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Abstract: Global warming may increase the potential evapotranspiration (Etp), thereby affecting the 
amount of clean water resources available in a region. In this study, the systematic biases in 
temperature outputs of 24 global climate models (GCMs) under 3 emission scenarios are corrected 
by using 8 bias correction methods. The trend of Etp in Yangzi River Delta in the 21st century is 
projected by using 4 Etp calculation formulas. The uncertainty of the projections is estimated and 
decomposed by using multi-way analysis of variance. The influence of uncertainty on the projected 
change signal is quantified by using the signal-to-noise ratio. The results show that, relative to the 
reference period (1971~2000), the annual mean daily Etp in Yangzi River Delta will increase by 
0.14~0.17mm/d during the period 2021~2050 and by 0.21~0.41mm/d during the period 2061~2090, 
respectively. During 2021~2050, the uncertainty of Etp increase projections is dominantly 
contributed by the main effects of GCM (63%) and Etp calculation formula (24%). During 2061~2090, 
it is mainly contributed by the main effect of GCM (36%), followed by the main effects of emission 
scenario (34%) and Etp calculation formula (18%). The increase projections of Etp are generally 
reliable and robust during the two projection periods. 

Keywords: potential evapotranspiration; temperature; projection; uncertainty; robustness 
 

1. Introduction 

Evapotranspiration is a key physical process related to the water and energy balance in climate 
and hydrological systems, which plays a vital role in studying climate change, water resources 
development and utilization, crop water demand management, drought warning and monitoring, 
etc. The actual evapotranspiration is often invisible and difficult to monitor [1]. Therefore, it is usually 
estimated from the potential evapotranspiration (Etp) through methods based on hydrology, 
micrometeorology, and et al. Etp is the evaporation from an extended surface of the short green crop 
which fully shades the ground, exerts little or negligible resistance to the flow of water, and is always 
well supplied with water [2]. Etp is not only an important measure of atmospheric evapotranspiration 
capacity, but also an important research content of land surface water and energy balance. It is of 
great significance for regional farmland irrigation, drought evaluation, and watershed runoff 
simulation and estimation. Previous studies show that Etp is closely related to air temperature, solar 
radiation, and wind speed [3–7]. However, the Sixth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC) points out that human activities caused global warming [8]. In 
comparison with the period 1850~1900, the global mean surface temperature increased by 0.99 
(0.84~1.10) °C during the period 2001~2020 and by 1.09 (0.95~1.20) °C during the period 2011~2020 
[8]. Global warming may increase the evapotranspiration capacity of the atmosphere, thereby 
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affecting the availability of clean water resources in a region. Therefore, projecting the Etp trend 
under future climate change scenarios is beneficial for adaptation to the adverse effects of climate 
change. 

Predicting the response of Etp to climate change usually takes a ‘top-down’ approach which 
combines the outputs of global climate models (GCMs) with Etp calculation formulas. To describe 
the physical processes in the ocean-atmosphere-land-biosphere-cryosphere system, GCMs are 
constructed according to the Navi-Stoker equation of the rotating sphere [8,9]. It simulates the global 
climate system according to the mass continuity equation, energy conservation equation, state 
equation, and other static approximate equations. Then the global climate change in the next hundred 
years can be projected through GCMs according to the future greenhouse gas and aerosol emission 
scenarios, which is constructed according to the future economic development, population growth, 
science and technology development, and et al. The calculation formulas of Etp usually take air 
temperature, solar radiation, and wind speed etc. as inputs, and calculate the corresponding Etp via 
mathematical models which abstract and generalize the processes in evapotranspiration, making it 
possible to project the Etp response to climate change. However, the projected results of different 
GCMs and Etp calculation formulas usually differ from one another. This means that the Etp 
projections provided by this framework include multi-source uncertainties, which will reduce the 
reliability and robustness of the Etp projections to a certain extent [10]. The estimation and 
decomposition of uncertainty and a further analysis on its main sources can point out the direction 
for reducing the uncertainty of response projection and improving the robustness of this projection. 
At the same time, the adverse influence of uncertainty on the response projection can be evaluated, 
and a reference on the scientific formulation of adaptation policy can be provided. 

Yangzi River Delta (114°53’E, 27°03’N ~ 122°57’E, 35°08’N) is located in the east coast of China, 
covering a land area of 359 thousand km2. There are three provinces (Anhui, Jiangsu, Zhejiang) and 
a municipality (Shanghai) directly under the central government in this delta, formulating one of the 
ten largest city clusters in the word. It is one of the two economic deltas with the most active economic 
development, the highest degree of openness, and the strongest innovation capacity in China. It plays 
a pivotal strategic position in the overall situation of national modernization and all round opening-
up. The developed economic of Yangzi River Delta is closely related to its pleasant climate (with the 
average annual temperature being 16 °C and the average annual precipitation being 1200 mm) and 
abundant water resources (with the first and third largest rivers in China flowing through it). 
However, global climate change has exerted some certain influence on the water resources in Yangzi 
River Delta. For instance, although the precipitation has increased slightly in the past 50 years, the 
total water resources in Zhejiang Province are obviously lower than the annual average since the 21st 
century due to the increasing evapotranspiration. Therefore, this study intends to evaluate the Etp 
trend in Yangzi River Delta under the background of global climate change through an impact 
modeling chain from 3 emission scenarios to 24 GCMs and then 8 bias correction methods and finally 
4 Etp calculation formulas. Then the uncertainty of the Etp projections is estimated and decomposed 
to investigate its main source by using multi-way analysis of variance (ANOVA). Finally, the 
robustness of the projections is evaluated by using the signal-to-noise ratio (SNR). 

