
Article Not peer-reviewed version

Detecting CSV File Dialects by Table

Uniformity Measurement and Data Type

Inference

Wilfredo García *

Posted Date: 24 February 2024

doi: 10.20944/preprints202402.0858.v5

Keywords: comma separated values; CSV dialect detection; data mining

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Article

Detecting CSV File Dialects by Table Uniformity

Measurement and Data Type Inference

W. García

ECP Solutions; wilfredo_garcia@outlook.es; ORCID: 0000-0002-9620-1119

Abstract: The human-readable simplicity with which the CSV format was devised, together with the absence

of a standard that strictly defines this format, has allowed the proliferation of several variants in the dialects

with which these files are written. The latter has meant that the exchange of information between data

management systems, or between countries and regions, requires human intervention during the data mining

and cleansing process. This has led to the development of various computational tools that aim to accurately

determine the dialects of CSV files, in order to avoid data loss during data loading by a given system. However,

the dialect detection is a complex problem and current systems have limitations or make assumptions that need

to be improved and/or extended. This paper proposes a method for determining CSV file dialects through table

uniformity, a statistical approach based on table consistency and records dispersion measurement along with

the detection of data type over each field. The new method has a 100% accuracy on a dataset with 148 CSV files

composed of samples coming from a data load testing framework and some others added as verification of the

parsing routines. In tests on truly messy data, the proposed solution outperforms the state-of-the-art tool by

achieving an improvement of about 10% in the accuracy with which dialects are detected. Furthermore, the

proposed method is accurate enough to determine dialects by reading only ten records, requiring more data to

disambiguate those cases where the first records do not contain the necessary information to conclude with a

dialect determination.

Keywords: Comma Separated Values; CSV dialect detection; data mining

1. Introduction

The CSV files are a special kind of tabulated plain text data container widely used in data

exchange, currently there is no defined standard for CSV file’s structure and a multitude of

implementations and variants. Notwithstanding the foregoing, there are specifications such as RFC-

4180 that define the basic structure of these files, while a useful addendum to this is defined in the

specifications of the USA Library of Congress (LOC) [1]. According to the LOC specifications the CSV

simple format is intended for representing a rectangular array (matrix) of numeric and textual values.

“It is a delimited data format that has fields/columns separated by the comma character %x2C (Hex

2C) and records/rows/lines separated by characters indicating a line break. RFC 4180 stipulates the

use of CRLF pairs to denote line breaks, where CR is %x0D (Hex 0D) and LF is %x0A (Hex 0A). Each

line should contain the same number of fields. Fields that contain a special character (comma, CR,

LF, or double quote), must be “escaped” by enclosing them in double quotes (Hex 22). An optional

header line may appear as the first line of the file with the same format as normal record lines. This

header will contain names corresponding to the fields in the file and should contain the same number

of fields as the records in the rest of the file. CSV commonly employs US-ASCII as character set, but

other character sets are permitted” [2]. Furter more, so far to the specifications, in a file may exist:

commented or empty records; the tab character (\t) or semicolon (;) as field delimiter; one or more,

in exceptional cases, of the characters CRLF, CR, and LF as a record delimiter; quote character escaped

by preceding it with a backslash (Unix style).

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

 2

Given that many public administration portals use CSV files to share information of public

interest1, coupled with the reality that the process of manipulating the information contained in them

requires structuring the data in tables and correcting data quality errors, it is necessary to automate

tasks as much as possible to reduce the time and effort required to deal with messy CSV data [3,4].

The automation problem is to determine the delimiters (also called dialect sniffing) of a given file.

Dialect sniffing requires that the field delimiter, record delimiter and escape character be determined

[5].

This problem seems straightforward, but it is by no means simple. If one opts to implement a

simple field delimiter counter to choose the one with the most occurrences in the entire file, it is very

likely that disambiguation will become impossible if the algorithm is confronted with data that have

two or more delimiters with the same number of matches.

A CSV file with a structure as shown in Figure 1 is at risk of being misinterpreted, this is

illustrated in [6]. If delimiters are counted, the period or space will be selected as field delimiters

because of their three constant occurrences, generating four fields, in the records, as opposed to the

two occurrences and three fields generated by the comma and semicolon. Although a well-defined

file should have a header row, there are many files on the Internet that do not. [4].

Figure 1. CSV that cannot be disambiguated by a simple delimiter count.

Figure 2. misinterpreted data using the “most frequent char” strategy.

