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Abstract: The human-readable simplicity with which the CSV format was devised, together with the absence 

of a standard that strictly defines this format, has allowed the proliferation of several variants in the dialects 

with which these files are written. The latter has meant that the exchange of information between data 

management systems, or between countries and regions, requires human intervention during the data mining 

and cleansing process. This has led to the development of various computational tools that aim to accurately 

determine the dialects of CSV files, in order to avoid data loss during data loading by a given system. However, 

the dialect detection is a complex problem and current systems have limitations or make assumptions that need 

to be improved and/or extended. This paper proposes a method for determining CSV file dialects through table 

uniformity, a statistical approach based on table consistency and records dispersion measurement along with 

the detection of data type over each field. The new method has a 100% accuracy on a dataset with 148 CSV files 

composed of samples coming from a data load testing framework and some others added as verification of the 

parsing routines. In tests on truly messy data, the proposed solution outperforms the state-of-the-art tool by 

achieving an improvement of about 10% in the accuracy with which dialects are detected. Furthermore, the 

proposed method is accurate enough to determine dialects by reading only ten records, requiring more data to 

disambiguate those cases where the first records do not contain the necessary information to conclude with a 

dialect determination. 
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1. Introduction 

The CSV files are a special kind of tabulated plain text data container widely used in data 

exchange, currently there is no defined standard for CSV file’s structure and a multitude of 

implementations and variants. Notwithstanding the foregoing, there are specifications such as RFC-

4180 that define the basic structure of these files, while a useful addendum to this is defined in the 

specifications of the USA Library of Congress (LOC) [1]. According to the LOC specifications the CSV 

simple format is intended for representing a rectangular array (matrix) of numeric and textual values. 

“It is a delimited data format that has fields/columns separated by the comma character %x2C (Hex 

2C) and records/rows/lines separated by characters indicating a line break. RFC 4180 stipulates the 

use of CRLF pairs to denote line breaks, where CR is %x0D (Hex 0D) and LF is %x0A (Hex 0A). Each 

line should contain the same number of fields. Fields that contain a special character (comma, CR, 

LF, or double quote), must be “escaped” by enclosing them in double quotes (Hex 22). An optional 

header line may appear as the first line of the file with the same format as normal record lines. This 

header will contain names corresponding to the fields in the file and should contain the same number 

of fields as the records in the rest of the file. CSV commonly employs US-ASCII as character set, but 

other character sets are permitted” [2]. Furter more, so far to the specifications, in a file may exist: 

commented or empty records; the tab character (\t) or semicolon (;) as field delimiter; one or more, 

in exceptional cases, of the characters CRLF, CR, and LF as a record delimiter; quote character escaped 

by preceding it with a backslash (Unix style). 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Given that many public administration portals use CSV files to share information of public 

interest1, coupled with the reality that the process of manipulating the information contained in them 

requires structuring the data in tables and correcting data quality errors, it is necessary to automate 

tasks as much as possible to reduce the time and effort required to deal with messy CSV data [3,4]. 

The automation problem is to determine the delimiters (also called dialect sniffing) of a given file. 

Dialect sniffing requires that the field delimiter, record delimiter and escape character be determined 

[5]. 

This problem seems straightforward, but it is by no means simple. If one opts to implement a 

simple field delimiter counter to choose the one with the most occurrences in the entire file, it is very 

likely that disambiguation will become impossible if the algorithm is confronted with data that have 

two or more delimiters with the same number of matches. 

A CSV file with a structure as shown in Figure 1 is at risk of being misinterpreted, this is 

illustrated in [6]. If delimiters are counted, the period or space will be selected as field delimiters 

because of their three constant occurrences, generating four fields, in the records, as opposed to the 

two occurrences and three fields generated by the comma and semicolon. Although a well-defined 

file should have a header row, there are many files on the Internet that do not. [4]. 

 

Figure 1. CSV that cannot be disambiguated by a simple delimiter count. 

 

Figure 2. misinterpreted data using the “most frequent char” strategy. 

