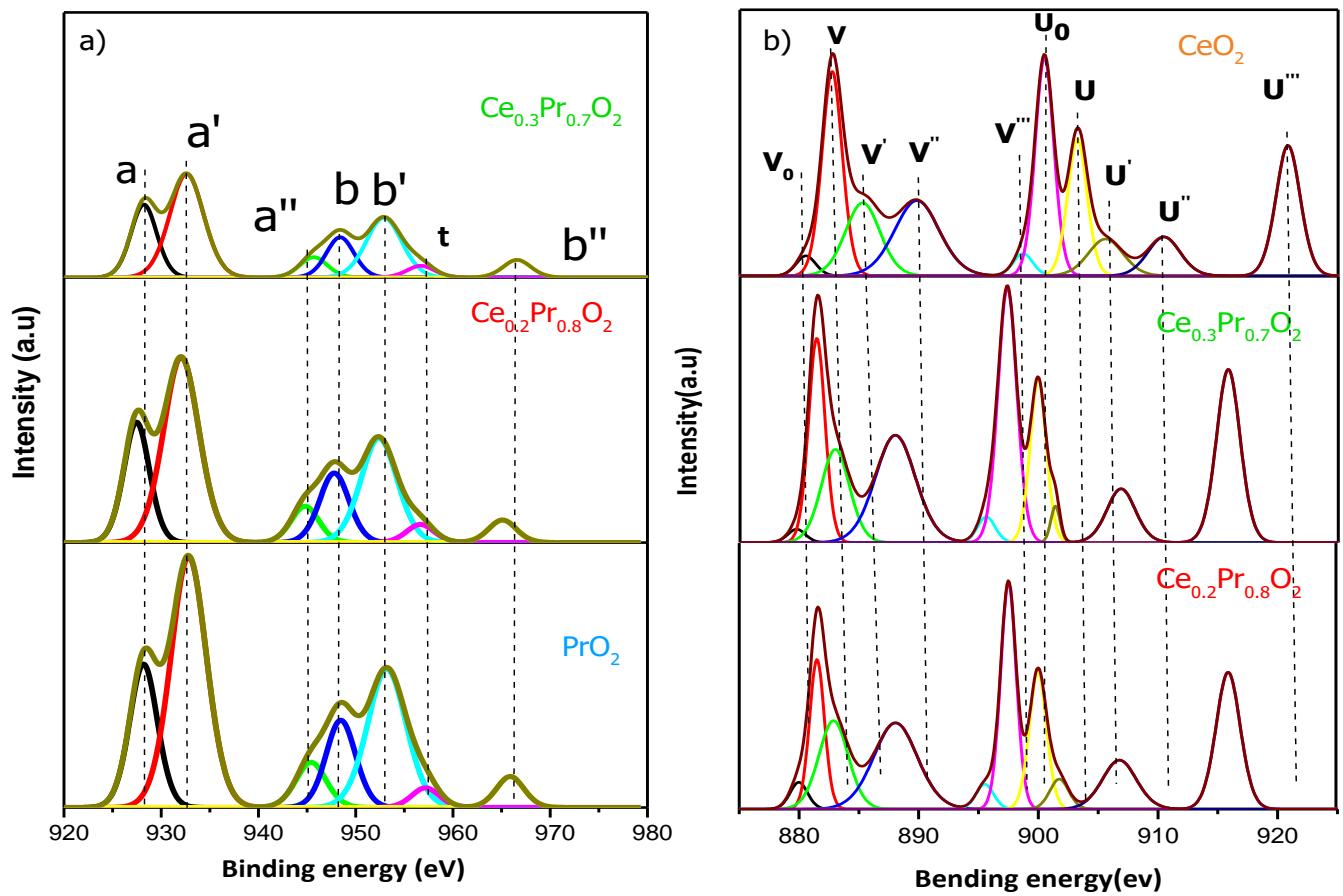


## Supplementary Information

# Nanostructured Pr-rich $\text{Ce}_x\text{Pr}_{1-x}\text{O}_{2-\delta}$ mixed oxides for diesel soot combustion. Importance of oxygen lability.

Imene Mekki <sup>1</sup>, Gabriela Grzybek <sup>2</sup>, Andrzej Kotarba<sup>2</sup> and Avelina García-García <sup>1,\*</sup>


<sup>1</sup> Carbon Materials and Environment Research Group (MCMA), Department of Inorganic Chemistry and Institute of Materials, University of Alicante, Carretera de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain.

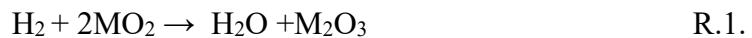
<sup>2</sup> Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland

\* Correspondence: a.garcia@ua.es; Tel.: (+34 965909419; A.G.G.)