It is a fact that systems that work with CSV files may require the user to set the configuration

with which they want the file to be processed, however, when the intention is to analyze data coming

from different sources, it is very beneficial to implement a methodology that allows to automatically

infer CSV dialects with minimal user intervention.

In this sense, CSV file dialect inference is a fundamental part of data mining, data wrangling and

data cleansing environments [3]. Moreover, dialect detection has the potential to be embedded in

systems designed for the new paradigm with the NoDB philosophy, under which it is proposed to

make databases systems more accessible to users [7,8]. These trends suggest that the traditional

practice of considering CSV files outside of database systems is tending to change [9].

2. Related work

The detection of dialects in CSV files is a little studied field, and there are few sources on the

subject. In 2017, T. Döhmen proposed the ranking decision method based on quality hypotheses for

parsing CSV files. A similar method is implemented in the DuckDB system [10]. A similar treatment,

based on the discovery of the table structures once the information is loaded into the RAM, is

1 An analysis of a 413 GB data body found CSV files available for download on 232 portals [4].

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 3

addressed by C. Christodoulakis et. al. [11]. In the latter, the methodology is based on the

classification of the records present in the CSV files, to which a specific heuristic is applied to discover

and interpret each line of data.

In 2019, G. van den Burg et al., developed the CleverCSV system as a culmination of his research,

in which he demonstrated that his methodology significantly improved the accuracy with which

dialects were determined compared to tools such as Python’s csv module, or the intrinsic functions

of the Pandas package, also in the Python programming language. The methodology implemented in

CleverCSV is based on the detection of patterns in the structure of the CSV records, in addition to the

inference of the data types of the fields that compose each record. In this way, the utility applies the

necessary heuristics to infer the potential dialect for a given CSV file through mathematical and

logical operations devised to discern between possible dialects [5].

In 2023, Leonardo Hübscher et al., presented a research project that led to the development of a

software application capable of detecting tables in text files. This research considers the dialect

determination of CSV files as a subproblem to be solved in order to obtain the dialect that produces

the best table [12].

3. Problem formulation

In order to properly formulate the dialect detection problem, it is necessary to establish some

basic definitions.

Definition 3.1 (CSV content). Given a CSV file 𝜰 its content is defined as 𝝃{𝜉1, 𝜉2, … , 𝜉𝑛}, where 𝝃𝒊 ∈ 𝜴,

and 𝜴 represents a character set encoded using a given encoder.

As per the CSV content definition, there is a real possibility that a single CSV file may contain

characters encoded in more than one encoder. For the purpose of this document, it is assumed that

all characters share the same encoder.

Given that each file 𝚼 originates from a table 𝚪 to which a format function 𝚿(𝚪, 𝝆) and the

helper function W(𝛏) have been applied to produce and write a sequence of human readable

characters separated by lines; then from each CSV content 𝛏 is possible to obtain a table 𝚪𝛅 so that

we can verify that 𝚪𝛅 = 𝚿−𝟏(𝛏𝛅 ← R(𝚼), 𝝆𝜹).

Definition 3.2 (CSV table). The table 𝜞𝜹 is defined as a set of records composed of a given set of fields, which

share the data typology between corresponding fields across their records. This table can be represented as a

data array of fields and records. Thus, its records are defined as 𝜱{𝜑1, 𝜑2, … , 𝜑𝑘}; i.e., a set of fields 𝜑𝑖 ; 𝑖 ∈

[1,2, … , 𝑘]. Then, the table can be expressed as 𝜞𝜹{𝛷1, 𝛷2, … , 𝛷𝑛}; i.e., a set of records 𝛷𝑖 ; 𝑖 ∈ [1,2, … , 𝑛].

The function R(𝚼) is in charge of reading the content of the file 𝚼 , while the function

𝚿−𝟏(𝛏𝛅, 𝝆𝜹) is in charge of parsing and transforming the CSV content 𝛏𝛅 into a table 𝚪𝛅. The process

of parsing and transformation is clearly out of the scope of this study, so in the following it is assumed

that the selected implementation is able to process the tables obtained by parsing a CSV file with the

selected tool.

Definition 3.3 (CSV dialect). Let 𝜞 be the data table from which the content 𝝃 of file 𝜰 is

generated, the dialect 𝝆 is defined as the formatting rule to be applied to produce the output data

stream.