It is a fact that systems that work with CSV files may require the user to set the configuration 

with which they want the file to be processed, however, when the intention is to analyze data coming 

from different sources, it is very beneficial to implement a methodology that allows to automatically 

infer CSV dialects with minimal user intervention. 

In this sense, CSV file dialect inference is a fundamental part of data mining, data wrangling and 

data cleansing environments [3]. Moreover, dialect detection has the potential to be embedded in 

systems designed for the new paradigm with the NoDB philosophy, under which it is proposed to 

make databases systems more accessible to users [7,8]. These trends suggest that the traditional 

practice of considering CSV files outside of database systems is tending to change [9]. 

2. Related work 

The detection of dialects in CSV files is a little studied field, and there are few sources on the 

subject. In 2017, T. Döhmen proposed the ranking decision method based on quality hypotheses for 

parsing CSV files. A similar method is implemented in the DuckDB system [10]. A similar treatment, 

based on the discovery of the table structures once the information is loaded into the RAM, is 

 
1 An analysis of a 413 GB data body found CSV files available for download on 232 portals [4]. 
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addressed by C. Christodoulakis et. al. [11]. In the latter, the methodology is based on the 

classification of the records present in the CSV files, to which a specific heuristic is applied to discover 

and interpret each line of data. 

In 2019, G. van den Burg et al., developed the CleverCSV system as a culmination of his research, 

in which he demonstrated that his methodology significantly improved the accuracy with which 

dialects were determined compared to tools such as Python’s csv module, or the intrinsic functions 

of the Pandas package, also in the Python programming language. The methodology implemented in 

CleverCSV is based on the detection of patterns in the structure of the CSV records, in addition to the 

inference of the data types of the fields that compose each record. In this way, the utility applies the 

necessary heuristics to infer the potential dialect for a given CSV file through mathematical and 

logical operations devised to discern between possible dialects [5]. 

In 2023, Leonardo Hübscher et al., presented a research project that led to the development of a 

software application capable of detecting tables in text files. This research considers the dialect 

determination of CSV files as a subproblem to be solved in order to obtain the dialect that produces 

the best table [12]. 

3. Problem formulation 

In order to properly formulate the dialect detection problem, it is necessary to establish some 

basic definitions. 

Definition 3.1 (CSV content). Given a CSV file 𝜰 its content is defined as 𝝃{𝜉1, 𝜉2, … , 𝜉𝑛}, where 𝝃𝒊 ∈ 𝜴, 

and 𝜴 represents a character set encoded using a given encoder. 

As per the CSV content definition, there is a real possibility that a single CSV file may contain 

characters encoded in more than one encoder. For the purpose of this document, it is assumed that 

all characters share the same encoder. 

Given that each file 𝚼 originates from a table 𝚪 to which a format function 𝚿(𝚪, 𝝆) and the 

helper function W(𝛏)  have been applied to produce and write a sequence of human readable 

characters separated by lines; then from each CSV content 𝛏 is possible to obtain a table 𝚪𝛅 so that 

we can verify that 𝚪𝛅 = 𝚿−𝟏(𝛏𝛅 ← R(𝚼), 𝝆𝜹). 

Definition 3.2 (CSV table). The table 𝜞𝜹 is defined as a set of records composed of a given set of fields, which 

share the data typology between corresponding fields across their records. This table can be represented as a 

data array of fields and records. Thus, its records are defined as 𝜱{𝜑1, 𝜑2, … , 𝜑𝑘}; i.e., a set of fields 𝜑𝑖  ; 𝑖 ∈

[1,2, … , 𝑘]. Then, the table can be expressed as 𝜞𝜹{𝛷1, 𝛷2, … , 𝛷𝑛}; i.e., a set of records 𝛷𝑖  ; 𝑖 ∈ [1,2, … , 𝑛]. 

