
Article

Not peer-reviewed version

Detecting CSV File Dialects by Table

Uniformity Measurement and Data Type

Inference

Wilfredo García

*

Posted Date: 16 February 2024

doi: 10.20944/preprints202402.0858.v2

Keywords: comma separated values; CSV dialect detection; data mining

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3400377

Article

Detecting CSV File Dialects by Table Uniformity
Measurement and Data Type Inference
Wilfredo García

ECP Solutions

Abstract: The human-readable simplicity with which the CSV format was devised, together with
the absence of a standard that strictly defines this format, has allowed the proliferation of several
variants in the dialects with which these files are written. The latter has meant that the exchange of
information between data management systems, or between countries and regions, requires human
intervention during the data mining and cleansing process. This has led to the development of
various computational tools that aim to accurately determine the dialects of CSV files, in order to
avoid data loss during data loading by a given system. However, current systems have limitations
and make assumptions that need to be improved and/or extended. This paper proposes a method
for determining CSV file dialects through table uniformity, a statistical approach based on table
consistency and records dispersion measurement along with the detection of data type over each
field. The new method has a 100% accuracy over a dataset with 148 sampling CSV files from a
benchmark framework. Furthermore, the proposed method is accurate enough to determine dialects
by reading only ten records, requiring more data to disambiguate those cases where the first records
do not contain the necessary information to conclude with a dialect determination.

Keywords: Comma Separated Values; CSV dialect detection; data mining

1. Introduction

The CSV files are a special kind of tabulated plain text data container widely used in data
exchange, currently there is no defined standard for CSV file’s structure and a multitude of
implementations and variants. Notwithstanding the foregoing, there are specifications such as RFC-
4180 that define the basic structure of these files, while a useful addendum to this is defined in the
specifications of the USA Library of Congress (LOC) [1]. According to the LOC specifications the CSV
simple format is intended for representing a rectangular array (matrix) of numeric and textual values.
“It is a delimited data format that has fields/columns separated by the comma character %x2C (Hex
2C) and records/rows/lines separated by characters indicating a line break. RFC 4180 stipulates the
use of CRLF pairs to denote line breaks, where CR is %x0D (Hex 0D) and LF is %x0A (Hex 0A). Each
line should contain the same number of fields. Fields that contain a special character (comma, CR,
LF, or double quote), must be “escaped” by enclosing them in double quotes (Hex 22). An optional
header line may appear as the first line of the file with the same format as normal record lines. This
header will contain names corresponding to the fields in the file and should contain the same number
of fields as the records in the rest of the file. CSV commonly employs US-ASCII as character set, but
other character sets are permitted” [2]. Furter more, so far to the specifications, in a file may exist:
commented or empty records; the tab character (\t) or semicolon (;) as field delimiter; one or more,
in exceptional cases, of the characters CRLF, CR, and LF as a record delimiter; quote character escaped
by preceding it with a backslash (Unix style).

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202402.0858.v2
http://creativecommons.org/licenses/by/4.0/

 2

Given that many public administration portals use CSV files to share information of public
interest1, coupled with the reality that the process of manipulating the information contained in them
requires structuring the data in tables and correcting data quality errors, it is necessary to automate
tasks as much as possible to reduce the time and effort required to deal with messy CSV data [3], [4].
The automation problem is to determine the delimiters (also called dialect sniffing) of a given file.
Dialect sniffing requires that the field delimiter, record delimiter and escape character be determined
[5].

This problem seems straightforward, but it is by no means simple. If one opts to implement a
simple field delimiter counter to choose the one with the most occurrences in the entire file, it is very
likely that disambiguation will become impossible if the algorithm is confronted with data that have
two or more delimiters with the same number of matches.

A CSV file with a structure as shown in Figure 1 is at risk of being misinterpreted, this is
illustrated in [6]. If delimiters are counted, the period or space will be selected as field delimiters
because of their three constant occurrences, generating four fields, in the records, as opposed to
the two occurrences and three fields generated by the comma and semicolon. Although a well-
defined file should have a header row, there are many files on the Internet that do not. [4].

Figure 1. CSV that cannot be disambiguated by a simple delimiter count.