So that, by the dialect definition, it is verified that

𝚼 ← 𝑊(𝝃 ← 𝚿(𝚪, 𝝆)); 𝝆{υ𝑑 , υq, υe, υr} ∈ 𝛀

Definition 3.4 (CSV dialect determination). Given a CSV file 𝜰, determining the dialect involves identifying

the dialect 𝝆𝜹 that satisfies the following statement 𝜞 ≅ 𝜞𝜹 ← 𝜳−𝟏(𝝃𝜹 ← 𝑅(𝜰), 𝝆𝜹).

Thus, it can be concluded that for a CSV file 𝚼, created using a dialect 𝝆, there exists a dialect

𝝆𝜹 that verifies the condition 𝚪 ≅ 𝚪𝛅. Therefore, it is verifiable that the content of a CSV file is a

function of its dialect.

1.1.1. Potential dialect boundaries

It should be noted that multiples potential dialects can produce similar tables outputs that are

equal or approximately equal to the source table 𝚪. Furthermore, 𝝆𝜹 shares the same character set

as the contents 𝝃 for the CSV file 𝚼. That is, 𝝆𝜹 can be practically any character within 𝛀 domain.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 4

Thus, it is necessary to narrow down the range of candidate characters involved in dialect detection

to streamline the process.

For the purposes of this research, the potential dialect is restricted to

𝝆𝜹{𝛖𝒅[“, ” “; ” TAB “|” “: ” SPACE], 𝛖𝐪[“\”“ “′” “~”], 𝛖𝐞[𝛖𝐪 “\”], 𝛖𝐫[CRLF CR LF]2}

4. Table uniformity

The table uniformity approach is proposed to solve the problem of dialect determination. The

method is based on the measurement of the consistency of the table, which has been obtained through

a dialect 𝝆𝜹, and the dispersion of records along with the inference of the raw data types from the

records.

Definition 4.1 (Table consistency). Let 𝜞𝜹 be a table 𝜞𝜹, generated when reading a CSV file 𝜰 using a

dialect 𝝆𝜹, the table consistency, denoted by 𝜏0, is a ratio that describes how uniform a table is across its 𝒌

fields and its 𝒏 records.

Definition 4.2 (Records dispersion). Let 𝜱 be the sets of records from table 𝜞𝜹, generated when reading a

CSV file 𝜰 using a dialect 𝝆𝜹, the records dispersion, denoted by 𝜏1, is a measure describing the magnitude

of the change in the records composition throughout the table.

These definitions are based on the fact that tables, in general, have a defined structure with

persistent 𝒌 fields in its 𝒏 records.

The two measurements that define the table uniformity parameter 𝝉{𝜏0, 𝜏1}, are related to the

structure of the records 𝚽 from the table 𝚪𝛅. Where 𝜏0 is a direct function of the standard deviation

of fields, and 𝜏1 being a function measuring the weighted dispersion in records structures as a factor

of the statistical segmented mode3.

𝜏0 =
1

1 + 2√𝜎
; 𝜏1 = 2 ∙ 𝑅 (𝛼2 + 1) (

1 − 𝛽

𝑀
)

where, for a given table 𝚪𝛅, 𝜎 is the standard deviation of the number of fields across records; 𝛼

represents the count of times the number of fields changes between records; 𝑅 is the statistical range

of the number of fields over records; 𝑀 is the segmented mode, describing the largest number of

times the record structure is sequentially preserved within the table, and 𝛽 = 𝑀/𝒏 is the records

variability factor.

The definitions provided propose a concept diametrically opposed to that used in most

solutions, since it discourages data dispersion, i.e., records with a higher number of fields/columns

are only favored if their record structure is uniform. The parameter 𝜏0 indicates the degree of

consistency of the records in the table, while 𝜏1 is a fine-grained measure of the dispersion and

inconsistency within the records. This quality allows the new method to discern between data tables

by inferring uniformity in two senses: consistent records and invariant records with little dispersion

in their structure. The parameter 𝜏0 ranges from 0 ≤ 𝜏0 ≤ 1 , being 1 for those tables with

consistent records; while 𝜏1ranges from 0 ≤ 𝜏1 < ∞, being 0 for those tables with invariant record

structure and without dispersion.

5. Type detection

Data type detection is the core basis of the methodology implemented. Recognition of the types

of data fields from each record allows us to collect information about the contents of a given table. In

this context, the records scoring, 𝝀, is defined as

𝝀 =
(∑ 𝑆𝑖

𝑘
𝑖=1)

2

100 ∗ 𝒌2

where 𝑆𝑖 is the score for ith field 𝜑 in 𝚽{𝜑1, 𝜑2, … , 𝜑𝑘} from the table 𝚪𝛅. If the type of the ith field

𝜑 is known 𝑆𝑖 = 100, 𝑆𝑖 = 0.1 otherwise.