The function R(𝚼)  is in charge of reading the content of the file 𝚼 , while the function 

𝚿−𝟏(𝛏𝛅, 𝝆𝜹) is in charge of parsing and transforming the CSV content 𝛏𝛅 into a table 𝚪𝛅. The process 

of parsing and transformation is clearly out of the scope of this study, so in the following it is assumed 

that the selected implementation is able to process the tables obtained by parsing a CSV file with the 

selected tool. 

Definition 3.3 (CSV dialect). Let 𝜞 be the data table from which the content 𝝃 of file 𝜰 is 

generated, the dialect 𝝆 is defined as the formatting rule to be applied to produce the output data 

stream. 

So that, by the dialect definition, it is verified that 

𝚼 ← 𝑊(𝝃 ← 𝚿(𝚪, 𝝆)); 𝝆{υ𝑑 , υq, υe, υr} ∈ 𝛀 

Definition 3.4 (CSV dialect determination). Given a CSV file 𝜰, determining the dialect involves identifying 

the dialect 𝝆𝜹 that satisfies the following statement 𝜞 ≅ 𝜞𝜹 ← 𝜳−𝟏(𝝃𝜹 ← 𝑅(𝜰), 𝝆𝜹). 

Thus, it can be concluded that for a CSV file 𝚼, created using a dialect 𝝆, there exists a dialect 

𝝆𝜹 that verifies the condition 𝚪 ≅ 𝚪𝛅. Therefore, it is verifiable that the content of a CSV file is a 

function of its dialect. 

1.1.1. Potential dialect boundaries 

It should be noted that multiples potential dialects can produce similar tables outputs that are 

equal or approximately equal to the source table 𝚪. Furthermore, 𝝆𝜹 shares the same character set 

as the contents 𝝃 for the CSV file 𝚼. That is, 𝝆𝜹 can be practically any character within 𝛀 domain. 
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Thus, it is necessary to narrow down the range of candidate characters involved in dialect detection 

to streamline the process. 

For the purposes of this research, the potential dialect is restricted to 

𝝆𝜹{𝛖𝒅[“, ” “; ” TAB “|” “: ” SPACE], 𝛖𝐪[“\”“ “′” “~”], 𝛖𝐞[𝛖𝐪 “\”], 𝛖𝐫[CRLF CR LF]2} 

4. Table uniformity 

The table uniformity approach is proposed to solve the problem of dialect determination. The 

method is based on the measurement of the consistency of the table, which has been obtained through 

a dialect 𝝆𝜹, and the dispersion of records along with the inference of the raw data types from the 

records. 

Definition 4.1 (Table consistency). Let 𝜞𝜹 be a table 𝜞𝜹, generated when reading a CSV file 𝜰 using a 

dialect 𝝆𝜹, the table consistency, denoted by 𝜏0, is a ratio that describes how uniform a table is across its 𝒌 

fields and its 𝒏 records. 

Definition 4.2 (Records dispersion). Let 𝜱 be the sets of records from table 𝜞𝜹, generated when reading a 

CSV file 𝜰 using a dialect 𝝆𝜹, the records dispersion, denoted by 𝜏1, is a measure describing the magnitude 

of the change in the records composition throughout the table. 

These definitions are based on the fact that tables, in general, have a defined structure with 

persistent 𝒌 fields in its 𝒏 records. 

The two measurements that define the table uniformity parameter 𝝉{𝜏0, 𝜏1}, are related to the 

structure of the records 𝚽 from the table 𝚪𝛅. Where 𝜏0 is a direct function of the standard deviation 

of fields, and 𝜏1 being a function measuring the weighted dispersion in records structures as a factor 

of the statistical segmented mode3. 

𝜏0 =
1

1 + 2√𝜎
;  𝜏1 = 2 ∙ 𝑅 (𝛼2 + 1) (

1 − 𝛽

𝑀
) 

where, for a given table 𝚪𝛅, 𝜎 is the standard deviation of the number of fields across records; 𝛼 

represents the count of times the number of fields changes between records; 𝑅 is the statistical range 

of the number of fields over records; 𝑀 is the segmented mode, describing the largest number of 

times the record structure is sequentially preserved within the table, and 𝛽 = 𝑀/𝒏 is the records 

variability factor. 

