

Article

Not peer-reviewed version

Dynamic and Floristic Structure of Kouampante Community Forest (Savannahs' Region, Togo)

[Kossi Senyo EHLUI](#) *

Posted Date: 16 February 2024

doi: 10.20944/preprints202402.0893.v1

Keywords: Community forest; Landscape restoration; biodiversity; *Koampante*; Savannah Region; Togo

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Dynamic And Floristic Structure of *Kouampante* Community Forest (Savannahs' Region, Togo)

Kossi Senyo Ehlui ^{1,2,*}, Christian Anthony-Krueger ⁷, Edinam Kola ², Henrik von Wehrden ⁶, Alagie Bah ⁵, Wouyo Atakpama ^{3,4} and Tchaa Boukpessi ⁸

¹ West Africa Science Service Center on Climate change and Adapted Land Use WASCAL-University of The Gambia, Banjul, Gambia

² Laboratoire de Recherche sur la Dynamique des Milieux et des Sociétés, Department of Geography, University of Lomé ; 01BP1515, Lome, Togo; Ehlui.kossisenyo@gmail.com

³ Laboratoire de Botanique et Écologie Végétale, Département botanique, Faculté des sciences, Université de Lomé, 01 BP 16515, Togo

⁴ West Africa Plant Red List Authority (WAPRLA), IUCN Species Survival Commission, Rue Mauverney 28, 1196 Gland, Switzerland; Wouyoatakama@outlook.com

⁵ Center for International Forestry Research and World Agroforestry (CIFOR-ICRAF), Nairobi, Kenya

⁶ Faculty of Sustainability, Center of methods, Leuphana University of Lüneburg, Lüneburg, Germany; Henrik.von_wehrden@leuphana.de

⁷ Department of Science Education, University of Cape Coast, Cape Coast, Ghana; Canthonykrueger@ucc.edu.gh

⁸ Laboratoire de Recherches Biogéographiques et d'Etudes Environnementales, Department of Geography, University of Lome, Lome, Togo

* Correspondence: Ehlui.kossisenyo@gmail.com; Tel: +22893017916

Abstract: Community forests are being promoted in Togo as an alternative to the degradation of protected areas and as a means of restoring forest landscapes. The present study is carried out within Kouampante Community Forest (KCF) in Ogaro (Togo, West Africa). It intends to contribute to the sustainable management of KCF. Specially, it aims at: (i) mapping forest ecosystems and analysing their dynamic and (ii) characterising the floristic diversity of the KCF. Forest ecosystems are mapped and their dynamic evaluated based on Google Earth images of 2010 and 2020. The floristic and silvicultural analyses are based on inventories carried out in 13 plots of 1,000 m² each. The KCF is made up mainly by tree/shrub savannahs (58.73%) and croplands/fallow (41.27%) in 2010. These two land use types have undergone changes over the period. In 2020, the KCF had two land use types: tree/shrub savannahs (84.30%) and croplands/fallows (15.70%). The flora census consisted of 59 species grouped in 6 families. The most important plant species are *Detarium microcarpum* and *Vitellaria paradoxa*. The Fabaceae were the most abundant and diversified families, followed by the Combretaceae. The demographic structure showed a high abundance of individuals with small diameter and height. This indicates the possibility of a rapid restoration of the native vegetation. Protecting the forest from anthropogenic threats could be crucial for achieving the desired objective.

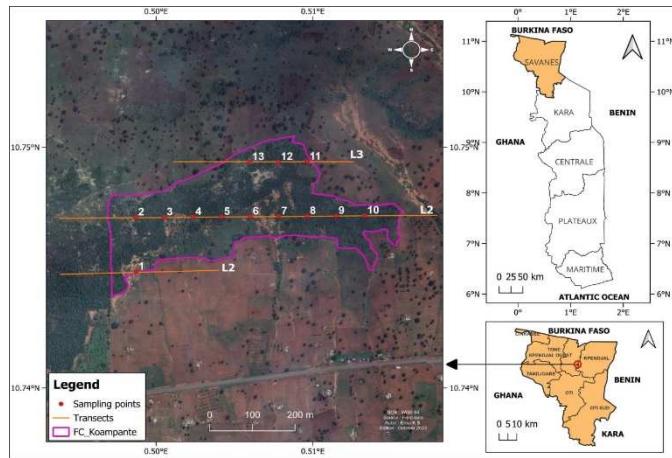
Keywords: Community forest; Landscape restoration; biodiversity; *Koampante*; Savannah Region; Togo

1. Introduction

Community forests are forests collectively managed by local communities to protect biodiversity and support livelihoods. They are governed by customary rights, rules, and institutions that pre-date most modern governments, and continue to adapt to changing circumstances. They could have spiritual and cultural connotation (sacred groves and forest) exclusively [1–3] or not. They provide non-timber (foods, medicines products, cosmetics, honey, meats...), timber products and others services. Thus, community forests are important for several reasons, as they provide a wide range of social, political, environmental and economic benefits[4]. They also provide primary source of

livelihood, nutrition and employment. They contribute to biodiversity conservation, improve forest restoration and climate resilience [5–8].

The protection of biodiversity through sacred and community forests is of growing international concern in Africa and elsewhere [5,9–13]. These are the objectives of the Togolese government. Since 2015, it has produced a guide to community forestry. Several projects supporting community forest initiatives were then launched. Currently, 171 community forests can be found nationwide[9]. Fewer of these, however, comply with the Guide. Moreover, there is a lack of scientific data to help guide how to manage them. These data include knowledge of biodiversity, landscape structure and dynamics, timber resource status, management practices and the existence and functioning of management committees. Although several studies have investigated about the management of both community forests [9,10,14–19] and sacred groves and forests [1,20,21], however, there is lack of relevant data on Savannah community forest dynamics. Thus, such knowledge can be helpful in enhancing our understanding of the role of local communities in managing forest resources [22]. Our study will provide vital information necessary to improve sustainable community forest management practices.


As a result of climate change and the increase in population, the savannah region has had less forest cover. Agroforestry parklands cover most of the land [23]. Protected areas are sometimes the only forest ecosystems. Unfortunately, these protected areas have undergone significant degradation since the socio-political unrest in the 1990s [24–28]. For species that have already disappeared or are threatened with extinction, sacred and community forests thus serve as true sanctuaries.

The present study, carried out on the Kouampante Community Forest (KCF), aims to demonstrate the contribution made by the KCF to restoring forests and conserving biodiversity in Togo. More specifically, it: (i) analysed the dynamics of the forest ecosystem from 2010 to 2020, (ii) assessed the diversity of plant species, and (iii) characterised the demographic structure of woody plants in KCF.

2. Methodology

2.1. Study area

Kouampante Community Forest (KCF) is located in Ogaro Canton, Kpendjal-Ouest Prefecture, Savannahs Region, Togo. The target forest belongs to Togo's ecological zone I [29]. The native vegetation of the Soudanian savannahs is dominated by thorny species [30,31]. Due to the increasing human population, the native ecosystems have been transformed into croplands and agroforestry parklands [28]. Several agroforestry parklands have been found. The predominant agroforestry trees are raost palms (*Borassus* spp), african locust bean (*Parkia biglobosa* Jacq), tamarind (*Tamarindus indica* L.), African baobab (*Adansonia digitata*) [15,23,32–34]. These agroforestry trees play an important role in improving local nutrition and livelihoods [35,36]. In addition to cropland expansion [23,28], grazing is highlighted as a second threat to plant communities [37]. Protected areas of the savannahs region, long known as a technique to conserve biodiversity and ecosystems, are also highly degraded and invaded [27,38,39]. To counter this degradation, community forests and sacred forest/grove practices are seen as an opportunity to conserve biodiversity [9].