2 In most applications the record delimiter (𝜐𝑟) is not considered, as modern systems handle new lines discrepancies internally.

3 Segmented mode refers to the use of segments of the sample, which are defined as the data undergoes dispersion.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 5

For the purposes of this paper, the following field types are generally considered to be known:

• Time and date: matching regular dates and time format, as well stamped ones like

MM/DD/YYYY[YYYY/MM/DD] HH:MM: SS +/- HH:MM

• Numeric: matching all numeric data supported by the implementation language selected.

• Percentage.

• Alphanumeric: matching numbers, ASCII letters and underscore.

• Currency

• Especial data: like “n/a” or empty strings

• Email.

• System paths.

• Structured scripts data types: matching JSON arrays and data delimited by parentheses, curly and

square brackets.

• Numeric lists: matching fields with numeric values delimited with common separator character.

• URLs.

• IPv4.

Al other fields will be scored as unknown type.

6. Table scoring

Once the table uniformity 𝝉{𝜏0, 𝜏1} for the records 𝚽{𝜑1, 𝜑2, … , 𝜑𝑘} contained in table

𝚪𝛅{Φ1, Φ2, … , Φn}, which has been generated by reading a CSV file 𝚼 using a dialect 𝝆𝜹, and the score

𝝀 are computed, the table score 𝝕 is defined as

𝝕 = (
𝜏0

Δ
 +

1

𝜏1 + 𝒏
) ∗ ∑ 𝝀𝑖

𝑛

𝑖=1

; ∀ 𝒏 > 1

where Δ is a threshold used for indicate the expected number of records to be imported from the

CSV file 𝚼 which contains a number of records 𝒎. For 𝒎 > 𝒏, and an appropriate selection of 𝝆𝜹,

𝚿−𝟏(𝝃𝜹 ← R(𝚼), 𝝆𝜹) will generate a table in with Δ = 𝒏; therefore, by the definition stated, the table

score is in the range 0 < 𝝕 ≤ 200.

In the case 𝒏 = 1 we have

𝝕 = 𝝀 ∗
𝜂 + (

1
𝒌)

𝒌 − 𝑓𝑙𝑜𝑜𝑟(𝜂 ∗ 𝒌) + 1

where 𝜂 =
√𝝀

10
 is a discriminant to ensure the exclusion of false positives with a single record.

7. Determining CSV file dialects

Algorithm 1: Dialect Determination

Input: CSV content 𝜉, expected number of records to import Δ

Output: the dialect 𝜌𝛿 the that produces the more accurate table

1. function determine (𝜉, Δ):

2. Ρ ← StartDialects ()

3. for 𝜌 in Ρ do

4. Γδ ← Ψ−1(𝜉, 𝜌) ⊳Parsing

5. ℵ(𝜛, 𝜌) ← TScore (Γδ, Δ)

6. return GetBestDialect (ℵ)

7. end function

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 6

In order to develop a reliable methodology for determining the dialects of CSV files, the cases

that produced failures in famous dialect detectors were used as a basis. This is because the dialect in

well-structured files is easily determined with any simple heuristic.

The main pseudocode for dialect determination is described in Algorithm 1. At line 2 the set of

predefined dialects are initialized; then, in line 4, a table Γδ is created by parsing the CSV content 𝜉

with each dialect.

At this point, it becomes clear that the selection of a robust parser is of utmost importance in

order to obtain the best results even on messy files. In line 5, the output table Γδ is scored and this

result is saved within the current dialect in the collection ℵ. At line 6, the dialect that produce the

highest scored table is selected.

The table uniformity pseudocode is outlined in Algorithm 4. The method uses a set of sentinels

to measure table inconsistency through monitoring table changes through the parsed records.

The parameter 𝜏0 is derived from the standard deviation that indicates how uniformly the

fields count are grouped around the average number of fields contained in the parsed records,

resulting in an appropriate measure to qualify the structure of a table [13]. However, when there are

two or more dialects with a small variance, the 𝜏0 parameter is not decisive. It is in this situation

where the 𝜏1 parameter provides support by penalizing tables with variations in its records

structures, and whose structure resembles sparse data that do not maintain consistency.

The following illustration shows the preview from the modified content of one of the files used

during the testing phase. It was published in the CleverCSV repository on GitHub4.

