in 

telemedicine by bringing ECG based clinical diagnoses of cardiovascular disease to individuals via 

simple PPG assessment by wearables [11]. The synthesis of ECG waveforms from PPG signals using 

the P2E‐WGAN approach has several potential applications and implications for clinical practice and 

medical  device  development  such  as  enabling wearable  devices  equipped with  PPG  sensors  to 

potentially provide continuous and long‐term monitoring of ECG signals in daily life settings leading 

to the development of intelligent healthcare systems for clinical diagnoses of cardiac diseases and 

anomalies in real time through machine learning and cloud computing. 

In another study, authors  introduced a non‐invasive and  cost‐effective method  for detecting 

coronary  artery  disease  (CAD)  through  photoplethysmography  (PPG),  suitable  for  at‐home 

monitoring. The analysis focuses on extracting distinguishing features from the time domain of the 

PPG signal and its second derivative. CAD patients were classified using a Support Vector Machine‐

based classifier. The study evaluated the approach using ICU patient data from the MIMIC‐II dataset 

and achieved a sensitivity of 85% and a specificity of 78% in identifying CAD patients [12]. A study 

conducted on  time‐domain  features  from PPG  signals  to differentiate between  subjects with and 

without diseases using various  classification methods. The  study  evaluated  ten metrics  from  the 

confusion matrix, and  the Boosted Trees classifier outperformed others, achieving an accuracy of 

94%, sensitivity of 95%, specificity of 95%, and precision of 97% [13]. 

The UCI dataset repository was utilized to extract ECG features for use in a study that focused 

on heart failure prediction using the multi‐criteria weighted vote‐based classifier. The experimental 

outcomes  validate  the  efficacy  of  the  proposed  ensemble  classifier  in  handling  a wide  range  of 

attribute  types,  with  a  notable  high  diagnostic  accuracy  of  87.37%.  Furthermore,  the  classifier 

demonstrated  impressive sensitivity at 93.75%, specificity at 92.86%, and an F‐measure of 82.17%. 

These  findings  underscore  the  potential  of  this  classifier  as  a  valuable  tool  for  accurate  and 

comprehensive  heart  disease  prediction  [14]. A  cross‐domain  joint  dictionary  learning  (XDJDL) 

framework  for  synthesizing  ECG waveforms  from  PPG  signals was  suggested  in  a  study,  the 

experimental results demonstrated the possibility of providing an affordable preliminary diagnosis 

screening  from  PPG  signals  and  long‐term,  user‐friendly  ECG  monitoring  to  help  with  early 

identification  and  screening  for  specific  heart  illnesses  [15]. A Heart Disease  Prediction  System 

(HDPS) was developed aimed at assisting medical practitioners  in diagnosing heart diseases. The 

system selects 13 relevant features from clinical data, constructs an artificial neural network based on 

these features, and creates a user‐friendly interface. The HDPS offers output through various means, 

including ROC curve displays, execution  time, accuracy, sensitivity, and specificity. Impressively, 

the HDPS achieved an 80% classification accuracy, indicating its potential as a valuable tool for heart 

disease diagnosis [16]. The detrended fluctuation analysis (DFA) method was used by Kamath et al., 

[17]  to  compute  the  short‐term  (20  s)  ECG  segments  for  CHF  and  normal  hearts.  The method 

produced 98.4% and 98% average sensitivity and specificity rates, respectively. 

This study bridges a notable research gap by introducing a novel approach that integrates PPG 

and ECG signals  for heart  failure assessment. While previous studies have  traditionally analyzed 

these signals independently, our innovative methodology leverages their combined power, offering 

a comprehensive evaluation of cardiac health. This approach not only enhances diagnostic accuracy 

but also holds the potential to detect heart failure at an earlier stage, promising to transform the field 

of cardiac healthcare. The contribution of this paper can be summarized in the following three points: 

• This paper introduces an innovative approach by integrating Photoplethysmography (PPG) and 

Electrocardiogram  (ECG)  signals  for heart  failure  assessment. This  integration  leverages  the 

unique strengths of both non‐invasive monitoring methods to enhance diagnostic accuracy and 

enable early detection of heart failure. 

• The  study  underscores  the  clinical  relevance  of  this  integrated  approach,  emphasizing  its 

potential  to  improve patient  care, offer personalized  treatment plans, and  reduce healthcare 

costs.  By  preventing  advanced  heart  failure  complications,  it  has  the  potential  to  generate 

substantial cost savings for healthcare systems. 
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• The significant improvements achieved by the proposed  integrated method  in contrast to the 

results obtained  from  individual ECG and PPG signals underscore  the potency of combining 

these  two  modalities.  This  not  only  enhances  diagnostic  accuracy  but  also  highlights  the 

potential for early detection in the assessment and management of heart failure. 

The  rest of  this paper  follows  this  structure: The  studyʹs methodology, which  includes data 

collecting,  signal  processing,  feature  extraction,  feature  importance  analysis  and  selection,  and 

classification is covered in detail in Section 2. Section 3 is dedicated to presenting the outcomes and 

discussions of various classification models and distinct feature sets. Finally, Sections 4 provide an 

in‐depth  exploration  of  the  strengths  and  limitations  of  this  work,  while  Section  5  offers  a 

comprehensive conclusion that highlights the clinical relevance of our studyʹs findings. 

2. Materials and Methods 

The foundational block diagram of our proposed approach for heart failure assessment is shown 

in Figure 2, which involves the integration of PPG and ECG signals and employs machine learning 

algorithms  for classification. The methodology encompasses  the  following steps:  i) Acquisition of 

ECG and PPG signals as  the primary  inputs of  the algorithm  ii) preprocessing  the ECG and PPG 

signals which include denoising and eliminating artefacts iii) extraction of informative features from 

the  preprocessed  signals  iv)  normalization  of  the dimension  of  the  extracted  features  v)  feature 

importance analysis and selection, vi) Partitioning and classification of the data; and, ultimately, vii) 

Comparative evaluation with prior research and studies. The subsequent subsections go into further 

depth about each of these blocks. 

 

Figure 2. General Framework/Architecture of the Proposed Study. 

2.1.   Dataset and Signal Pre‐processing 

The data utilized in this research were sourced from the MIMIC‐III (Medical Information Mart 

for Intensive Care) database, a comprehensive repository containing information from a large cohort 

of  Intensive Care Unit  (ICU) patients  [18]. We  obtained proper  consent  for data  extraction  from 

MIMIC‐III  for  research  purposes,  as  indicated  by  Record  ID  51903504,  and  adhered  to  ethical 

guidelines by completing the web‐based training course provided by the National Institutes of Health 
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Protecting Human  Research  Participants.  The  dataset  for  this  study,  comprising  a  total  of  1636 

instances, included 682 patients with 25 types of heart failure were extracted using ICD‐9 codes (Table 

1) and 954 control subjects. The inclusion criteria involved patients aged 20 years or older at the time 

of ICU admission. Exclusions were made for patients below this age, those lacking an ICU record, or 

missing data for echocardiography or photoplethysmogram. The mean age of the included patients 

was 53.5 ± 9.9 years, with 40.95% being women and 59.05% men.   

Three main sources of interference are generally endangering to the quality of the ECG signal: 

A) The power‐line noise at 50 or 60 Hz, which makes up the majority of the noise power in these 

signals and is essentially stationary. B) The signalʹs base‐line wandering, which is referred to as the 

breathing artefact and manifests as a low‐frequency component in the time domain. This can cause 

analogue circuitry to become saturated or lose some of its effective precision, which can erode the 

accuracy  of  digitalization.  C)  Non‐stationary,  high‐frequency  noises  resulting  from  muscle 

contractions.   We created a preprocessing block to filter and denoise the signals in order to eliminate 

the degrading  impacts  of noise  and  artefacts  from  the  raw  signals.  First, we  addressed baseline 

wander and motion artifacts by applying a high‐pass filter with a cut‐off frequency of 150Hz. This 

filter effectively removed low‐frequency components related to baseline drift and motion artifacts 

while  retaining  the  higher‐frequency  components  essential  for  heart  function  and  cardiac  event 

analysis. Notably, recordings with abnormalities or noise, such as missing peaks, pulsus bisferiens, 

no signal (sensor‐off), etc., were excluded. The retained signal fragments had more than 30000 points, 

equivalent to 4 minutes of data at a 125 Hz adoption rate. 