The definitions provided propose a concept diametrically opposed to that used in most 

solutions, since it discourages data dispersion, i.e., records with a higher number of fields/columns 

are only favored if their record structure is uniform. The parameter 𝜏0  indicates the degree of 

consistency of the records in the table, while  𝜏1  is a fine-grained measure of the dispersion and 

inconsistency within the records. This quality allows the new method to discern between data tables 

by inferring uniformity in two senses: consistent records and invariant records with little dispersion 

in their structure. The parameter 𝜏0  ranges from 0 ≤ 𝜏0 ≤ 1 , being 1  for those tables with 

consistent records; while 𝜏1ranges from 0 ≤ 𝜏1 < ∞, being 0 for those tables with invariant record 

structure and without dispersion. 

5. Type detection 

Data type detection is the core basis of the methodology implemented. Recognition of the types 

of data fields from each record allows us to collect information about the contents of a given table. In 

this context, the records scoring, 𝝀, is defined as 

𝝀 =
(∑ 𝑆𝑖

𝑘
𝑖=1 )

2

100 ∗ 𝒌2
 

where 𝑆𝑖 is the score for ith field 𝜑 in 𝚽{𝜑1, 𝜑2, … , 𝜑𝑘} from the table 𝚪𝛅. If the type of the ith field 

𝜑 is known 𝑆𝑖 = 100, 𝑆𝑖 = 0.1 otherwise. 

 
2 In most applications the record delimiter (𝜐𝑟) is not considered, as modern systems handle new lines discrepancies internally. 

3 Segmented mode refers to the use of segments of the sample, which are defined as the data undergoes dispersion. 
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For the purposes of this paper, the following field types are generally considered to be known: 

• Time and date: matching regular dates and time format, as well stamped ones like 

MM/DD/YYYY[YYYY/MM/DD] HH:MM: SS +/- HH:MM 

• Numeric: matching all numeric data supported by the implementation language selected. 

• Percentage. 

• Alphanumeric: matching numbers, ASCII letters and underscore. 

• Currency 

• Especial data: like “n/a” or empty strings 

• Email. 

• System paths. 

• Structured scripts data types: matching JSON arrays and data delimited by parentheses, curly and 

square brackets. 

• Numeric lists: matching fields with numeric values delimited with common separator character. 

• URLs. 

• IPv4. 

Al other fields will be scored as unknown type. 

6. Table scoring 

Once the table uniformity 𝝉{𝜏0, 𝜏1}  for the records 𝚽{𝜑1, 𝜑2, … , 𝜑𝑘}  contained in table 

𝚪𝛅{Φ1, Φ2, … , Φn}, which has been generated by reading a CSV file 𝚼 using a dialect 𝝆𝜹, and the score 

𝝀 are computed, the table score 𝝕 is defined as 

𝝕 = (
𝜏0

Δ
 +

1

𝜏1 + 𝒏
) ∗ ∑ 𝝀𝑖

𝑛

𝑖=1

;  ∀ 𝒏 > 1 

where Δ is a threshold used for indicate the expected number of records to be imported from the 

CSV file 𝚼 which contains a number of records 𝒎. For 𝒎 > 𝒏, and an appropriate selection of 𝝆𝜹, 

𝚿−𝟏(𝝃𝜹 ← R(𝚼), 𝝆𝜹) will generate a table in with Δ = 𝒏; therefore, by the definition stated, the table 

score is in the range 0 < 𝝕 ≤ 200. 

In the case 𝒏 = 1 we have 

𝝕 = 𝝀 ∗
𝜂 + (

1
𝒌)

𝒌 − 𝑓𝑙𝑜𝑜𝑟(𝜂 ∗ 𝒌) + 1
 

where 𝜂 =
√𝝀

10
 is a discriminant to ensure the exclusion of false positives with a single record. 

