Pre prints.org

Article Not peer-reviewed version

Non-Invasive Heart Failure Evaluation
with Wearable Signals and Machine
Learning Algorithms

Odeh Adeyi Victor , Yifan Chen , Wenyan Wang , Xiaorong_Ding i

Posted Date: 19 February 2024
doi: 10.20944/preprints202402.1067v1

Keywords: Heart Failure, Photoplethysmogram, Echocardiogram, Machine Learning

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2024 d0i:10.20944/preprints202402.1067.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Non-Invasive Heart Failure Evaluation with
Wearable Signals and Machine Learning Algorithms

Odeh Victor Adeyi %, Yifan Chen 1, Wenyan Wang 2 and Xiaorong Ding 1*

1 School of Life Science, University of Electronic Science and Technology of China, Chengdu, 610054,
Sichuan, China

2 Heart Failure Center, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital,

University of Electronic Science and Technology of China, City, Sichuan, China

Correspondence: xiaorong.ding@uestc.edu.cn

Abstract: Heart failure is a prevalent cardiovascular condition with significant health implications,
necessitating effective diagnostic strategies for timely intervention. This study explores the potential
of continuous monitoring of non-invasive signals, specifically integrating Photoplethysmogram
(PPG) and Electrocardiogram (ECG), for enhancing early detection and diagnosis of heart failure.
Leveraging a dataset from the MIMIC-III database, encompassing 682 heart failure patients and 954
controls. Feature selection techniques were used to systematically select key features which were
identified for their clinical relevance and significance in capturing cardiovascular dynamics and to
reduce computational complexity and to decrease the chance of over-fitting the ML algorithms.
These features are then utilized to train and evaluate machine learning algorithms, resulting in a
model with an impressive accuracy of 98%, sensitivity of 97.60%, specificity of 96.90%, and precision
of 97.20%. The integrated approach outperforms single-signal strategies, showcasing its potential
for early, precise, and non-invasive heart failure diagnosis. Furthermore, the study underscores the
significance of continuous monitoring through wearables, emphasizing the benefits of integrating
multiple signals for a comprehensive evaluation of cardiovascular health. The proposed approach
holds promise for implementation in hardware systems to enable continuous monitoring, aiding in
early detection and prevention of critical health conditions.
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1. Introduction

Around 65 million people worldwide suffer from heart failure, a chronic, progressive, and
incurable illness that causes about 7 million deaths annually [1]. Heart failure can manifest due to
various factors, including inadequate myocardial relaxation, impaired ejection, or a combination of
these issues. Furthermore, several underlying disorders such as coronary artery disease,
hypertension, atrial fibrillation, heart valve irregularities, excessive alcohol consumption, infections,
and idiopathic cardiomyopathy, in addition to structural heart abnormalities, can precipitate heart
failure [2]. In individuals with heart failure, the heart loses its ability to effectively pump a sufficient
volume of blood to meet the body's organ and tissue oxygenation requirements [3].

The global incidence of heart failure is experiencing an upward trend, particularly in developed
nations, constituting a significant public health concern [4]. In the United States, the present count of
adults afflicted by heart failure stands at approximately 6.2 million, with a projected 46% increase
anticipated by 2030 [5]. Factors contributing to this surge encompass an aging population, enhanced
management of chronic illnesses, advancements in acute coronary syndrome treatments, and
improved care for heart failure patients [6]. Europe is similarly affected, with an estimated 15 million
individuals grappling with heart failure, leading to over 3 million hospitalizations annually. The
substantial prevalence and recurrent hospitalization patterns associated with heart failure impose
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noteworthy economic burdens on both healthcare systems and society, with annual healthcare
expenditures in the United States exceeding $30 billion [4].

Preventing heart failure and other cardiovascular diseases (CVDs) are significantly more
successful when prevention and therapy are initiated promptly. Unfortunately, in the early stages of
heart failure, many patients are asymptomatic, leading to missed opportunities for optimal treatment
and an increased risk of complications. Nevertheless, certain physiological signals, such as
electrocardiogram (ECG) and photoplethysmography (PPG), undergo alterations influenced by
blood pressure levels [7,8]. These changes primarily manifest as morphological shifts in physiological
signals, providing insights into the functional status of the heart and vascular system.

The integration of Photoplethysmography (PPG) and Electrocardiography (ECG) signals in our
study serves to address the complementary nature of these modalities in assessing cardiovascular
health. ECG signals primarily focus on the electrical activity of the heart, providing detailed
information about arrhythmias, electrical abnormalities, and cardiac rhythm. However, ECG may
lack direct insights into peripheral vascular resistance and the pulsatile component of blood flow. In
contrast, PPG signals are sensitive to changes in peripheral vascular resistance and offer information
about the pulsatile nature of blood flow [9]. By combining both signals, our assessment model aims
to compensate for the limitations of each modality. The integration allows us to comprehensively
evaluate both electrical and hemodynamic features, providing a more accurate assessment and
understanding of heart function and contributing to the accuracy of heart failure assessment. The
rationale behind using both signals lies in their synergistic ability to capture a broader spectrum of
physiological features, ensuring a more robust evaluation compared to relying on either signal
independently. For instance, in the case of heart failure, ECG might indicate arrhythmias, while PPG
could unveil signs of impaired cardiac output. By coalescing these insights, the clinician gains a more
comprehensive understanding of the heart's performance and potential issues. Combining the
attributes of both ECG and PPG signals is imperative to harness the comprehensive advantages
derived from their respective features. Figure 1 shows the ECG and PPG signals graphically. The
waveforms of the ECG signals are shown in Figure 1(a), where the primary ECG peaks are indicated
by dark circles. The PPG signal and associated waveforms are shown in Figure 1(b), and the peaks
corresponding to systole and diastole are shown by the dark circles in Subfigure (b).
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Figure 1. An ECG signal along with its corresponding PPG signal.

Although so many researches have been conducted on heart failure, most of them apply either
echocardiogram or photoplethysmogram signals in their study. A paper introduced the concept of a
non-invasive assessment method for the detection of ischemic heart disease patients from fingertip
Photoplethysmogram (PPG) signal. A unified feature set pertaining to heart rate variability (HRV)
and PPG waveform morphologies was established to differentiate between individuals with and
without CAD. For classification, they employed the Support Vector Machine (SVM). Using a corpus
of 112 people chosen from the MIMIC II dataset, their methodology achieves sensitivity and
specificity ratings of 82% and 88%, respectively, in identifying CAD patients. They also obtained 73%
and 87% sensitivity and specificity ratings on a different dataset of 30 patients that was gathered from
an urban hospital utilizing a commercial oximeter device [10]. A conditional Generative Adversarial
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Network (GAN) model (P2E-WGAN) was designed to reconstruct/synthesize realistic ECG signals
from PPG signals, the results demonstrate the model’s potential for providing a paradigm shift in
telemedicine by bringing ECG based clinical diagnoses of cardiovascular disease to individuals via
simple PPG assessment by wearables [11]. The synthesis of ECG waveforms from PPG signals using
the P2E-WGAN approach has several potential applications and implications for clinical practice and
medical device development such as enabling wearable devices equipped with PPG sensors to
potentially provide continuous and long-term monitoring of ECG signals in daily life settings leading
to the development of intelligent healthcare systems for clinical diagnoses of cardiac diseases and
anomalies in real time through machine learning and cloud computing.

In another study, authors introduced a non-invasive and cost-effective method for detecting
coronary artery disease (CAD) through photoplethysmography (PPG), suitable for at-home
monitoring. The analysis focuses on extracting distinguishing features from the time domain of the
PPG signal and its second derivative. CAD patients were classified using a Support Vector Machine-
based classifier. The study evaluated the approach using ICU patient data from the MIMIC-II dataset
and achieved a sensitivity of 85% and a specificity of 78% in identifying CAD patients [12]. A study
conducted on time-domain features from PPG signals to differentiate between subjects with and
without diseases using various classification methods. The study evaluated ten metrics from the
confusion matrix, and the Boosted Trees classifier outperformed others, achieving an accuracy of
94%, sensitivity of 95%, specificity of 95%, and precision of 97% [13].