Table 1. Classes of HF in the study and the corresponding ICD‐9 codes. 

ICD‐9 codes  Name 

39891  Rheumatic heart failure (congestive) 

40201  Malignant hypertensive heart disease with heart failure 

40211  Benign hypertensive heart disease with heart failure 

40291  Unspecified hypertensive heart disease with heart failure 

40401 
Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney 

disease stage I through stage IV, or unspecified 

40403 
Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney 

disease stage V or end stage renal disease 

40411 
Hypertensive heart and chronic kidney disease, benign, with heart failure and with chronic kidney disease 

stage I through stage IV, or unspecified 

40413 
Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic kidney disease 

stage V or end stage renal disease 

40491 
Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with chronic kidney 

disease stage I through stage IV, or unspecified 

40493 
Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic kidney disease 

stage V or end stage renal disease 

4280  Congestive heart failure, unspecified 

4281  Left heart failure 

42820  Systolic heart failure, unspecified 

42821  Acute systolic heart failure 

42822  Chronic systolic heart failure 

42823  Acute on chronic systolic heart failure 

42830  Diastolic heart failure, unspecified 

42831  Acute diastolic heart failure 

42832  Chronic diastolic heart failure 

42833  Acute on chronic diastolic heart failure 

42840  Combined systolic and diastolic heart failure, unspecified 

42841  Acute combined systolic and diastolic heart failure 

42842  Chronic combined systolic and diastolic heart failure 

42843  Acute on chronic combined systolic and diastolic heart failure 

4289    Heart failure, unspecified 

2.2. Feature Extraction 

Feature extraction  constitutes  the procedure of uncovering meaningful patterns and  insights 

within  raw data,  thereby  crafting  a more  informative  representation  that  refines  the  accuracy of 
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prognosis and diagnosis [19]. In the realm of machine learning and data analysis, feature extraction 

revolves around the conversion of input data into a collection of features suitable for utilization as 

inputs in models or algorithms. In the present study, MATLAB software (version R2022b), designed 

and  distributed  by MathWorks  (Natick, MA,  USA),  was  employed  for  conducting  the  feature 

extraction process. 

The feature extractor block is responsible for extracting three distinct categories of informative 

features  from both PPG and ECG signals. The  features extracted are broadly classified  into  three 

groups:  The  first  category  is  centered  on  physiological  parameters,  including  metrics  such  as 

Augmentation  Index, Heart Rate, Arterial Stiffness  Index, and Heart Rate Variability parameters 

(pNN50, NN50, RMSSD, SDNN), physiological features delve into parameters related to the bodyʹs 

physiological  responses. The  second group of  features  encompasses amplitude‐related attributes, 

such  as  Pulse  Pressure,  Systolic  pressure,  Diastolic  pressure,  and  P‐wave  characteristics,  these 

features provide insights into the signalʹs strength and intensity. The third category involves interval‐

related features, including Peak to peak interval, QRS interval, and RR interval, the interval features 

offer information about the durations between specific points within the signal. 

In accordance with the physiological underpinnings of heart failure and  its relationship with 

ECG and PPG signals, we  identified and extracted 13 pivotal  features. These features encapsulate 

essential cardiovascular information and were extracted from both ECG and PPG signals within each 

cardiac  cycle  to  facilitate  heart  failure  evaluation.  The  extracted  characteristics  are  represented 

visually in Figure 3, while Table 2 furnishes a comprehensive overview of each featureʹs class and the 

clinical  importance/implications.  Itʹs  essential  to highlight  that  the PPG  features  extracted  in  this 

study are solely based on the identification of three readily discernible points, specifically the peak 

of the first derivative of PPG, foot and peak of the PPG waveform. 

Table 2. Summary of the Features and the Clinical Importance/Implications. 

Class of Feature  Features  Information provided 

Class 1   

(Amplitude features) 

Pulse Pressure 

Systolic Pressure 

Diastolic Pressure 

P‐wave   

Monitoring these amplitude features 

over time can provide insights into the 

progression of heart failure and the 

effectiveness of therapeutic 

interventions aimed at managing 

vascular resistance.   

Class 2 

  (Interval Information) 

Peak to peak interval 

QRS interval 

RR interval   

Changes in these intervals can indicate 

alterations in cardiac function and 

hemodynamics associated with heart 

failure. Researchers can gain insights 

into the pathophysiology of heart failure 

and assess the severity of the condition. 

Class 3   

(Physiological features) 

Augmentation Index 

HRV Parameters (pNN50, NN50, 

RMSSD, SDNN) 

Heart Rate 

They offer insights into heart function, 

blood flow, arterial stiffness, and 

autonomic nervous system activity. 
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Figure 1. Visual representation of the extracted  features:  (a) Visual representation of  features 

extracted from a single ECG signal; (b) Visual representation of features extracted from a single PPG 

signal. 

The  morphological  changes  in  cardiovascular  features  serve  as  indicators  of  structural  or 

functional  irregularities  in  the  heart.  In  individuals with  chronic  heart  failure  (CHF)  and  acute 

myocardial infarction (AMI), heart rate variability in the time domain provides valuable prognostic 

information. Key parameters include the standard deviation of normal beat intervals (SDNN) and 

pNN50, representing the percentage of adjacent NN intervals differing by more than 50ms. A SDNN 

value of  less  than  50 ms or pNN50  lower  than  3%  is  indicative of high  risk,  50  to  100  suggests 

moderate risk, and a value over 100 ms or a pNN50 greater than 3% is considered normal [20]. The 

QRS interval, another predictor of heart failure, generally ranges between 0.06 – 0.12 ms in healthy 

individuals. A prolonged QRS interval may indicate delays in the ventricular depolarization process. 

The R‐R  interval, denoting  the  time between  consecutive R waves  in  the QRS  signal,  is a critical 

parameter  for  assessing  ventricular  rate.  In healthy  individuals, normal ECG  values  for  the R‐R 

interval  typically  range  between  0.6‐1.2  seconds. Prolonged R‐R  intervals, defined  as  >  1.5 s,  are 

commonly observed in patients with atrial fibrillation [21].   

Pulse pressure, representing the difference between systolic and diastolic blood pressure, and 

Systolic  pressure,  an  indicator  of  pulsatile  changes  in  blood  volume  due  to  arterial  blood  flow, 

typically range between 0.5 – 10 mmHg and 80 – 120 mmHg, respectively, in healthy subjects. In heart 

failure, the arterial system undergoes changes, leading to increased stiffness. Elevated Augmentation 

Index values are indicative of increased wave reflections, reduced arterial compliance, and impaired 

vascular function, all of which are associated with heart failure. Structural and electrical changes in 

the heart  can affect atrial  function which  in  turn  causes P‐wave abnormalities,  such as  increased 

duration or altered shape, may signify atrial remodeling, a common feature in heart failure patients. 

Heart  rate  (HR)  also  serves  as  a  predictor  of  cardiovascular,  cerebrovascular,  and  all‐cause 

mortality [22]. A normal resting heart rate for adults ranges between 60 and 100 beats per minute. 

Increased heart rate has been associated with elevated cardiovascular risk and total mortality. The 

relationship between increased heart rate and adverse cardiovascular events remains significant even 

after adjusting for major cardiovascular risk factors, indicating the independent prognostic value of 

heart rate in various populations and clinical conditions. 
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Table 3. Features and the Normal Values for a Healthy Adult. 

Feature  Description  Duration  Disease Diagnosis 

Pulse pressure 

Difference  between  the

systolic  and  diastolic  blood

pressure 

      0.5 ‐ 10 mmHg 
Atherosclerosis 

Congestive Heart failure   

Systolic pressure 

Indicator of the pulsatile 

changes in blood volume 

caused by arterial blood flow 

80 – 120 mmHg 
Artery stiffness. 