7. Determining CSV file dialects 

Algorithm 1: Dialect Determination 

Input: CSV content 𝜉, expected number of records to import Δ  

Output: the dialect 𝜌𝛿 the that produces the more accurate table 

1.    function determine (𝜉, Δ): 

2.        Ρ ← StartDialects () 

3.        for 𝜌 in Ρ do 

4.            Γδ ← Ψ−1(𝜉, 𝜌)                                               ⊳Parsing 

5.            ℵ(𝜛, 𝜌) ← TScore (Γδ, Δ) 

6.        return GetBestDialect (ℵ) 

7.    end function 

 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2024                   doi:10.20944/preprints202402.0858.v5



 6 

 

In order to develop a reliable methodology for determining the dialects of CSV files, the cases 

that produced failures in famous dialect detectors were used as a basis. This is because the dialect in 

well-structured files is easily determined with any simple heuristic. 

The main pseudocode for dialect determination is described in Algorithm 1. At line 2 the set of 

predefined dialects are initialized; then, in line 4, a table Γδ is created by parsing the CSV content 𝜉 

with each dialect. 

At this point, it becomes clear that the selection of a robust parser is of utmost importance in 

order to obtain the best results even on messy files. In line 5, the output table Γδ is scored and this 

result is saved within the current dialect in the collection ℵ. At line 6, the dialect that produce the 

highest scored table is selected. 

The table uniformity pseudocode is outlined in Algorithm 4. The method uses a set of sentinels 

to measure table inconsistency through monitoring table changes through the parsed records. 

The parameter 𝜏0  is derived from the standard deviation that indicates how uniformly the 

fields count are grouped around the average number of fields contained in the parsed records, 

resulting in an appropriate measure to qualify the structure of a table [13]. However, when there are 

two or more dialects with a small variance, the 𝜏0 parameter is not decisive. It is in this situation 

where the 𝜏1  parameter provides support by penalizing tables with variations in its records 

structures, and whose structure resembles sparse data that do not maintain consistency. 

The following illustration shows the preview from the modified content of one of the files used 

during the testing phase. It was published in the CleverCSV repository on GitHub4. 

 The star character has been replaced by the vertical bar “|” to include in the detection a 

potential dialect with this character. As the author points out, the CSV file is comma delimited, using 

double quotes as the quote and escape character, then the file is compliant with RFC-4180 

specifications. When running dialect detection, CleverCSV gets the vertical bar “|” as the delimiter 

as this field pattern gets a 𝑃 = 93.6395 score vs a 𝑃 =  37.647059 from the patterns with the “,” 

character as delimiter. This behavior is due to the fact that the logic used strongly weights the count 

of delimiters over the detected data types. This behavior is due to the fact that the logic used strongly 

weights the delimiter count over the types of data detected, where dialects containing the comma as 

delimiter obtain a type score of 𝑇 = 0.942647 against the type score of 𝑇 = 0.843074 obtained by 

dialects with the vertical bar as delimiter. 

By executing the algorithms presented in this research, the following is obtained for dialects with 

the vertical bar as the delimiter 𝜆 = 448.2243, 𝜏0 = 0.2056, 𝜏1 = 12, and 𝜛 = 29.5883. For the comma 

the results are 𝜆 = 897.3315 , 𝜏0 = 1 , 𝜏1 = 0 , and 𝜛 = 179.4663 . Then the comma “,” character is 

selected as delimiter. 

Algorithm 4: Table Uniformity 

 
4 https://github.com/alan-turing-institute/CleverCSV/issues/99 

title,description,url,group,… 

sample title,"### 

# ||abc – abc|| 

||def -|| def 

||ghi-|| ghi 

||jkl-|| sdf 

||def:|| jkl 

||abc:|| mno 

### def: pqr",https://example.com/,group 1,… 

… 
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Input: CSV table Γδ with 𝑛 records containing 𝑘𝑖 fields.  