The UCI dataset repository was utilized to extract ECG features for use in a study that focused
on heart failure prediction using the multi-criteria weighted vote-based classifier. The experimental
outcomes validate the efficacy of the proposed ensemble classifier in handling a wide range of
attribute types, with a notable high diagnostic accuracy of 87.37%. Furthermore, the classifier
demonstrated impressive sensitivity at 93.75%, specificity at 92.86%, and an F-measure of 82.17%.
These findings underscore the potential of this classifier as a valuable tool for accurate and
comprehensive heart disease prediction [14]. A cross-domain joint dictionary learning (XDJDL)
framework for synthesizing ECG waveforms from PPG signals was suggested in a study, the
experimental results demonstrated the possibility of providing an affordable preliminary diagnosis
screening from PPG signals and long-term, user-friendly ECG monitoring to help with early
identification and screening for specific heart illnesses [15]. A Heart Disease Prediction System
(HDPS) was developed aimed at assisting medical practitioners in diagnosing heart diseases. The
system selects 13 relevant features from clinical data, constructs an artificial neural network based on
these features, and creates a user-friendly interface. The HDPS offers output through various means,
including ROC curve displays, execution time, accuracy, sensitivity, and specificity. Impressively,
the HDPS achieved an 80% classification accuracy, indicating its potential as a valuable tool for heart
disease diagnosis [16]. The detrended fluctuation analysis (DFA) method was used by Kamath et al.,
[17] to compute the short-term (20 s) ECG segments for CHF and normal hearts. The method
produced 98.4% and 98% average sensitivity and specificity rates, respectively.

This study bridges a notable research gap by introducing a novel approach that integrates PPG
and ECG signals for heart failure assessment. While previous studies have traditionally analyzed
these signals independently, our innovative methodology leverages their combined power, offering
a comprehensive evaluation of cardiac health. This approach not only enhances diagnostic accuracy
but also holds the potential to detect heart failure at an earlier stage, promising to transform the field
of cardiac healthcare. The contribution of this paper can be summarized in the following three points:
*  This paper introduces an innovative approach by integrating Photoplethysmography (PPG) and

Electrocardiogram (ECG) signals for heart failure assessment. This integration leverages the

unique strengths of both non-invasive monitoring methods to enhance diagnostic accuracy and

enable early detection of heart failure.

¢ The study underscores the clinical relevance of this integrated approach, emphasizing its
potential to improve patient care, offer personalized treatment plans, and reduce healthcare
costs. By preventing advanced heart failure complications, it has the potential to generate
substantial cost savings for healthcare systems.
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*  The significant improvements achieved by the proposed integrated method in contrast to the
results obtained from individual ECG and PPG signals underscore the potency of combining
these two modalities. This not only enhances diagnostic accuracy but also highlights the
potential for early detection in the assessment and management of heart failure.

The rest of this paper follows this structure: The study's methodology, which includes data
collecting, signal processing, feature extraction, feature importance analysis and selection, and
classification is covered in detail in Section 2. Section 3 is dedicated to presenting the outcomes and
discussions of various classification models and distinct feature sets. Finally, Sections 4 provide an
in-depth exploration of the strengths and limitations of this work, while Section 5 offers a
comprehensive conclusion that highlights the clinical relevance of our study's findings.

2. Materials and Methods

The foundational block diagram of our proposed approach for heart failure assessment is shown
in Figure 2, which involves the integration of PPG and ECG signals and employs machine learning
algorithms for classification. The methodology encompasses the following steps: i) Acquisition of
ECG and PPG signals as the primary inputs of the algorithm ii) preprocessing the ECG and PPG
signals which include denoising and eliminating artefacts iii) extraction of informative features from
the preprocessed signals iv) normalization of the dimension of the extracted features v) feature
importance analysis and selection, vi) Partitioning and classification of the data; and, ultimately, vii)
Comparative evaluation with prior research and studies. The subsequent subsections go into further
depth about each of these blocks.
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Figure 2. General Framework/Architecture of the Proposed Study.

2.1. Dataset and Signal Pre-processing

The data utilized in this research were sourced from the MIMIC-III (Medical Information Mart
for Intensive Care) database, a comprehensive repository containing information from a large cohort
of Intensive Care Unit (ICU) patients [18]. We obtained proper consent for data extraction from
MIMIC-III for research purposes, as indicated by Record ID 51903504, and adhered to ethical
guidelines by completing the web-based training course provided by the National Institutes of Health
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Protecting Human Research Participants. The dataset for this study, comprising a total of 1636
instances, included 682 patients with 25 types of heart failure were extracted using ICD-9 codes (Table
1) and 954 control subjects. The inclusion criteria involved patients aged 20 years or older at the time
of ICU admission. Exclusions were made for patients below this age, those lacking an ICU record, or
missing data for echocardiography or photoplethysmogram. The mean age of the included patients
was 53.5 + 9.9 years, with 40.95% being women and 59.05% men.

Three main sources of interference are generally endangering to the quality of the ECG signal:
A) The power-line noise at 50 or 60 Hz, which makes up the majority of the noise power in these
signals and is essentially stationary. B) The signal's base-line wandering, which is referred to as the
breathing artefact and manifests as a low-frequency component in the time domain. This can cause
analogue circuitry to become saturated or lose some of its effective precision, which can erode the
accuracy of digitalization. C) Non-stationary, high-frequency noises resulting from muscle
contractions. We created a preprocessing block to filter and denoise the signals in order to eliminate
the degrading impacts of noise and artefacts from the raw signals. First, we addressed baseline
wander and motion artifacts by applying a high-pass filter with a cut-off frequency of 150Hz. This
filter effectively removed low-frequency components related to baseline drift and motion artifacts
while retaining the higher-frequency components essential for heart function and cardiac event
analysis. Notably, recordings with abnormalities or noise, such as missing peaks, pulsus bisferiens,
no signal (sensor-off), etc., were excluded. The retained signal fragments had more than 30000 points,
equivalent to 4 minutes of data at a 125 Hz adoption rate.

Table 1. Classes of HF in the study and the corresponding ICD-9 codes.

ICD-9 codes Name

39891 Rheumatic heart failure (congestive)

40201 Malignant hypertensive heart disease with heart failure

40211 Benign hypertensive heart disease with heart failure

40291 Unspecified hypertensive heart disease with heart failure

40401 Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney

disease stage I through stage IV, or unspecified
40403 Hypertensive heart and chronic kidney disease, malignant, with heart failure and with chronic kidney
disease stage V or end stage renal disease
40411 Hypertensive heart and chronic kidney disease, benign, with heart failure and with chronic kidney disease
stage I through stage IV, or unspecified

40413 Hypertensive heart and chronic kidney disease, benign, with heart failure and chronic kidney disease
stage V or end stage renal disease

40491 Hypertensive heart and chronic kidney disease, unspecified, with heart failure and with chronic kidney

disease stage I through stage IV, or unspecified

40493 Hypertensive heart and chronic kidney disease, unspecified, with heart failure and chronic kidney disease
stage V or end stage renal disease

4280 Congestive heart failure, unspecified

4281 Left heart failure

42820 Systolic heart failure, unspecified

42821 Acute systolic heart failure

42822 Chronic systolic heart failure

42823 Acute on chronic systolic heart failure

42830 Diastolic heart failure, unspecified

42831 Acute diastolic heart failure

42832 Chronic diastolic heart failure

42833 Acute on chronic diastolic heart failure

42840 Combined systolic and diastolic heart failure, unspecified

42841 Acute combined systolic and diastolic heart failure

42842 Chronic combined systolic and diastolic heart failure

42843 Acute on chronic combined systolic and diastolic heart failure

4289 Heart failure, unspecified

2.2. Feature Extraction

Feature extraction constitutes the procedure of uncovering meaningful patterns and insights
within raw data, thereby crafting a more informative representation that refines the accuracy of
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prognosis and diagnosis [19]. In the realm of machine learning and data analysis, feature extraction
revolves around the conversion of input data into a collection of features suitable for utilization as
inputs in models or algorithms. In the present study, MATLAB software (version R2022b), designed
and distributed by MathWorks (Natick, MA, USA), was employed for conducting the feature
extraction process.