Heart Failure 

P‐wave  Atrial depolarization  0.08 – 0.11s  Heart Failure 

Diastolic Pressure 

Represents the amplitude of 

the signal during the diastolic 

phase of the cardiac cycle   

<80 mm 
Ischemic heart disease 

Cardiomyopathy 

Peak to peak interval 

Represents the duration 

between successive peaks in a 

signal 

0.6 – 1.2s 
Atrial fibrillation 

Heart failure 

RR interval 

The  interval  between  two

successive  R‐waves  of  the

QRS complex ventricular rate 

0.6 – 1.2s 
Paroxysmal atrial fibrillation   

Congestive heart failure 

Augmentation Index 

The  difference  between

systolic  and  diastolic  blood

pressure 

20‐80  Heart Failure 

Heart Rate 

A measure  of  the number  of

times  the  heart  contracts  or

beats  within  a  specific  time

frame, usually one minute 

60 – 100 bpm 
Heart Failure   

Atrial fibrillation 

QRS interval 
Ventricular depolarization 

0.08 – 0.11s 

Heart failure 

Tachycardia 

Acute Coronary Syndrome 

RMSSD 

NN50 

pNN50 

Shows  how  active  the

parasympathetic  system  is

relative  to  the  sympathetic

nervous system 

19 – 48 ms 

5 – 25ms 

5% ‐ 18% 

Heart failure 

Hypertension 

Arrhythmia 

Coronary artery disease 

2.3. Feature Normalization 

To  address  the  scale  differences  in  features  extracted  from  PPG  and  ECG  signals,  which 

represent distinct heart  failure  indicators,  the study utilized min‐max normalization on  the entire 

dataset. This crucial preprocessing step ensured that all feature values were uniformly scaled within 

a  range  of  0  to  1,  preventing  analytical  inaccuracies  and  anomalies  during model  training.  The 

normalization method  employed  followed  a  straightforward mapping  equation  to  achieve  this 

standardization: 

Xnorm = 
௫ି୫୧୬ ሺ௫ሻ

୫ୟ୶ሺ௫ሻି୫୧୬ሺ௫ሻ
           (1) 

This process not only promotes model stability and efficiency but also mitigates the impact of 

outliers, enhancing the reliability of our heart failure evaluation model.     
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2.4. Feature Importance Analysis and Feature Selection   

The input feature vectors for both PPG and ECG were further reduced using the relief feature 

algorithm  (ReliefF)  [23,24]. The ReliefF  algorithm  is  a  filter‐style  feature  selection  technique  that 

estimates weights by taking the nearest neighbor into account. In practical applications, this enhanced 

Relief  derivative,  referred  to  as  ReliefF,  is  the most  frequently  utilized  version  [25].  The  study 

employed the ReliefF algorithm to further reduce input feature vectors derived from both PPG and 

ECG signals. ReliefF is a well‐established feature selection method known for its robust performance 

in multi‐class classification scenarios and its capacity to handle noisy datasets with missing values. 

This improved variant, ReliefF, incorporates k nearest neighbors (KNN) from each class to estimate 

feature weights, enhancing the accuracy of weight estimation, particularly in noisy dataset settings 

[26]. The study initially used the ReliefF algorithm to assess the relevance of features within PPG and 

ECG signals separately. This analysis identified key features within each modality for heart failure 

assessment,  aiding  in  the  determination  of  which  modality  (ECG  or  PPG)  offered  better 

discriminatory power. However, this individual analysis had a limitation in that it might not capture 

interactions or  synergies between PPG and ECG  features. To overcome  this  limitation,  the  study 

conducted a combined feature importance analysis on a feature set that included both ECG and PPG 

data.  This  holistic  approach  provided  a  comprehensive  view  of  feature  importance,  taking  into 

account the contributions of both modalities. This comprehensive perspective offered insights into 

the  significance of  individual  features within  each  signal and  the  collective  impact of  combining 

features  from  both  PPG  and ECG. Ultimately,  this holistic  view  shed  light  on  the  roles  of  each 

modality and highlighted the potential advantages of integrating them in the context of heart failure 

evaluation. 

The  analysis  of  ECG  data  illuminates  the  pivotal  role  played  by  several  key  features  as 

discriminators among different classes, particularly in individuals with heart failure. The heartbeat 

feature, reflecting the frequency of heartbeats, serves as a fundamental indicator of cardiac activity, 

with deviations signaling disruptions in pumping function. The RR interval, indicative of the time 

between successive R‐peaks, offers insights into heart rate variability, highlighting irregularities in 

cardiac  rhythm.  The  QRS  interval,  representing  ventricular  depolarization  duration,  provides 

information  on  the  heartʹs  electrical  conduction  system.  Features  such  as  RMSSD,  SDNN,  and 

pNN50, which gauge  short‐term variability, overall variability,  and  the percentage of  significant 

variations,  respectively,  offer  crucial  information  on  autonomic  function  and  cardiovascular 

regulatory mechanisms. Altered  patterns  in  these  features  among  individuals with  heart  failure 

contribute  to  a  comprehensive  understanding  of  the  physiological  changes  associated with  the 

condition. The examination of feature importance derived from PPG signals accentuates the clinical 

relevance of Systolic Pressure, Diastolic Pressure, Peak‐to‐Peak Interval, and pulse pressure in the 

PPG  waveform  for  heart  failure  assessment.  These  features  bear  intricate  connections  to  heart 

function. In the realm of heart failure, where cardiac function is frequently compromised, alterations 

in  the  morphology  of  these  features  serve  as  indicative  markers  of  the  physiological  changes 

associated with the condition. Systolic pressure, representing the maximum arterial pressure during 

systole, and Diastolic pressure,  indicating  the minimum arterial pressure during diastole, offer a 

comprehensive  view  of blood pressure dynamics. The Peak  to Peak  Interval  captures  variations 

between  consecutive  peaks,  reflecting  the  pulsatile  nature  of  blood  flow.  Pulse  Pressure,  as  a 

fundamental feature in the PPG waveform, provides information about the strength and regularity 

of the pulsatile signal. Comprehending the subtle variations in these characteristics greatly enhances 

the clinical applicability of PPG‐based assessments by  contributing  to  the nuanced assessment of 

heart failure. The above selected features for PPG (4 features) and ECG (6 features) were used for 

classifications involving the analysis of independent signals. 
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Figure 4. Feature Importance Score for ECG and PPG signal using ReliefF algorithm. 

The feature selection process for the integration of PPG and ECG signals involved a meticulous 

examination of absolute values to identify features of substantial significance in the context of heart 

failure assessment. From the initial pool of extracted features, a refined set of ten (10) features was 

selected. Notably, Systolic Pressure, Diastolic Pressure, Peak to Peak Interval, NN50, pNN50, P‐wave, 

Heart Rate, QRS Complex, RR Interval, Pulse Pressure, and Augmentation Index emerged as pivotal 

contributors to the classification task. The consideration of absolute values was paramount, ensuring 

a  comprehensive  evaluation  of  these  features  and  capturing  the  essential  dynamics  of  the 

cardiovascular  system.  These  selected  features  exhibit  notable  clinical  relevance,  aligning  with 

established physiological indicators of heart failure. ReliefF played a key role in highlighting their 

importance,  emphasizing  their  ability  to  distinguish  patterns  associated with  heart  failure.  The 

chosen  features  contribute  to  the  overall  effectiveness  and  clinical  relevance  of  the  heart  failure 

assessment  model,  enhancing  its  interpretability  and  accuracy  in  classifying  instances  of  the 

condition. 

 

Figure 5. Importance score for Combined Features from PPG and ECG Signals. 
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2.5. Data Partitioning and Classical Machine learning 

Data  partitioning  is  a  crucial  step  in  supervised machine  learning,  aiding  in  the  training, 

optimization, and validation of predictive models. Various techniques exist for partitioning datasets 

into subsets, each suited to different dataset sizes. In this study, the datasets (n = 1636) was split into 

75% (1227) train and 25% (409) test sets. The intentional design of the control group with a larger 

sample  size  aimed  to  provide  a  more  balanced  representation  of  the  real‐world  distribution, 

enhancing  the  reliability  and  accuracy  of  our  analysis.  To  ensure  the  modelʹs  stability  and 

generalization, a 10‐fold  cross‐validation  (CV) procedure was applied  to  the  training data before 

model optimization. During this process, the training data was divided into ten equal‐sized ʹfolds.ʹ 

The model was trained and validated ten times, with each fold taking turns as the validation set while 

the others were used for training. By evaluating the modelʹs performance across different training 

data subsets, this method helped prevent overfitting. Also an extensive hyper‐parameter tuning to 

optimize the modelʹs performance while guarding against overfitting and under‐fitting was done. 