2. Materials and Methods 

2.1. Outputs of GCMs 

In this study, the simulation and projection data of daily maximum temperature (TX) and daily 
minimum temperature (TN) of 24 GCMs (Table 1) under three emission scenarios in the Coupled 
Model Intercomparison Project phase 6 (CMIP6) [11] archive are used. These GCMs are forced by the 
historical forcing during the period 1950~2014 and by three shared socioeconomic pathways (SSPs) - 
representative concentration pathways (RCPs) matrix emission scenarios [12] during the period 
2015~2100. The three emission scenarios include a low concentration scenario (SSP1-2.6), a medium 
stabilization concentration scenario (SSP2-4.5), and a high concentration scenario (SSP5-8.5). 
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Table 1. Information of the 24 GCMs in CMIP6 used in this study 

Number Name 
Horizontal resolution 

Organization/country (region) 
Longitude × Latitude 

1 ACCESS-CM2 1.8750° × 1.25° CSIRO-ARCCSS/ Australia 

2 ACCESS-ESM1-5 1.8750° × 1.25° CSIRO/ Australia 

3 BCC-CSM2-MR 1.125° × 1.1213° BCC/China 

4 CanESM5 2.8125° × 2.7893° CCCma/Canada 

5 CMCC-CM2-SR5 1.25° × 0.9424° CMCC/ Italy 

6 CNRM-CM6-1 1.4063° × 1.4004° CNRM-CERFACS/ France 

7 CNRM-ESM2-1 1.4063° × 1.4004° CNRM-CERFACS/ France 

8 EC-Earth3 0.7031° × 0.7017° EC-Earth-Consortium/ European Union 

9 EC-Earth3-Veg 0.7031° × 0.7017° EC-Earth-Consortium/ European Union 

10 FGOALS-g3 2° × 2.2785° CAS/China 

11 GFDL-ESM4 1.25° × 1° NOAA-GFDL/America 

12 HadGEM3-GC31-LL 1.8750° × 1.25° MOHC/England 

13 INM-CM4-8 2° × 1.5° INM/Russia 

14 INM-CM5-0 2° × 1.5° INM/Russia 

15 IPSL-CM6A-LR 2.5° × 1.2676° IPSL/France 

16 MIROC6 1.4063° × 1.4004° MIROC/Japan 

17 MIROC-ES2L 2.8125° × 2.7893° MIROC/Japan 

18 MPI-ESM1-2-HR 0.9375° × 0.9349° MPI-M/ Germany 

19 MPI-ESM1-2-LR 1.875° × 1.8647° MPI-M/ Germany 

20 MRI-ESM2-0 1.1250° × 1.1213° MRI/Japan 

21 NESM3 1.875° × 1.8647° NUIST/China 

22 NorESM2-LM 2.5° × 1.8947° NCC/ Norway 

23 NorESM2-MM 1.25° × 0.9424° NCC/ Norway 

24 UKESM1-0-LL 1.875° × 1.25° MOHC/England 

2.2. Observed Meteorological Datasets 

In this study, a 0.5°×0.5° grid dataset of daily surface temperature in China (V2.0) is used as 
observed meteorological dataset. This dataset is provided by the China Meteorological Data Service 
Center & National Meteorological Information Center 
(https://data.cma.cn/data/cdcindex/cid/00f8a0e6c590ac15.html). It is based on the basic 
meteorological elements data of China's high-density stations (2472 national meteorological stations), 
and interpolated into a common 0.5°×0.5° grid over the Chinese mainland via a thin plate spline 
method. This dataset covers the period 1961~2019, and there are 159 grid points in or around Yangzi 
River Delta, as shown in Figure 1. 

To evaluate the accuracy of empirical Etp calculation formulas used in this study, the daily Etp 
calculated via Penman-Monteith formula based on the daily China surface climate dataset (V3.0) is 
compared with that calculated via the empirical formulas. The daily China surface climate dataset 
(V3.0) is provided by the China Meteorological Data Service Center & National Meteorological 
Information Center 
(http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html) as well. In 
this study, the records of temperature, atmosphere pressure, relative humidity, wind speed and 
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sunshine duration in 1961~2010 of 71 stations (as shown in Figure 1) are used, since they are relatively 
complete. 

 
Figure 1. Map of the study area, meteorological grids for the 0.5°×0.5° grid dataset of daily surface 
temperature in China (V2.0), and meteorological stations for the daily China surface climate dataset 
(V3.0). 

2.3. Bias Correction 

As the outputs of GCMs are usually contaminated by large systematic biases, bias correction 
methods are widely used to correct the original climate outputs of GCMs. To include the uncertainty 
caused by different classes of bias correction methods, four single-site bias correction methods (Daily 
Bias Correction (DBC) [13], Quantile Delta Mapping (QDM) [14], Multivariate Bias Correction n-
dimensional probability density function transform (MBCn) [15], Two-Stage multivariate Quantile 
Mapping (TSQM) [16]) and four multi-site bias correction methods (DBC-EC, QDM-EC, MBCN-EC, 
TSQM-EC) are used in this study. In DBC-EC, QDM-EC, MBCn-EC, and TSQM-EC, a post-processing 
approach named by Empirical Copular function [17–20] is used in resorting the outputs of DBC, 
QDM, MBCn, and TSQM to restore the correlation among sites and variables. 

Before correcting the biases of GCM outputs, the performance of the eight bias correction 
methods is evaluated. Specifically, the periods 1961~1980 and 1981~2000 are selected as the 
calibration and validation periods, respectively. The outputs of each GCM in the calibration and 
validation periods under the historical forcing are taken as the simulation and projection data, 
respectively. Each bias correction method is applied to correct the bias of GCM outputs. Then the 
performance of the bias correction methods in the calibration and validation periods can be 
evaluated. 

2.4. Etp Calculation 

As the temperature projections of GCMs are generally much more reliable [21–23] than those of 
other climate variables (such as wind speed and humidity), using formulas based on temperature to 
project the response of Etp to climate change is relatively reasonable [24]. Therefore, four empirical 
formulas based on temperature variables are used in this study to calculate the daily Etp, including 
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the Blaney-Criddle formula [25] (Eq. (1)), Hargreaves-Samani formula [6] (Eq. (2)), Makkink formula 
[7] (Eq. (3)), and Priestley and Taylor formula [3] (Eq. (4)). 

1

2

s

s

K p (0.46 T 8.13)           growing season
Etp

K p (0.46 T 8.13)   non-growing season
p 2 ω / 3.14
ω arccos(- tanφ tanδ)
δ 0.409 sin(2 π J / 365 - 1.39)
T (TX TN) / 2

  × × × +=  × × × +
 = ×


= ×
 = × × ×


= +

        (1) 

where Etp  is the daily potential evapotranspiration, mm/d; p is the percentage of total daytime 

hours for the used period, dimensionless; sω  the angle of sunrise, rad; φ  is the latitude, rad; δ is 
the magnetic declination of the sun, rad; J  is the day order, dimensionless; T  is the daily mean 
temperature, °C; TX  is the daily maximum temperature, °C; TN  is the daily minimum 
temperature, °C; 1K  and 2K  are undetermined coefficients [monthly consumptive use coefficient, 
depending on vegetation type, location and season and for the growing season, varying from 0.5 for 
orange tree to 1.2 for dense natural vegetation, respectively 0.85 and 0.45 for the growing season 
(April to September) and the non-growing season (October to March) by default]. 