The feature extractor block is responsible for extracting three distinct categories of informative
features from both PPG and ECG signals. The features extracted are broadly classified into three
groups: The first category is centered on physiological parameters, including metrics such as
Augmentation Index, Heart Rate, Arterial Stiffness Index, and Heart Rate Variability parameters
(pPNN50, NN50, RMSSD, SDNN), physiological features delve into parameters related to the body's
physiological responses. The second group of features encompasses amplitude-related attributes,
such as Pulse Pressure, Systolic pressure, Diastolic pressure, and P-wave characteristics, these
features provide insights into the signal's strength and intensity. The third category involves interval-
related features, including Peak to peak interval, QRS interval, and RR interval, the interval features
offer information about the durations between specific points within the signal.

In accordance with the physiological underpinnings of heart failure and its relationship with
ECG and PPG signals, we identified and extracted 13 pivotal features. These features encapsulate
essential cardiovascular information and were extracted from both ECG and PPG signals within each
cardiac cycle to facilitate heart failure evaluation. The extracted characteristics are represented
visually in Figure 3, while Table 2 furnishes a comprehensive overview of each feature's class and the
clinical importance/implications. It's essential to highlight that the PPG features extracted in this
study are solely based on the identification of three readily discernible points, specifically the peak
of the first derivative of PPG, foot and peak of the PPG waveform.

Table 2. Summary of the Features and the Clinical Importance/Implications.

Class of Feature Features Information provided
Monitoring these amplitude features
Pulse Pressure over time can provide insights into the
Class 1 Systolic Pressure progression of heart failure and the
(Amplitude features) Diastolic Pressure effectiveness of therapeutic
P-wave interventions aimed at managing

vascular resistance.
Changes in these intervals can indicate

. alterations in cardiac function and
Peak to peak interval

QRS interval
RR interval

Class 2
(Interval Information)

hemodynamics associated with heart
failure. Researchers can gain insights
into the pathophysiology of heart failure
and assess the severity of the condition.
Augmentation Index
Class 3 HRV Parameters (pNN50, NN50,
(Physiological features) RMSSD, SDNN)
Heart Rate

They offer insights into heart function,
blood flow, arterial stiffness, and
autonomic nervous system activity.
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Figure 1. Visual representation of the extracted features: (a) Visual representation of features
extracted from a single ECG signal; (b) Visual representation of features extracted from a single PPG
signal.

The morphological changes in cardiovascular features serve as indicators of structural or
functional irregularities in the heart. In individuals with chronic heart failure (CHF) and acute
myocardial infarction (AMI), heart rate variability in the time domain provides valuable prognostic
information. Key parameters include the standard deviation of normal beat intervals (SDNN) and
PNND50, representing the percentage of adjacent NN intervals differing by more than 50ms. A SDNN
value of less than 50 ms or pNN50 lower than 3% is indicative of high risk, 50 to 100 suggests
moderate risk, and a value over 100 ms or a pNN50 greater than 3% is considered normal [20]. The
QRS interval, another predictor of heart failure, generally ranges between 0.06 — 0.12 ms in healthy
individuals. A prolonged QRS interval may indicate delays in the ventricular depolarization process.
The R-R interval, denoting the time between consecutive R waves in the QRS signal, is a critical
parameter for assessing ventricular rate. In healthy individuals, normal ECG values for the R-R
interval typically range between 0.6-1.2 seconds. Prolonged R-R intervals, defined as > 1.5s, are
commonly observed in patients with atrial fibrillation [21].

Pulse pressure, representing the difference between systolic and diastolic blood pressure, and
Systolic pressure, an indicator of pulsatile changes in blood volume due to arterial blood flow,
typically range between 0.5 — 10 mmHg and 80 — 120 mmHg, respectively, in healthy subjects. In heart
failure, the arterial system undergoes changes, leading to increased stiffness. Elevated Augmentation
Index values are indicative of increased wave reflections, reduced arterial compliance, and impaired
vascular function, all of which are associated with heart failure. Structural and electrical changes in
the heart can affect atrial function which in turn causes P-wave abnormalities, such as increased
duration or altered shape, may signify atrial remodeling, a common feature in heart failure patients.

Heart rate (HR) also serves as a predictor of cardiovascular, cerebrovascular, and all-cause
mortality [22]. A normal resting heart rate for adults ranges between 60 and 100 beats per minute.
Increased heart rate has been associated with elevated cardiovascular risk and total mortality. The
relationship between increased heart rate and adverse cardiovascular events remains significant even
after adjusting for major cardiovascular risk factors, indicating the independent prognostic value of
heart rate in various populations and clinical conditions.
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Table 3. Features and the Normal Values for a Healthy Adult.

Feature Description Duration Disease Diagnosis
Difference ~ between  the
Atherosclerosis
Pulse pressure systolic and diastolic blood 0.5-10 mmHg . }
Congestive Heart failure
pressure

Indicator of the pulsatile Art iff

rtery stiffness.
Systolic pressure changes in blood volume 80 —120 mmHg Y )
. Heart Failure
caused by arterial blood flow

P-wave Atrial depolarization 0.08 -0.11s Heart Failure

Represents the amplitude of . .
. . . . . . Ischemic heart disease
Diastolic Pressure the signal during the diastolic <80 mm .

. Cardiomyopathy
phase of the cardiac cycle

R ts the durati
epresei’s e GHraion Atrial fibrillation

Peak to peak interval ~ between successive peaks in a 0.6-1.2s .
Heart failure

signal

The interval between two

P 1 atrial fibrillati
RR interval successive R-waves of the 0.6-1.2s aroxysma' amattt r% ation
Congestive heart failure

QRS complex ventricular rate

The  difference  between
Augmentation Index  systolic and diastolic blood 20-80 Heart Failure

pressure

A measure of the number of

times the heart contracts or Heart Failure
Heart Rate 60 - 100 bpm R

beats within a specific time Atrial fibrillation

frame, usually one minute

Ventricular depolarization Heart failure
QRS interval 0.08-0.11s Tachycardia

Acute Coronary Syndrome

Shows how active the .
Heart failure
19 - 48 ms

parasympathetic system is H tensi
NN50 5 25ms yperiension

i i Arrhythmi
pNN50 relative to the sympathetic 5% - 18% rehy mla'
Coronary artery disease

RMSSD

nervous system

2.3. Feature Normalization

To address the scale differences in features extracted from PPG and ECG signals, which
represent distinct heart failure indicators, the study utilized min-max normalization on the entire
dataset. This crucial preprocessing step ensured that all feature values were uniformly scaled within
a range of 0 to 1, preventing analytical inaccuracies and anomalies during model training. The
normalization method employed followed a straightforward mapping equation to achieve this
standardization:

Xnorm = —— 2 (0 )

max(x)—-min(x)

This process not only promotes model stability and efficiency but also mitigates the impact of
outliers, enhancing the reliability of our heart failure evaluation model.
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2.4. Feature Importance Analysis and Feature Selection

The input feature vectors for both PPG and ECG were further reduced using the relief feature
algorithm (ReliefF) [23,24]. The ReliefF algorithm is a filter-style feature selection technique that
estimates weights by taking the nearest neighbor into account. In practical applications, this enhanced
Relief derivative, referred to as ReliefF, is the most frequently utilized version [25]. The study
employed the ReliefF algorithm to further reduce input feature vectors derived from both PPG and
ECG signals. ReliefF is a well-established feature selection method known for its robust performance
in multi-class classification scenarios and its capacity to handle noisy datasets with missing values.
This improved variant, ReliefF, incorporates k nearest neighbors (KNN) from each class to estimate
feature weights, enhancing the accuracy of weight estimation, particularly in noisy dataset settings
[26]. The study initially used the ReliefF algorithm to assess the relevance of features within PPG and
ECG signals separately. This analysis identified key features within each modality for heart failure
assessment, aiding in the determination of which modality (ECG or PPG) offered better
discriminatory power. However, this individual analysis had a limitation in that it might not capture
interactions or synergies between PPG and ECG features. To overcome this limitation, the study
conducted a combined feature importance analysis on a feature set that included both ECG and PPG
data. This holistic approach provided a comprehensive view of feature importance, taking into
account the contributions of both modalities. This comprehensive perspective offered insights into
the significance of individual features within each signal and the collective impact of combining
features from both PPG and ECG. Ultimately, this holistic view shed light on the roles of each
modality and highlighted the potential advantages of integrating them in the context of heart failure
evaluation.