Output: the table uniformity factors 𝜏0, 𝜏1 

1.    function TUniformity (Γδ): 

2.        φ ← AverageFields (Γδ) 

3.        for 𝑖 = 0 to 𝑛 − 1 do 

4.            𝜇 ← 𝜇 + (𝑘𝑖 −  φ)2           ⊳Deviations 

5.            if 𝑖 = 0 then 

6.                𝑐 ← 𝑐 + 1                      ⊳Sentinel 1 

7.            else 

8.                if 𝑘𝑖−1 ≠ 𝑘𝑖 then 

9.                    𝛼 ← 𝛼 + 1                 ⊳Sentinel 2 

10.                  if 𝑐 > 𝑀 then 

11.                      𝑀 ← 𝑐                    

12.                  𝑐 ← 0 

13.              else 

14.                  𝑐 ← 𝑐 + 1 

15.                  if 𝑖 = 𝑛 − 1 then 

16.                      if 𝑐 > 𝑀 then 

17.                          𝑀 ← 𝑐 

18.      if 𝑛 > 1 then 

19.          𝜎 ← √𝜇/(𝑛 − 1) 

20.      else 

21.          𝜎 ← √𝜇/𝑛 

22.      𝜏0 ← 1/(1 + 2𝜎) 

23.      𝑅 ← 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛                   ⊳Range 

24.      if 𝛼 > 0 then 

25.          𝛽 ← 𝑀/𝑛 

26.      𝜏1 ← 2 ∙ 𝑅 (𝛼2 + 1) (1 − 𝛽)/𝑀 

27.      return 𝜏0, 𝜏1 

28.  end function  

8. Experiments 

It was decided to code the new method and integrate it with CSV Interface5, a VBA CSV file 

parser. Thus, the new CSV dialect determination method will be available in a widespread 

programming language without overinvesting efforts. 

The new solution was tested on two datasets, both on GitHub: the one provided by Gerardo 

Vitagliano et al., and available in the Pollock framework repository; the other provided by G. van den 

Burg in the CleverCSV repository. For the first dataset, one or two polluted CSV file per pollution 

case are used for testing, all the 99 survey having at least one pollution case as described in the 

aforementioned study (excluding empty ones by the fact infinite dialects can be produce no payload 

files [14]). In addition, the dataset was enriched with data from the OpenRefine6 testing, CleverCSV 

 
5 GitHub repositories: https://github.com/ws-garcia/CSVsniffer, https://github.com/ws-garcia/VBA-CSV-interface 

6 An open-source tool for working with messy data: https://openrefine.org/ 
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failure cases and other files used at development phase serves as testing samples. In total, the solution 

was tested against 148 CSV files (104 MB of data) for the simple Pollock testing. 

The second dataset is composed of the 256 CSV files in which CleverCSV was not able to 

accurately determine the dialect at the time of the research that originate the tool [15]. At the time of 

this research, 244 of these files were available online. A filter was applied to the files to exclude from 

the dataset all with a structure that did not visually look like a CSV. After filtering, the dataset ended 

up with 179 CSV files (79 MB of data), which were used as a ground truth of our dialect detection 

method. Additionally, these files were subdivided to extract from them a set of CSVs that we can call 

“messy”; the structure of these being unconventional and whose dialect is much more difficult to 

infer. This last step is required since the dataset contains files that fall under the “normal forms” 

classification implemented in CleverCSV, which refers to CSV files with such a simple structure that 

they allow the determination of their dialects using only data inference7. 

To set up the tests, all files were manually annotated in a file in order to verify, by comparison, 

the validity of the detected dialects. In this context, we define the accuracy of dialect detection as the 

ratio of correctly detected dialects to the total number of test files with no error after execution. 

8.1. Dialect detection accuracy 

The Table 1 shows the results after running the dialect detection tests over the simple Pollock 

testing dataset. It can be seen that the new proposed heuristic gets a perfect score when using a table 

with a threshold of fifty records (50R) to be imported from the target CSV file. 

Table 1. Accuracy on dialect detection in simple Pollock testing dataset. An erroneous detection 

implies that the method has failed to infer either the delimiter or the quote character, or both. 