Figure 1. Location and sampling design within Kouampante Community Forest in Togo.

2.2. Data Collection

2.2.1. Satelite image acquisition

LocustMap, a mobile application, was first used to delineate the boundaries of the KCF. The KML shapefile was then projected onto Google Earth images supplied by Astrium Service to Google Inc 2010, 2014, 2020 for the digitisation of the land use units. These images were chosen due to their high resolution (up to 1.5 m) and the small area covered by the KCF [40,41].

2.2.2. Sampling design

Thirteen sample plots, equidistant by 100 m, were established along three transects separated by 200 m. Four types of inventories were carried out: the phytosociology, the ecology, the forestry and the regeneration. The phytosociology of the woody species, the ecology and the forestry parameters were assessed within plots of 50 m x 20 m in size[15]. For the phytosociology of herbaceous species, sub-plots of 10 m x 10 m were established in the centre of the main plot[42]. Within the main plot, 3 subplots of 5 m x 5 m were defined for regeneration inventories, one in the centre and the other two in the opposite corners on both sides of the central plot, arranged diagonally [42–44].

2.2.3. Inventories

The phytosociological inventory of plants has been carried out on the basis of the Braun-Blanquet (1932) abundance/dominance scale. This scale is defined as follows: rare species, coverage 0-1% (+); coverage 1-5% (1); coverage 5-25% (2); coverage 25-50% (3); coverage 50-75% (4); coverage 75- 100% (5). Vegetation type, grazing, wildfire, erosion were recorded as ecological parameters. Tree diameter, stem height and total height of woody plants with DBH \geq 5 cm were measured during the forest inventory[45]. A forestry compass was used to measure tree diameter at 1.30 m above the ground. Stem height and total height were assessed by visual evaluation. All woody species with DBH < 5 cm [33] were defined as potential regeneration.

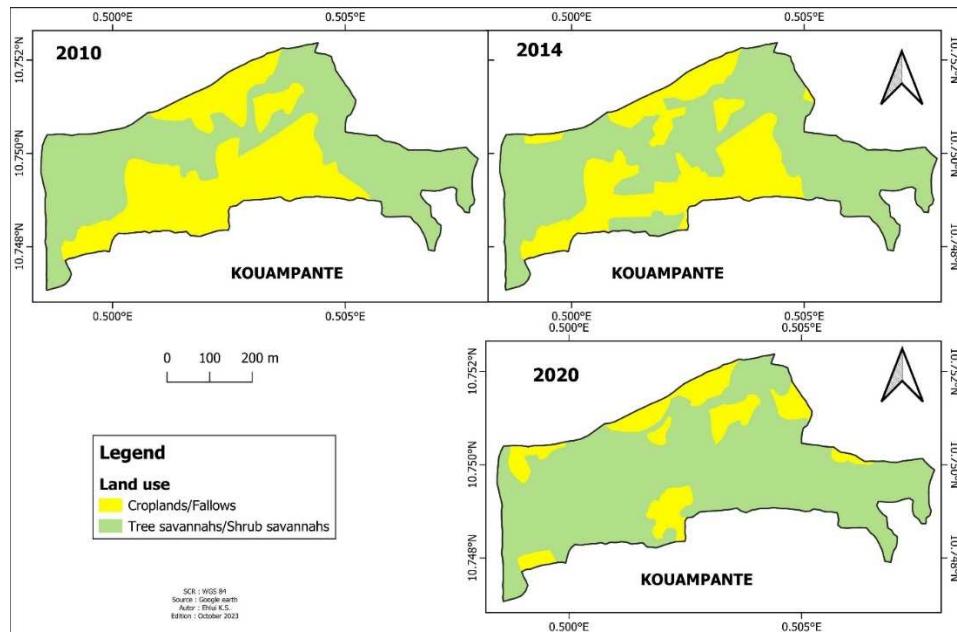
2.3. Data Analysis

2.3.1. Land Use Unit Mapping

The different land-use units of KCF were digitised using Google Earth Pro software. To validate the digitised occupation units, ground truth points were projected. The resulting shapefiles were transferred to QGIS 2.30 for mapping [40]. WGS 84_UTM Zone 31N was used as the projection background. Land use dynamics and transition were determined by comparison of the different maps[46].

2.3.2. Assessment Of The Floristic Diversity

The vegetation data collection was downloaded in Microsoft Excel spreadsheet format. A list of the plants of the Kouampante forest were then drawn up. The genera and botanical families were used to classify each species listed. Classification used was APG IV[10], which was accessed from the website: <https://africanplantdatabase.ch/en>. Biotypes and chorology were established [47,48]. The following biotypes were considered: phanerophytes (Ph), chamephytes (Ch), hemicryptophytes (He), geophytes (Ge), therophytes (Th) and epiphytes (Ep). Phanerophytes include: megaphanerophytes (MP) (trees over 30 m), mesophanerophytes (mP) (trees 10 to 30 m), microphanerophytes (mp, trees 2 to 10 m), nanophanerophytes (np, trees 0.4 to 2m), lianaceous forms (Lnp, Lmp, LmP, LMP) [25]. A tropical African context was used for the chorology. These are as follows: GC = species known in Guineo-Congolese zone, GCW = species belonging to western forest massif, GCE = species belonging to eastern forest massif, SZ = species known in Sudano-Zambesian zone, GC-SZ = species found in both zones, I = species introduced for agriculture, forestry or horticulture.

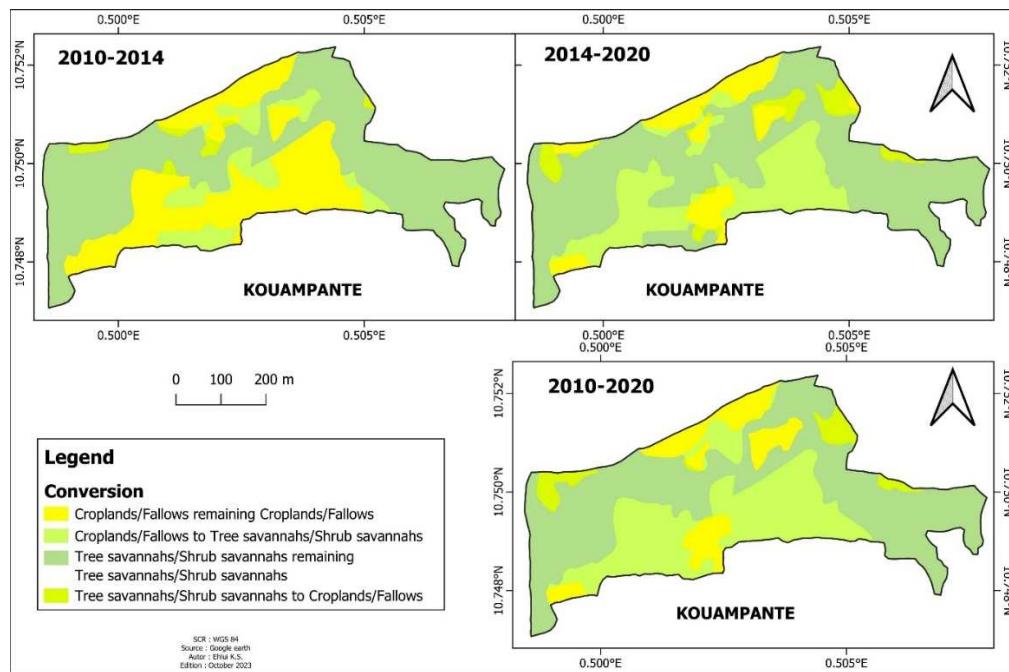

2.3.3. Forest Characteriscics Analysis

Four major dendrometric parameters were evaluated: tree density per hectare (D), mean lorry height (HL in m), mean diameter (Dm in cm) and basal area (G in m²/ha) [16,33]. Trees with DBH \geq 5 cm were considered. Mean Lorey Height is calculated by averaging tree heights weighted by basal area [49]. Trees are classified into diameter and height classes. The minimum diameter is 5 cm and the minimum height is 2 m. To fit the demographic structure of the trees to the theoretical distribution, the 3 Weibull parameters (a = location parameter, b = scale or size parameter and c = shape parameter related to the diameter or height structure) were used[33].