The analysis of ECG data illuminates the pivotal role played by several key features as
discriminators among different classes, particularly in individuals with heart failure. The heartbeat
feature, reflecting the frequency of heartbeats, serves as a fundamental indicator of cardiac activity,
with deviations signaling disruptions in pumping function. The RR interval, indicative of the time
between successive R-peaks, offers insights into heart rate variability, highlighting irregularities in
cardiac rhythm. The QRS interval, representing ventricular depolarization duration, provides
information on the heart's electrical conduction system. Features such as RMSSD, SDNN, and
PNN50, which gauge short-term variability, overall variability, and the percentage of significant
variations, respectively, offer crucial information on autonomic function and cardiovascular
regulatory mechanisms. Altered patterns in these features among individuals with heart failure
contribute to a comprehensive understanding of the physiological changes associated with the
condition. The examination of feature importance derived from PPG signals accentuates the clinical
relevance of Systolic Pressure, Diastolic Pressure, Peak-to-Peak Interval, and pulse pressure in the
PPG waveform for heart failure assessment. These features bear intricate connections to heart
function. In the realm of heart failure, where cardiac function is frequently compromised, alterations
in the morphology of these features serve as indicative markers of the physiological changes
associated with the condition. Systolic pressure, representing the maximum arterial pressure during
systole, and Diastolic pressure, indicating the minimum arterial pressure during diastole, offer a
comprehensive view of blood pressure dynamics. The Peak to Peak Interval captures variations
between consecutive peaks, reflecting the pulsatile nature of blood flow. Pulse Pressure, as a
fundamental feature in the PPG waveform, provides information about the strength and regularity
of the pulsatile signal. Comprehending the subtle variations in these characteristics greatly enhances
the clinical applicability of PPG-based assessments by contributing to the nuanced assessment of
heart failure. The above selected features for PPG (4 features) and ECG (6 features) were used for
classifications involving the analysis of independent signals.
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Figure 4. Feature Importance Score for ECG and PPG signal using ReliefF algorithm.

The feature selection process for the integration of PPG and ECG signals involved a meticulous
examination of absolute values to identify features of substantial significance in the context of heart
failure assessment. From the initial pool of extracted features, a refined set of ten (10) features was
selected. Notably, Systolic Pressure, Diastolic Pressure, Peak to Peak Interval, NN50, pNN50, P-wave,
Heart Rate, QRS Complex, RR Interval, Pulse Pressure, and Augmentation Index emerged as pivotal
contributors to the classification task. The consideration of absolute values was paramount, ensuring
a comprehensive evaluation of these features and capturing the essential dynamics of the
cardiovascular system. These selected features exhibit notable clinical relevance, aligning with
established physiological indicators of heart failure. ReliefF played a key role in highlighting their
importance, emphasizing their ability to distinguish patterns associated with heart failure. The
chosen features contribute to the overall effectiveness and clinical relevance of the heart failure
assessment model, enhancing its interpretability and accuracy in classifying instances of the
condition.

Feature importance scores sorted using ReliefF algorithm
T T T T T

Features
T

1 1 1 1 1 1 1 1
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Importance scores

Figure 5. Importance score for Combined Features from PPG and ECG Signals.
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2.5. Data Partitioning and Classical Machine learning

Data partitioning is a crucial step in supervised machine learning, aiding in the training,
optimization, and validation of predictive models. Various techniques exist for partitioning datasets
into subsets, each suited to different dataset sizes. In this study, the datasets (n = 1636) was split into
75% (1227) train and 25% (409) test sets. The intentional design of the control group with a larger
sample size aimed to provide a more balanced representation of the real-world distribution,
enhancing the reliability and accuracy of our analysis. To ensure the model's stability and
generalization, a 10-fold cross-validation (CV) procedure was applied to the training data before
model optimization. During this process, the training data was divided into ten equal-sized 'folds.’
The model was trained and validated ten times, with each fold taking turns as the validation set while
the others were used for training. By evaluating the model's performance across different training
data subsets, this method helped prevent overfitting. Also an extensive hyper-parameter tuning to
optimize the model's performance while guarding against overfitting and under-fitting was done.
The utilization of cross-validation strategy mentioned earlier and ensemble methods further
contributed to the robustness of our model. Our commitment to avoiding over-parametrization was
manifested in the comprehensive evaluation of various training aspects, emphasizing a balanced
trade-off between model complexity and generalization. This meticulous approach allows for a fair
and reliable comparison between the integrative and single-input models. The performance of the
resulting model was evaluated on a different test set, giving an assessment of its generalization to
completely unknown data.

In this study, Nine (9) machine learning algorithms were implemented for classification and
performance analysis using the Weka software. Weka (Waikato Environment for Knowledge
Analysis) is a cross-platform open source, renowned for its popularity in the realm of machine
learning. Developed by the University of Waikato, this Java-based software offers a versatile platform
for various data analysis and machine learning tasks [27].
¢ Random Forest (RF): Random Forest (RF) stands out as a well-known nonparametric tree-based

supervised machine learning method, proficient in handling classification and regression tasks

[28]. RF algorithms create numerous machine learning models and consolidate their results to

arrive at more robust decisions or estimations than what individual models could achieve in

isolation [28]. In comparison to various other machine learning techniques, RF offers distinct
advantages. The base estimators within a random forest are trained independently, reducing the

training process required for these models [29].

e Adaptive Boost (Adaboost): AdaBoost represents yet another powerful ensemble learning
technique applicable to both classification [30]. This appraoch operates by amalgamating
multiple weak learners, which individually perform sub-optimally, into a robust learner [31].
AdaBoost is particularly suitable for scenarios with a large number of features, efficiently
selecting the most informative ones. Additionally, it effectively addresses class imbalance by
adjusting training sample weights, ensuring fair attention to both positive and negative cases
during training.

¢ Naive Bayes: Naive Bayes classifiers employ Bayes' probability theorem for data classification.
They make an assumption that all features are independent of each other, even though this
assumption is simplified, which is why they are referred to as 'naive.' Bayes' rule calculates the
probability of an event based on its relationship with another variable, with a basic
representation as follows:

P(Cilx)=%§(co,P(x) #0 )

Naive Bayes is computationally efficient, suitable for large datasets and real-time applications.
e  Decision Tree (DT): Decision Trees are an intuitive, tree-like structured, non-parametric

approach used for classification. To prevent overfitting, Decision Trees use pruning techniques
to simplify the tree structure. They accommodate both categorical and numerical features,
necessitating minimal data preprocessing and displaying proficiency in handling missing
values. This robustness in the face of missing data is especially valuable for real-world situations
where data incompleteness and noise are common.
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e  Support Vector Machine (SVM): SVM accomplishes classification by identifying the optimal
hyperplane that improves the gap between classes [32]. In the case of combining non-invasive
signals like PPG and ECG, the resulting feature space can be complex and high-dimensional.
SVM can handle such data by finding an optimal hyperplane that maximally separates the
different classes, even in high-dimensional feature spaces. This capability allows SVM to capture
complex relationships and patterns in the data, which can be crucial for accurately classifying
heart failure patients.

e K-Nearest Neighbors (KNN): KNN classifies data points by taking a vote based on the class
types of their k nearest neighbors in multi-dimensional space. This localized approach is
advantageous in scenarios where nearby data points hold significant influence. In the context of
heart failure evaluation, KNN can uncover subtle patterns in PPG and ECG signals, aiding in
diagnosis. In its basic form, KNN assigns a class depending on the largest class within the k
nearest neighbors.

e  Multilayer Perceptron (MLP): MLPs are a class of feedforward neural networks [33]. MLPs excel
at modeling complex, nonlinear data relationships but require careful design of architecture,
including hidden layer count, neuron numbers, and activation functions for optimal
performance. It can be applied in a range of domains including image and speech recognition,
natural language processing, and medical diagnosis, showcasing their versatility in machine
learning [34,35].

e Random Tree (RT): In practice, Random Tree algorithms offer a good balance between
simplicity and performance and are a valuable tool for various machine learning tasks [28]. The
Random Tree algorithm is built on the foundation of decision trees, which are known for their
ability to recursively partition data into subsets based on feature values. However, Random
Trees introduce an element of randomness into the decision tree construction process through
random feature selection and Bootstrap Aggregating (Bagging).

e Bayesian Net (BayesNet): Bayesian Network is a probabilistic graphical model widely used for
various machine learning tasks, especially in fields like healthcare, finance, and natural language
processing. It's based on Bayesian probability theory and graph theory, offering a compact and
intuitive way to represent complex probabilistic relationships among variables. The
effectiveness of BayesNets in managing uncertainty is one of its main advantages.BayesNets
offer interpretable results, allowing you to understand how variables influence each other. This
is crucial for decision-making in sensitive areas like healthcare.