3 a 4

a r s s

r

Etp K R (TX -TN) (T K ) / λ
R 24 60 0.0820 d (ω sinφ sinδ cosφ cosδ sinω ) /π
d 1 0.033 cos(2 π J / 365)
λ 2.501-T 2.361/ 1000

 = × × × +


= × × × × × × + × ×


= + × × ×
 = ×

  (2) 

where aR  is the extraterrestrial radiation, MJ/(m2×d); rd  is the relative distance between the earth 

and the sun, dimensionless; λ  is the latent heat of vaporization, MJ/kg; 3K  and 4K  are 
undetermined coefficients (respectively 0.0023 and 17.8 by default). 

5 s 6

2

0.5
s a

2

5.26

Etp K Δ R / [(Δ γ) λ] K
17.27 TΔ 4098 0.6108 exp( ) / (T 237.3)
T 237.3

R KT R (TX -TN)
KT 0.00185 (TX -TN) -0.0433 (TX -TN) 0.4023

293-0.0065 zγ 0.00163 101.3 ( ) /λ
293

 = × × + × +
 × = × × +
 +
 = × ×
 = × × +
 ×= × ×

             (3) 

where Δ is the slope of the relationship between saturation vapor pressure and temperature, kPa/°C; 

sR  is the solar radiation, MJ/(m2×d); KT  is the empirical coefficient, dimensionless; γ is the 

psychometric constant, kPa/°C; z is the altitude, m; 5K  and 6K  are undetermined coefficients 
(respectively 0.61 and -0.12 by default). 

n
7 8

3 6 1.87
n s s

6 2 9 2 2
s s

RΔEtp K +K
Δ γ λ

R 7.14 10 R 5.26 10 R (T 17.8)
       3.94 10 R 2.39 10 R (T 7.2) 1.02

− −

− −


= × × +

 = × × + × × × +
 − × × − × × × − −

        (4) 
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where nR  is the net radiation, MJ/(m2×d); 7K  and 8K  are undetermined coefficients (respectively 
30.1 and 0 by default). 

Usually, empirical formulas using the default coefficients are employed in previous studies 
[10,26–30]. However, large errors resulted for most empirical formulas when using the original 
constant coefficients and local calibration of these coefficients (hereafter undetermined coefficients) 
could reduce these errors to a large extent [31–33]. Therefore, undetermined coefficients of the four 
empirical formulas are locally calibrated in this study. Specifically, the periods 1961~1990 and 
1991~2010 are selected as the calibration and validation periods, respectively. The Etp in the 
calibration period calculated via the Penman-Monteith formula [4] (Eq. (5)) using the daily China 
surface climate dataset is selected as the actual Etp. The Penman-Monteith formula is based on energy 
balance and water vapor diffusion, and has been proved to have high accuracy [5]. In this study, a 
revised version of this formula recommended by the Food and Agriculture Organization of the 
United Nations in 1998 is used. The undetermined coefficients are adjusted station by station to make 
the Etp calculated via each empirical formula using the same dataset as close as possible to the actual 
Etp. Then the four empirical formulas (respectively using the default and calibrated coefficients) and 
the Penman-Monteith formula are applied to calculated the Etp during the calibration and validation 
periods by using the daily China surface climate dataset as well. The mean R2 [Eq. (6)] and mean 
absolute value of relative error [ARE, Eq. (7)] during the calibration and validation periods across all 
meteorological stations are calculated for the four empirical formulas. The performance of the four 
empirical formulas before and after locally calibration is evaluated in terms of R2, relative error, inter-
annual trend, and intra-annual distribution. 

2 s a
n

2

900 u (e e )
0.408 Δ (R G) γ

T 273Etp
Δ γ (1 0.34 u )

× × −
× × − + ×

+=
+ × + ×

               (5) 

where nR  is the net radiation, MJ/m2/d; G  is the soil heat flux, MJ/m2/d; 2u  is the wind speed at 

2m height, m/s; se  is the saturation vapor pressure, kPa; ae  is the actual vapor pressure, kPa. 

n
2

i
2 i 1

n
2

i
i 1

(y y)
R 1

(y y)

=

=

−
= −

−




                         (6) 

where iy  is the ith observed value;  iy  is the ith simulated value; y is the mean value of all 

observed values; 2R  is the coefficient of determination. 

y y
ARE 100 %

y
−

= ×                          (7) 

where y is the mean value of all simulated values; ARE  is the absolute value of relative error. 
After the evaluation, to take full advantage of the daily China surface climate dataset, the 

undetermined coefficients of the four empirical formulas are locally calibrated again with the 
Penman-Monteith formula being the benchmark while using this dataset during the period 
1961~2010, then interpolated into the meteorological grids via the thiessen polygon method, and 
applied when simulating the historical and projecting the future Etp. 

2.5. Uncertainty Estimation and Decomposition 

In this study, the multi-way ANOVA is used to quantitatively estimate and decompose the 
uncertainty of response projections, so as to make it possible to calculate the relative contribution of 
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each uncertainty component to the total uncertainty [34–37]. The basic idea of ANOVA is to 
decompose variation. Specifically, the explanatory variables are first set to several levels. Then the 
orthogonal combination of these variables is carried out and the corresponding dependent variable 
numerical matrix can be obtained. Finally, the total variance of the dependent variable is decomposed 
into the variance resulting from each explanatory variable individually and the variance resulting 
from two or more explanatory variables interactively. Taking the uncertainty of the increase 
projection of TX or TN after bias correction for instance, the uncertainty estimating and decomposing 
processes in the three-way ANOVA are illuminated as follows (those in other multi-way ANOVAs 
are similar). 

Firstly, the increase of TX or TN in the projecting period relative to the reference period is 
calculated as follows: 

pro ref
s,g,b s,g,b s,g,bΔ Index Index ; s 1,...,s';  g 1,...,g';  b 1,...,b'= − = = =         (8) 

where the subscript s  is serial number of emission scenario; s'  is the amount of emission 
scenarios; g  is the serial number of GCM; g'  is the amount of GCMs; b  is the serial number of 
bias correction method; b'  is the amount of bias correction methods; pro

s,g,bIndex  and ref
s,g ,bIndex  are 

respectively the annual mean TX or TN during the projection and reference periods for the sth 
emission scenario, gth GCM, and bth bias correction method; s ,g ,bΔ  is the increase of TX or TN in 

the projection period relative to reference period under the sth emission scenario, gth GCM, and bth 
bias correction method. 

