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Article 

Detecting CSV File Dialects by Table Uniformity 
Measurement and Data Type Inference 
Wilfredo García 

ECP Solutions 

Abstract: The human-readable simplicity with which the CSV format was devised, together with 
the absence of a standard that strictly defines this format, has allowed the proliferation of several 
variants in the dialects with which these files are written. The latter has meant that the exchange of 
information between data management systems, or between countries and regions, requires human 
intervention during the data mining and cleansing process. This has led to the development of 
various computational tools that aim to accurately determine the dialects of CSV files, in order to 
avoid data loss during data loading by a given system. However, current systems have limitations 
and make assumptions that need to be improved and/or extended. This paper proposes a method 
for determining CSV file dialects through table uniformity, a statistical approach based on table 
consistency and records dispersion measurement along with the detection of data type over each 
field. The new method has a 100% accuracy over a dataset with 148 sampling CSV files from a 
benchmark framework. Furthermore, the proposed method is accurate enough to determine dialects 
by reading only ten records, requiring more data to disambiguate those cases where the first records 
do not contain the necessary information to conclude with a dialect determination. 

Keywords: Comma Separated Values; CSV dialect detection; data mining 
 

1. Introduction 

The CSV files are a special kind of tabulated plain text data container widely used in data 
exchange, currently there is no defined standard for CSV file’s structure and a multitude of 
implementations and variants. Notwithstanding the foregoing, there are specifications such as RFC-
4180 that define the basic structure of these files, while a useful addendum to this is defined in the 
specifications of the USA Library of Congress (LOC) [1]. According to the LOC specifications the CSV 
simple format is intended for representing a rectangular array (matrix) of numeric and textual values. 
“It is a delimited data format that has fields/columns separated by the comma character %x2C (Hex 
2C) and records/rows/lines separated by characters indicating a line break. RFC 4180 stipulates the 
use of CRLF pairs to denote line breaks, where CR is %x0D (Hex 0D) and LF is %x0A (Hex 0A). Each 
line should contain the same number of fields. Fields that contain a special character (comma, CR, 
LF, or double quote), must be “escaped” by enclosing them in double quotes (Hex 22). An optional 
header line may appear as the first line of the file with the same format as normal record lines. This 
header will contain names corresponding to the fields in the file and should contain the same number 
of fields as the records in the rest of the file. CSV commonly employs US-ASCII as character set, but 
other character sets are permitted” [2]. Furter more, so far to the specifications, in a file may exist: 
commented or empty records; the tab character (\t) or semicolon (;) as field delimiter; one or more, 
in exceptional cases, of the characters CRLF, CR, and LF as a record delimiter; quote character escaped 
by preceding it with a backslash (Unix style). 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Given that many public administration portals use CSV files to share information of public 
interest1, coupled with the reality that the process of manipulating the information contained in them 
requires structuring the data in tables and correcting data quality errors, it is necessary to automate 
tasks as much as possible to reduce the time and effort required to deal with messy CSV data [3], [4]. 
The automation problem is to determine the delimiters (also called dialect sniffing) of a given file. 
Dialect sniffing requires that the field delimiter, record delimiter and escape character be determined 
[5]. 

This problem seems straightforward, but it is by no means simple. If one opts to implement a 
simple field delimiter counter to choose the one with the most occurrences in the entire file, it is very 
likely that disambiguation will become impossible if the algorithm is confronted with data that have 
two or more delimiters with the same number of matches. 

A CSV file with a structure as shown in Figure 1 is at risk of being misinterpreted, this is 
illustrated in [6]. If delimiters are counted, the period or space will be selected as field delimiters 
because of their three constant occurrences, generating four fields, in the records, as opposed to 
the two occurrences and three fields generated by the comma and semicolon. Although a well-
defined file should have a header row, there are many files on the Internet that do not. [4]. 

 

Figure 1. CSV that cannot be disambiguated by a simple delimiter count. 

Acme Ltd. ;£ 1 800,80;£ 5 400,50 
Global Corp ;£ 2 100,00;£ 3 020,30 

 
Acme Ltd.;£ 1.800,80;£ 5.400,50 
Global Corp.;£ 2.100,00;£ 3.020,30 

Figure 2. misinterpreted data using the “most frequent char” strategy. 

It is a fact that systems that work with CSV files may require the user to set the configuration 
with which they want the file to be processed, however, when the intention is to analyze data coming 
from different sources, it is very beneficial to implement a methodology that allows to automatically 
infer CSV dialects with minimal user intervention.  

In this sense, CSV file dialect inference is a fundamental part of data mining, data wrangling and 
data cleansing environments [3]. Moreover, dialect detection has the potential to be embedded in 
systems designed for the new paradigm with the NoDB philosophy, under which it is proposed to 
make databases systems more accessible to users [7], [8]. These trends suggest that the traditional 
practice of considering CSV files outside of database systems is tending to change [9]. 

2. Related Work 

The detection of dialects in CSV files is a little studied field, and there are few sources on the 
subject. In 2017, T. Döhmen proposed the ranking decision method based on quality hypotheses for 
parsing CSV files. A similar method is implemented in the DuckDB system [10]. A similar treatment, 
based on the discovery of the table structures once the information is loaded into the RAM, is 
addressed by C. Christodoulakis et. al. [11]. In the latter, the methodology is based on the 
classification of the records present in the CSV files, to which a specific heuristic is applied to discover 
and interpret each line of data. 