Each machine learning algorithms mentioned above were implemented in this study based on
its specific strengths and suitability for the study's goals, including handling complex features,
dealing with noisy data, and providing insights into feature importance or relationships within the
dataset, also the combination of these diverse algorithms allows for a comprehensive evaluation of
heart failure using the extracted PPG and ECG features. The Table below gives tabular representation
of this selection rationale

Table 4. Summary of Machine Learning Algorithms and their Selection Rationale.

Algorithm Strength’s Reasons for selection
SUM ¢  Effective in high-dimensional Chosen for its ability to handle
(Support Vector spaces complex feature spaces and its
Machine) Works well with complex datasets effectiveness in classification tasks.
*  Good generalization capabilities [36,37]

*  High predictive accuracy . s
e Handles both numerical and Selected for its robustness and ability

Random Forest to deal with noisy data, which is

t ical dat
categorica a.a. common in medical datasets [28,29].
*  Reduces overfitting

Employed for its simplicity and
K-nearest Neighbor ¢  Simple and intuitive adaptability in classifying data points
(KNN) * Non-parametric and adaptable based on their proximity to neighbors
[38—40].
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Utilized for its robustness and

e E bl thod bini
nsemble method combimng versatility in handling various data

decision trees .
Random Tree types and potential for accurate

. IEZ:;: Eizzsrg:t?f os classification and can handle missing
yp values efficiently [41-43].

* Sequential ensemble learning Chosen for its ability to improve
Combines weak learners for a  model accuracy by sequentially
AdaBoost . . .
stronger model learning from previous models
* Good at handling imbalanced data mistakes [30,43].

Employed for its ability to model

Probabilistic graphical model complex relationships and

Good for modeling dependencies
among variables

BayesNet (Bayesian :
Network) dependencies between features in
medical data [44,45].

Selected for its simplicity and

.. ¢ Intuitive and easy to understand interpretability, making it useful for

Decision Tree s C .

¢ Interpretability gaining insights into feature
importance [46,47].

Chosen for its efficiency in handling

¢ Simple and computationally efficient datasets with limited samples and has

NaiveBayes ¢ Performs well with limited data a short computational data training
time [48,49].
¢ Deep learning architecture Adopted because of its deep
MLP (Multilayer ¢ Can model complex non-linear  architecture, which enables it to
Perceptron) relationships recognize complex connections and
* Suitable for large datasets trends in the data [50,51].

3. Results and Discussion

As previously described, the evaluation of each model involves a 10-fold cross-validation (CV)
of dataset samples, ensuring that there is no overlap between the training and test data. To assess the
classification performance, precision, recall, accuracy, and F-measure were computed using the
following metrics:

TP +TN

Accuracy = W o
Specificity= T "

Sensitivity (*Recall*) = T 5

F1-Score= 2 Recall * Precision) o

Recall + Precision
In this context, TP denotes a set of correctly identified test results, FP represents a set of test

results incorrectly identified, TN signifies a set of correctly rejected test results, and FN stands for a
set of test results incorrectly rejected. For this study, we computed and compared the results from a
single ECG signal and a single PPG signal with the results obtained from the integration of both PPG
and ECG signals for heart failure evaluation.

3.1. Result from Classification with Features Extracted from Single PPG Signal

The features extracted from the PPG signals were employed to compute the performance metrics
using the various machine learning algorithms discussed in the previous section. PPG signals
inherently capture dynamic alterations in blood volume and vascular attributes, thus providing
distinctive insights into cardiovascular health from an alternative vantage point. The outcomes of this
approach were highly promising, as evident below.
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AUC and F1-score) with features extracted from single PPG signal.
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From the figure above, Random Forest stands out as the top performer with an impressive
accuracy of 97.10%, sensitivity of 97.05%, specificity of 96.88%, precision of 96.28%, AUC value of
97.20% and F1-score of 96.66% indicating its strong ability to correctly classify individuals with and
without heart failure. It also excels in sensitivity, specificity, precision, and AUC, demonstrating its
comprehensive effectiveness in evaluating heart failure. While Random Forest takes the lead, it's
worth noting that other models, such as Support Vector Machine (SVM), K-Nearest Neighbor, and
Decision Tree, also deliver commendable performances with accuracies ranging from 93% to 96%.
However, Random Forest consistently outperforms these alternatives in most performance metrics,
reinforcing its position as the optimal choice for heart failure classification.
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3.2. Result from Classification with Features Extracted from Single ECG Signal

The result presented in the figure below shows the various machine learning models'
performance obtained from the classification of features extracted from a single ECG signal.

In Figure 7 (below), the findings prominently highlight the exceptional performance of the multi-
layer perceptron (MLP), a feedforward artificial neural network characterized by its multiple layers
of interconnected nodes. It showcases the highest accuracy at 96.40%, underscoring its impressive
capability in accurately discerning individuals with and without heart failure. Furthermore, the MLP
model excels across various evaluation metrics, including sensitivity (96.70%), specificity (96.00%),
precision (95.30%), and F1-Score (95.60%). These results signify its comprehensive effectiveness in
classifying heart failure cases with precision. Notably, other models such as K-nearest neighbor,
AdaBoost, and Random tree also deliver commendable performances, achieving accuracies in the
range of 84% to 92%. These models exhibit a balanced trade-off between sensitivity and specificity,
demonstrating their ability to identify heart failure cases while keeping false positives at a minimum.
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Figure 7. Classification performance (Specificity, Sensitivity, accuracy, precision, AUC and F1-socre)
with features extracted from single ECG signal.
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3.3. Result from classification of integrated features extracted from PPG and ECG signals.

Integrating ECG and PPG signals offers a significant advantage, as it harnesses the wealth of
complementary information they provide. ECG, being a gold standard for assessing heart rate and
rhythm irregularities, is adept at capturing electrical activity. On the other hand, PPG captures
changes in blood volume and vascular characteristics, offering insights into cardiovascular health
from a different perspective. By combining these signals, we amalgamate intricate details of the
circulatory system, resulting in a more holistic evaluation that transcends the limitations of
individual signals. The result obtained from the classification of the novel approach of combining
these signals is represented below.

Table 5 (above) shows the comparison of these evaluation/performance metrics on the selected
machine learning models. From displayed result, Support vector machine model outperforms other
machine learning models. The evaluation/performance metrics; Accuracy, sensitivity, specificity,
precision, AUC and F1-score obtained are 98%, 97.60%, 96.90%, 97.20%, 98.40%, and 97.70%. Figure
6 displays the radar plot of these performance metrics achieved in the various machine learning
algorithms.

Table 5. Performance of various machine learning models for heart failure (HF) classification with the
integration ECG and PPG signals.