Then the means of s ,g ,bΔ  are calculated as: 

s'

*,g ,b s,g ,b
s 1
g'

s,*,b s,g ,b
g 1

b'

s,g ,* s ,g ,b
b 1

g's'

*,*,b s,g ,b
s 1 g 1

s' b'

*,g ,* s ,g ,b
s 1 b 1
g' b'

s,*,* s ,g ,b
g 1 b 1

g's' b'

*,*,* s ,g ,b
s 1 g 1 b

1Δ Δ
s'
1Δ Δ
g'
1Δ Δ
b'

1Δ Δ
s' g'

1Δ Δ
s' b'

1Δ Δ
g' b'

1Δ Δ
s' g' b'

=

=

=

= =

= =

= =

= =


=

=

=

= ×

=
×

=
×

=
× ×



































                  (9) 

Finally, the uncertainty components and total uncertainty are calculated as: 
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s'
2

s,*,* *,*,*
s 1

g'
2

*,g ,* *,*,*
g 1

b'
2

*,*,b *,*,*
b 1

g's'
2

s,g ,* s,*,* *,g ,* *,*,*
s 1 g 1

s' b'
2

s,*,b s,*,* *,b,* *,*,*
s 1 b 1

*,g ,b

1S (Δ Δ )
s'
1G (Δ Δ )
g'
1B (Δ Δ )
b'

1SG (Δ Δ Δ Δ )
s' g'

1SB (Δ Δ Δ Δ )
s' b'

1GB (Δ
g' b'

=

=

=

= =

= =

= −

= −

= −

= − − +
×

= − − +
×

= −
×










g' b'

2
*,g ,* *,*,b *,*,*

g 1 b 1

g's' b'
s,g ,b s,g ,* s,*,b *,g ,b

2
s 1 g 1 b 1 s,*,* *,g ,* *,*,b *,*,*

g's' b'
2

s,g ,b *,*,*
s 1 g 1 b 1

Δ Δ Δ )

(Δ Δ Δ Δ1SGB
s' g' b' Δ Δ Δ Δ )

1T (Δ Δ )
s' g' b'

= =

= = =

= = =


















− +

 − − − = × × + + + −

 = −

× ×







           (10) 

where S  is the uncertainty resulting from the main effect of emission scenario; G  is the 
uncertainty resulting from the main effect of GCM; B  is the uncertainty resulting from the main 
effect of bias correction method; SG  is the uncertainty resulting from the interaction effect between 
emission scenario and GCM; SB  is the uncertainty resulting from the interaction effect between 
emission scenario and bias correction method; GB  is the uncertainty resulting from the interaction 
effect between GCM and bias correction method; SGB  is the uncertainty resulting from the 
interaction effect among emission scenario, GCM, and bias correction method; and T  is the total 
uncertainty. 

2.6. SNR 

The influence of uncertainty on the change projections of temperature or Etp is that it interferes 
with the projections greatly, which makes it difficult for decision-makers to eliminate the influence 
of change noise and further identify the change signal accurately. In this study, the SNR proposed by 
Hawkins and Sutton [38] is used to quantify the influence of uncertainty on change signal. In this 
index, the mean of all increase projections is defined as the change signal, and the 90% confidence 
interval of all increase projections (approximately equal to 1.65 times the square root of total 
uncertainty) is defined as the change noise. Then the SNR is calculated as: 

SNR /(1.65 T)= Δ ×                            (11) 
where Δ  is the mean of all increase projections；T  is the total uncertainty. 

2.7. Studying Route 

In this study: 
(1) The period 1971~2000 is selected as the reference period, and the periods 2021~2050 and 

2061~2090 are selected to represent the near and far projecting periods. With the observed TX and TN 
as reference, the eight bias correction methods are used to correct the TX and TN outputs of the 24 
GCMs under the historical forcing and three emission scenarios. Then the temperature trend in 
Yangzi River Delta under the background of global climate change is evaluated by using the corrected 
TX and TN. The uncertainty of temperature projections is estimated and decomposed by using three-
way ANOVA, and its influence on temperature change signal is quantified by using SNR. 

(2) The daily Etp at each grid point is estimated via the four empirical Etp calculation formulas 
by using the corrected TX and TN as inputs. Then the Etp trend during the two projection periods in 
Yangzi River Delta is evaluated. The uncertainty of Etp predictions is estimated and decomposed via 
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four-way ANOVA, and the relative contribution of each uncertainty component to the total 
uncertainty is quantified. The influence of uncertainty on Etp increase signal is quantified by SNR. 

3. Results 

3.1. Performance of GCMs 

Good simulation ability is a prerequisite for model projection. Therefore, the performance of 
GCMs is evaluated by comparing the simulated temperature to that in the 0.5°×0.5° grid dataset of 
daily surface temperature in China (V2.0) during the period 1961~2014. Since the systematic error in 
the outputs of GCMs is non-negligible and can be corrected by bias correction methods [8,13–21], the 
anomaly with the mean value in 1971~2000 as the reference is calculated for each meteorological grid 
and each climate variable. Then the across-grid mean inter-annual trend and intra-annual 
distribution is calculated for each GCM and the observation, and shown in Figure 2. The results reveal 
that the simulated inter-decadal trend and intra-annual distribution are generally consistent with 
those in the observation for both TX and TN. Specifically, for TX and TN, both the simulated and 
observed inter-decadal trends display a decline tendency in 1960s, a general stable tendency from the 
early 1970s to middle 1980s, a fast increasing tendency from the middle 1980s to 1990s, but a 
slowdown increasing tendency in the early 21st century. In addition, the simulated ensemble mean 
intra-annual distribution of the 24 GCMs is very close to the observed intra-annual distribution for 
both TX and TN. Therefore, the ensemble of GCMs used in this study is capable to reproduce the 
inter-decadal trend and intra-annual distribution, while it is still unable to reproduce the inter-annual 
trend of the observed TX and TN. Therefore, the inter-decadal rather than the inter-annual changes 
of temperature and Etp is analyzed in this study. 