Acme Ltd. ;£ 1 800,80;£ 5 400,50
Global Corp ;£ 2 100,00;£ 3 020,30

Acme Ltd.;£ 1.800,80;£ 5.400,50
Global Corp.;£ 2.100,00;£ 3.020,30

Figure 2. misinterpreted data using the “most frequent char” strategy.

It is a fact that systems that work with CSV files may require the user to set the configuration
with which they want the file to be processed, however, when the intention is to analyze data coming
from different sources, it is very beneficial to implement a methodology that allows to automatically
infer CSV dialects with minimal user intervention.

In this sense, CSV file dialect inference is a fundamental part of data mining, data wrangling and
data cleansing environments [3]. Moreover, dialect detection has the potential to be embedded in
systems designed for the new paradigm with the NoDB philosophy, under which it is proposed to
make databases systems more accessible to users [7], [8]. These trends suggest that the traditional
practice of considering CSV files outside of database systems is tending to change [9].

2. Related Work

The detection of dialects in CSV files is a little studied field, and there are few sources on the
subject. In 2017, T. Döhmen proposed the ranking decision method based on quality hypotheses for
parsing CSV files. A similar method is implemented in the DuckDB system [10]. A similar treatment,
based on the discovery of the table structures once the information is loaded into the RAM, is
addressed by C. Christodoulakis et. al. [11]. In the latter, the methodology is based on the
classification of the records present in the CSV files, to which a specific heuristic is applied to discover
and interpret each line of data.

In 2019, G. van den Burg et al., developed the CleverCSV system as a culmination of his research,
in which he demonstrated that his methodology significantly improved the accuracy with which
dialects were determined compared to tools such as Python’s csv module, or the intrinsic functions

1 An analysis of a 413 GB data body found CSV files available for download on 232 portals [4].

Acme Ltd.;£ 1.800,80;£ 5.400,50

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 3

of the Pandas package, also in the Python programming language. The methodology implemented in
CleverCSV is based on the detection of patterns in the structure of the CSV records, in addition to the
inference of the data types of the fields that compose each record. In this way, the utility applies the
necessary heuristics to infer the potential dialect for a given CSV file through mathematical and
logical operations devised to discern between possible dialects [5].

In 2023, Leonardo Hübscher et al., presented a research project that led to the development of a
software application capable of detecting tables in text files. This research considers the dialect
determination of CSV files as a subproblem to be solved in order to obtain the dialect that produces
the best table [12].

3. Problem Formulation

In order to properly formulate the dialect detection problem, it is necessary to establish some
basic definitions.

Definition 3.1 (CSV content). Given a CSV file � its content is defined as �{��, ��, … , ��}, where �� ∈ �,
and � represents a character set encoded using a given encoder.

As per the CSV content definition, there is a real possibility that a single CSV file may contain
characters encoded in more than one encoder. For the purpose of this document, it is assumed that
all characters share the same encoder.

Given that each file � originates from a table � to which a format function �(�, �) and the
helper function W(�) have been applied to produce and write a sequence of human readable
characters separated by lines; then from each CSV content � is possible to obtain a table �� so that
we can verify that �� = ���(�� ← R(�), ��).

Definition 3.2 (CSV table). The table �� is defined as a set of records composed of a given set of fields, which
share the data typology between corresponding fields across their records. This table can be represented as a
data array of fields and records. Thus, its records are defined as �{��, ��, … , ��}; i.e., a set of fields �� ; � ∈[1,2, … , �]. Then, the table can be expressed as ��{��, ��, … , ��}; i.e., a set of records �� ; � ∈ [1,2, … , �].

The function R(�) is in charge of reading the content of the file � , while the function ���(��, ��) is in charge of parsing and transforming the CSV content �� into a table ��. The process
of parsing and transformation is clearly out of the scope of this study, so in the following it is assumed
that the selected implementation is able to process the tables obtained by parsing a CSV file with the
selected tool.

Definition 3.3 (CSV dialect). Let � be the data table from which the content � of file � is generated, the
dialect � is defined as the formatting rule to be applied to produce the output data stream.

So that, by the dialect definition, it is verified that � ← �(� ← �(�, �)); �{υ� , υ�, υ�, υ�} ∈ �

Definition 3.4 (CSV dialect determination). Given a CSV file �, determining the dialect involves identifying
the dialect �� that satisfies the following statement � ≅ �� ← ���(�� ← �(�), ��).