The  utilization  of  cross‐validation  strategy  mentioned  earlier  and  ensemble  methods  further 

contributed to the robustness of our model. Our commitment to avoiding over‐parametrization was 

manifested  in  the  comprehensive evaluation of various  training aspects, emphasizing a balanced 

trade‐off between model complexity and generalization. This meticulous approach allows for a fair 

and reliable comparison between the integrative and single‐input models. The performance of the 

resulting model was evaluated on a different test set, giving an assessment of its generalization to 

completely unknown data. 

In  this study, Nine  (9) machine  learning algorithms were  implemented  for classification and 

performance  analysis  using  the  Weka  software.  Weka  (Waikato  Environment  for  Knowledge 

Analysis)  is  a  cross‐platform  open  source,  renowned  for  its popularity  in  the  realm  of machine 

learning. Developed by the University of Waikato, this Java‐based software offers a versatile platform 

for various data analysis and machine learning tasks [27]. 

 Random Forest (RF): Random Forest (RF) stands out as a well‐known nonparametric tree‐based 

supervised machine learning method, proficient in handling classification and regression tasks 

[28]. RF algorithms create numerous machine learning models and consolidate their results to 

arrive at more robust decisions or estimations  than what  individual models could achieve  in 

isolation  [28]. In comparison  to various other machine  learning  techniques, RF offers distinct 

advantages. The base estimators within a random forest are trained independently, reducing the 

training process required for these models [29]. 

 Adaptive  Boost  (Adaboost):  AdaBoost  represents  yet  another  powerful  ensemble  learning 

technique  applicable  to  both  classification  [30].  This  appraoch  operates  by  amalgamating 

multiple weak learners, which individually perform sub‐optimally,  into a robust  learner [31]. 

AdaBoost  is  particularly  suitable  for  scenarios with  a  large  number  of  features,  efficiently 

selecting  the most  informative ones. Additionally,  it effectively addresses class  imbalance by 

adjusting training sample weights, ensuring fair attention to both positive and negative cases 

during training. 

 Naïve Bayes: Naïve Bayes classifiers employ Bayesʹ probability theorem for data classification. 

They make an assumption  that all  features are  independent of each other, even  though  this 

assumption is simplified, which is why they are referred to as ʹnaïve.ʹ Bayesʹ rule calculates the 

probability  of  an  event  based  on  its  relationship  with  another  variable,  with  a  basic 

representation as follows: 

P (Ci|x) = 
୔൫xหCi൯୔ሺେ୧ሻ

௉ሺ௫ሻ
,𝑃ሺ𝑥ሻ  ≠ 0                      (2) 

Naïve Bayes is computationally efficient, suitable for large datasets and real‐time applications.   

 Decision  Tree  (DT):  Decision  Trees  are  an  intuitive,  tree‐like  structured,  non‐parametric 

approach used for classification. To prevent overfitting, Decision Trees use pruning techniques 

to  simplify  the  tree  structure.  They  accommodate  both  categorical  and  numerical  features, 

necessitating  minimal  data  preprocessing  and  displaying  proficiency  in  handling  missing 

values. This robustness in the face of missing data is especially valuable for real‐world situations 

where data incompleteness and noise are common.   
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 Support Vector Machine (SVM): SVM accomplishes classification by identifying the optimal 

hyperplane that improves the gap between classes [32]. In the case of combining non‐invasive 

signals  like PPG and ECG, the resulting feature space can be complex and high‐dimensional. 

SVM  can handle  such data  by  finding  an  optimal hyperplane  that maximally  separates  the 

different classes, even in high‐dimensional feature spaces. This capability allows SVM to capture 

complex relationships and patterns in the data, which can be crucial for accurately classifying 

heart failure patients.   

 K‐Nearest Neighbors (KNN): KNN classifies data points by taking a vote based on the class 

types  of  their  k  nearest  neighbors  in multi‐dimensional  space.  This  localized  approach  is 

advantageous in scenarios where nearby data points hold significant influence. In the context of 

heart failure evaluation, KNN can uncover subtle patterns in PPG and ECG signals, aiding in 

diagnosis.  In  its basic  form, KNN assigns a class depending on the  largest class within the k 

nearest neighbors. 

 Multilayer Perceptron (MLP): MLPs are a class of feedforward neural networks [33]. MLPs excel 

at modeling complex, nonlinear data  relationships but  require careful design of architecture, 

including  hidden  layer  count,  neuron  numbers,  and  activation  functions  for  optimal 

performance. It can be applied in a range of domains including image and speech recognition, 

natural  language processing, and medical diagnosis,  showcasing  their versatility  in machine 

learning [34,35]. 

 Random  Tree  (RT):  In  practice,  Random  Tree  algorithms  offer  a  good  balance  between 

simplicity and performance and are a valuable tool for various machine learning tasks [28]. The 

Random Tree algorithm is built on the foundation of decision trees, which are known for their 

ability  to  recursively partition data  into  subsets based on  feature values. However, Random 

Trees introduce an element of randomness into the decision tree construction process through 

random feature selection and Bootstrap Aggregating (Bagging). 

 Bayesian Net (BayesNet): Bayesian Network is a probabilistic graphical model widely used for 

various machine learning tasks, especially in fields like healthcare, finance, and natural language 

processing. Itʹs based on Bayesian probability theory and graph theory, offering a compact and 

intuitive  way  to  represent  complex  probabilistic  relationships  among  variables.  The 

effectiveness of BayesNets  in managing uncertainty  is one of  its main advantages.BayesNets 

offer interpretable results, allowing you to understand how variables influence each other. This 

is crucial for decision‐making in sensitive areas like healthcare. 

Each machine learning algorithms mentioned above were implemented in this study based on 

its  specific  strengths  and  suitability  for  the  studyʹs  goals,  including  handling  complex  features, 

dealing with noisy data, and providing insights into feature importance or relationships within the 

dataset, also the combination of these diverse algorithms allows for a comprehensive evaluation of 

heart failure using the extracted PPG and ECG features. The Table below gives tabular representation 

of this selection rationale 

Table 4. Summary of Machine Learning Algorithms and their Selection Rationale. 

Algorithm  Strength’s  Reasons for selection 

SVM   

(Support Vector 

Machine) 

•  Effective in high‐dimensional 

spaces 

•  Works well with complex datasets 

•  Good generalization capabilities 

Chosen for its ability to handle 

complex feature spaces and its 

effectiveness in classification tasks. 

[36,37] 

Random Forest 

•  High predictive accuracy 

•  Handles  both  numerical  and 

categorical data 

•  Reduces overfitting 

Selected for its robustness and ability 

to deal with noisy data, which is 

common in medical datasets [28,29]. 

K‐nearest Neighbor 

(KNN) 

•  Simple and intuitive 

•  Non‐parametric and adaptable 

Employed for its simplicity and 

adaptability in classifying data points 

based on their proximity to neighbors 

[38–40]. 
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Random Tree 

•  Ensemble method combining 

decision trees 

•   Resistant to overfitting 

•  Handles mixed data types 

Utilized for its robustness and 

versatility in handling various data 

types and potential for accurate 

classification and can handle missing 

values efficiently [41–43]. 

AdaBoost 

•    Sequential ensemble learning 

•    Combines  weak  learners  for  a

stronger model 

•   Good at handling imbalanced data 

Chosen for its ability to improve 

model accuracy by sequentially 

learning from previous modelsʹ 

mistakes [30,43]. 

BayesNet (Bayesian 

Network) 

•    Probabilistic graphical model 

•    Good  for  modeling  dependencies

among variables 

Employed for its ability to model 

complex relationships and 

dependencies between features in 

medical data [44,45]. 

Decision Tree 
• Intuitive and easy to understand 

• Interpretability 

Selected for its simplicity and 

interpretability, making it useful for 

gaining insights into feature 

importance [46,47]. 

NaiveBayes 
• Simple and computationally efficient 

• Performs well with limited data 

Chosen for its efficiency in handling 

datasets with limited samples and has 

a short computational data training 

time [48,49]. 