 

Figure 2. The across-grid mean inter-annual trends (upper row) and intra-annual distributions (lower 
row) of the simulated and observed TX and TN anomaly with the mean value in 1971~2000 as the 
reference (in the two subplots in the lower row, each boxplot represents the probability distribution 
of the monthly mean values for the 24 GCMs). 

3.2. Performance of Bias Correction Methods 

Prior to projecting TX, TN, and Etp, the performance of bias correction methods in the calibration 
and validation periods is evaluated, as shown in Figure 3, using six evaluation statistics from three 
perspectives: minimum value (5% quantile), mean value, and maximum value (95% quantile). The 
six statistics are: the errors in the minimum value of TX, the errors in the mean value of TX, the errors 
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in the maximum value of TX, the errors in the minimum value of TN, the errors in the mean value of 
TN, and the errors in the maximum value of TN. For convenience of analysis, the mean absolute 
values of the six statistics across all meteorological grids are calculated. The probability distribution 
of the mean absolute values of the 24 GCMs is presented as a boxplot for each metric. The results 
show that the raw outputs of GCMs are considerably biased, with the mean absolute values ranging 
between 1.34°C and 2.52°C. However, the systematic bias of climate model simulations is largely 
reduced by the eight bias correction methods. Specifically, after bias correction, the mean absolute 
values generally range from 0.00°C to 0.01°C in the calibration period and from 0.22°C to 0.91°C in 
the validation period. For all bias correction methods, the absolute errors in the validation period are 
obviously larger than those in the calibration period, which is due to the inconsistency in the bias of 
GCM outputs [39,40]. In addition, for the two temperature variables, the performance of bias 
correction methods are generally comparable. Overall, the eight bias correction methods used in this 
study can effectively reduce the systematic bias of GCMs outputs. 

 

Figure 3. Performance of the 8 bias correction methods in correcting the biases of GCMs temperature 
projections (each box chart in this figure represents the across-grid mean indicator of 24 GCMs in a 
certain period before or after biases correction). 

3.3. Temperature Projections 

Firstly, the mean increase of TX or TN across GCMs and bias correction methods in each 
projection period under each emission scenario is calculated for each grid, then the mean increase in 
each city is calculated via the thiessen polygon method and displayed in Figure 4. The results showed 
that, in relative to the reference period, both TX and TN obviously increase in the two projection 
periods, and the increase during the period 2061~2090 is visibly greater than that during the period 
2021~2050. Both TX and TN exhibit the maximum increases in the SSP5-8.5 scenario during the two 
projection periods, and exhibit the minimum increases in the SSP2-4.5 scenario during the period 
2021~2050 (but this increase is very close to that in the SSP1-2.6 scenario) and SSP1-2.6 scenario during 
the period 2061~2090. In addition, the maximum difference among temperature increases during the 
period 2061~2090 (2.11°C) is obviously larger than that during the period 2021~2050 (0.27°C), which 
means the uncertainty of temperature projections may increase with time. Moreover, the increase of 
TN is generally lower than that of TX, except for the SSP2-4.5 scenario during the 2021~2050 period. 
In addition, it seems almost impossible (extremely difficult) to limit the temperature rise over the 
Yangzi River Delta to 1.5°C (2.0°C) at the end of the 21st century, even in the low emission scenario 
(SSP1-2.6). Specifically, the increases of TX/TN under the emission scenarios of SSP1-2.6, SSP2-4.5, 
and SSP5-8.5 in Yangzi River Delta are respectively 1.74/1.67°C, 1.63/1.66°C, and 1.92/1.91°C during 
the period 2021~2050, and they are respectively 2.34/2.19°C, 2.98/2.88°C, and 4.41/4.32°C during the 
period 2061~2090. In terms of the spatial distribution, the mean increases of the two temperature 
variables are usually lower in southeastern coastal regions (e.g., Zhoushan City, Wenzhou City, and 
Taizhou City in Zhejiang Province) and higher in northwestern inland regions (e.g., Bozhou City, 
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Fuyang City, Huaibei, and Suzhou in Anhui Province, and Xuzhou City in Jiangsu Province). This is 
expected, as the temperature increasing rate in oceans is much lower than that in lands [41]. 

 

Figure 4. Spatial distribution of annual mean increases of daily maximum temperature (TX) and daily 
minimum temperature (TN) during the periods 2021~2050 and 2061~2090 in relative to the period 
1971~2000 under three emission scenarios. 

3.4. Uncertainty of Temperature Projections 

In this study, the total uncertainty of the increase projections in TX and TN is estimated via the 
three-way ANOVA for each grid point and each projection period and displayed in Figure 5. The 
results show that the total uncertainty observably increases with time for the two temperature 
variables. Specifically, the mean total uncertainties of TX and TN during the period 2021~2050 in 
Zhejiang Province are respectively 0.28°C2 and 0.24°C2, and they rise to 1.49°C2 and 1.44°C2 during 
the period 2061~2090. However, the rapid increase of total uncertainty over time does not alter its 
general spatial distribution patterns. Specifically, for the two temperature variables, the total 
uncertainties are lower in the southeastern coastal regions (e.g., Zhoushan City, Wenzhou City, and 
Taizhou City in Zhejiang Province) and higher in the northwestern inland regions (e.g., Fuyang City, 
Luan City, and Bozhou City in Anhui Province). In addition, the spatial distribution pattern of the 
total uncertainty is similar to that of the temperature increase. This is mainly because a large increase 
usually shows a large difference among increase projections, which means a large uncertainty. 
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Figure 5. Spatial distribution of the total uncertainty of annual mean daily maximum temperature 
(TX) and daily minimum temperature (TN) projections during the periods 2021~2050 and 2061~2090 
in relative to the period 1971~2000. 

Further, the total uncertainty is decomposed via the three-way ANOVA. Then the magnitudes 
and relative contributions of all uncertainty components are calculated, and their mean values in 
Yangzi River Delta are calculated via the thiessen polygon method and shown in Table 2. The results 
show that, for TX and TN, the uncertainty components resulting from the main effect of emission 
scenario, the main effect of GCM, and the interaction effect between emission scenario and GCM all 
increase visibly along with the projection lead times, and the increase of the uncertainty component 
resulting from the main effect of emission scenario is obviously larger than that resulting from the 
main effect of GCM. The increase of uncertainty component resulting from the interaction effect 
between emission scenario and GCM model is very small. Other uncertainty components are all close 
to 0 during the two projection periods. This indicates that the increase of total uncertainty is mainly 
due to the substantial increase of the uncertainty component resulting from the main effect of 
emission scenarios, followed by that resulting from the main effect of GCM, and lastly by the slight 
increase of uncertainty component resulting from the interaction effect between emission scenarios 
and GCM. The total uncertainty is dominantly contributed by the main effect of GCM (about 
90%~91%) during the period 2021~2050, but by the main effects of emission scenario (about 51%~55%) 
and GCM (about 41%~44%) during the period 2061~2090. Therefore, further developing GCMs and 
optimizing emission scenarios are reasonable ways to reduce the uncertainty of temperature 
projections. 