Method Success % Erroneous % 

Actual (10R) 99.32 0.68 

Actual (25R) 99.32 0.68 

Actual (50R) 100 0.00 

CleverCSV 94.59 5.41 

When using tables of ten or twenty-five records (10R, 25R) for dialect determination, the 

proposed method was not able to determine the dialect of the “dd_Wickenburg_nobmp_623.csv” file 

for the testing dataset. This file has been selected to show the variation of certainty as the size of the 

table considered in the computations increases. As can be seen in the Figure 3, when the proposed 

heuristic is applied, it is settled that the delimiter is the equal sign “=“, since the dialects containing 

it divide each record into known data types: an alphanumeric field/column and a field with 

structured data delimited by square brackets. By increasing the table size to twenty-five (25R) the 

heuristic begins to highlight the semicolon “;” as a possible field delimiter character. Finally, the 

semicolon is correctly detected as a delimiter when the threshold of fifty records (50R) in the table is 

specified. This behavior demonstrates that the proposed methodology is strongly related to the 

changes in the structure of the tables used in dialect inference. 

 
7 https://clevercsv.readthedocs.io/en/latest/source/clevercsv.html#module-clevercsv.normal_form 
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Figure 3. scoring variation of three different delimiters and their dialects when applying the 

uniformity heuristic over tables from the dd_Wickenburg_nobmp_623.csv file. 

The results obtained after running the tests over the dataset from CleverCSV are shown in Table 

2. In this dataset the percentage of incorrectly detected dialects became approximately 10%. This 

metric indicates the presence of CSV files with unconventional structures. Notwithstanding the 

foregoing, the dialect detection improves by 9.81% compared to CleverCSV. 

Table 2. Accuracy on dialect detection in the failed CleverCSV dataset. An erroneous detection 

implies that the method has failed to infer either the delimiter or the quote character, or both. 

Method Success % Erroneous % 

Actual (10R) 88.83 11.17 

Actual (25R) 89.39 10.61 

Actual (50R) 88.83 11.17 

CleverCSV 79.58 20.42 

CleverCSV running in verbose mode indicates that the tool failed to read 37 of the test files with 

errors related to the file encoding. These files, along with the files listed as “normal forms”, were 

excluded from the dataset, producing the really messy subset of CSV files. Running the tests over this 

selective filtered subset yields the results shown in Table 3. For this subset of files there is a slight 

increase in the rate of incorrect detections, preserving the 10% improvement of the new methodology 

over CleverCSV. On average, the heuristic proposed in this research shows an improvement of 7.51% 

compared to CleverCSV, outperforming the latter with 10% when handling messy CSV files. 

Table 3. Accuracy on dialect detection over really messy CSV files. An erroneous detection implies 

that the method has failed to infer either the delimiter or the quote character, or both. 

Method Success % Erroneous % 

Actual (10R) 86.51 13.49 

Actual (25R) 87.30 12.70 

Actual (50R) 87.30 12.70 

CleverCSV 76.98 23.02 

9. Discussion 
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The results obtained by the table uniformity method proposed in this research have their genesis 

in two aspects: the type of heuristics used, the behavior of the CSV file analyzer while producing 

tables using a certain dialect. 

9.1. Heuristic 

In contrast to CleverCSV, in whose heuristic the detection of data types serves as a factor to scale 

down the score obtained by a certain pattern; the table consistency method uses data detection as a 

base score to be narrowed using the table consistency and data dispersion parameters. 

Since the detection of data types is the foundation of the method, a wide range of typologies is 

required to be recognized. According to Mitlohner’s research [4], with a base of 104,826 CSV files, the 

vast majority of data commonly stored in this type of files are numeric, tokens (words separated by 

spaces), entities, URLs, dates, alphanumeric fields and general text, so these data types must be 

recognized. Additionally, in the field of programming, there are other types of data frequently 

dumped in CSV files, namely: structured data with the Regex pattern ([𝑎 − 𝑧𝐴 − 𝑍] + [\([𝑎 − 𝑧𝐴 − 𝑍] +

[ \[{][^\]] ∗ [\]}])[{][^\]] ∗ [\]}]), numerical lists, tuples, arrays among others. 