 The star character has been replaced by the vertical bar “|” to include in the detection a

potential dialect with this character. As the author points out, the CSV file is comma delimited, using

double quotes as the quote and escape character, then the file is compliant with RFC-4180

specifications. When running dialect detection, CleverCSV gets the vertical bar “|” as the delimiter

as this field pattern gets a 𝑃 = 93.6395 score vs a 𝑃 = 37.647059 from the patterns with the “,”

character as delimiter. This behavior is due to the fact that the logic used strongly weights the count

of delimiters over the detected data types. This behavior is due to the fact that the logic used strongly

weights the delimiter count over the types of data detected, where dialects containing the comma as

delimiter obtain a type score of 𝑇 = 0.942647 against the type score of 𝑇 = 0.843074 obtained by

dialects with the vertical bar as delimiter.

By executing the algorithms presented in this research, the following is obtained for dialects with

the vertical bar as the delimiter 𝜆 = 448.2243, 𝜏0 = 0.2056, 𝜏1 = 12, and 𝜛 = 29.5883. For the comma

the results are 𝜆 = 897.3315 , 𝜏0 = 1 , 𝜏1 = 0 , and 𝜛 = 179.4663 . Then the comma “,” character is

selected as delimiter.

Algorithm 4: Table Uniformity

4 https://github.com/alan-turing-institute/CleverCSV/issues/99

title,description,url,group,…

sample title,"###

||abc – abc||

||def -|| def

||ghi-|| ghi

||jkl-|| sdf

||def:|| jkl

||abc:|| mno

def: pqr",https://example.com/,group 1,…

…

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 7

Input: CSV table Γδ with 𝑛 records containing 𝑘𝑖 fields.

Output: the table uniformity factors 𝜏0, 𝜏1

1. function TUniformity (Γδ):

2. φ ← AverageFields (Γδ)

3. for 𝑖 = 0 to 𝑛 − 1 do

4. 𝜇 ← 𝜇 + (𝑘𝑖 − φ)2 ⊳Deviations

5. if 𝑖 = 0 then

6. 𝑐 ← 𝑐 + 1 ⊳Sentinel 1

7. else

8. if 𝑘𝑖−1 ≠ 𝑘𝑖 then

9. 𝛼 ← 𝛼 + 1 ⊳Sentinel 2

10. if 𝑐 > 𝑀 then

11. 𝑀 ← 𝑐

12. 𝑐 ← 0

13. else

14. 𝑐 ← 𝑐 + 1

15. if 𝑖 = 𝑛 − 1 then

16. if 𝑐 > 𝑀 then

17. 𝑀 ← 𝑐

18. if 𝑛 > 1 then

19. 𝜎 ← √𝜇/(𝑛 − 1)

20. else

21. 𝜎 ← √𝜇/𝑛

22. 𝜏0 ← 1/(1 + 2𝜎)

23. 𝑅 ← 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 ⊳Range

24. if 𝛼 > 0 then

25. 𝛽 ← 𝑀/𝑛

26. 𝜏1 ← 2 ∙ 𝑅 (𝛼2 + 1) (1 − 𝛽)/𝑀

27. return 𝜏0, 𝜏1

28. end function

8. Experiments

It was decided to code the new method and integrate it with CSV Interface5, a VBA CSV file

parser. Thus, the new CSV dialect determination method will be available in a widespread

programming language without overinvesting efforts.

The new solution was tested on two datasets, both on GitHub: the one provided by Gerardo

Vitagliano et al., and available in the Pollock framework repository; the other provided by G. van den

Burg in the CleverCSV repository. For the first dataset, one or two polluted CSV file per pollution

case are used for testing, all the 99 survey having at least one pollution case as described in the

aforementioned study (excluding empty ones by the fact infinite dialects can be produce no payload

files [14]). In addition, the dataset was enriched with data from the OpenRefine6 testing, CleverCSV

5 GitHub repositories: https://github.com/ws-garcia/CSVsniffer, https://github.com/ws-garcia/VBA-CSV-interface

6 An open-source tool for working with messy data: https://openrefine.org/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 8

failure cases and other files used at development phase serves as testing samples. In total, the solution

was tested against 148 CSV files (104 MB of data) for the simple Pollock testing.