### 1. XPS analysis

Figure S1.a shows the Pr3d profiles of the catalysts studied, the Pr 3d spectrum contains 7 peaks organized in 3 spin-orbit coupling doublets, named a-b, a'-b' and a''-b'' and one Auger peak at high binding energy, belonging to the 3d3/2 sublevel [1]. The spectrum Pr3d for each catalyst indicates that Pr<sup>3+</sup> and Pr<sup>4+</sup> coexisted. Figure. S2.b exhibits the XPS spectra of Ce 3d of the catalysts. Ce 3d XPS spectra are well known to be complicated due to the hybridization of the Ce 4f orbitals with the ligand orbitals and the fractional occupation of the valence 4f orbitals and the O 2p states [2,3]. These spectra were decomposed into ten contributions. The peaks were labeled according to the standard nomenclature, in agreement with the literature[4,5]. Peaks associated with the Ce 3d<sub>5/2</sub> state are labeled v, whereas those associated with the Ce 3d<sub>3/2</sub> state are labeled u. However, the contributions v, v'', v''', u, u'' and u''' belong to Ce<sup>4+</sup> 3d states indicating the main valence state of Ce in the sample as +4; while the v<sub>0</sub>, v', u<sub>0</sub> and u' are attributed to the valence state of Ce<sup>3+</sup> [4].




**Figure S1.** XPS spectra of a) Pr 3d and b) Ce3d

## 2. Details on the procedure and estimation of the number of oxygen vacancies.

The number of oxygen vacancies created in the surface/subsurface/bulk of the solids under the different treatments was estimated by assuming that the amount of oxygen released after the different treatments (either as  $\text{H}_2\text{O}$  from  $\text{H}_2\text{-TPR}$  or as  $\text{O}_2$  from  $\text{O}_2\text{-TPD}$  under  $\text{He}$ ) proceeds from the surface/lattice oxygen corresponding (eventually) to the creation of the oxygen vacancies by assuming the following global stoichiometries (Reaction 1 and 3).

Therefore, the  $\text{H}_2$  consumption ( $\mu\text{mol/g}_{\text{cat}}$ ) estimation is the same as the  $\text{H}_2\text{O}$  emitted during the experiment and agrees with the  $\mu\text{moles O/g}_{\text{cat}}$ , corresponding to the oxygen vacancies generated during the experiment (according to the stoichiometry of reaction 1).

By means of  $\text{H}_2\text{-TPR}$ :

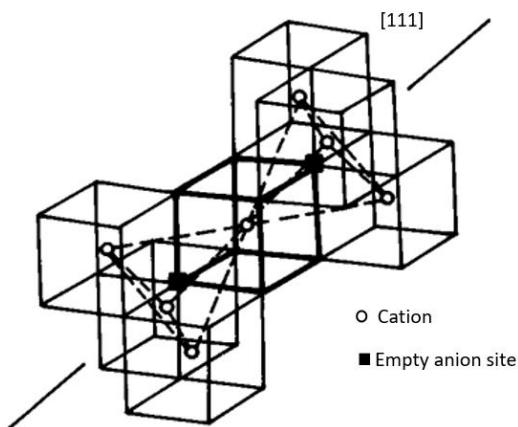


(by using the calibration of  $\text{CuO}$  as a standard and assuming that one mole of  $\text{H}_2$  is consumed for each mole of  $\text{CuO}$  to reduce the total  $\text{Cu}^{2+}$  to  $\text{Cu}^0$  according to the following reaction):



By means of  $\text{O}_2\text{-TPD}$ :




the  $\text{O}_2$  emission ( $\mu\text{mol/g}_{\text{cat}}$ ) would be double the amount of the estimation of  $\mu\text{moles O/g}_{\text{cat}}$ , corresponding to the oxygen vacancies generated during the experiment (according to the stoichiometry of Reaction 3).

(by using the calibration of  $\text{CuO}$ , where the stoichiometric reduction/decomposition of  $\text{CuO}$  to  $\text{Cu}_2\text{O}$  emitting  $\text{O}_2$  occurs under an inert atmosphere, according to the reaction 4)



Oxygen delivery capacity is, the capacity of the catalysts to emit oxygen, and in turn, to create oxygen vacancies in their structures.

### 3. Theoretical non-stoichiometric phase of the Bevan's cluster



**Figure S2.** Bevan cluster in  $\text{MO}_{2-x}$  oxides of fluorite structure. Adapted from reference [1]

### 4. References

1. Guillén Hurtado, N. Eliminación de Carbonilla Generada Por Motores Diésel Mediante Combustión Catalizada Por Óxidos Mixtos Basados En Cerio, PhD thesis, University of Alicante. **2013**, 330.
2. Gamarra, D.; Munuera, G.; Hungri, A.B.; Ferna, M.; Martí, A. Structure-Activity Relationship in Nanostructured Copper - Ceria-Based Preferential CO Oxidation Catalysts. **2007**, 111, 11026–11038.
3. Borchert, H.; Frolova, Y.V.; Kaichev, V.V.; Prosvirin, I.P.; Alikina, G.M.; Lukashevich, A.I.; Zaikovskii, V.I.; Moroz, E.M.; Trukhan, S.N.; Ivanov, V.P.; et al. Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium. *J. Phys. Chem. B* **2005**, 109, 5728–5738, doi:10.1021/jp045828c.
4. Hardacre, C.; Roe, G.M.; Lambert, R.M. Structure, Composition and Thermal Properties of Cerium Oxide Films on Platinum {111}. *Surf. Sci.* **1995**, 326, 1–10, doi:10.1016/0039-6028(94)00783-7.
5. Giménez-Mañogil, J.; García-García, A. Identifying the Nature of the Copper Entities over Ceria-Based Supports to Promote Diesel Soot Combustion: Synergistic Effects. *Appl. Catal. Gen.* **2017**, 542, 226–239, doi:10.1016/j.apcata.2017.05.031.