MLP (Multilayer 

Perceptron) 

• Deep learning architecture 

•  Can  model  complex  non‐linear 

relationships 

• Suitable for large datasets 

Adopted because of its deep 

architecture, which enables it to 

recognize complex connections and 

trends in the data [50,51]. 

3. Results and Discussion 

As previously described, the evaluation of each model involves a 10‐fold cross‐validation (CV) 

of dataset samples, ensuring that there is no overlap between the training and test data. To assess the 

classification  performance,  precision,  recall,  accuracy,  and  F‐measure were  computed  using  the 

following metrics: 

Accuracy ൌ TP  + TN

TP + TN + FP + FN
              (3) 

Specificityൌ TN

 TN + FP
               (4) 

Sensitivity (Recall) ൌ
TP

TP+FN
             (5) 

F1‐Scoreൌ 2*(Recall * Precision) 

Recall + Precision
              (6) 

In  this context, TP denotes a set of correctly  identified  test results, FP represents a set of  test 

results incorrectly identified, TN signifies a set of correctly rejected test results, and FN stands for a 

set of test results incorrectly rejected. For this study, we computed and compared the results from a 

single ECG signal and a single PPG signal with the results obtained from the integration of both PPG 

and ECG signals for heart failure evaluation. 

3.1. Result from Classification with Features Extracted from Single PPG Signal 

The features extracted from the PPG signals were employed to compute the performance metrics 

using  the  various machine  learning  algorithms  discussed  in  the  previous  section.  PPG  signals 

inherently  capture dynamic  alterations  in  blood  volume  and  vascular  attributes,  thus  providing 

distinctive insights into cardiovascular health from an alternative vantage point. The outcomes of this 

approach were highly promising, as evident below. 
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Figure 6. Heart failure (HF) classification performance (Specificity, Sensitivity, accuracy, precision, 

AUC and F1‐score) with features extracted from single PPG signal. 

From  the  figure  above, Random Forest  stands out  as  the  top performer with  an  impressive 

accuracy of 97.10%, sensitivity of 97.05%, specificity of 96.88%, precision of 96.28%, AUC value of 

97.20% and F1‐score of 96.66% indicating its strong ability to correctly classify individuals with and 

without heart failure. It also excels in sensitivity, specificity, precision, and AUC, demonstrating its 

comprehensive effectiveness  in evaluating heart  failure. While Random Forest  takes  the  lead,  itʹs 

worth noting that other models, such as Support Vector Machine (SVM), K‐Nearest Neighbor, and 

Decision Tree, also deliver commendable performances with accuracies ranging from 93% to 96%. 

However, Random Forest consistently outperforms these alternatives in most performance metrics, 

reinforcing its position as the optimal choice for heart failure classification. 
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3.2. Result from Classification with Features Extracted from Single ECG Signal 

The  result  presented  in  the  figure  below  shows  the  various  machine  learning  modelsʹ 

performance obtained from the classification of features extracted from a single ECG signal.   

In Figure 7 (below), the findings prominently highlight the exceptional performance of the multi‐

layer perceptron (MLP), a feedforward artificial neural network characterized by its multiple layers 

of interconnected nodes. It showcases the highest accuracy at 96.40%, underscoring  its impressive 

capability in accurately discerning individuals with and without heart failure. Furthermore, the MLP 

model excels across various evaluation metrics, including sensitivity (96.70%), specificity (96.00%), 

precision (95.30%), and F1‐Score (95.60%). These results signify  its comprehensive effectiveness  in 

classifying heart  failure  cases with precision. Notably, other models  such  as K‐nearest neighbor, 

AdaBoost, and Random  tree also deliver commendable performances, achieving accuracies  in  the 

range of 84% to 92%. These models exhibit a balanced trade‐off between sensitivity and specificity, 

demonstrating their ability to identify heart failure cases while keeping false positives at a minimum. 

 

 

 

Figure 7. Classification performance (Specificity, Sensitivity, accuracy, precision, AUC and F1‐socre) 

with features extracted from single ECG signal. 
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3.3. Result from classification of integrated features extracted from PPG and ECG signals.   

Integrating ECG and PPG signals offers a significant advantage, as it harnesses the wealth of 

complementary information they provide. ECG, being a gold standard for assessing heart rate and 

rhythm  irregularities,  is  adept  at  capturing  electrical  activity. On  the  other  hand,  PPG  captures 

changes  in blood volume and vascular characteristics, offering  insights  into cardiovascular health 

from  a different perspective. By  combining  these  signals, we  amalgamate  intricate details of  the 

circulatory  system,  resulting  in  a  more  holistic  evaluation  that  transcends  the  limitations  of 

individual signals. The result obtained from the classification of the novel approach of combining 

these signals is represented below. 

Table 5 (above) shows the comparison of these evaluation/performance metrics on the selected 

machine learning models. From displayed result, Support vector machine model outperforms other 

machine  learning models.  The  evaluation/performance metrics; Accuracy,  sensitivity,  specificity, 

precision, AUC and F1‐score obtained are 98%, 97.60%, 96.90%, 97.20%, 98.40%, and 97.70%. Figure 

6 displays  the  radar plot of  these performance metrics achieved  in  the various machine  learning 

algorithms. 

Table 5. Performance of various machine learning models for heart failure (HF) classification with the 

integration ECG and PPG signals. 

Model  Performance Metrics 

Accuracy   

  (%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

AUC        (%)  F1‐Score 

(%) 

SVM  98.00  97.60  96.90  97.20  98.80  97.70 

Random Forest  96.80  96.70  96.90  96.20  99.60  96.40 

K‐NN  94.90  79.30  95.70  94.80  95.30  86.20 

Random Tree  96.90  96.70  96.80  96.20  96.80  98.50 

AdaBoost  96.90  96.80  96.80  85.10  99.60  91.87 

BayesNet  95.50  95.70  95.50  94.60  96.80  95.20 

Decision Tree  96.00  95.70  96.40  95.70  96.80  95.70 

NaiveBayes  91.20  91.30  91.00  89.40  95.20  90.30 

MLP  96.50  96.80  96.50  95.70  99.80  96.30 

3.4.  Comparison OF Results Obtained 

Performance metrics obtained from this novel approach of the integration of the PPG and ECG 

signal was also tested and compared to the results gotten from the performance of PPG and ECG 

signals  independently.  Figures  6  and  7  illustrate  the  performance  results  obtained  from  the 

classification performed on these signals independently.   

In comparison with the performance result obtained from the integration of these features, it is 

evident that the integration of these signals for heart failure study provides a unique insights into 

cardiovascular health from an alternative vantage point. 
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Figure 8. Classification performance (accuracy, precision, sensitivity, specificity, f1‐score and AUC) 

of various machine learning algorithms on single signals and on integrated features from signals. 

The table above and figure demonstrates the comparison between the results obtained from the 

analysis of the integration of PPG and ECG signals versus the results obtained from the ECG and 

PPG  signals  in  isolation. When PPG data was  considered  in  isolation,  the Random Forest model 

emerged  as  the  top  performer,  achieving  an  accuracy  of  97.10%.  This  model  demonstrated 

remarkable sensitivity, specificity, precision, and an F1‐Score, all hovering around the 96‐97% range. 

These metrics collectively indicated its strong potential for accurate heart failure classification. 

In  contrast,  the ECG data was  effectively  evaluated using  the MLP  (Multilayer Perceptron) 

model, yielding an accuracy of 96.40%. While its accuracy was slightly lower than that of PPG, MLP 

exhibited  a  well‐balanced  trade‐off  between  sensitivity  and  specificity,  making  it  a  valuable 

contender in heart failure assessment. 

It can also be noted that the result obtained from using the PPG signal outperformed the result 

from using only the ECG signals, this can be attributed to some factors such as PPG signals being less 

susceptible to interference from electrical sources and electronic equipment compared to ECG, This 

characteristic  ensures  that  PPG  measurements  remain  reliable  and  consistent  in  various 

environments, this is particularly beneficial in settings where electrical interference may be present, 

allowing  for  dependable monitoring  and  accurate  assessment  of  heart  failure without  external 

disruptions. Also, PPG excels in evaluating peripheral hemodynamics, offering valuable insights into 

blood circulation beyond the heart,  it effectively measures changes  in blood volume  in peripheral 

blood vessels, shedding light on the efficiency of circulation and peripheral perfusion. Given that HF 

often  affects  peripheral  blood  flow,  this  capability  is  pivotal  for  understanding  the  broader 

cardiovascular dynamics associated with  the condition. Also,  in  terms of motion  tolerance, PPGʹs 

resilience to motion artifacts is a notable advantage, particularly for individuals with heart failure. 