The second dataset is composed of the 256 CSV files in which CleverCSV was not able to

accurately determine the dialect at the time of the research that originate the tool [15]. At the time of

this research, 244 of these files were available online. A filter was applied to the files to exclude from

the dataset all with a structure that did not visually look like a CSV. After filtering, the dataset ended

up with 179 CSV files (79 MB of data), which were used as a ground truth of our dialect detection

method. Additionally, these files were subdivided to extract from them a set of CSVs that we can call

“messy”; the structure of these being unconventional and whose dialect is much more difficult to

infer. This last step is required since the dataset contains files that fall under the “normal forms”

classification implemented in CleverCSV, which refers to CSV files with such a simple structure that

they allow the determination of their dialects using only data inference7.

To set up the tests, all files were manually annotated in a file in order to verify, by comparison,

the validity of the detected dialects. In this context, we define the accuracy of dialect detection as the

ratio of correctly detected dialects to the total number of test files with no error after execution.

8.1. Dialect detection accuracy

The Table 1 shows the results after running the dialect detection tests over the simple Pollock

testing dataset. It can be seen that the new proposed heuristic gets a perfect score when using a table

with a threshold of fifty records (50R) to be imported from the target CSV file.

Table 1. Accuracy on dialect detection in simple Pollock testing dataset. An erroneous detection

implies that the method has failed to infer either the delimiter or the quote character, or both.

Method Success % Erroneous %

Actual (10R) 99.32 0.68

Actual (25R) 99.32 0.68

Actual (50R) 100 0.00

CleverCSV 94.59 5.41

When using tables of ten or twenty-five records (10R, 25R) for dialect determination, the

proposed method was not able to determine the dialect of the “dd_Wickenburg_nobmp_623.csv” file

for the testing dataset. This file has been selected to show the variation of certainty as the size of the

table considered in the computations increases. As can be seen in the Figure 3, when the proposed

heuristic is applied, it is settled that the delimiter is the equal sign “=“, since the dialects containing

it divide each record into known data types: an alphanumeric field/column and a field with

structured data delimited by square brackets. By increasing the table size to twenty-five (25R) the

heuristic begins to highlight the semicolon “;” as a possible field delimiter character. Finally, the

semicolon is correctly detected as a delimiter when the threshold of fifty records (50R) in the table is

specified. This behavior demonstrates that the proposed methodology is strongly related to the

changes in the structure of the tables used in dialect inference.

7 https://clevercsv.readthedocs.io/en/latest/source/clevercsv.html#module-clevercsv.normal_form

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 9

Figure 3. scoring variation of three different delimiters and their dialects when applying the

uniformity heuristic over tables from the dd_Wickenburg_nobmp_623.csv file.

The results obtained after running the tests over the dataset from CleverCSV are shown in Table

2. In this dataset the percentage of incorrectly detected dialects became approximately 10%. This

metric indicates the presence of CSV files with unconventional structures. Notwithstanding the

foregoing, the dialect detection improves by 9.81% compared to CleverCSV.

Table 2. Accuracy on dialect detection in the failed CleverCSV dataset. An erroneous detection

implies that the method has failed to infer either the delimiter or the quote character, or both.

Method Success % Erroneous %

Actual (10R) 88.83 11.17

Actual (25R) 89.39 10.61

Actual (50R) 88.83 11.17

CleverCSV 79.58 20.42

CleverCSV running in verbose mode indicates that the tool failed to read 37 of the test files with

errors related to the file encoding. These files, along with the files listed as “normal forms”, were

excluded from the dataset, producing the really messy subset of CSV files. Running the tests over this

selective filtered subset yields the results shown in Table 3. For this subset of files there is a slight

increase in the rate of incorrect detections, preserving the 10% improvement of the new methodology

over CleverCSV. On average, the heuristic proposed in this research shows an improvement of 7.51%

compared to CleverCSV, outperforming the latter with 10% when handling messy CSV files.

Table 3. Accuracy on dialect detection over really messy CSV files. An erroneous detection implies

that the method has failed to infer either the delimiter or the quote character, or both.

Method Success % Erroneous %

Actual (10R) 86.51 13.49

Actual (25R) 87.30 12.70

Actual (50R) 87.30 12.70

CleverCSV 76.98 23.02

9. Discussion

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 10

The results obtained by the table uniformity method proposed in this research have their genesis

in two aspects: the type of heuristics used, the behavior of the CSV file analyzer while producing

tables using a certain dialect.

9.1. Heuristic

In contrast to CleverCSV, in whose heuristic the detection of data types serves as a factor to scale

down the score obtained by a certain pattern; the table consistency method uses data detection as a

base score to be narrowed using the table consistency and data dispersion parameters.