Thus, it can be concluded that for a CSV file �, created using a dialect �, there exists a dialect �� that verifies the condition � ≅ ��. Therefore, it is verifiable that the content of a CSV file is a
function of its dialect.

1.1.1. Potential Dialect Boundaries

It should be noted that multiples potential dialects can produce similar tables outputs that are
equal or approximately equal to the source table �. Furthermore, �� shares the same character set
as the contents � for the CSV file �. That is, �� can be practically any character within � domain.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 4

Thus, it is necessary to narrow down the range of candidate characters involved in dialect detection
to streamline the process.

For the purposes of this research, the potential dialect is restricted to ��{��[“, ” “; ” TAB “|” “: ” SPACE], ��[“\”“ “′” “~”], ��[�� “\”], ��[CRLF CR LF]}

4. Table Uniformity

The table uniformity approach is proposed to solve the problem of dialect determination. The
method is based on the measurement of the consistency of the table, which has been obtained through
a dialect ��, and the dispersion of records along with the inference of the raw data types from the
records.

Definition 4.1 (Table consistency). Let �� be a table ��, generated when reading a CSV file � using a
dialect ��, the table consistency, denoted by ��, is a ratio that describes how uniform a table is across its �
fields and its � records.

Definition 4.2 (Records dispersion). Let � be the sets of records from table ��, generated when reading a
CSV file � using a dialect ��, the records dispersion, denoted by ��, is a measure describing the magnitude
of the change in the records composition throughout the table.

These definitions are based on the fact that tables, in general, have a defined structure with
persistent � fields in its � records.

The two measurements that define the table uniformity parameter �{��, ��}, are related to the
structure of the records � from the table ��. Where �� is a direct function of the standard deviation
of fields, and �� being a function measuring the weighted dispersion in records structures as a factor
of the statistical segmented mode2. �0 = 1

1 + 2√� ; �1 = 2 ∙ � (�2 + 1) �1 − �� �
Where, for a given table ��, � is the standard deviation of the number of fields across records; �
represents the count of times the number of fields changes between records; � is the statistical range
of the number of fields over records; � is the segmented mode, describing the largest number of
times the record structure is sequentially preserved within the table, and � = �/� is the records
variability factor.

The definitions provided propose a concept diametrically opposed to that used in most
solutions, since it discourages data dispersion, i.e., records with a higher number of fields/columns
are only favored if their record structure is uniform. The parameter �� indicates the degree of
consistency of the records in the table, while �� is a fine-grained measure of the dispersion and
inconsistency within the records. This quality allows the new method to discern between data tables
by inferring uniformity in two senses: consistent records and invariant records with little dispersion
in their structure. The parameter �� ranges from 0 ≤ �� ≤ 1 , being 1 for those tables with
consistent records; while ��ranges from 0 ≤ �� < ∞, being 0 for those tables with invariant record
structure and without dispersion.

5. Type Detection

Data type detection is the core basis of the methodology implemented. Recognition of the types
of data fields from each record allows us to collect information about the contents of a given table. In
this context, the records scoring, �, is defined as � = �∑ �����1 �2

100 ∗ �2

2 Segmented mode refers to the use of segments of the sample, which are defined as the data undergoes dispersion.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 5

Where �� is the score for ith field � in �{��, ��, … , ��} from the table ��. If the type of the ith field � is known �� = 100, �� = 0.1 otherwise.
For the purposes of this paper, the following field types are generally considered to be known:

 Time and date: matching regular dates and time format, as well stamped ones like
MM/DD/YYYY[YYYY/MM/DD] HH:MM: SS +/- HH:MM

 Numeric: matching all numeric data supported by the implementation language selected.
 Percentage.
 Alphanumeric: matching numbers, ASCII letters and underscore.
 Currency
 Especial data: like “n/a” or empty strings
 Email.
 System paths.
 Structured scripts data types: matching JSON arrays and data delimited by parentheses, curly and

square brackets.
 Numeric lists: matching fields with numeric values delimited with common separator character.
 URLs.
 IPv4.

Al other fields will be scored as unknown type.