Model Performance Metrics

Accuracy Sensitivity Specificity Precision AUC (%) F1-Score

(%) (%) (%) (%) (%)
SVM 98.00 97.60 96.90 97.20 98.80 97.70
Random Forest ~ 96.80 96.70 96.90 96.20 99.60 96.40
K-NN 94.90 79.30 95.70 94.80 95.30 86.20
Random Tree 96.90 96.70 96.80 96.20 96.80 98.50
AdaBoost 96.90 96.80 96.80 85.10 99.60 91.87
BayesNet 95.50 95.70 95.50 94.60 96.80 95.20
Decision Tree 96.00 95.70 96.40 95.70 96.80 95.70
NaiveBayes 91.20 91.30 91.00 89.40 95.20 90.30
MLP 96.50 96.80 96.50 95.70 99.80 96.30

3.4. Comparison OF Results Obtained

Performance metrics obtained from this novel approach of the integration of the PPG and ECG
signal was also tested and compared to the results gotten from the performance of PPG and ECG
signals independently. Figures 6 and 7 illustrate the performance results obtained from the
classification performed on these signals independently.

In comparison with the performance result obtained from the integration of these features, it is
evident that the integration of these signals for heart failure study provides a unique insights into
cardiovascular health from an alternative vantage point.
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Figure 8. Classification performance (accuracy, precision, sensitivity, specificity, f1-score and AUC)
of various machine learning algorithms on single signals and on integrated features from signals.

The table above and figure demonstrates the comparison between the results obtained from the
analysis of the integration of PPG and ECG signals versus the results obtained from the ECG and
PPG signals in isolation. When PPG data was considered in isolation, the Random Forest model
emerged as the top performer, achieving an accuracy of 97.10%. This model demonstrated
remarkable sensitivity, specificity, precision, and an F1-Score, all hovering around the 96-97% range.
These metrics collectively indicated its strong potential for accurate heart failure classification.

In contrast, the ECG data was effectively evaluated using the MLP (Multilayer Perceptron)
model, yielding an accuracy of 96.40%. While its accuracy was slightly lower than that of PPG, MLP
exhibited a well-balanced trade-off between sensitivity and specificity, making it a valuable
contender in heart failure assessment.

It can also be noted that the result obtained from using the PPG signal outperformed the result
from using only the ECG signals, this can be attributed to some factors such as PPG signals being less
susceptible to interference from electrical sources and electronic equipment compared to ECG, This
characteristic ensures that PPG measurements remain reliable and consistent in various
environments, this is particularly beneficial in settings where electrical interference may be present,
allowing for dependable monitoring and accurate assessment of heart failure without external
disruptions. Also, PPG excels in evaluating peripheral hemodynamics, offering valuable insights into
blood circulation beyond the heart, it effectively measures changes in blood volume in peripheral
blood vessels, shedding light on the efficiency of circulation and peripheral perfusion. Given that HF
often affects peripheral blood flow, this capability is pivotal for understanding the broader
cardiovascular dynamics associated with the condition. Also, in terms of motion tolerance, PPG's
resilience to motion artifacts is a notable advantage, particularly for individuals with heart failure.
Patients with HF may experience limited mobility or discomfort, and PPG's ability to maintain
measurement accuracy even during subtle movements ensures that vital data can be reliably
collected. This motion tolerance enables continuous monitoring without undue disruption, a crucial
aspect in assessing HF patients' condition.

However, the most notable findings arose from the integration of both PPG and ECG signals,
where the Random Forest model demonstrated exceptional performance. This integrated approach
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resulted across various evaluation metrics, including accuracy (98.00%) sensitivity (97.60%),
specificity (96.90%), precision (97.20%), AUC (97.70%), and F1-Score (98.40%), suggesting that the
combination of these signals significantly enhanced the model's capability for heart failure detection.
Moreover, an outstanding AUC of 97.70%, indicates a superior ability to discern heart failure cases
while minimizing false positives.

These outcomes highlight the potential of integrating PPG and ECG data for more accurate heart
failure assessment. These results reveals superior performance compared to the use of these signals
independently. Particularly, when assessed using the Random Forest model, the integrated approach
exhibited exceptional accuracy and overall effectiveness, highlighting its potential significance in
heart failure evaluation.

3.5. Comparison with Other Works

The performance of the proposed approach was also assessed in comparison to prior studies
that independently employed ECG and PPG for various applications. Our findings indicate that the
proposed method exhibited superior performance when contrasted with these studies, which
separately utilized ECG and PPG modalities for their distinct analyses. The results of this
comparative analysis are detailed in Table 6 below.

Table 6. Comparison between the best performing models from isolated signals Vs performance from
the integration of both signals.

Model Performance Metrics
Accuracy Sensitivity Specificity Precision F1Score AUC
(%) (%) (%) (%) (%) (%)
PPG Random 97.10 97.05 96.88 96.28 97.20 96.66
Forest
ECG MLP 96.40 96.70 96.00 95.30 95.90 95.60
SVM 98.00 97.60 96.90 97.20 98.40 97.70

Integration

From the result below (Table 7), In comparison to previous ECG-focused studies, the current
study achieved a high performance metrics ranging from 96.40%, 96.70%, 96.00%, 95.130% and
95.90%. Notably, the Multi-layer Perceptron (MLP) model in the current study outperformed the
majority of previous ECG-based studies in terms of accuracy, sensitivity, Specificity, and precision.

For PPG analysis, the current study achieved high accuracy, Specificity, and Sensitivity, with
values ranging from 96.88% to 97.10%. These results outperform several previous PPG-focused
studies in terms of accuracy, sensitivity and specificity. The Random Forest (RF) model stood out
with the highest accuracy.

The integration of PPG and ECG signals in the current study demonstrated promising results,
with accuracy ranging from 91.20% to 98.00%. These results surpassed the majority of both ECG and
PPG-focused studies, indicating that the combination of these signals provides a substantial benefit
in heart failure assessment. The Random Forest (RF) model achieved the highest accuracy in this
integrated approach, further emphasizing its effectiveness in comprehensive heart failure evaluation.

Table 7. Comparison of Results obtained with existing Literature.

Author Dataset Signal Features Algorithm Acc. Sens. Spec Pre.  F1Score
extracted (%) (%) (%) (%)
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Simge et UCI ECG Chol, trestbps, Cubic SVM 52.3
al. [52] 300 fbs, restecg, Linear SVM 67.3 - - - -
slope DT 67.7
Ensemble 67.0
Ali et al. UCI ECG RestECG, KNN 80 75 80
[53] Trestbps, SVM 83 - 77 82 -
Chol, fbs NaiveBayes 84 80 83
Shouman CHDD ECG Chol, trestbps, GRDT 79.1 75.6 81.6 - -
et al [54] fbs, restecg NaiveBayes 83.5 78.0 80.8 - -
KNN 83.2 76.7 85.1 - -
Tu et al. CI Chol, trestbps, Bagging 81.41 74.93 86.64 - -
[55] ECG fbs, restecg DT 7891 72.01 84.48 - -
Bashir et CHDD ECG Chol, trestbps,  Ensemble 81.82 73.68 92.86 - 82.17
al. [56] 303 fbs, restecg NaiveBayes 78.79 68.49 92.86 - 73.61
DT 76.57 63.58 71.24 - 71.51
SVM 86.67 73.68 79.51 - 65.10
Pal et al. 50 PPG Crest-time, BT 94 95 5 96
[13] Augmentation SVM 85 83 87 97 87
index, pulse KNN 83 79 82 83 89
pressure, LR 83 83 85 97 85
SA/DA 82
Banerjee et  MIMIC PPG Systolic SVM
al. [57] II peak,NN- - 82 88 - -
112 interval HRV
Paradhker ~ MIMIC Augmentation SVM
et al. [58] 1I PPG index, - 85 78 - -
55 stiffness index
Current MIMIC  ECG QRS interval,
Study II1
1636 RR-nterval, MLP 96.40 96.70 96.00 95.3 95.90
HRV, Heart 0

Rate, P-wave

S.P, NN-

interval, D.A,
PPG RF 97.10 97.05 96.88 91.2 96.66

P.A Al 0
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Integration of PPG and SVM 98.00 7.60 96.90 97.70

ECG signal 97.2

Note: Acc.: Accuracy, Spec.: Specificity, Sens.: Sensitivity, Pre.: Precision, KNN.: K-nearest Neighbor, BT.:
Boosted Tree, SVM: Support Vector Machine, MLP.: Multi-layer Perceptron, LR.: Logistic Regression, DT.:
Decision Tree, RF.: Random Forest, RT.: Random Tree. GRDT.: Gain ratio decision tree, CHDD.: Cleveland Heart
Disease Dataset. S.A; Systolic Pressure, D.P; Diastolic Pressure, P-to-P; peak to peak amplitude, P.P: Pulse
Pressure.