Table 2. The mean magnitudes of uncertainty components and their relative contributions to the total 
uncertainty of the increase projections of daily maximum temperature (TX) and daily minimum 
temperature (TN) in Yangzi River Delta. 

Period 2021~2050 
Effect S G B SG SB GB SGB 

TX/Magnitude/°C2 0.01 0.25 0.00 0.01 0.00 0.00 0.00 
TN/Magnitude/°C2 0.01 0.21 0.00 0.01 0.00 0.00 0.00 

TX/Relative contribution/% 4.93 90.76 0.00 4.31 0.00 0.00 0.00 
TN/Relative contribution/% 5.58 89.68 0.00 4.75 0.00 0.00 0.00 
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Period 2061~2090 
Effect S G B SG SB GB SGB 

TX/Magnitude/°C2 0.75 0.66 0.00 0.07 0.00  0.00 0.00 
TN/Magnitude/°C2 0.79 0.60 0.00 0.05 0.00  0.00 0.00 

TX/Relative contribution/% 50.79 44.31 0.00 4.90 0.00  0.00 0.00 
TN/Relative contribution/% 55.06 41.30 0.00 3.64 0.00  0.00 0.00 

Note: The meanings of S, G, B, SG, SB, GB, and SGB are consistent with those in Eq. 3. 

In order to evaluate the influence of uncertainty on temperature increase projections, the SNR 
values of TX and TN are calculated for each grid point and each projection period, then its mean 
value in each city is calculated by the thiessen polygon method and displayed in Figure 6. The results 
show that the SNR values for the two temperature variables all decrease visibly over time, indicating 
that the robustness of temperature increase projections decreases along with the projection lead 
times. In addition, the SNR of TN is slightly higher than that of TX during the period 2021~2050, and 
very close to that of TX during the period 2061~2090. To be more specific, the mean SNR values of TX 
and TN in Yangzi River Delta are respectively 2.03 and 2.19 during the period 2021~2050, while they 
decrease to 1.61 and 1.58 during the period 2061~2090. Even so, the SNR values are obviously higher 
than 1.0 for the two temperature variables during the two projection periods, indicating that the 
temperature increase projections in Yangzi River Delta are robust and reliable. In terms of spatial 
distribution, the SNR values of the two temperature variables show similar spatial distribution 
patterns in the two projection periods. To be more specific, the SNRs are generally higher in the 
eastern coastal regions (e.g., Yancheng City, Lianyungang City, and Nantong City in Jiangsu 
Province, Taizhou City and Zhoushan City in Zhejiang Province) and lower in the western inland 
regions (Anqing City, Chizhou City, Huangshan City, Luan City, and Tongling City in Anhui 
Province). This spatial distribution pattern is a result from the comprehensive effects of the 
temperature increase and uncertainty. 

 
Figure 6. The spatial distribution of the SNRs in the increase projections of daily maximum 
temperature (TX) and daily minimum temperature (TN) during the periods 2021~2050 and 2061~2090 
in relative to the period 1971~2000. 

3.5. Performance of the Empirical Etp Calculation Formulas 

To evaluate the performance of the locally calibration of undetermined coefficients in the four 
empirical Etp calculation formulas, the across-station mean R2 and ARE during the calibration and 
validation periods are calculated for the four formulas respectively using the default and calibrated 
coefficients and displayed in Figure 7. The results show that the locally calibration of undetermined 
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coefficients can improve the performance of empirical Etp calculation formulas to a large extent. To 
be more specific, for the four empirical formulas during the calibration and validation periods, the 
mean R2 is all lower than 0.68 and the mean ARE is all higher than 7.0% when using the default 
coefficients. When using the locally calibrated coefficients, however, the mean R2 is all higher than 
0.82 and the mean ARE is all lower than 5.0% during the two periods. In addition, the mean R2 and 
ARE during the validation period are generally close to those during the calibration period, 
indicating that the performance of the four formulas is steady. 

 
Figure 7. The across-station mean R2 (a) and ARE (b) during the calibration and validation periods 
for the four empirical Etp calculation formulas using the default and locally calibrated coefficients. 

Further, to evaluate the performance of Etp calculation formulas, the across-station mean inter-
annual trends and intra-annual distributions of daily Etp during the period 1961~2010 are calculated 
for the four empirical formulas using the locally calibrated coefficients and the Penman-Monteith 
formula and presented in Figure 8. The results show that the inter-annual trends and intra-annual 
distributions of daily Etp calculated by the four formulas are generally consistent with those by the 
Penman-Monteith formula. Specifically, the across-station and across-year mean Etp values 
calculated by the Blaney-Criddle formula, Hargreaves-Samani formula, Makkink formula, and 
Priestley-Taylor formula are respectively 2.59mm/d, 2.53mm/d, 2.49mm/d, and 2.56mm/d, which are 
very close to that by the Penman-Monteith formula (2.54mm/d). In addition, the general increasing 
trend after the 1990s obtained by the Penman-Monteith formula is well captured by the four empirical 
formulas. Moreover, all the four empirical formulas show a general higher in summer while lower in 
winter intra-annual distribution pattern, which is consistent with that of the Penman-Monteith 
formula. However, it is worth mentioning that there is an obvious decreasing trend before the 1980s 
obtained by the Penman-Monteith formula, which is not completely captured by the Blancy-Criddle 
formula. 

 
Figure 8. The across-station mean inter-annual trends (a) and intra-annual distributions (b) of Etp 
calculated via the four empirical Etp calculation formulas using the locally calibrated coefficients and 
the Penman-Monteith formula. 