6. Table Scoring

Once the table uniformity �{��, ��} for the records �{��, ��, … , ��} contained in table ��{Φ�, Φ�, … , Φ�}, which has been generated by reading a CSV file � using a dialect ��, and the score � are computed, the table score � is defined as

� = ��0

Δ
 + 1�1 + �� ∗ � ���

��1

; ∀ � > 1

Where Δ is a threshold used for indicate the expected number of records to be imported from the
CSV file � which contains a number of records �. For � > �, and an appropriate selection of ��, ���(�� ← R(�), ��) will generate a table in with Δ = �; therefore, by the definition stated, the table
score is in the range 0 < � ≤ 200.

In the case � = 1 we have

� = � ∗ � + �1��� − �����(� ∗ �) + 1

Where � = √��� is a discriminant to ensure the exclusion of false positives with a single record.

7. Determining CSV File Dialects

In order to develop a reliable methodology for determining the dialects of CSV files, the cases
that produced failures in famous dialect detectors were used as a basis. This is because the dialect in
well-structured files is easily determined with any simple heuristic.

The main pseudocode for dialect determination is described in Algorithm 1. At line 2 the set of
predefined dialects are initialized; then, in line 4, a table Γ� is created by parsing the CSV content �
with each dialect.

Algorithm 1: Dialect Determination
Input: CSV content �, expected number of records to import Δ
Output: the dialect �� the that produces the more accurate table
1. function determine (�, Δ):
2. Ρ ← StartDialects ()
3. for � in Ρ do

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 6

4. Γ� ← Ψ��(�, �) ⊳Parsing
5. ℵ(�, �) ← TScore (Γ�, Δ)
6. return GetBestDialect (ℵ)
7. end function

At this point, it becomes clear that the selection of a robust parser is of utmost importance in
order to obtain the best results even on messy files. In line 5, the output table Γ� is scored and this
result is saved within the current dialect in the collection ℵ. At line 6, the dialect that produce the
highest scored table is selected.

The table uniformity pseudocode is outlined in Algorithm 4. The method uses a set of sentinels
to measure table inconsistency through monitoring table changes through the parsed records.

Algorithm 4: Table Uniformity
Input: CSV table Γ� with � records containing �� fields.
Output: the table uniformity factors ��, ��
1. function TUniformity (Γ�):
2. φ ← AverageFields (Γ�)
3. for � = 0 to � − 1 do
4. � ← � + (�� − φ)� ⊳Deviations
5. if � = 0 then
6. � ← � + 1 ⊳Sentinel 1
7. else
8. if ���� ≠ �� then
9. � ← � + 1 ⊳Sentinel 2
10. if � > � then
11. � ← �
12. � ← 0
13. else
14. � ← � + 1
15. if � = � − 1 then
16. if � > � then
17. � ← �
18. if � > 1 then
19. � ← ��/(� − 1)
20. else
21. � ← ��/�
22. �� ← 1/(1 + 2�)
23. � ← ���� − ���� ⊳Range
24. if � > 0 then
25. � ← �/�
26. �� ← 2 ∙ � (�� + 1) (1 − �)/�
27. return ��, ��
28. end function

The parameter �� is derived from the standard deviation that indicates how uniformly the
fields count are grouped around the average number of fields contained in the parsed records,
resulting in an appropriate measure to qualify the structure of a table [13]. However, when there are
two or more dialects with a small variance, the �� parameter is not decisive. It is in this situation
where the �� parameter provides support by penalizing tables with variations in its records
structures, and whose structure resembles sparse data that do not maintain consistency.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 7

The following illustration shows the preview from the modified content of one of the files used
during the testing phase. It was published in the CleverCSV repository on GitHub3.

The star character has been replaced by the vertical bar “|” to include in the detection a potential

dialect with this character. As the author points out, the CSV file is comma delimited, using double
quotes as the quote and escape character, then the file is compliant with RFC-4180 specifications.
When running dialect detection, CleverCSV gets the vertical bar “|” as the delimiter as this field
pattern gets a � = 93.6395 score vs a � = 37.647059 from the patterns with the “,” character as
delimiter. This behavior is due to the fact that the logic used strongly weights the count of delimiters
over the detected data types. This behavior is due to the fact that the logic used strongly weights the
delimiter count over the types of data detected, where dialects containing the comma as delimiter
obtain a type score of � = 0.942647 against the type score of � = 0.843074 obtained by dialects with
the vertical bar as delimiter.