Since the detection of data types is the foundation of the method, a wide range of typologies is

required to be recognized. According to Mitlohner’s research [4], with a base of 104,826 CSV files, the

vast majority of data commonly stored in this type of files are numeric, tokens (words separated by

spaces), entities, URLs, dates, alphanumeric fields and general text, so these data types must be

recognized. Additionally, in the field of programming, there are other types of data frequently

dumped in CSV files, namely: structured data with the Regex pattern ([𝑎 − 𝑧𝐴 − 𝑍] + [\([𝑎 − 𝑧𝐴 − 𝑍] +

[\[{][^\]] ∗ [\]}])[{][^\]] ∗ [\]}]), numerical lists, tuples, arrays among others.

It is worth mentioning that dialect detection is prone to failure when the CSV file is composed

of unknown data types. In these cases, the table uniformity tends to select dialects that produce

registers with a single field. When reviewing the cases where CleverCSV was not able to determine

the dialect, it has been observed that the common denominator has been the high count of a potential

delimiter with more occurrences than the expected delimiter. In this sense, both solutions have poor

performance when the space character appears in the list of potential delimiters.

There are files in which the record threshold is decisive; however, in the tests carried out it was

detected that the dialect of some files is determined incorrectly as the threshold is increased.

As pointed out earlier, the table uniformity method prefers grouped data over those that appear

to be sparse data. In these cases, detection tends to depend exclusively on the data types detected in

the records. This fact is evidenced by plotting the values of the uniformity parameter 𝜏0.

Looking at Figure 4, it can be seen that, even though the score obtained by the semicolon dialect

is very close to zero, the value of 𝜏0 is maximum. In contrast, this value fluctuates to almost zero for

the dialect containing the semicolon; it remains almost unchanged among the dialects containing the

other characters. In these cases, the dialect determination is relegated to data type detection and fine-

grained monitoring of changes in table structures through the 𝜏1 parameter. The above serves as a

basis for reaffirming that the table uniformity method helps to properly adjust the metrics obtained

by inferring the data types.

Figure 4. uncertainty caused by analyzing tables with a single field across all their records.

9.1. CSV parser basis

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 11

The accuracy of dialect determination is intimately related to the way CSV parsers behave when

confronted with atypical situations. This is because heuristics use these results to infer the

configuration that returns the most suitable data structures.

One of the capabilities required for dialect determination is the recovery of data after the

occurrence of a critical error. This is the case for the import of CSV files where there is no balance

between quotation marks. This situation breaks the RFC-4180 specifications and causes an import

error in all solutions intended to work with CSV files. In this sense, the recovery of this error should

include a specific message after which the loading of information should continue until the whole

file is processed.

Since the determination of dialects can be done with a few records received from a CSV file,

there is a probability that some of the parameters that compose the dialect cannot be determined

properly. Given this reality, it is preferable that CSV parsers be able to convert between one escaping

mechanism and another instead of making the escape character mutually exclusive as established in

the most relevant proposals on these topics [16]. This results in the correct interpretation of escape

sequences that use the backslash “\” in those files in which a quote character has been detected as

part of their dialect.

10. Appendix: algorithms pseudocode

Algorithm 2: Table Score

Input: CSV table Γδ with 𝑛 records, expected number of records to import Δ

Output: the score 𝜛 for the given table

1. function TScore (Γδ, Δ):

2. 𝜆 ← SumScore (Γδ)

3. if 𝑛 > 1 then

4. (𝜏0, 𝜏1) ← TUniformity (Γδ)

5. return 𝜆 ∙ (𝜏0/Δ + 1/(𝜏1 + 𝑛))

6. else

7. 𝜂 ← √𝜆/10

8. return 𝜆 ∙
𝜂+(1/𝑘)

𝑘−𝑓𝑙𝑜𝑜𝑟(𝜂∗𝑘)+1

9. end function

Algorithm 3: Sum of Records Score

Input: CSV table Γδ with 𝑛 records containing 𝑘𝑖 fields.

Output: the sum of records score for the given table

1. function SumScore (Γδ):

2. for 𝑖 = 0 to 𝑛 − 1 do

3. for 𝑗 = 0 to 𝑘𝑖 − 1 do

4. if KnownDataType (Γδ[𝑖, 𝑗]) then

5. ℴ ← ℴ + 100

6. else

7. ℴ ← ℴ + 0.1

8. ℓ ← ℓ +(ℴ2/ (100 ∙ 𝑘𝑖
2))

9. return ℓ

10. end function

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

 12

11. References

1. Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values (CSV) Files,” IETF.