3.6. Etp Projections 

The daily Etp is calculated via the four empirical formulas according to the corrected TX and 
TN. Then its mean increase in each projection period relative to the reference period is calculated for 
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each grid point, each GCM, each bias correction method, and each Etp calculation formula. Finally, 
the mean increase of Etp in Yangzi River Delta under each emission scenario and each projection 
period across the 24 GCMs, 8 bias correction methods, and 4 empirical Etp calculation formulas is 
calculated via the thiessen polygon method and displayed in Figure 9. The results show that, in 
relative to the reference period, the annual mean daily Etp shows an obvious increasing trend for 
each projection period and each city in Yangzi River Delta, and the increase during the period 
2061~2090 is obviously higher than that during the period 2021~2050. Similar to the two temperature 
variables, the increase in Etp is highest in the SSP5-8.5 scenario during the two projection periods, 
and lowest in the SSP2-4.5 scenario (but this increase is very close to that in the SSP1-2.6 scenario) 
during the period 2021~2050 but SSP1-2.6 scenario during the period 2061~2090. To be more specific, 
the mean increase of annual mean daily Etp in Yangzi River Delta during the period 2021~2050 is 
respectively 0.15mm/d, 0.14mm/d, and 0.17mm/d under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 
scenarios. During the period 2061~2090, they rise to 0.21mm/d, 0.27mm/d, and 0.41mm/d, 
respectively. In addition, the increase of Etp shows similar spatial distribution patterns under the 
three emission scenarios during the two projection periods. Specifically, the increase of Etp is usually 
lower in southeastern coastal regions (Zhoushan City, Wenzhou City, and Taizhou City in Zhejiang 
Province) and higher in northwestern inland regions (Bozhou City, Fuyang City, and Huaibei City in 
Anhui Province). In addition, the spatial distribution pattern of daily Etp increase is consistent with 
that of the two temperature variables in general. This is mainly because Etp and temperature usually 
show obvious positive correlation. 

 

Figure 9. The spatial distribution of mean increase of Etp across the 24 GCMs, 8 bias correction 
methods, and 4 Etp calculation formulas during the periods 2021~2050 and 2061~2090 in relative to 
the period 1971~2000 under three emission scenarios. 

3.7. Uncertainty of Etp Projections 

The total uncertainty of the mean increase projections in daily Etp is calculated via the four-way 
ANOVA and displayed in Figure 10. The results show that the total uncertainty increases with time 
as well. To be more specific, the mean value of total uncertainty in Yangzi River Delta is 0.004(mm/d)2 
during the period 2021~2050, and rises to 0.022(mm/d)2 during the period 2061~2090. The total 
uncertainty is generally lower in the southeastern coastal regions (e.g., Zhoushan City, Wenzhou 
City, and Taizhou City in Zhejiang Province) and higher in the northwestern inland regions (e.g., 
Bozhou City and Fuyang City in Anhui Province) in the two projection periods. Moreover, the spatial 
distribution pattern of the total uncertainty for Etp is consistent with that of the two temperature 
variables in general. 
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Figure 10. Spatial distribution of the total uncertainty of daily Etp increase projections during the 
periods 2021~2050 and 2061~2090 in relative to the period 1971~2000. 

After that, the total uncertainty is decomposed via the four-way ANOVA, and the magnitude 
and relative contribution of each uncertainty component are calculated for each grid point and each 
period. Then their mean values in Yangzi River Delta are calculated via the thiessen polygon method 
and displayed in Table 3. The results show that the uncertainty components resulting from the main 
effect of emission scenario, the main effect of GCM, and the main effect of Etp calculation formula all 
show obvious increasing trends along with the projection lead times. The increase in uncertainty 
component resulting from the main effect of GCM is lower than that resulting from the main effect 
of emission scenario and higher than that resulting from the main effect of Etp calculation formula. 
This indicates that the increase in the total uncertainty is mainly due to the increase in the uncertainty 
component resulting from the main effect of emission scenario, and then by that resulting from the 
main effects of GCM and Etp calculation formula. In addition, the total uncertainty is dominantly 
contributed by the uncertainty component resulting from the main effect of GCM (63%), followed by 
that resulting from the main effect of Etp calculation formula (24%) during the period 2021~2050. 
During the period 2061~2090, it is mainly contributed by the uncertainty component resulting from 
the main effect of GCM (36%) as well, followed by that resulting from the main effects of emission 
scenario (34%) and Etp calculation formula (18%). The magnitude and relative contribution of 
uncertainty component resulting from the main effect of bias correction method are almost negligible. 
Among the uncertainty components resulting from interaction effects, those resulting from the 
interaction effect between emission scenario and GCM and the interaction effect between GCM and 
Etp calculation formula are considerable, while those resulting from other interaction effects are quite 
small. Therefore, further developing GCMs and Etp calculation formulas and optimizing emission 
scenarios are reasonable ways to reduce the uncertainty of Etp projections. 

Table 3. The mean magnitudes of uncertainty components and their relative contributions to the total 
uncertainty of the increase projections of the inter-annual mean daily Etp in Yangzi River Delta. 

Type Period S G B E SG SB SE GB 

Magnitude/(mm/d)2 

2021~205
0 

0.000
1 

0.002
5 

0.000
0 

0.001
0 

0.000
1 

0.000
0 

0.000
0 

0.000
0 

2061~209
0 

0.007
1 

0.007
7 

0.000
0 

0.004
2 

0.001
1 

0.000
0 

0.000
6 

0.000
0 

Relative 
contribution/% 

2021~205
0 3.24 62.54 0.05 24.24 2.86 0.00 0.37 0.08 

2061~209
0 

33.76 35.59 0.04 18.26 4.76 0.01 2.81 0.03 
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Type Period GE BE SGB SGE SBE GBE 
SGB

E 
  

Magnitude/(mm/d)2 

2021~205
0 

0.000
2 

0.000
0 

0.000
0 

0.000
0 

0.000
0 

0.000
0 

0.000
0 

 

2061~209
0 

0.000
9 

0.000
0 

0.000
0 

0.000
2 

0.000
0 

0.000
0 

0.000
0 

 

Relative 
contribution/% 

2021~205
0 5.93 0.05 0.02 0.51 0.00 0.09 0.02 

 

2061~209
0 

3.93 0.04 0.01 0.70 0.00 0.05 0.01   

Note: The meanings of S, G, B, SG, SB, GB, and SGB are consistent with those in Eq. 3. E is the uncertainty 
component resulting from the main effect of Etp calculation formula. SE is the uncertainty component resulting 
from the interaction effect between emission scenario and Etp calculation formula. GE is the uncertainty 
component resulting from the interaction effect between GCM and Etp calculation formula. SGE is the 
uncertainty component resulting from the interaction effect among emission scenario, GCM, and Etp calculation 
formula. SBE is the uncertainty component resulting from the interaction effect among emission scenario, bias 
correction method, and Etp calculation formula. GBE is the uncertainty component resulting from the interaction 
effect among GCM, bias correction method, and Etp calculation formula. SGBE is the uncertainty component 
resulting from the interaction effect among emission scenario, GCM, bias correction method, and Etp calculation 
formula. 