Patients with HF may  experience  limited mobility  or  discomfort,  and  PPGʹs  ability  to maintain 

measurement  accuracy  even  during  subtle  movements  ensures  that  vital  data  can  be  reliably 

collected. This motion tolerance enables continuous monitoring without undue disruption, a crucial 

aspect in assessing HF patientsʹ condition. 

However, the most notable findings arose from the integration of both PPG and ECG signals, 

where the Random Forest model demonstrated exceptional performance. This integrated approach 
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resulted  across  various  evaluation  metrics,  including  accuracy  (98.00%)  sensitivity  (97.60%), 

specificity  (96.90%), precision  (97.20%), AUC  (97.70%), and F1‐Score  (98.40%), suggesting  that  the 

combination of these signals significantly enhanced the modelʹs capability for heart failure detection. 

Moreover, an outstanding AUC of 97.70%, indicates a superior ability to discern heart failure cases 

while minimizing false positives. 

These outcomes highlight the potential of integrating PPG and ECG data for more accurate heart 

failure assessment. These results reveals superior performance compared to the use of these signals 

independently. Particularly, when assessed using the Random Forest model, the integrated approach 

exhibited  exceptional accuracy and overall  effectiveness, highlighting  its potential  significance  in 

heart failure evaluation. 

3.5.  Comparison with Other Works 

The performance of the proposed approach was also assessed  in comparison to prior studies 

that independently employed ECG and PPG for various applications. Our findings indicate that the 

proposed  method  exhibited  superior  performance  when  contrasted  with  these  studies,  which 

separately  utilized  ECG  and  PPG  modalities  for  their  distinct  analyses.  The  results  of  this 

comparative analysis are detailed in Table 6 below. 

Table 6. Comparison between the best performing models from isolated signals Vs performance from 

the integration of both signals. 

  Model  Performance Metrics 

Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1Score 

(%) 

AUC 

(%) 

PPG  Random 

Forest 

97.10  97.05  96.88  96.28  97.20  96.66 

ECG  MLP  96.40  96.70  96.00  95.30  95.90  95.60 

Integration  SVM  98.00  97.60  96.90  97.20  98.40  97.70 

From the result below (Table 7), In comparison to previous ECG‐focused studies, the current 

study  achieved  a  high  performance metrics  ranging  from  96.40%,  96.70%,  96.00%,  95.130%  and 

95.90%. Notably,  the Multi‐layer Perceptron  (MLP) model  in  the current  study outperformed  the 

majority of previous ECG‐based studies in terms of accuracy, sensitivity, Specificity, and precision. 

For PPG analysis,  the current study achieved high accuracy, Specificity, and Sensitivity, with 

values  ranging  from  96.88%  to  97.10%.  These  results  outperform  several  previous  PPG‐focused 

studies  in terms of accuracy, sensitivity and specificity. The Random Forest  (RF) model stood out 

with the highest accuracy. 

The integration of PPG and ECG signals in the current study demonstrated promising results, 

with accuracy ranging from 91.20% to 98.00%. These results surpassed the majority of both ECG and 

PPG‐focused studies, indicating that the combination of these signals provides a substantial benefit 

in heart  failure assessment. The Random Forest  (RF) model achieved  the highest accuracy  in  this 

integrated approach, further emphasizing its effectiveness in comprehensive heart failure evaluation. 

Table 7. Comparison of Results obtained with existing Literature. 

Author  Dataset  Signal    Features 

extracted 

Algorithm  Acc. 

  (%) 

Sens. 

  (%) 

Spec 

  (%) 

Pre. 

(%) 

F1Score 
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Simge  et 

al. [52] 

UCI 

300   

ECG  Chol, trestbps, 

fbs,  restecg, 

slope 

Cubic SVM 

Linear SVM 

DT 

Ensemble 

52.3 

67.3 

67.7 

67.0 

   

‐ 

   

‐ 

 

  ‐ 

 

  ‐ 

Ali  et  al. 

[53] 

UCI  ECG  RestECG, 

Trestbps, 

Chol, fbs 

KNN 

SVM 

NaïveBayes 

80 

83 

84 

   

‐ 

75 

77 

80 

80 

82 

83 

   

‐ 

Shouman 

et al [54] 

CHDD  ECG  Chol, trestbps, 

fbs, restecg 

GRDT 

NaïveBayes 

KNN 

79.1 

83.5 

83.2 

75.6 

78.0 

76.7 

81.6 

80.8 

85.1 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

Tu  et  al. 

[55] 

CI   

ECG 

Chol, trestbps, 

fbs, restecg 

Bagging 

DT 

81.41 

78.91 

74.93 

72.01 

86.64 

84.48 

‐ 

‐ 

‐ 

‐ 

Bashir  et 

al. [56] 

CHDD 

303 

ECG  Chol, trestbps, 

fbs, restecg 

Ensemble 

NaïveBayes 

DT 

SVM 

81.82 

78.79 

76.57 

86.67 

73.68 

68.49 

63.58 

73.68 

92.86 

92.86 

71.24 

79.51 

‐ 

‐ 

‐ 

‐ 

82.17 

73.61 

71.51 

65.10 

Pal  et  al. 

[13] 

50  PPG  Crest‐time, 

Augmentation 

index,  pulse 

pressure, 

SA/DA   

BT 

SVM 

KNN 

LR 

94 

85 

83 

83 

95 

83 

79 

83 

5 

87 

82 

85 

 

97 

83 

97 

82 

96 

87 

89 

85 

Banerjee et 

al. [57] 

MIMIC 

II   

112 

PPG  Systolic 

peak,NN‐

interval,HRV 

SVM     

‐ 

 

82 

 

88 

 

  ‐ 

 

  ‐ 

Paradhker 

et al. [58] 

MIMIC 

II 

55 

 

PPG 

Augmentation 

index, 

stiffness index 

SVM 

 

 

   

‐ 

 

85 

 

78 

 

  ‐ 

 

  ‐ 

Current 

Study 

MIMIC 

III 

1636 

ECG    QRS  interval, 

RR‐Interval, 

HRV,  Heart 

Rate, P‐wave 

 

 

MLP 

 

 

96.40 

 

 

96.70 

 

 

96.00 

 

 

95.3

0 

 

 

95.90 

 

 

PPG   

S.P,  NN‐

interval,  D.A, 

P.A, A.I 

 

 

RF 

 

 

97.10 

 

 

97.05 

 

 

96.88 

 

 

91.2

0 

 

 

96.66 
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Integration of PPG and 

ECG signal 

SVM  98.00  7.60  96.90   

97.2

0 

97.70 

Note: Acc.: Accuracy,  Spec.:  Specificity,  Sens.:  Sensitivity,  Pre.:  Precision,  KNN.:  K‐nearest Neighbor,  BT.: 

Boosted  Tree,  SVM:  Support Vector Machine, MLP.: Multi‐layer  Perceptron,  LR.:  Logistic Regression, DT.: 

Decision Tree, RF.: Random Forest, RT.: Random Tree. GRDT.: Gain ratio decision tree, CHDD.: Cleveland Heart 

Disease Dataset.  S.A;  Systolic  Pressure, D.P; Diastolic  Pressure,  P‐to‐P;  peak  to  peak  amplitude, P.P:  Pulse 

Pressure. 

4. Limitations of the Study 

Despite its merits, the integration of PPG and ECG signals faces several limitations. The quality 

and availability of PPG and ECG data can vary, impacting the reliability of the approach. Technical 

expertise is required for implementing and interpreting this integrated approach, which may not be 

readily available in all healthcare settings. Access to the necessary equipment for data collection can 

be limited in certain healthcare facilities, particularly in resource‐constrained settings. Additionally, 

PPG and ECG signals are sensitive  to motion artifacts and environmental  interference, which can 

affect data quality. The generalization of this approach to diverse populations and clinical settings 

may necessitate further validation. Moreover, the handling of patient data raises concerns about data 

privacy and security, and the associated costs of equipment and expertise need to be considered by 

healthcare facilities. 