4. Limitations of the Study

Despite its merits, the integration of PPG and ECG signals faces several limitations. The quality
and availability of PPG and ECG data can vary, impacting the reliability of the approach. Technical
expertise is required for implementing and interpreting this integrated approach, which may not be
readily available in all healthcare settings. Access to the necessary equipment for data collection can
be limited in certain healthcare facilities, particularly in resource-constrained settings. Additionally,
PPG and ECG signals are sensitive to motion artifacts and environmental interference, which can
affect data quality. The generalization of this approach to diverse populations and clinical settings
may necessitate further validation. Moreover, the handling of patient data raises concerns about data
privacy and security, and the associated costs of equipment and expertise need to be considered by
healthcare facilities.

5. Clinical Application Prospect, Future Work and Conclusion

This study presents substantial clinical relevance, by combining the unique strengths of these
non-invasive monitoring methods, healthcare providers can significantly enhance the accuracy and
timeliness of heart failure diagnosis. The results obtained from our study demonstrate the significant
potential benefits of integrating PPG and ECG signals for heart failure evaluation. With an impressive
accuracy of 98%, sensitivity of 97.60%, specificity of 96.90%, and precision of 97.20%, the integrated
approach outperforms the results obtained from individual ECG and PPG signals. These findings
suggest that the integrated approach holds promise for early, precise, and non-invasive diagnosis of
heart failure. The high sensitivity implies effective identification of individuals with heart failure,
contributing to early intervention and improved patient outcomes. This non-invasive evaluation
method not only enhances patient care through timely diagnosis but also has the potential to reduce
healthcare costs by enabling more targeted interventions. Furthermore, the accurate classification of
heart failure cases paves the way for personalized treatment strategies, tailoring medical
interventions based on individual patient needs. Overall, our study provides compelling evidence
supporting the potential benefits of integrating PPG and ECG signals for heart failure assessment,
aligning with the envisioned advantages mentioned in the abstract.

Moreover, the non-invasive nature of PPG and ECG signals allows for telemedicine and remote
monitoring, enhancing patient accessibility and addressing healthcare challenges in remote areas. It
also has the potential to reduce healthcare costs by preventing advanced heart failure complications.
Additionally, this integrated approach fosters ongoing research and development in cardiac
healthcare, promising advanced diagnostic and monitoring tools. In summary, the integration of PPG
and ECG signals has the potential to revolutionize heart failure diagnosis and management, offering
early detection, personalized care, cost savings, and improved patient outcomes.

However, it is importance to note that the exploration of deep learning methods stands as a
potential avenue for future research, balancing advancements with the unique demands of
interpretability in medical applications. With the development of deep learning and other algorithms
that need high computing power, it’s learning capacity to automatically learn intricate features from
data could be advantageous, which not only enable the analysis process no longer to require a feature
extraction with hand-crafted techniques, but also have great advantages in accuracy and robustness



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2024 d0i:10.20944/preprints202402.1067.v1

21

particularly given sufficient training data. However, we emphasize the importance of interpretability
in the medical domain and the challenges associated with acquiring extensive labeled datasets.

Author Contributions: O.V and D.X contributed to the study's design and shared the responsibility for
composing the initial draft of the manuscript. W.W and C.Y were actively engaged in the manuscript revision
process, providing critical input, and giving their approval for the final version.

Funding: This work was supported in part by National Natural Science Foundation of China (82102178), in part
by the Fundamental Research Funds for the Central Universities (ZYGX2021YGLHO005), and in part by Sichuan
Science and Technology Program (2021YFH0179). The work of Y. Chen was supported in part by Sichuan Science
and Technology Program (2021JDRC0036), and in part by Incubation Program for Innovative Science and
Technology of UESTC (Y03023206100209).

Informed Consent Statement: Not applicable.
Data Availability Statement: The authors do not have permission to share data.

Acknowledgments: In this section, you can acknowledge any support given which is not covered by the author
contribution or funding sections. This may include administrative and technical support, or donations in kind
(e.g., materials used for experiments).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Groenewegen A, Rutten F, Mosterd A, Hoes A. Epidemiology of heart failure. European Journal of Heart
Failure, 2020; 22 (8):1342-1356.

2. An B, Shin ], Kim S, et al. Smart Sensor Systems for Wearable Electronic Devices. Polymers (Basel). 2017,
9(8): 1-41.

3. Roger, Veronique L. Epidemiology of heart failure. Circulation Research, vol. 113, no. 6, pp. 646-659, 2013.

4. Go A, Mozaffarian D, Roger V, et al. American Heart Association Statistics Committee and Stroke Statistics
Subcommittee. Heart disease and stroke statistics--2013 update: a report from the American Heart
Association. Circulation, 2013, 127(1):e6-e245.

5. Yancy C, Jessup M, Bozkurt B, et al. Guideline for the management of heart failure. A report of the
American College of Cardiology Foundation/American Heart Association Task Force on Practice
Guidelines. Journal of the American College of Cardiology, 2013, 62(16):e147-e239.

6. Heart Failure by Maheedhar Gedela, MD; Muhammad Khan , MD; and Orvar Jonsson, MD,
https://www.researchgate.net/publication/283899687.

7. Pielmus A, Osterland D, Klum, M, et al. Correlation of arterial blood pressure to synchronous piezo,
impedance and photoplethysmographic signal features. Current Directions in Biomedical Engineering,
2017, 3(2):749-753.

8. Bruno R, Duranti E, Ippolito C, et al. Different Impact of Essential Hypertension on Structural and
Functional Age-Related Vascular Changes. Hypertension, 2017, 69:71-78.

9. Allen ] (2007) Photoplethysmography and its application in clinical physiological measurement. Physiol
Measur 28(3):R1. http://stacks.iop.org/0967-3334/28/i=3/a=R01

10. Banerjee R, Vempada R, Mandana K, et al. Identifying coronary artery disease from photoplethysmogram.
ACM International Joint Conference 2016, 1084-1088. do0i:10.1145/2968219.2972712

11. Vo K, Kasaeyan N, Emad N, Amir J, et al, ECG waveform synthesis from PPG with conditional
wasserstein generative adversarial networks. 2021. 1030-1036. 10.1145/3412841.3441979.

12.  Paradkar N, Chowdhury S. Coronary artery disease detection using photoplethysmography. Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Annual International Conference, 2017, 2017:100-103.
doi:10.1109/EMBC.2017.8036772

13. Pal P, Ghosh S, Chattopadhyay B, et al. Screening of Ischemic Heart Disease based on PPG Signals using
Machine Learning Techniques [C]. 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Montreal, QC, Canada, 2020, 2020:5980-5983, doi:
10.1109/EMBC44109.2020.9176447.

14. Bashir S, Usman Q, Farhan H. A Multicriteria Weighted Vote Based Classifier Ensemble for Heart Disease
Prediction. Computational Intelligence, 2016, 32(4):615-645, https://doi.org/10.1111/coin.12070. Accessed 5
Sept. 2023.2

15. Tian X, Zhu Q, Li Y, Wu M. Cross-Domain Joint Dictionary Learning for ECG Reconstruction from
PPG.2020. 936-940. 10.1109/ICASSP40776.2020.9054242.

16. Chen A, Huang S, Hong P, Cheng C, Lin E. HDPS: heart disease prediction system. In Computing in
Cardiology. IEEE: Hangzhou, 2022. pp. 557-560.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2024 d0i:10.20944/preprints202402.1067.v1

22

17. Kamath C. A new approach to detect congestive heart failure using detrended fluctuation analysis of
electrocardiogram signals. ] Eng Sci Technol 2015;10 (2):145-59.
https://doi.org/10.1016/j.medengphy.2012.03.001.