In order to evaluate the influence of uncertainty on the Etp increase projections, the SNR is 
calculated for each grid point and each projection period, and then its mean value in each city is 
calculated via the thiessen polygon method and displayed in Figure 11. The results show that SNR 
during the period 2021~2050 is obviously higher than that during the period 2061~2090, indicating 
that the robustness of Etp projections decreases along with the projection lead times. To be more 
specific, the mean SNR in Yangzi River Delta is 1.48 during the period 2021~2050, and decreases to 
1.22 during the period 2061~2090. However, the SNR values in the two projection periods are all 
higher than 1.0, indicating that the projections of Etp increase in Yangzi River Delta are relatively 
robust and reliable. In terms of spatial distribution, SNR is higher in the southeastern coastal regions 
(e.g., Taizhou City, Wenzhou City, Lishui City, and Ningbo City in Zhejiang Province) and lower in 
the northwestern inland regions (e.g., Fuyang City, Bozhou City, Huangshan City, and Chizhou City 
in Anhui Province) in the two projection periods. 

 

Figure 11. The spatial distribution of the SNR in the Etp increase projections during the periods 
2021~2050 and 2061~2090 in relative to the period 1971~2000. 
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3.8. Discussion 

In this study, the Etp trend in Yangzi River Delta is projected by using an impact modeling chain 
from 3 emission scenarios to 24 GCMs and then 8 bias correction methods and finally 4 Etp calculation 
formulas. The results reveal that, in comparison with the reference period (1971~2000), the mean Etp 
will increase by 0.14~0.17mm/d during the period 2021~2050 and by 0.21~0.41mm/d during the 
period 2061~2090, respectively. The overall framework and conclusion are similar to those in most 
previous studies [10,24,42]. For instance, in the study by Shi, et al. [10], the Etp trend of eight 
meteorological stations in southeastern Australia is projected by using 2 emission scenarios (RCP4.5 
and RCP8.5, which are respectively close to the SSP2-4.5 and SSP5-8.5 scenarios), 34 GCMs, and 7 Etp 
calculation models (four empirical formulas and three models based on random forest). And the 
results reveal that, the across-station mean Etp increases range from 0.09mm/d (2040s) to 0.35mm/d 
(2090s) under the RCP4.5 scenario and from 0.12mm/d (2040s) to 0.68mm/y (2090s) under the RCP8.5 
scenarios, respectively. Therefore, the main conclusion that Etp will increase in the 21st century can 
be termed robust. 

In addition, the uncertainty of Etp projections is estimated and decomposed via a framework 
based on ANOVA, which are widely used in previous studies [34–36,43–45], as well. However, many 
studies exhibit inconsistent conclusions on the main sources of uncertainty. For instance, this study 
reveals that the total uncertainty is mainly contributed by the main effects of GCM (63%) and Etp 
calculation formula (24%) during the period 2021~2050, and by the main effects of GCM (36%), 
emission scenario (34%), and Etp calculation formulas (18%) during the period 2061~2090. However, 
the study by Shi, et al. [10] shows that RCP-related uncertainty contributes the most to projected Etp 
uncertainty (around 40% for most stations) while GCM-related and Etp model-related uncertainties 
account for roughly equal amounts of projected Etp uncertainty (10%~30%). For the projection of 
future global Etp with various Etp models and GCMs, Kingston, et al. [46] claims that Etp model-
related uncertainty is equal to or, in some circumstance, greater than GCM-related uncertainty. 
Therefore, much more efforts are still required to confirm the main sources of uncertainty in Etp 
projections. 

4. Conclusion 

In this study, the systematic biases in temperature outputs of 24 GCMs in CMIP6 under three 
emission scenarios are corrected via 8 bias correction methods, and then the Etp is projected via 4 
empirical Etp calculation formulas by using the corrected temperature projections. After that, the 
temperature and Etp trends in Yangzi River Delta in the 21st century are illuminated. Subsequently, 
the uncertainty in the temperature and Etp increase projections is estimated and decomposed via the 
multi-way ANOVA frameworks, and then its main sources are explained. Finally, the influence of 
uncertainty on the change signal is quantified by SNR. The main conclusions are as follows: 

(1) In comparison with the period 1971~2000, the increases in the annual mean TX in Yangzi 
River Delta are respectively 1.63~1.92°C and 2.34~4.41°C during the periods 2021~2050 and 
2061~2090, and that for TN are respectively 1.66~1.91°C and 2.19~4.32°C. The total uncertainty of TX 
and TN increase projections is dominantly contributed by the main effect of GCM (about 90%~91%) 
during the period 2021~2050, and mainly by the main effect of emission scenario (about 51%~55%) 
and followed by the main effect of GCM (about 41%~44%) during the period 2061~2090. The increase 
projections of the two temperature variables in Yangzi River Delta is robust and reliable for the two 
projection periods. 

(2) In comparison with the period 1971~2000, the annual mean daily Etp of Yangzi River Delta 
will increase by 0.14~0.17mm/d during the period 2021~2050 and by 0.21~0.41mm/d during the 
period 2061~2090, respectively. The total uncertainty of Etp increase projections is dominantly 
contributed by the main effect of GCM (63%) and followed by the main effect of Etp calculation 
formula (24%) during the period 2021~2050, and mainly contributed by the main effect of GCM (36%) 
and then by the main effects of emission scenario (34%) and Etp calculation formula (18%) during the 
period 2061~2090. The Etp increase projections are relatively robust and reliable in the two projection 
periods. 
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(3) The robustness of response projections usually decreases with the extension of the impact 
modeling chain (the SNR of Etp projections is obviously lower than those of TX and TN projections). 
Therefore, appropriate attention may be paid to the length of the impact modeling chain when 
making similar response projections to climate change. 

Overall, when formulating the climate change adaptation policy in Yangzi River Delta, the 
influence of the rising Etp should be taken into consideration. In addition, the scientific community 
may further develop the GCMs and Etp calculation formulas and optimize emission scenarios to 
reduce the uncertainty of Etp projections. 
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