By executing the algorithms presented in this research, the following is obtained for dialects with
the vertical bar as the delimiter � = 448.2243, �� = 0.2056, �� = 12, and � = 29.5883. For the comma
the results are � = 897.3315 , �� = 1 , �� = 0 , and � = 179.4663 . Then the comma “,” character is
selected as delimiter.

8. Experiments

It was decided to code the new method and integrate it with CSV Interface4, a VBA CSV file
parser. Thus, the new CSV dialect determination method will be available in a widespread
programming language without overinvesting efforts.

The new solution was tested on a dataset provided in the research by Gerardo Vitagliano et al.
One or two polluted CSV file per pollution case are used for testing, all the 99 survey having at least
one pollution case as described in the aforementioned study (excluding empty ones by the fact
infinite dialects can be produce no payload files [14]). In addition, data from the OpenRefine5 testing,
CleverCSV failure cases and other files used at development phase serves as testing samples. In total,
the solution was tested against 148 CSV files (104 MB of data). In this way the proposed solution will
be tested against real-world and programming like files with pollutions that make dialect detection
difficult.

The solution presented in this research is compared head to head in the CSV dialect detection
field with the alternative method CleverCSV [5], a tool showing an accuracy of close to 97% [15].

3 https://github.com/alan-turing-institute/CleverCSV/issues/99
4 GitHub repositories: https://github.com/ws-garcia/CSVsniffer, https://github.com/ws-garcia/VBA-CSV-interface
5 An open-source tool for working with messy data: https://openrefine.org/

title,description,url,group,…

sample title,"###

||abc – abc||

||def -|| def

||ghi-|| ghi

||jkl-|| sdf

||def:|| jkl

||abc:|| mno

def: pqr",https://example.com/,group 1,…

…

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 8

8.1. Dialect Detection Accuracy

To measure the accuracy of dialect determination, the dialect for each of the files in the testing
set provided was manually verified and a CSV file containing the filename along with the
corresponding dialect was produced. When executing the implemented algorithms, it is determined
whether the dialect has been properly determined by comparing the result returned with the
expected result, accumulating the total number of files for which the dialect was correctly detected
by the implemented heuristic.

The results obtained in the test runs are shown in the Error! Reference source not found.. It is
noticeable the perfect score of the new method proposed in this paper.

Table 1. Accuracy on dialect detection in testing dataset. An erroneous detection implies that the
method has failed to infer either the delimiter or the quote character, or both.

Method Success Erroneous
CleverCSV 94.59% 5.41%
Actual (10R) 99.32% 0.68%
Actual (25R) 99.32% 0.68%
Actual (50R) 100% 0.00%

When using tables of ten or twenty-five records (10R, 25R) for dialect determination, the
proposed method was not able to determine the dialect of one of the files present in the testing
dataset. This file has been sectioned to show the variation of certainty as the size of the table
considered in the computations increases.

As can be seen in the illustration above, the file contains a twelve-row header with no comment
identifier. When the stated heuristic is applied, it is concluded that the delimiter is the equal sign “=“,
since the dialects containing it divide each record into known data types: an alphanumeric
field/column and a field with structured data delimited by square brackets. By increasing the table
size to twenty-five (25R) the heuristic begins to highlight the semicolon “;” as a possible field
delimiter character. Finally, the semicolon is correctly detected as a delimiter when the threshold of
fifty records (50R) in the table is stated. This behavior demonstrates that the proposed methodology
is strongly related to the changes in the structure of the tables used in dialect inference and it is
illustrated in the Error! Reference source not found..

Figure 3. scoring variation of three different delimiters and their dialects when applying the
uniformity heuristic over tables from the dd_Wickenburg_nobmp_623.csv file.

9. Discussion

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 9

The results obtained by the table uniformity method proposed in this research have their genesis
in two aspects: the type of heuristics used, the behavior of the CSV file analyzer while producing
tables using a certain dialect.