Accessed: Jul. 23, 2021. [Online]. Available: https://datatracker.ietf.org/doc/rfc4180/

2. Library of Congress, “CSV, Comma Separated Values (RFC 4180),” LOC. [Online]. Available:

https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

3. C. Sutton, T. Hobson, J. Geddes, and R. Caruana, “Data Diff: Interpretable, Executable Summaries of

Changes in Distributions for Data Wrangling,” presented at the Knowledge Discovery and Data Mining

Conference, London, United Kingdom, Aug. 2018. Accessed: Jul. 23, 2021. [Online]. Available:

https://www.turing.ac.uk/research/publications/data-diff-interpretable-executable-summaries-changes-

distributions-data

4. J. Mitlohner, S. Neumaier, J. Umbrich, and A. Polleres, “Characteristics of Open Data CSV Files,” in 2016

2nd International Conference on Open and Big Data (OBD), Vienna: IEEE, Aug. 2016, pp. 72–79. doi:

10.1109/OBD.2016.18.

5. G. J. J. van den Burg, A. Nazábal, and C. Sutton, “Wrangling messy CSV files by detecting row and type

patterns,” Data Min. Knowl. Discov., vol. 33, no. 6, pp. 1799–1820, Nov. 2019, doi: 10.1007/s10618-019-00646-

y.

6. T. Döhmen, H. Mühleisen, and P. Boncz, “Multi-Hypothesis CSV Parsing,” in Proceedings of the 29th

International Conference on Scientific and Statistical Database Management, Chicago IL USA: ACM, Jun. 2017,

pp. 1–12. doi: 10.1145/3085504.3085520.

7. I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, and A. Ailamaki, “NoDB: efficient query execution

on raw data files,” Commun. ACM, vol. 58, no. 12, pp. 112–121, Nov. 2015, doi: 10.1145/2830508.

8. M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive query processing on RAW data,”

Proc. VLDB Endow., vol. 7, no. 12, pp. 1119–1130, Aug. 2014, doi: 10.14778/2732977.2732986.

9. S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki, “Here are my data files. Here are my queries. Where

are my results?,” in Proceedings of 5th Biennial Conference on Innovative Data Systems Research, Asilomar,

California, USA, Jan. 2011, pp. 57–68. Accessed: Jul. 24, 2021. [Online]. Available:

https://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper7.pdf

10. Dutch Stichting DuckDB Foundation, “DUCKDB.” Dutch Stichting DuckDB Foundation, Amsterdam NL,

13 2023. Accessed: Feb. 04, 2024. [Online]. Available: https://duckdb.org/docs/archive/0.9.2/

11. C. Christodoulakis, E. B. Munson, M. Gabel, A. D. Brown, and R. J. Miller, “Pytheas: pattern-based table

discovery in CSV files,” Proc. VLDB Endow., vol. 13, no. 12, pp. 2075–2089, Aug. 2020, doi:

10.14778/3407790.3407810.

12. L. Hübscher, L. Jiang, and F. Naumann, “ExtracTable: Extracting Tables from Raw Data Files,” 2023, doi:

10.18420/BTW2023-20.

13. M. F. Al-Saleh and A. E. Yousif, “Properties of the Standard Deviation that are Rarely Mentioned in

Classrooms,” Austrian J. Stat., vol. 38, no. 3, Apr. 2016, doi: 10.17713/ajs.v38i3.272.

14. G. Vitagliano, M. Hameed, L. Jiang, L. Reisener, E. Wu, and F. Naumann, “Pollock: A Data Loading

Benchmark,” Proc. VLDB Endow., vol. 16, no. 8, pp. 1870–1882, Apr. 2023, doi: 10.14778/3594512.3594518.

15. T. Petricek, G. J. J. V. D. Burg, A. Nazábal, T. Ceritli, E. Jiménez-Ruiz, and C. K. I. Williams, “AI Assistants:

A Framework for Semi-Automated Data Wrangling,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 9295–

9306, Sep. 2023, doi: 10.1109/TKDE.2022.3222538.

16. Rufus Pollock, “Data Package (v1),” CSV Dialect. Accessed: May 10, 2023. [Online]. Available:

https://specs.frictionlessdata.io/csv-dialect/

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2024 doi:10.20944/preprints202402.0858.v5