3. Results

3.1. Land Use Units Dynamic

An analysis of Google Earth images shows that the Kouampante community forest in 2010, 2014 and 2020 consists of tree savannah/shrub savannah and arable/fallow land (Figure 2). The same occupations were represented in 2014. Tree/shrub savannahs accounted for 33% of the forest. Croplands/Fallows accounted for 67%. In 2010, tree savannah/shrub savannah covered 58.73% of the forest, followed by cropland and fallow (41.27%). In 2020, tree savannahs/shrub savannahs occupy 84.30% of the Kouampante CF. This is followed by croplands/ fallow land (15.70%).


Figure 2.

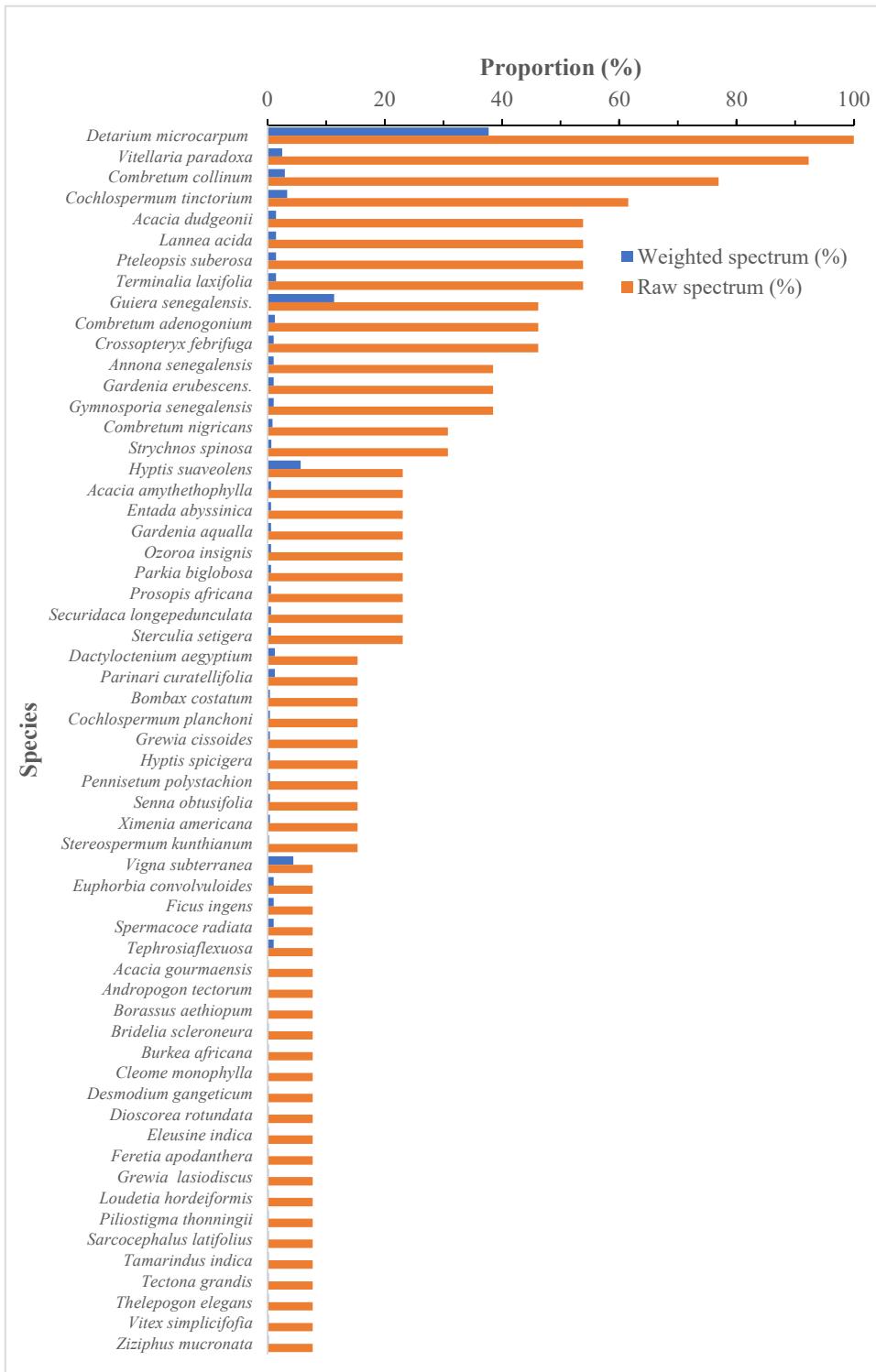
Between 2010 and 2020, the Kouampante community forest was characterised by a decrease in croplands/fallows (-61.97%). This contrasts with an increase in tree/shrub savannah (43.55%) (Table 1).

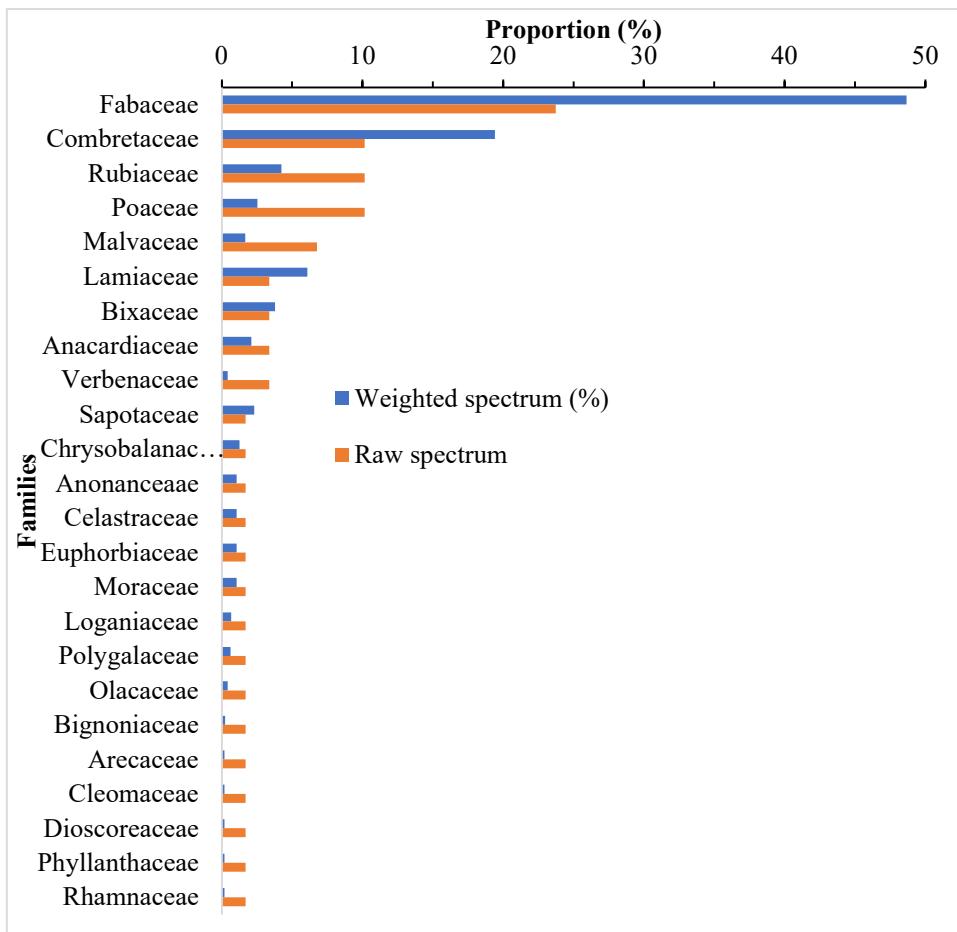
Table 1. Change rate of land use of Kouampante community forest from 2010 to 2020.