5. Clinical Application Prospect, Future Work and Conclusion 

This study presents substantial clinical relevance, by combining the unique strengths of these 

non‐invasive monitoring methods, healthcare providers can significantly enhance the accuracy and 

timeliness of heart failure diagnosis. The results obtained from our study demonstrate the significant 

potential benefits of integrating PPG and ECG signals for heart failure evaluation. With an impressive 

accuracy of 98%, sensitivity of 97.60%, specificity of 96.90%, and precision of 97.20%, the integrated 

approach outperforms  the results obtained  from  individual ECG and PPG signals. These  findings 

suggest that the integrated approach holds promise for early, precise, and non‐invasive diagnosis of 

heart  failure. The high sensitivity  implies effective  identification of  individuals with heart  failure, 

contributing  to  early  intervention  and  improved patient  outcomes. This non‐invasive  evaluation 

method not only enhances patient care through timely diagnosis but also has the potential to reduce 

healthcare costs by enabling more targeted interventions. Furthermore, the accurate classification of 

heart  failure  cases  paves  the  way  for  personalized  treatment  strategies,  tailoring  medical 

interventions based on individual patient needs. Overall, our study provides compelling evidence 

supporting the potential benefits of integrating PPG and ECG signals for heart failure assessment, 

aligning with the envisioned advantages mentioned in the abstract. 

Moreover, the non‐invasive nature of PPG and ECG signals allows for telemedicine and remote 

monitoring, enhancing patient accessibility and addressing healthcare challenges in remote areas. It 

also has the potential to reduce healthcare costs by preventing advanced heart failure complications. 

Additionally,  this  integrated  approach  fosters  ongoing  research  and  development  in  cardiac 

healthcare, promising advanced diagnostic and monitoring tools. In summary, the integration of PPG 

and ECG signals has the potential to revolutionize heart failure diagnosis and management, offering 

early detection, personalized care, cost savings, and improved patient outcomes. 

However,  it  is  importance  to note  that  the exploration of deep  learning methods stands as a 

potential  avenue  for  future  research,  balancing  advancements  with  the  unique  demands  of 

interpretability in medical applications. With the development of deep learning and other algorithms 

that need high computing power, it’s learning capacity to automatically learn intricate features from 

data could be advantageous, which not only enable the analysis process no longer to require a feature 

extraction with hand‐crafted techniques, but also have great advantages in accuracy and robustness 
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particularly given sufficient training data. However, we emphasize the importance of interpretability 

in the medical domain and the challenges associated with acquiring extensive labeled datasets. 

Author  Contributions:  O.V  and  D.X  contributed  to  the  studyʹs  design  and  shared  the  responsibility  for 

composing the initial draft of the manuscript. W.W and C.Y were actively engaged in the manuscript revision 

process, providing critical input, and giving their approval for the final version. 

Funding: This work was supported in part by National Natural Science Foundation of China (82102178), in part 

by the Fundamental Research Funds for the Central Universities (ZYGX2021YGLH005), and in part by Sichuan 

Science and Technology Program (2021YFH0179). The work of Y. Chen was supported in part by Sichuan Science 

and  Technology  Program  (2021JDRC0036),  and  in  part  by  Incubation  Program  for  Innovative  Science  and 

Technology of UESTC (Y03023206100209). 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The authors do not have permission to share data. 

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author 

contribution or funding sections. This may include administrative and technical support, or donations in kind 

(e.g., materials used for experiments). 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Groenewegen A, Rutten F, Mosterd A, Hoes A. Epidemiology of heart failure. European Journal of Heart 

Failure, 2020; 22 (8):1342‐1356. 

2. An B, Shin J, Kim S, et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers (Basel). 2017, 

9(8): 1‐41. 

3. Roger, Veronique L. Epidemiology of heart failure. Circulation Research, vol. 113, no. 6, pp. 646–659, 2013. 

4. Go A, Mozaffarian D, Roger V, et al. American Heart Association Statistics Committee and Stroke Statistics 

Subcommittee.  Heart  disease  and  stroke  statistics‐‐2013  update:  a  report  from  the  American  Heart 

Association. Circulation, 2013, 127(1):e6‐e245.   

5. Yancy C,  Jessup M, Bozkurt  B,  et  al. Guideline  for  the management  of  heart  failure. A  report  of  the 

American  College  of  Cardiology  Foundation/American  Heart  Association  Task  Force  on  Practice 

Guidelines. Journal of the American College of Cardiology, 2013, 62(16):e147‐e239.   

6. Heart  Failure  by  Maheedhar  Gedela,  MD;  Muhammad  Khan  ,  MD;  and  Orvar  Jonsson,  MD, 

https://www.researchgate.net/publication/283899687. 

7. Pielmuş A, Osterland D, Klum, M,  et  al. Correlation  of  arterial  blood pressure  to  synchronous piezo, 

impedance  and photoplethysmographic  signal  features. Current Directions  in Biomedical Engineering, 

2017, 3(2):749‐753. 

8. Bruno  R,  Duranti  E,  Ippolito  C,  et  al.  Different  Impact  of  Essential Hypertension  on  Structural  and 

Functional Age‐Related Vascular Changes. Hypertension, 2017, 69:71–78.   

9. Allen J (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol 

Measur 28(3):R1. http://stacks.iop.org/0967‐3334/28/i=3/a=R01 

10. Banerjee R, Vempada R, Mandana K, et al. Identifying coronary artery disease from photoplethysmogram. 

ACM International Joint Conference 2016, 1084–1088. doi:10.1145/2968219.2972712 

11. Vo  K,  Kasaeyan N,  Emad N, Amir    J,  et  al.,  ECG waveform  synthesis  from  PPG with  conditional 

wasserstein generative adversarial networks. 2021. 1030‐1036. 10.1145/3412841.3441979. 

12. Paradkar N,  Chowdhury  S.  Coronary  artery  disease  detection  using  photoplethysmography. Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 

Medicine  and  Biology  Society.  Annual  International  Conference,  2017,  2017:100‐103. 

doi:10.1109/EMBC.2017.8036772 

13. Pal P, Ghosh S, Chattopadhyay B, et al. Screening of Ischemic Heart Disease based on PPG Signals using 

Machine  Learning  Techniques  [C].  42nd Annual  International Conference  of  the  IEEE  Engineering  in 

Medicine  &  Biology  Society  (EMBC),  Montreal,  QC,  Canada,  2020,  2020:5980‐5983,  doi: 

10.1109/EMBC44109.2020.9176447. 

14. Bashir S, Usman Q, Farhan H. A Multicriteria Weighted Vote Based Classifier Ensemble for Heart Disease 

Prediction. Computational Intelligence, 2016, 32(4):615‐645, https://doi.org/10.1111/coin.12070. Accessed 5 

Sept. 2023.2 

15. Tian  X,  Zhu Q,  Li  Y, Wu M.  Cross‐Domain  Joint Dictionary  Learning  for  ECG  Reconstruction  from 

PPG.2020.    936‐940. 10.1109/ICASSP40776.2020.9054242. 

16. Chen A, Huang S, Hong P, Cheng C, Lin E. HDPS: heart disease prediction  system.  In Computing  in 

Cardiology. IEEE: Hangzhou, 2022. pp. 557–560. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2024                   doi:10.20944/preprints202402.1067.v1



  22 

 

17. Kamath C. A new  approach  to detect  congestive heart  failure using detrended  fluctuation  analysis of 

electrocardiogram  signals.  J  Eng  Sci  Technol  2015;10  (2):145–59. 

https://doi.org/10.1016/j.medengphy.2012.03.001. 

18. Moody  B, Moody  G,  Villarroel M,  Clifford  G,  Silva  I. MIMIC‐III Waveform  Database  (version  1.0). 

PhysioNet, 2020. https://doi.org/10.13026/c2607m. 

19. https://www.mathworks.com/discovery/feature‐extraction.html (Accessed: February 5 2024) 

20. Task  Force  of  the  European  Society  of  Cardiology  and  the  North  American  Society  of  Pacing  and 

Electrophysiology  (1996) Heart rate variability: Standards of measurement, physiological  interpretation 

and clinical use. Circulation, 93, 1043‐1065. doi:10.1161/01.CIR.93.5.1043. 