18. Moody B, Moody G, Villarroel M, Clifford G, Silva I. MIMIC-III Waveform Database (version 1.0).
PhysioNet, 2020. https://doi.org/10.13026/c2607m.

19. https://www.mathworks.com/discovery/feature-extraction.html (Accessed: February 5 2024)

20. Task Force of the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology (1996) Heart rate variability: Standards of measurement, physiological interpretation
and clinical use. Circulation, 93, 1043-1065. doi:10.1161/01.CIR.93.5.1043.

21. Xu H, Li ], Zhong G, et al. Characteristics of the Dynamic Electrocardiogram in the Elderly with
Nonvalvular Atrial Fibrillation Combined with Long R-R Intervals. Evidence Based Complement Alternate
Medicine, 2021, 2021:4485618. 10.1155/2021/4485618

22. Woodward M, Webster R, Murakami Y, et al. The association between resting heart rate, cardiovascular
disease and mortality: evidence from 112,680 men and women in 12 cohorts. European Journal of
Preventive Cardiology, 2014, 21(6):719-726

23. KiraK, Rendell L. The feature selection problem: Traditional methods and a new algorithm. In: AAAI, 1992,
129-134. https://doi.org/10.5555/1867135.1867155

24. Kira K, Rendell L. A practical approach to feature selection. In: Proceedings of the ninth international
workshop on machine learning (ML92), 1992, 249-256.

25. Urbanowicz R, Meeker M, Cava W, Olson R, Moore J. Relief-based feature selection: Introduction and
review. Journal of Biomedical Informatics, 2018, 85:189-203. https://doi.org/10.1016/j.jbi.2018.07.014

26. Kononenko I. Estimating attributes: Analysis and extensions of RELIEF. European Conference on Machine
Learning, 1994, 784:171-182. https://doi.org/10.1007/3-540-57868-4_57

27. Witten I, Frank E. Data Mining: Practical machine learning tools and techniques, 2nd Edition, Morgan
Kaufmann, San Francisco, 2005.

28. Leo Breiman. Random forests. Machine learning, 2001, 45(1):5-32.

29. Liaw A, Wiener M. Classification and regression by random Forest. R News 2001, 2(3):18-22.

30. Freund Y, Schapire R. Experiments with a new boosting algorithm. In ICML, 1996. 2:148-156.

31. Freund Y, Schapire R, Abe N. A short introduction to boosting. Journal of Japan Soceity for Artificial
Intelligence, 1999, 14:1612.

32.  Corinna C, Vapnik V. Support-vector networks. Journal of Machine Learning, 1995, 20(3):273-297.

33. Kurt H, Maxwell S, Halbert White. Multilayer feedforward networks are universal approximators. Neural
networks, 1989, 2(5):359-366.

34. Bishop C. Neural networks for pattern recognition. Oxford university press, 1995, 1:145-164.

35.  Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. MIT Press Cambridge 2016, 8(11):170-224.

36. Yinglin X. Correlation and association analyses in microbiome study integrating multiomics in health and
disease, Editor(s): Jun Sun, Progress in Molecular Biology and Translational Science, Academic Press, 2016,
(171): 309 — 491. https://doi.org/10.1016/bs.pmbts.2020.04.003.

37. Bhavsar H, Ganatra A. Comparative Study of Training Algorithms for Supervised Machine Learning.
International Journal of Soft Computing and Engineering, 2012, 2, 2231-2307.

38. An Q, Rahman S, Zhou ], Kang J. A Comprehensive Review on Machine Learning in Healthcare Industry:
Classification,  Restrictions, =~ Opportunities and  Challenges. Sensors.  2023;  23(9):4178.
https://doi.org/10.3390/s23094178

39. Duneja, A, Puyalnithi T. Enhancing classification accuracy of k-nearest neighbors algorithm using gain
ratio. Int. Res. J. Eng. Technol 2017, 4, 1385-1388

40. Shouman M, Turner T, Stocker R. Applying k-nearest neighbour in diagnosing heart disease patients. Int.
J. Inf. Educ. Technol. 2012, 2, 220-223.

41. Kulkarni V, Sinha P. Efficient Learning of Random Forest Classifier using Disjoint Partitioning Approach.
Proceedings of the World Congress on Engineering, vol. 2, no. 5, pp.1-5, 2013.

42. Ying Mi. Imbalanced Classification Based on Active Learning SMOTE, Research Journal of Applied
Sciences, Engineering and Technology, vol.5, no.3 ,pp. 944 - 949, 2013.

43. More A, Rana S, Dipti P. Review of random forest classification techniques to resolve data imbalance. 72—
78. d0i:10.1109/ICISIM.2017.8122151.

44. Friedman N, Geiger D, Goldszmidt Moises. Bayesian Network Classifiers. Machine Learning. 29. 131-163.
10.1023/A: 1007465528199.

45. Uusitalo Laura. Advantages and challenges of Bayesian networks in environmental modeling. Ecological
Modelling. 203. 312-318. 10.1016/j.ecolmodel.2006.11.033.

46. Song Y, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai archives of
psychiatry, 2015, 27(2), 130-135. https://doi.org/10.11919/j.issn.1002-0829.215044

47. Vijay K, Bala D. Data Science (Second Edition), Morgan Kaufmann, 2019, Pages 65-163, ISBN 9780128147610,
https://doi.org/10.1016/B978-0-12-814761-0.00004-6.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 February 2024 d0i:10.20944/preprints202402.1067.v1

23

48. De S, Gilberto F, et al. Engineering Systems' Fault Diagnosis Methods. Reliability Analysis and Asset
Management of Engineering Systems, 2021, pp. 165-187, https://doi.org/10.1016/B978-0-12-823521-8.00006-
2. Accessed 16 Dec. 2023.

49. Dulhare U. Prediction system for heart disease using Naive Bayes and particle swarm optimization.
Biomed. Res. 2018, 29, 2646-2649.

50. Akkaya B, Colakoglu N Comparison of Multi-class Classification Algorithms on Early Diagnosis of Heart
Diseases. 2019, 3(1): 261 -311

51. Bikku T. Multi-layered deep learning perceptron approach for health risk prediction. ] Big Data 7, 50 (2020).
https://doi.org/10.1186/s40537-020-00316-7

52. Ekiz S, Pakize E. Comparative study of heart disease classification. 2017 Electric Electronics, Computer
Science, Biomedical Engineerings' Meeting (EBBT) (2017): 1 N/A4.

53. Nassif A, Mahdi O, Nasir Q, Talib M, Azzeh M. Machine learning classifications of coronary artery disease.
In Proceedings of the 2018 International Joint Symposium on Artificial Intelligence and Natural Language
Processing (iSAI N/ANLP),Pattaya, Thailand, 15-18 November 2018; IEEE: New York, NY, USA, 2018; pp.
1-6.

54. Shouman M, Turner T, Stocker R. Integrating Naive Bayes and K-means clustering with different initial
centroid selection methods in the diagnosis of heart disease patients. Computer Science and Information
Technology.

55. Chau T, Dongil S, Dongkyoo S. Effective Diagnosis of Heart Disease through Bagging Approach. IEEE
2nd International Conference on Biomedical Engineering and Informatics - Tianjin, China, 2009, 10:1-4.
doi:10.1109/bmei.2009.5301650

56. Bashir S, et al. A Multicriteria Weighted Vote N/ABased Classifier Ensemble for Heart Disease Prediction.
Computational Intelligence, vol. 32, no. 4, 2016, pp. 615 N/A645, https://doi.org/10.1111/coin.12070.

57. Banerjee R, Vempada R, Mandana K, Choudhury A, Dutta P. Identifying coronary artery disease from
photoplethysmogram. Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing Adjunct 1084-1088. doi:10.1145/2968219.2972712.

58. Paradkar N, Chowdhury S. Coronary artery disease detection using photoplethysmography. Annual
International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in
Medicine and Biology Society. Annual International Conference, 2017, 2017:100-103.
doi:10.1109/EMBC.2017.8036772.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.