Land use units	2010		2014		2020		Change rate (%)		
	Superficie (ha)	%	Superficie (ha)	%	Superficie (ha)	%	2010-2014	2014-2020	2010-2020
Croplands/Fallows	11.28	41.27	9.02	33.00	4.29	15.70	-20.04	-52.44	-61.97
Tree/Shrub savannahs	16.05	58.73	18.31	67.00	23.04	84.3	14.08	25.83	43.55
Total	27.33	100	27.33	100	27.33	100			

By analyzing the land use transition matrix for the Kouampante community forest (Table 2), it was possible to identify the main conversions between 2010 and 2020. A conversion rate of 4.23% was applied to the conversion of trees/shrub savannahs to croplands/fallows. Stability exists for 11.06% croplands/fallows and 53.04% tree/shrub savannahs (Figure 3).

Figure 3. Change of land use in Kouampante Community Forest in Togo.**Table 2.** Land use transition matrix 2010-2014, 2014-2020, and 2010-2020.


To		2014			To		2020			To		2020		
		C/F	TS/SS	Total			C/F	TS/SS	Total			C/F	TS/SS	Total
2010	C/F	30.68	11.25	41.93	2014	C/F	9.99	22.98	32.97	2010	C/F	11.06	31.66	42.73
	TS/SS	1.99	56.08	58.07		TS/SS	6.06	60.97	67.03		TS/SS	4.23	53.04	57.27
	Total	32.67	84.7	100		Total	16.05	83.95	100		Total	15.3	84.7	100


C/F : Croplands/Fallows , TS/SS : Tree Savannahs/Shrub Savannahs.

3.2. Floristic Diversity of Kouampante Community Forest (KCF)

A total of 59 species from 50 genera and 24 families were recorded. *Detarium microcarpum* Guill. & Perr. is the dominant and frequent species in the whole landscape. Occupying 37.73%, this species was recorded in all plots. *Guiera senegalensis* J.F.Gmel. is the second most abundant species (11.39%). Apart from *D. microcarpum*, the most frequent species are: *Vitellaria paradoxa* C.F.Gaertner subsp. *paradoxa* and *Combretum collinum* Fresen (Figure 4).

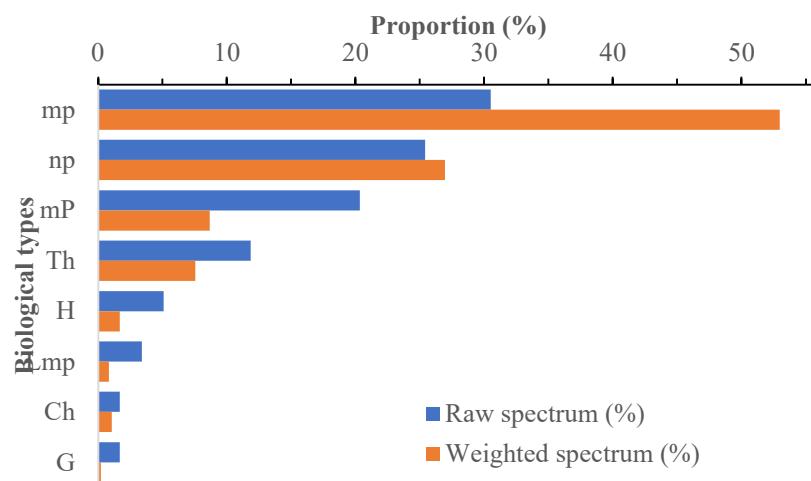

Fabaceae is the most diverse and abundant of the families. It accounts for 48.68% and is made up of 14 plant species. Combretaceae follows with 6 species (19.41%). Rubiaceae and Poaceae each have 6 species and Malvaceae has 4 species. The other families are less diverse (Figure 5).

Figure 4. Weighted and raw spectrums of the plant species in the KCF.**Figure 5.** Weighted and raw spectrums of families in the KCF.

In the KCF, tree phytogeographical plant species are represented. Soudano-Zambezian species (SZ, 54.24%) were the most common. They were followed by the transitional species (GC-SZ: Guineo-Congolese/Soudano-Zambezian 42.37%). Introduced species were the least represented (I: 3.39%).

The most represented biotypes in the KCF are microphanerophytes and nanophanerophytes (Figure 6). The less diverse and abundant species are the chameophytes and the geophytes.

Figure 6. Weighted and raw spectrums of plant biological types in the KCF. Ch = chamephyte, G = geophyte, H = hemicryptophyte, Lmp = liana mesophanerophyte, np = nanophanerophyte, mp = microphanerophyte, mP = mesophanerophyte, Th = therophyte.

One endangered species (*Vitellaria paradoxa*) and one near-threatened species (*Terminalia laxifolia Engl.*) were included in the KCF floras. IUCN Red List criteria are not applicable to 38.98%. A proportion of 61.02% of the plants are of least concern.

3.3. Description of woody plant communities

There were 16 species in the woody plant community of KCF. *Detarium microcarpum* was the most important species (IVI_{sp} = 128.68%). This key species is followed by *Vitellaria paradoxa* (Table 3). The 16 woody species are divided into genera and 7 families. The Fabaceae family is the most diverse family with 6 species (Table 3). It is also the most dominant and densest family. As a result, it is so far the most important of the KCF (FIV = 168.54%). Average density was estimated at 99 stems/ha. Mean diameter and basal area were 18.11 cm and 2.53 m²/ha respectively. Mean height was 7.57 m.

Table 3. Woody plant species Importance Value Indices (IVI) within Kouampante Community Forest of Togo.