21. Xu  H,  Li  J,  Zhong  G,  et  al.  Characteristics  of  the  Dynamic  Electrocardiogram  in  the  Elderly  with 

Nonvalvular Atrial Fibrillation Combined with Long R‐R Intervals. Evidence Based Complement Alternate 

Medicine, 2021, 2021:4485618. 10.1155/2021/4485618 

22. Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular 

disease  and  mortality:  evidence  from  112,680  men  and  women  in  12  cohorts.  European  Journal  of 

Preventive Cardiology, 2014, 21(6):719‐726 

23. Kira K, Rendell L. The feature selection problem: Traditional methods and a new algorithm. In: AAAI, 1992, 

129‐134. https://doi.org/10.5555/1867135.1867155 

24. Kira K, Rendell L. A practical approach  to  feature  selection.  In: Proceedings of  the ninth  international 

workshop on machine learning (ML92), 1992, 249‐256. 

25. Urbanowicz R, Meeker M, Cava W, Olson R, Moore  J. Relief‐based  feature  selection:  Introduction and 

review. Journal of Biomedical Informatics, 2018, 85:189–203. https://doi.org/10.1016/j.jbi.2018.07.014   

26. Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. European Conference on Machine 

Learning, 1994, 784:171‐182. https://doi.org/10.1007/3‐540‐57868‐4_57 

27. Witten  I, Frank E. Data Mining: Practical machine  learning  tools and  techniques, 2nd Edition, Morgan 

Kaufmann, San Francisco, 2005. 

28. Leo Breiman. Random forests. Machine learning, 2001, 45(1):5‐32.   

29. Liaw A, Wiener M. Classification and regression by random Forest. R News 2001, 2(3):18–22.   

30. Freund Y, Schapire R. Experiments with a new boosting algorithm. In ICML, 1996. 2:148‐156. 

31. Freund Y, Schapire R, Abe N.    A short  introduction  to boosting.  Journal of  Japan Soceity  for Artificial 

Intelligence, 1999, 14:1612. 

32. Corinna C, Vapnik V. Support‐vector networks. Journal of Machine Learning, 1995, 20(3):273–297. 

33. Kurt H, Maxwell S, Halbert White. Multilayer feedforward networks are universal approximators. Neural 

networks, 1989, 2(5):359‐366. 

34. Bishop C. Neural networks for pattern recognition. Oxford university press, 1995, 1:145‐164. 

35. Goodfellow I, Bengio Y, Courville A, Bengio Y.    Deep learning. MIT Press Cambridge 2016, 8(11):170‐224. 

36. Yinglin X. Correlation and association analyses in microbiome study integrating multiomics in health and 

disease, Editor(s): Jun Sun, Progress in Molecular Biology and Translational Science, Academic Press, 2016, 

(171): 309 – 491. https://doi.org/10.1016/bs.pmbts.2020.04.003. 

37. Bhavsar H, Ganatra A. Comparative  Study  of Training Algorithms  for  Supervised Machine Learning. 

International Journal of Soft Computing and Engineering, 2012, 2, 2231‐2307. 

38. An Q, Rahman S, Zhou J, Kang J. A Comprehensive Review on Machine Learning in Healthcare Industry: 

Classification,  Restrictions,  Opportunities  and  Challenges.  Sensors.  2023;  23(9):4178. 

https://doi.org/10.3390/s23094178 

39. Duneja, A, Puyalnithi T. Enhancing classification accuracy of k‐nearest neighbors algorithm using gain 

ratio. Int. Res. J. Eng. Technol 2017, 4, 1385–1388 

40. Shouman M, Turner T, Stocker R. Applying k‐nearest neighbour in diagnosing heart disease patients. Int. 

J. Inf. Educ. Technol. 2012, 2, 220–223. 

41. Kulkarni V, Sinha P. Efficient Learning of Random Forest Classifier using Disjoint Partitioning Approach. 

Proceedings of the World Congress on Engineering, vol. 2, no. 5, pp.1‐5, 2013.   

42. Ying Mi.  Imbalanced  Classification  Based  on  Active  Learning  SMOTE,  Research  Journal  of  Applied 

Sciences, Engineering and Technology, vol.5 , no.3 ,pp. 944 ‐ 949, 2013. 

43. More A, Rana S, Dipti P. Review of random forest classification techniques to resolve data imbalance. 72–

78. doi:10.1109/ICISIM.2017.8122151. 

44. Friedman N, Geiger D, Goldszmidt Moises. Bayesian Network Classifiers. Machine Learning. 29. 131‐163. 

10.1023/A: 1007465528199. 

45. Uusitalo Laura. Advantages and challenges of Bayesian networks in environmental modeling. Ecological 

Modelling. 203. 312‐318. 10.1016/j.ecolmodel.2006.11.033. 

46. Song Y, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai archives of 

psychiatry, 2015, 27(2), 130–135. https://doi.org/10.11919/j.issn.1002‐0829.215044 

47. Vijay K, Bala D. Data Science (Second Edition), Morgan Kaufmann, 2019, Pages 65‐163, ISBN 9780128147610, 

https://doi.org/10.1016/B978‐0‐12‐814761‐0.00004‐6. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2024                   doi:10.20944/preprints202402.1067.v1



  23 

 

48. De  S, Gilberto  F,  et  al. Engineering  Systemsʹ  Fault Diagnosis Methods. Reliability Analysis  and Asset 

Management of Engineering Systems, 2021, pp. 165‐187, https://doi.org/10.1016/B978‐0‐12‐823521‐8.00006‐

2. Accessed 16 Dec. 2023. 

49. Dulhare U.  Prediction  system  for  heart  disease  using Naive  Bayes  and  particle  swarm  optimization. 

Biomed. Res. 2018, 29, 2646–2649. 

50. Akkaya B, Çolakoğlu N Comparison of Multi‐class Classification Algorithms on Early Diagnosis of Heart 

Diseases. 2019, 3(1): 261 ‐311 

51. Bikku T. Multi‐layered deep learning perceptron approach for health risk prediction. J Big Data 7, 50 (2020). 

https://doi.org/10.1186/s40537‐020‐00316‐7 

52. Ekiz S, Pakize E. Comparative study of heart disease classification. 2017 Electric Electronics, Computer 

Science, Biomedical Engineeringsʹ Meeting (EBBT) (2017): 1 N/A4. 

53. Nassif A, Mahdi O, Nasir Q, Talib M, Azzeh M. Machine learning classifications of coronary artery disease. 

In Proceedings of the 2018 International Joint Symposium on Artificial Intelligence and Natural Language 

Processing (iSAI N/ANLP),Pattaya, Thailand, 15–18 November 2018; IEEE: New York, NY, USA, 2018; pp. 

1–6. 

54. Shouman M, Turner T, Stocker R. Integrating Naive Bayes and K‐means clustering with different initial 

centroid selection methods in the diagnosis of heart disease patients. Computer Science and Information 

Technology.   

55. Chau T, Dongil S, Dongkyoo S. Effective Diagnosis of Heart Disease through Bagging Approach.    IEEE 

2nd International Conference on Biomedical Engineering and  Informatics  ‐ Tianjin, China, 2009, 10:1–4. 

doi:10.1109/bmei.2009.5301650   

56. Bashir S, et al. A Multicriteria Weighted Vote N/ABased Classifier Ensemble for Heart Disease Prediction. 

Computational Intelligence, vol. 32, no. 4, 2016, pp. 615 N/A645, https://doi.org/10.1111/coin.12070. 

57. Banerjee R, Vempada R, Mandana K, Choudhury A, Dutta P.  Identifying coronary artery disease  from 

photoplethysmogram.  Proceedings  of  the  2016 ACM  International  Joint Conference  on  Pervasive  and 

Ubiquitous Computing Adjunct 1084–1088. doi:10.1145/2968219.2972712. 

58. Paradkar N,  Chowdhury  S.  Coronary  artery  disease  detection  using  photoplethysmography. Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in 

Medicine  and  Biology  Society.  Annual  International  Conference,  2017,  2017:100‐103. 

doi:10.1109/EMBC.2017.8036772. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2024                   doi:10.20944/preprints202402.1067.v1