9.1. Heuristic

In contrast to CleverCSV, in whose heuristic the detection of data types serves as a factor to scale
down the score obtained by a certain pattern; the table consistency method uses data detection as a
base score to be narrowed using the table consistency and data dispersion parameters.

Since the detection of data types is the foundation of the method, a wide range of typologies is
required to be recognized. According to Mitlohner’s research [4], with a base of 104,826 CSV files, the
vast majority of data commonly stored in this type of files are numeric, tokens (words separated by
spaces), entities, URLs, dates, alphanumeric fields and general text, so these data types must be
recognized. Additionally, in the field of programming, there are other types of data frequently
dumped in CSV files, namely: structured data with the Regex pattern ([� − �� − �] + [\([� − �� − �] +[\[{][^\]] ∗ [\]}])[{][^\]] ∗ [\]}]), numerical lists, tuples, arrays among others.

It is worth mentioning that dialect detection is prone to failure when the CSV file is composed
of unknown data types. In these cases, the table uniformity tends to select dialects that produce
registers with a single field. When reviewing the cases where CleverCSV was not able to determine
the dialect, it has been observed that the common denominator has been the high count of a potential
delimiter with more occurrences than the expected delimiter.

As pointed out earlier, the table uniformity method prefers grouped data over those that appear
to be sparse data. In these cases, detection tends to depend exclusively on the data types detected in
the records. This fact is evidenced by plotting the values of the uniformity parameter ��.

Looking at Error! Reference source not found., it can be seen that, even though the score
obtained by the semicolon dialect is very close to zero, the value of �� is maximum. In contrast, this
value fluctuates to almost zero for the dialect containing the semicolon; it remains almost unchanged
among the dialects containing the other characters. In these cases, the dialect determination is
relegated to data type detection and fine-grained monitoring of changes in table structures through
the �� parameter. The above serves as a basis for reaffirming that the table uniformity method helps
to properly adjust the metrics obtained by inferring the data types.

Figure 4. uncertainty caused by analyzing tables with a single field across all their records.

9.2. CSV Parser Basis

The accuracy of dialect determination is intimately related to the way CSV parsers behave when
confronted with atypical situations. This is because heuristics use these results to infer the
configuration that returns the most suitable data structures.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 10

One of the capabilities required for dialect determination is the recovery of data after the
occurrence of a critical error. This is the case for the import of CSV files where there is no balance
between quotation marks. This situation breaks the RFC-4180 specifications and causes an import
error in all solutions intended to work with CSV files. In this sense, the recovery of this error should
include a specific message after which the loading of information should continue until the whole
file is processed.

Since the determination of dialects can be done with a few records received from a CSV file,
there is a probability that some of the parameters that compose the dialect cannot be determined
properly. Given this reality, it is preferable that CSV parsers be able to convert between one escaping
mechanism and another instead of making the escape character mutually exclusive as established in
the most relevant proposals on these topics [16]. This results in the correct interpretation of escape
sequences that use the backslash “\” in those files in which a quote character has been detected as
part of their dialect.

10. Appendix: Algorithms Pseudocode

Algorithm 2: Table Score
Input: CSV table Γ� with � records, expected number of records to import Δ
Output: the score � for the given table
1. function TScore (Γ�, Δ):
2. � ← SumScore (Γ�)
3. if � > 1 then
4. (��, ��) ← TUniformity (Γ�)
5. return � ∙ (��/Δ + 1/(�� + �))
6. else
7. � ← √�/10
8. return � ∙ ��(�/�)�������(�∗�)��

9. end function

Algorithm 3: Sum of Records Score
Input: CSV table Γ� with � records containing �� fields.
Output: the sum of records score for the given table
1. function SumScore (Γ�):
2. for � = 0 to � − 1 do
3. for � = 0 to �� − 1 do
4. if KnownDataType (Γ�[�, �]) then
5. ℴ ← ℴ + 100
6. else
7. ℴ ← ℴ + 0.1
8. ℓ ← ℓ +(ℴ�/ (100 ∙ ���))
9. return ℓ
10. end function

References

1. Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values (CSV) Files,” IETF.
Accessed: Jul. 23, 2021. [Online]. Available: https://datatracker.ietf.org/doc/rfc4180/