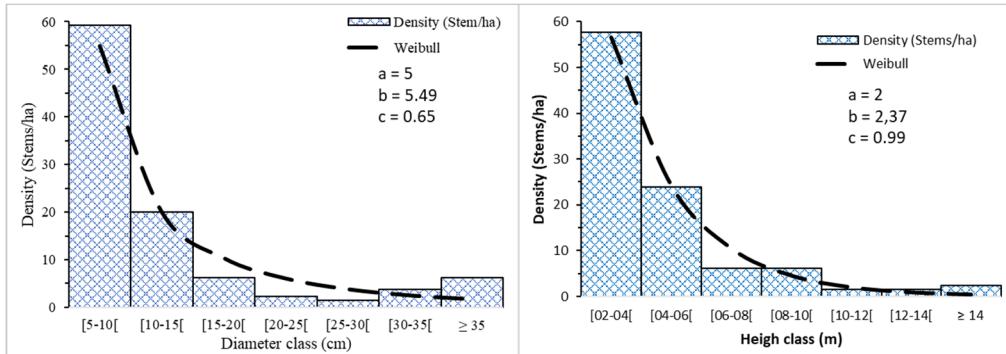

Scientific name	DENR	DOM	FR	IVI
<i>Detarium microcarpum</i> Guill. & Perr.	37.50	6.56	84.62	128.68
<i>Vitellaria paradoxa</i> C.F.Gaertner subsp. <i>paradoxa</i>	12.50	4.80	69.23	86.54
<i>Combretum collinum</i> Fresen.	9.38	1.73	53.85	64.95
<i>Parkia biglobosa</i> (Jacq.) R.Br. ex Benth.	7.81	20.74	30.77	59.32
<i>Lannea acida</i> A.Rich. s.l.	7.03	3.92	46.15	57.11
<i>Entada abyssinica</i> Steud. ex A.Rich.	4.69	33.46	15.38	53.53
<i>Sterculia setigera</i> Delile	4.69	5.84	30.77	41.30
<i>Terminalia laxifolia</i> Engl.	5.47	1.17	30.77	37.41
<i>Acacia dudgeonii</i> Craib ex Holland	4.69	1.66	23.08	29.42
<i>Bombax costatum</i> Pellegr. & Vuillet	1.56	5.41	15.38	22.35
<i>Tamarindus indica</i> L.	1.56	8.67	7.69	17.92
<i>Prosopis africana</i> (Guill. & Perr.) Taub.	0.78	2.92	7.69	11.39
<i>Ficus ingens</i> (Miq.) Miq.	0.78	2.76	7.69	11.23
<i>Parinari curatellifolia</i> Planch. ex Benth.	0.78	0.24	7.69	8.71
<i>Lannea microcarpa</i> Engl. & K. Krause	0.78	0.12	7.69	8.59

Table 4. Family Important Values (FIV) of woody plants within Kouampante Community Forest of Togo.

Families	DENR	DOM	DIV	FIV
Fabaceae	57.03	74.01	37.5	168.54
Combretaceae	14.84	2.91	18.75	36.50
Anacardiaceae	6.25	11.25	12.5	30.00
Malvaceae	7.81	4.04	12.5	24.35
Chrysobalanaceae	12.50	4.80	6.25	23.55
Moraceae	0.78	2.76	6.25	9.79

3.4. Demographic structure

There is an inverted J-shape (with $c < 1$) in the distribution of trees by diameter and height classes. The most dominant trees are those with small diameter and height. More than half of the trees are between 5 and 10 m in diameter and between 2 and 4 m in height. They account for 59.69% and 58.14%, respectively.

Figure 7. Kouampante Community Forest woody plant diameter and height structure.

4. Discussion

Between 2010 and 2020, the analysis of Google Earth images of the Kouampante community forest shows a progressive vegetation dynamic. A regression of croplants/fallows to tree/shrub savannahs was observed. This result is comparable to that found in Alibi 1 community forest [50] and in the Aboudjokopé forest [40] in the Central Region and the Plateaus Region of Togo respectively. These studies highlighted the contribution of community forest in forest restoration. The progression of tree/shrub savannah in 2020 is due to the protective measures implemented by the community. This could be due to the lasting management of these forest by local communities following reforestation[15]. Protection against wildfire, plantation of several plants, regulation of human activities and promotion of socioeconomic activities in and around community forests recently by the means of several projects could justify this state [9,51]. With the exception of the Abdoulaye wildlife reserve [43], all protected areas of Togo experience anthropogenic pressure conduced to regression of forest lands [38,42,52,53]. The same trends were described in West African protected areas [54,55].

KCF has an estimated flora diversity of 59. Compared to most other community forests in ecological zones 3, 4 and 5 of Togo [10,18,19,41,56], this diversity was low. The smaller size of this forest and the climatic conditions of the area may explain this difference. The low rainfall limited the diversity. KCF plant species diversity was comparable to that of Dankpen district [15] with a similar climatic conditions.

Globally, the most common families are Fabaceae and Combretaceae. The climatic conditions and vegetation type of the area are confirmed by this finding. Native vegetation was Sudanese savannah with Fabaceae (sometimes thorny *Acacia*) and Combretaceae[30,31]. This finding was comparable to that of the sacred groves of the Savannahs Region[20]. In contrast, within the complex of protected areas of Oti-Kéran-Mandouri, located in the same ecological zone, the study of Polo Akpisso *et al.* (2015) showed that the Poaceae were the most represented. This showed that KCF had more woody vegetation. However, the structural characteristics of the woody vegetation showed that there were more young trees in the KCF. Meliaceae (represented mainly by *Azadirachta indica*, an introduced and invasive species), recently described as dominant in ecological zone 1 [45,57] was not present in NCF.

High woody plant abundance was confirmed by high representation of phanerophytic plant species. This was an indication of the reduction of anthropogenic threats in comparison with the protected areas of the zone, which are under high human pressure [27,42]. Therefore, managing this vegetation in a sustainable way may result in having open forests.

As a feature of the area, the KCF is dominated by Soudano-Zambezian species. This is comparable to several studies in Ecological Zone 1 [42,45,58]. The transitional species were the most abundant

in the sacred groves of Savannahs Region and the classified forest of Doung Pit[20,27]. This showed that the KCF was less humid than the latter two.

Inverted J-shape diametric and height distribution observed in KCF. This suggests a high presence of young individuals in the KCF. It also underlines the recent forest protection measures. This is a consequence of the absence of large diameter trees[27]. It also suggests the presence of several future stems to ensure that the forest continues to recover [59]. This condition has been described in several community forests in Togo [14,16,41,56]

5. Conclusion

Improving ecosystem functionality of community-managed forests is crucial for preserving biodiversity. The present investigation described qualitative vegetation characteristics in Kouampante Community Forest. The spatio-temporal dynamics indicate forest recovery within the Kouampante Community Forest. The originality of the climatic conditions of Ecological Zone 1 was demonstrated by the diversity of the KCF. The most dominant plants are woody species with small diameters and heights. This highlighted the recent measures taken to protect the previously anthropogenic threatened area. It represents an opportunity for restoring the forest. The forest must be enriched with useful and nationally threatened species. Special attention should be paid to fire management, as the ecosystems in the area are vulnerable to forest fires. The study details the ecological characteristics of Kouampante Community Forest in Togo. The findings can serve as a basis for the sustainable use and conservation of community-managed forests in the region.

Funding: "This research was funded by the German Federal Ministry of Education and Research (BMBF), through the West Africa Science Service Center on Climate change and Adapted Land Use (WASCAL) program".

Data Availability Statement: WASCAL data is open access and will be made available when a formal request is received by the institution through the Data Administration Unit.

Acknowledgments: The authors are grateful to the German Federal Ministry of Education and Research (BMBF) for funding this study under the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) program. We are grateful to all the stakeholders who invested their time and shared their experiences, and to the anonymous reviewers for their careful reading and comments on this manuscript.

Conflicts of Interest: "The authors declare no conflicts of interest."

Appendix A. List of plant species within Kouampante Community Forest (NCF)

Annexe 1: List of plant species within Kouampante Community Forest (KCF) in Togo.