It is worth mentioning that dialect detection is prone to failure when the CSV file is composed 

of unknown data types. In these cases, the table uniformity tends to select dialects that produce 

registers with a single field. When reviewing the cases where CleverCSV was not able to determine 

the dialect, it has been observed that the common denominator has been the high count of a potential 

delimiter with more occurrences than the expected delimiter. In this sense, both solutions have poor 

performance when the space character appears in the list of potential delimiters. 

There are files in which the record threshold is decisive; however, in the tests carried out it was 

detected that the dialect of some files is determined incorrectly as the threshold is increased. 

As pointed out earlier, the table uniformity method prefers grouped data over those that appear 

to be sparse data. In these cases, detection tends to depend exclusively on the data types detected in 

the records. This fact is evidenced by plotting the values of the uniformity parameter 𝜏0. 

Looking at Figure 4, it can be seen that, even though the score obtained by the semicolon dialect 

is very close to zero, the value of 𝜏0 is maximum. In contrast, this value fluctuates to almost zero for 

the dialect containing the semicolon; it remains almost unchanged among the dialects containing the 

other characters. In these cases, the dialect determination is relegated to data type detection and fine-

grained monitoring of changes in table structures through the 𝜏1 parameter. The above serves as a 

basis for reaffirming that the table uniformity method helps to properly adjust the metrics obtained 

by inferring the data types. 

 

Figure 4. uncertainty caused by analyzing tables with a single field across all their records. 

9.1. CSV parser basis 
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The accuracy of dialect determination is intimately related to the way CSV parsers behave when 

confronted with atypical situations. This is because heuristics use these results to infer the 

configuration that returns the most suitable data structures. 

One of the capabilities required for dialect determination is the recovery of data after the 

occurrence of a critical error. This is the case for the import of CSV files where there is no balance 

between quotation marks. This situation breaks the RFC-4180 specifications and causes an import 

error in all solutions intended to work with CSV files. In this sense, the recovery of this error should 

include a specific message after which the loading of information should continue until the whole 

file is processed. 

Since the determination of dialects can be done with a few records received from a CSV file, 

there is a probability that some of the parameters that compose the dialect cannot be determined 

properly. Given this reality, it is preferable that CSV parsers be able to convert between one escaping 

mechanism and another instead of making the escape character mutually exclusive as established in 

the most relevant proposals on these topics [16]. This results in the correct interpretation of escape 

sequences that use the backslash “\” in those files in which a quote character has been detected as 

part of their dialect. 

10. Appendix: algorithms pseudocode 

Algorithm 2: Table Score 

Input: CSV table Γδ with 𝑛 records, expected number of records to import Δ  

Output: the score 𝜛 for the given table 

1.    function TScore (Γδ, Δ): 

2.        𝜆 ← SumScore (Γδ) 

3.        if 𝑛 > 1 then 

4.            (𝜏0, 𝜏1) ← TUniformity (Γδ) 

5.            return 𝜆 ∙ (𝜏0/Δ  + 1/(𝜏1 + 𝑛)) 

6.        else  

7.            𝜂 ← √𝜆/10 

8.            return 𝜆 ∙
𝜂+(1/𝑘)

𝑘−𝑓𝑙𝑜𝑜𝑟(𝜂∗𝑘)+1
 

9.    end function 

 

Algorithm 3: Sum of Records Score 

Input: CSV table Γδ with 𝑛 records containing 𝑘𝑖 fields. 

Output: the sum of records score for the given table 

1.    function SumScore (Γδ): 

2.        for 𝑖 = 0 to 𝑛 − 1 do 

3.            for 𝑗 = 0 to 𝑘𝑖 − 1 do 

4.                if KnownDataType (Γδ[𝑖, 𝑗]) then 

5.                    ℴ ← ℴ + 100 

6.                else  

7.                    ℴ ← ℴ + 0.1 

8.            ℓ ← ℓ +( ℴ2/ (100 ∙ 𝑘𝑖
2)) 

9.        return ℓ 

10.   end function 
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