2. Library of Congress, “CSV, Comma Separated Values (RFC 4180),” LOC. [Online]. Available:
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml

3. C. Sutton, T. Hobson, J. Geddes, and R. Caruana, “Data Diff: Interpretable, Executable Summaries of
Changes in Distributions for Data Wrangling,” presented at the Knowledge Discovery and Data Mining
Conference, London, United Kingdom, Aug. 2018. Accessed: Jul. 23, 2021. [Online]. Available:
https://www.turing.ac.uk/research/publications/data-diff-interpretable-executable-summaries-changes-
distributions-data

4. J. Mitlohner, S. Neumaier, J. Umbrich, and A. Polleres, “Characteristics of Open Data CSV Files,” in 2016
2nd International Conference on Open and Big Data (OBD), Vienna: IEEE, Aug. 2016, pp. 72–79. doi:
10.1109/OBD.2016.18.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

 11

5. G. J. J. van den Burg, A. Nazábal, and C. Sutton, “Wrangling messy CSV files by detecting row and type
patterns,” Data Min. Knowl. Discov., vol. 33, no. 6, pp. 1799–1820, Nov. 2019, doi: 10.1007/s10618-019-00646-
y.

6. T. Döhmen, H. Mühleisen, and P. Boncz, “Multi-Hypothesis CSV Parsing,” in Proceedings of the 29th
International Conference on Scientific and Statistical Database Management, Chicago IL USA: ACM, Jun. 2017,
pp. 1–12. doi: 10.1145/3085504.3085520.

7. I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, and A. Ailamaki, “NoDB: efficient query execution
on raw data files,” Commun. ACM, vol. 58, no. 12, pp. 112–121, Nov. 2015, doi: 10.1145/2830508.

8. M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki, “Adaptive query processing on RAW data,”
Proc. VLDB Endow., vol. 7, no. 12, pp. 1119–1130, Aug. 2014, doi: 10.14778/2732977.2732986.

9. S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki, “Here are my data files. Here are my queries. Where
are my results?,” in Proceedings of 5th Biennial Conference on Innovative Data Systems Research, Asilomar,
California, USA, Jan. 2011, pp. 57–68. Accessed: Jul. 24, 2021. [Online]. Available:
https://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper7.pdf

10. Dutch Stichting DuckDB Foundation, “DUCKDB.” Dutch Stichting DuckDB Foundation, Amsterdam NL,
13 2023. Accessed: Feb. 04, 2024. [Online]. Available: https://duckdb.org/docs/archive/0.9.2/

11. C. Christodoulakis, E. B. Munson, M. Gabel, A. D. Brown, and R. J. Miller, “Pytheas: pattern-based table
discovery in CSV files,” Proc. VLDB Endow., vol. 13, no. 12, pp. 2075–2089, Aug. 2020, doi:
10.14778/3407790.3407810.

12. L. Hübscher, L. Jiang, and F. Naumann, “ExtracTable: Extracting Tables from Raw Data Files,” 2023, doi:
10.18420/BTW2023-20.

13. M. F. Al-Saleh and A. E. Yousif, “Properties of the Standard Deviation that are Rarely Mentioned in
Classrooms,” Austrian J. Stat., vol. 38, no. 3, Apr. 2016, doi: 10.17713/ajs.v38i3.272.

14. G. Vitagliano, M. Hameed, L. Jiang, L. Reisener, E. Wu, and F. Naumann, “Pollock: A Data Loading
Benchmark,” Proc. VLDB Endow., vol. 16, no. 8, pp. 1870–1882, Apr. 2023, doi: 10.14778/3594512.3594518.

15. T. Petricek, G. J. J. V. D. Burg, A. Nazábal, T. Ceritli, E. Jiménez-Ruiz, and C. K. I. Williams, “AI Assistants:
A Framework for Semi-Automated Data Wrangling,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 9, pp. 9295–
9306, Sep. 2023, doi: 10.1109/TKDE.2022.3222538.

16. Rufus Pollock, “Data Package (v1),” CSV Dialect. Accessed: May 10, 2023. [Online]. Available:
https://specs.frictionlessdata.io/csv-dialect/

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2024 doi:10.20944/preprints202402.0858.v2

https://doi.org/10.20944/preprints202402.0858.v2