Species	Families	TP	TB
<i>Acacia amythethophylla</i> Steud. ex A. Rich.	Fabaceae	SZ	mP
<i>Acacia dudgeonii</i> Craib ex Holland	Fabaceae	SZ	mp
<i>Acacia gourmaensis</i> A.Chev.	Fabaceae	SZ	mp
<i>Andropogon tectorum</i> Schumach. & Thonn.	Poaceae	GC-SZ	H
<i>Annona senegalensis</i> Pers.	Anonaceae	GC-SZ	np
<i>Bombax costatum</i> Pellegr. & Vuillet	Malvaceae	SZ	mP
<i>Borassus aethiopum</i> Mart.	Arecaceae	GC-SZ	mP
<i>Bridelia scleroneura</i> Müll.Arg.	Phyllanthaceae	SZ	np
<i>Burkea africana</i> Hook.	Fabaceae	SZ	mp
<i>Cleome monophylla</i> L.	Cleomaceae	GC-SZ	Th
<i>Cochlospermum planchonii</i> Hook.f.	Bixaceae	SZ	np
<i>Cochlospermum tinctorium</i> A.Rich.	Bixaceae	SZ	np
<i>Combretum adenogonium</i> Steud. ex A.Rich.	Combretaceae	SZ	mp

<i>Combretum collinum</i> Fresen.	Combretaceae	SZ	mp
<i>Combretum nigricans</i> Lepr. ex Diels var. <i>elliottii</i> (Engl. & Diels) Aubrev.	Combretaceae	GC-SZ	mP
<i>Crosopteryx febrifuga</i> (G.Don) Benth.	Rubiaceae	GC-SZ	mp
<i>Dactyloctenium aegyptium</i> (L.) Willd.	Poaceae	GC-SZ	H
<i>Desmodium gangeticum</i> (L.) nc. var. <i>gangeticum</i>	Fabaceae	GC-SZ	np
<i>Detarium microcarpum</i> Guill. & Perr.	Fabaceae	SZ	mp
<i>Dioscorea rotundata</i> Poir.	Dioscoreaceae	GC-SZ	G
<i>Eleusine indica</i> (L.) Gaertn.	Poaceae	GC-SZ	H
<i>Entada abyssinica</i> Steud. ex A.Rich.	Fabaceae	GC-SZ	Lmp
<i>Euphorbia convolvuloides</i> Hochst. ex Benth.	Euphorbiaceae	SZ	Ch
<i>Feretia apodanthera</i> Delile ssp. <i>apodanthera</i>	Rubiaceae	SZ	mp
<i>Ficus ingens</i> (Miq.) Miq.	Moraceae	SZ	mp
<i>Gardenia aqualla</i> Stapf & Huteh.	Rubiaceae	GC-SZ	np
<i>Gardenia erubescens</i> Stapf & Huteh.	Rubiaceae	GC-SZ	np
<i>Grewia lasiodiscus</i> K. Schum.	Malvaceae	SZ	mp
<i>Grewia cissoides</i> Hutch. & Dalziel	Malvaceae	SZ	mp
<i>Guiera senegalensis</i> J.F.Gmel.	Combretaceae	SZ	np
<i>Gymnosporia senegalensis</i> (Lam.) Loes.	Celastraceae	SZ	np
<i>Hyptis spicigera</i> Lam.	Lamiaceae	SZ	np
<i>Hyptis suaveolens</i> (L.) Poit.	Lamiaceae	GC-SZ	np
<i>Lannea acida</i> A.Rich. s.l.	Anacardiaceae	GC-SZ	mP
<i>Loudetia hordeiformis</i> (Stapf) C.E.Hubbard	Poaceae	GC-SZ	Th
<i>Ozoroa insignis</i> Delile	Anacardiaceae	SZ	np
<i>Parinari curatellifolia</i> Planch. ex Benth.	Chrysobalanaceae	SZ	mp
<i>Parkia biglobosa</i> (Jacq.) R.Br. ex Benth.	Fabaceae	GC-SZ	mP
<i>Pennisetum polystachyon</i> (L.) Sehult. <i>polystachion</i>	Poaceae	GC-SZ	Th
<i>Piliostigma thonningii</i> (Schumach.) Milne-Redh.	Fabaceae	GC-SZ	np
<i>Prosopis africana</i> (Guill. & Perr.) Taub.	Fabaceae	SZ	mP
<i>Pteleopsis suberosa</i> Engl. & Diels	Combretaceae	SZ	mp
<i>Sarcocephalus latifolius</i> (Sm.) E.A.Bruce	Rubiaceae	GC-SZ	Lmp
<i>Securidaca longepedunculata</i> Fresen.	Polygalaceae	SZ	mp
<i>Senna obtusifolia</i> (L.) H.S.Irwin & Barneby	Fabaceae	GC-SZ	np
<i>Spermacoce radiata</i> (DC.) Hiem	Rubiaceae	GC-SZ	Th
<i>Sterculia setigera</i> Delile	Malvaceae	SZ	mP
<i>Stereospermum kunthianum</i> Cham.	Bignoniaceae	SZ	mP
<i>Strychnos spinosa</i> Lam.	Loganiaceae	SZ	mP
<i>Tamarindus indica</i> L.	Fabaceae	GC-SZ	mP
<i>Tectona grandis</i> L.f.	Verbenaceae	I	mP
<i>Tephrosia flexuosa</i> G.Don	Fabaceae	GC-SZ	Th
<i>Terminalia laxifolia</i> Engl.	Combretaceae	SZ	mp
<i>Thelepogon elegans</i> Roth ex Roem.	Poaceae	SZ	Th
<i>Vigna subterranea</i> (L.) Verde.	Fabaceae	I	Th

<i>Vitellaria paradoxa</i> C.F.Gaertner subsp. i	Sapotaceae	SZ	mP
<i>Vitex simplicifolia</i> Oliv.	Verbenaceae	SZ	np
<i>Ximenia americana</i> L.	Olacaceae	GC-SZ	mp
<i>Ziziphus mucronata</i> Willd.	Rhamnaceae	SZ	mp

References

1. K. Adjonou, M. Kpeli Poukpezi, K. N. Segla, and K. Kokou, "Impacts of traditional practices on biodiversity and structural characteristics of sacred groves in northern Togo, West Africa," *Acta Oecologica*, vol. 110, no. October 2020, p. 103680, 2021.
2. W. Atakpama, B. Badjare, Y. A. Woegan, F. komi G. Amouzou, M. Kpadjao, and K. Akpagana, "Ecologie des bosquets sacrés de la préfecture de Tone dans la Région des Savanes au Togo," *Rev. Espac. Geogr. Soc. Marocaine*, vol. 56, no. January, p. 23, 2022.
3. K. S. Ehlui *et al.*, "Anthropogenic Threats to Degraded Forest Land in the Savannahs' Region of Togo from 1984 to 2020 , West Africa," *J. Geosci. Environ. Prot.*, vol. 12, no. 1, pp. 164–179, 2024.
4. P. Bhusal, N. S. Paudel, A. Adhikary, J. Karki, and K. Bhandari, "Halting Forest Encroachment in Terai: What Role for Community Forestry?," *J. For. Livelihood*, vol. 16, no. 1, pp. 15–34, 2018.
5. B. Kombate *et al.*, "Structure et modélisation du carbone de la Forêt Classée de Missahohoé au Togo," *African J. L. Policy Geospatial Sci.* 6(1) 42-61., vol. 6, no. 1, pp. 42–61, 2023.
6. P. B. Giri, M. Yucharoen, S. Gyawali, and P. Gentle, "Implementing SDG-15 Through Community Forestry Management A Case of Tarpakha Community Forest, Gorkha, Nepal," *EnvironmentAsia*, vol. 16, no. 2, pp. 1–11, 2023.
7. C. Wulandari, P. Budiono, and D. Iswandaru, "Importance of social characteristic of community to support restoration program in protection forest," *Indones. J. For. Res.*, vol. 8, no. 2, pp. 173–186, 2021.
8. J. Baynes, J. Herbohn, C. Smith, R. Fisher, and D. Bray, "Key factors which influence the success of community forestry in developing countries," *Glob. Environ. Chang.*, vol. 35, pp. 226–238, 2015.
9. W. Atakpama, H. Egbelou, M. Samarou, and F. Fousseni, "La foresterie communautaire au Togo: Où en sommes-nous?," *Rev. Marocaine des Sci. Agron. Vétérinaires*, vol. 11, no. December, pp. 532–543, 2023.
10. W. Atakpama, H. Egbelou, B. Kombate, S. Biaou, and K. Batawila, "Diversité et structure des formations végétales de la forêt communautaire d ' Alibi -1 au Togo," *Rev. Sci. Technol., Synthèse*, vol. 29, no. 1, pp. 06–20, 2023.
11. M. Moayeri, A. Abedi, S. Mohammadreza, and A. Mastouri, "Detection of social forestry approaches and its impact on managing forestry plans in Golestan province," *J. Wood For. Sci. Technol.*, vol. 28, no. 4, pp. 1–28, 2022.
12. H. J. . Beukeboom, C. Van der Laan, A. Van Kreveld, and G. Akwah, "Can community forestry contribute to livelihood improvement and biodiversity?," 2010.
13. K. S. Ehlui *et al.*, "Mapping and Floristic Diversity of the Nakpadjouak Community Forest , Tami Canton , Togo (West Africa)," *Nat. Resour.*, 2024.
14. F. Folega *et al.*, "Caractérisation écologique de la Foret Communautaire d'Edouwossi-Cope (région des Plateaux-Togo)," *J. Rech. Sci. Univ. Lomé*, vol. 19, no. 3, pp. 47–61, 2017.
15. W. Atakpama, H. Egbelou, F. Folega, C. Afo, K. Batawila, and K. Akpagana, "Diversité floristique des forêts communautaires de la préfecture de Dankpen au Togo," *Rev. Marocaine des Sci. Agron. Vétérinaires*, vol. 10 (4), no. December, pp. 548–557, 2022.
16. D. M. Bawa, K. Wala, F. Folega, and K. Akpagana, "Caractéristiques floristiques et structurales de la forêt communautaire d ' Agbandi au centre du Togo (Afrique de l' ouest) Floristic and structural characteristics of Agbandi commun...," *Rev Écosystèmes Paysages*, vol. 02, no. july, pp. 55–74, 2022.
17. M. Kossi *et al.*, "État et dynamique spatio- temporelle de la forêt communautaire d ' Edouwossi - Copé , Région des Plateaux-Togo Spatio-temporal dynamics of the Edouwossi-Copé community forest , region of," *Rev Écosystèmes Paysages*, vol. 02, no. 01, pp. 12–26, 2022.
18. F. Folega *et al.*, "Land Use Change and the Structural Diversity of Affem Boussou Community Forest in the Tchamba 1 Commune (Tchamba Prefecture, Togo)," *Conservation*, vol. 3, no. 3, pp. 346–362, 2023.
19. Z. Koumou, "Cartographie et caractérisation floristique de la forêt communautaire Edzi Hado dans la préfecture de l'Avé, Région Maritime (Togo)," *Rev. Ecosystèmes Paysages (Togo)*, vol. 3, no. 1, 2023.
20. W. Atakpama, F. Folega, M.-E. Kpadjao, and F. komi G. Amouzou, "Problématique de gestion durable de la biodiversité des bosquets sacrés de la Région des Savanes au Togo Challenge of sustainable management of biodiversity of sacred groves of the Region of Savannahs in Togo," *Rev. Sci. Technol., Synthèse*, vol. 27, no. January 2022, pp. 22–32, 2021.

21. Y. Konko, J. P. Rudant, G. K. Akpamou, K. D. Noumonvi, and K. Kokou, "Spatio-Temporal Distribution of Southeastern Community Forests in Togo (West Africa)," *J. Geosci. Environ. Prot.*, vol. 06, no. 07, pp. 51–65, 2018.
22. J. K. Musyoki, J. Mugwe, K. Mutundu, and M. Muchiri, "Factors influencing level of participation of community forest associations in management forests in Kenya," *J. Sustain. For.*, vol. 35, no. 3, pp. 205–216, 2016.
23. F. Folega, W. Atakpama, M. Kanda, K. Wala, K. Batawila, and K. Akpagana, "Agroforestry parklands and carbon sequestration in tropical Sudanese region of Togo," *Rev. Mar. Sci. Agron. Vét.*, vol. 7, no. 4, pp. 563–570, 2019.
24. F. Folega *et al.*, "Assessment and impact of anthropogenic disturbances in protected areas of northern Togo," *For. Stud. China*, vol. 14, no. 3, pp. 216–223, 2012.
25. K. Dimobe, K. Wala, K. Batawila, M. Dourma, Y. A. Woegan, and K. Akpagana, "Analyse spatiale des différentes formes de pressions anthropiques dans la réserve de faune de l'Oti-Mandouri (Togo)," *VertigO*, no. Hors-série 14, 2012.
26. A. Polo-Akpisso *et al.*, "Habitat biophysical and spatial patterns assessment within Oti-Keran-Mandouri protected area network in Togo," *Int. J. Biodivers. Conserv.*, vol. 10, no. 5, pp. 214–229, 2018.
27. W. Atakpama, B. Badjare, E. Yawo, K. Aladji, and K. Batawila, "fosse de Doung au Togo Alarming degradation of forest resources in the classified forest of Doung pit in Togo," *African J. L. Policy Geospatial Sci.*, vol. 6, no. May, pp. 2657–2664, 2023.
28. A. A. Folega, F. Folega, Y. Woegan, K. Wala, and K. Akpagana, "Dynamique des émissions de gaz à effet de serre liées au secteur forestier et autres affectations des terres (FAT) dans le paysage du socle Eburnéen au Togo," *Rev Écosystèmes Paysages (Togo)*, vol. 01(01): 58, no. December, 2021.
29. H. Ern, "Die Vegetation Togos. Gliederung, Gefährdung, Erhaltung Author(s): Hartmut Ern Source:" *Willdenowi*, vol. 9, pp. 295–312, 1979.
30. J. F. Brunel, P. Hiepko, and H. Scholz, "Flore analytique du Togo: Phanerogames," *Englera*, no. 4, pp. 3–751, 1984.
31. K. Akpagana and P. Bouehet, "Etat actuel des connaissances sur la flore et la végétation du Togo," *Acta Bot. Gall.*, vol. 141, no. 3, pp. 367–372, 1994.
32. A. B. Kebenzikato *et al.*, "Distribution et structure des parcs à *Adansonia digitata* L.(baobab) au Togo (Afrique de l'Ouest)," *Afrique Sci.*, vol. 10, no. 2, pp. 434–449, 2014.
33. M. Samarou *et al.*, "Caractérisation écologique et structurale des parcs à tamarinier (*Tamarindus indica* L ., Fabaceae) dans la zone soudanienne du Togo (Afrique de l ' Ouest)," *Rev Écosystèmes Paysages*, vol. 02, no. July, pp. 109–125, 2022.
34. E. Padakale *et al.*, "Woody Species Diversity and Structure of *Parkia biglobosa* Jacq. Dong Parklands in the Sudanian Zone of Togo (West Africa)," *Annu. Res. Rev. Biol.*, vol. 6, no. 2, pp. 103–114, 2015.
35. M. Samarou, N. Lekeriba, W. Atakpama, and B. Komlan, "Diversité et importance économique des plants forestiers utilisés dans la restauration des paysages dans la région Maritime au Togo Diversity and economic importance of woody plants used for forest landscape restoration in the Maritime region of Togo," *Rev. Ecosystèmes Paysages*, vol. 3, no. 1, pp. 149–166, 2023.
36. A. B. Kebenzikato, W. Atakpama, M. Samarou, K. Wala, K. Batawila, and K. Akpagana, "Importance socio-économique du baobab (*Adansonia digitata*) au Togo," *Rev. Mar. Sci. Agron. Vét.*, vol. 11, no. 3, pp. 294–302, 2023.
37. R. A. Ibrahim-naim, W. Atakpama, A. K. Bessan, and N. Liyabin, "Diversité floristique et biomasse fourragère des parcours potentiels de pastoralisme du socle éburnéen au Togo Floristic diversity and fodder biomass of potential grazing land of the Eburnean basement in Togo Résumé," *Écosystèmes et Paysages (Togo)*, vol. 01, no. 1, pp. 12–29, 2021.
38. A. Polo-Akpisso *et al.*, "Habitat biophysical and spatial patterns assessment within Oti-Keran-Mandouri protected area network in Togo," *Int. J. Biodivers. Conserv.*, vol. 10, no. 5, pp. 214–229, 2018.
39. B. Badjare, Y. A. Woegan, F. Folega, and W. Atakpama, "VULNÉRABILITÉ DES RESSOURCES LIGNEUSES EN LIEN AVEC LES DIFFÉRENTES FORMES D ' USAGES AU TOGO : CAS DU PAYSAGE DES AIRES PROTÉGÉES DOUNGH-FOSSE AUX LIONS (RÉGION DES SAVANES) VULNERABILITY OF WOODY RESOURCES IN RELATION TO DIFFERENT FORMS OF USE IN TOGO," *Rev. Agrobiol.*, vol. 11, no. 2, pp. 2552–2565, 2021.
40. H. Egbelou, W. Atakpama, M. Dourma, and K. Akpagana, "Dynamique spatio-temporelle et flore de la forêt d ' Aboudjokopé au Togo," *Rev. Sci. Technol., Synth.*, vol. 27, no. December, pp. 37–50, 2021.
41. F. Folega *et al.*, "Potentialites écologiques et socio-economiques de la foret communautaire d'agbedougbe (region des Plateaux-Togo)," *J. la Rech. Sci. l'Université Lomé*, vol. 19, no. 2, pp. 31–50, 2017.

42. A. Polo-Akpisso *et al.*, "Plant Species Characteristics and Woody Plant Community Types within the Historical Range of Savannah Elephant, *Loxodonta africana* Blumenbach 1797 in Northern Togo (West Africa)," *Annu. Res. Rev. Biol.*, vol. 7, no. 5, pp. 283–299, 2015.

43. W. Atakpama, K. M. W. Agbetanu, L. L. Atara, S. Biaou, K. Batawila, and K. Akpagana, "Biodiversité et gestion des feux de végétation dans la réserve de faune d'Abdoulaye au Togo Biodiversity and management of burn fire within Abdoulaye Wildlife Forest in Togo," *Rev. Sci. Technol., Synthèse*, vol. 27, no. December, pp. 51–64, 2021.

44. A. Thiombiano, R. Glèlè-Kakai, P. Bayen, J. I. Boussim, and A. Mahamane, "Méthodes et dispositifs d'inventaires forestiers en Afrique de l'Ouest : état des lieux et propositions pour une harmonisation," *Ann. des Sci. Agron.*, vol. 19, no. April, pp. 15–31, 2015.

45. F. Folega and R. Ekoungoulou, "paysage du socle éburnéen au Togo Diversité structurale des ligneux en lien avec l'utilisation des terres en paysage du socle éburnéen au Togo," *Ann. Rech. For. Algérie*, vol. 12, no. 1, pp. 7–25, 2022.

46. K. B. Kokou, W. Atakpama, B. Kombate, H. Egbelou, and N. A. Koffi, "Dynamique et modélisation du stock de carbone de la Forêt Classée d'Amou-Mono au Togo," *Rev. Ecosystèmes Paysages*, vol. 3, no. 2, pp. 1–16, 2023.

47. L. Assi-Ake, "Reviews and Announcements," *Taxon*, vol. 34, no. 4, pp. 739–753, 1985.

48. F. White, *La vegetation de l'Afrique*. Paris: ORSTOM-UNESCO, 1986.

49. P. W. West, *Tree and Forest Measurement*, no. May. 2004.

50. B. Kombate *et al.*, "Dynamique de l'occupation de sol et modélisation du carbone de la Forêt Communautaire d'Alibi 1," *Ann. la Rech. For. en Algérie*, vol. 12, no. 2, p. Sous presse, 2023.

51. W. Atakpama, E. Asseki, E. Kpemissi Amana, C. Koudegnan, K. Batawila, and K. Akpagana, "Importance socio-économique de la forêt communautaire d'Edouwossi-copé dans la préfecture d'Amou au Togo," *Rev. Marocaine des Sci. Agron. Vétérinaires*, vol. 6, no. 1, pp. 55–63, 2018.

52. A. Polo-Akpisso, K. Wala, O. Soulemane, F. Folega, K. Akpagana, and Y. Tano, "Assessment of Habitat Change Processes within the Oti-Keran-Mandouri Network of Protected Areas in Togo (West Africa) from 1987 to 2013 Using Decision Tree Analysis," *Sci.*, vol. 2, no. 1, 2020.

53. W. Atakpama *et al.*, "Vulnérabilité de la flore de la Forêt Classée de Missahohoé au feu de végétation," *Ann. Rech. For. Alger.*, vol. 13, no. 01, pp. 37–53, 2023.

54. K. Dimobe *et al.*, "Spatio-Temporal Dynamics in Land Use and Habitat Fragmentation within a Protected Area Dedicated to Tourism in a Sudanian Savanna of West Africa," *J. Landsc. Ecol. Republic*, vol. 10, no. 1, pp. 75–95, 2017.

55. S. Biaou *et al.*, "Dynamique spatio-temporelle de l'occupation du sol de la forêt classée de Ouénou-Bénou au Nord Bénin To cite this version : HAL Id : hal-02189367 Dynamique spatio-temporelle de l'occupation du sol de la forêt classée de Ouénou-Bénou au Nord Bénin," in *Hal-02189367*, 2019, no. 2, pp. 1–20.

56. W. Atakpama, K. Akpagana, and H. Pereki, "Cartographie, diversité et structure démographique de la forêt communautaire d'Amavénou dans la préfecture d'Agou au Togo Université Ouaga I Pr Joseph KI-ZERBO Revue de Géographie de l'Université de Ouagadougou," *Rev. Géographie l'Université Ouagadougou*, vol. 2, no. 6, pp. 59–82, 2017.

57. F. Folega *et al.*, "Land use patterns and tree species diversity in the Volta Geological Unit, Togo," *J. Mt. Sci.*, vol. 16, no. 8, pp. 1869–1882, 2019.

58. W. Atakpama, K. B. Amegnaglo, B. Afelu, F. Folega, K. Batawila, and K. Akpagana, "Biodiversité et biomasse pyrophyte au Togo," *VertigO*, vol. 19, no. 3, p. 21, 2019.

59. B. R. Tsoumou, K. J. Lumandé, J. P. Kampé, and J. D. Nzila, "Estimation de la quantité de carbone séquestré par la Forêt Modèle de Dimonika (Sud-ouest de la République du Congo)," *Rev. Sci. Tech. Forêt & Environnement du Bassin du Congo*, vol. 6, no. Avril, pp. 39–45, 2016.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.