In 2019, G. van den Burg et al., developed the CleverCSV system as a culmination of his research, 
in which he demonstrated that his methodology significantly improved the accuracy with which 
dialects were determined compared to tools such as Python’s csv module, or the intrinsic functions 

 
 
1 An analysis of a 413 GB data body found CSV files available for download on 232 portals [4]. 

Acme Ltd.;£ 1.800,80;£ 5.400,50 
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of the Pandas package, also in the Python programming language. The methodology implemented in 
CleverCSV is based on the detection of patterns in the structure of the CSV records, in addition to the 
inference of the data types of the fields that compose each record. In this way, the utility applies the 
necessary heuristics to infer the potential dialect for a given CSV file through mathematical and 
logical operations devised to discern between possible dialects [5]. 

In 2023, Leonardo Hübscher et al., presented a research project that led to the development of a 
software application capable of detecting tables in text files. This research considers the dialect 
determination of CSV files as a subproblem to be solved in order to obtain the dialect that produces 
the best table [12]. 

3. Problem Formulation 

In order to properly formulate the dialect detection problem, it is necessary to establish some 
basic definitions.  

Definition 3.1 (CSV content). Given a CSV file � its content is defined as �{��, ��, … , ��}, where �� ∈ �, 
and � represents a character set encoded using a given encoder.  

As per the CSV content definition, there is a real possibility that a single CSV file may contain 
characters encoded in more than one encoder. For the purpose of this document, it is assumed that 
all characters share the same encoder. 

Given that each file � originates from a table � to which a format function �(�, �) and the 
helper function W(�)  have been applied to produce and write a sequence of human readable 
characters separated by lines; then from each CSV content � is possible to obtain a table �� so that 
we can verify that �� = ���(�� ← R(�), ��). 

Definition 3.2 (CSV table). The table �� is defined as a set of records composed of a given set of fields, which 
share the data typology between corresponding fields across their records. This table can be represented as a 
data array of fields and records. Thus, its records are defined as �{��, ��, … , ��}; i.e., a set of fields ��  ; � ∈[1,2, … , �]. Then, the table can be expressed as ��{��, ��, … , ��}; i.e., a set of records ��  ; � ∈ [1,2, … , �]. 

The function R(�)  is in charge of reading the content of the file � , while the function ���(��, ��) is in charge of parsing and transforming the CSV content �� into a table ��. The process 
of parsing and transformation is clearly out of the scope of this study, so in the following it is assumed 
that the selected implementation is able to process the tables obtained by parsing a CSV file with the 
selected tool. 

Definition 3.3 (CSV dialect). Let � be the data table from which the content � of file � is generated, the 
dialect � is defined as the formatting rule to be applied to produce the output data stream.  

So that, by the dialect definition, it is verified that  � ← �(� ← �(�, �)); �{υ� , υ�, υ�, υ�} ∈ �  

Definition 3.4 (CSV dialect determination). Given a CSV file �, determining the dialect involves identifying 
the dialect �� that satisfies the following statement � ≅ �� ← ���(�� ← �(�), ��).  

Thus, it can be concluded that for a CSV file �, created using a dialect �, there exists a dialect �� that verifies the condition � ≅ ��. Therefore, it is verifiable that the content of a CSV file is a 
function of its dialect. 

1.1.1. Potential Dialect Boundaries 

It should be noted that multiples potential dialects can produce similar tables outputs that are 
equal or approximately equal to the source table �. Furthermore, �� shares the same character set 
as the contents � for the CSV file �. That is, �� can be practically any character within � domain. 
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Thus, it is necessary to narrow down the range of candidate characters involved in dialect detection 
to streamline the process. 

For the purposes of this research, the potential dialect is restricted to ��{��[“, ” “; ” TAB “|” “: ” SPACE], ��[“\”“ “′” “~”], ��[�� “\”], ��[CRLF CR LF]} 

4. Table Uniformity 

The table uniformity approach is proposed to solve the problem of dialect determination. The 
method is based on the measurement of the consistency of the table, which has been obtained through 
a dialect ��, and the dispersion of records along with the inference of the raw data types from the 
records. 

Definition 4.1 (Table consistency). Let �� be a table ��, generated when reading a CSV file � using a 
dialect ��, the table consistency, denoted by ��, is a ratio that describes how uniform a table is across its � 
fields and its � records. 

Definition 4.2 (Records dispersion). Let � be the sets of records from table ��, generated when reading a 
CSV file � using a dialect ��, the records dispersion, denoted by ��, is a measure describing the magnitude 
of the change in the records composition throughout the table. 

These definitions are based on the fact that tables, in general, have a defined structure with 
persistent � fields in its � records.  

The two measurements that define the table uniformity parameter �{��, ��}, are related to the 
structure of the records � from the table ��. Where �� is a direct function of the standard deviation 
of fields, and �� being a function measuring the weighted dispersion in records structures as a factor 
of the statistical segmented mode2. �0 = 1

1 + 2√� ;  �1 = 2 ∙ � (�2 + 1) �1 − �� �  
Where, for a given table ��, � is the standard deviation of the number of fields across records; � 
represents the count of times the number of fields changes between records; � is the statistical range 
of the number of fields over records; � is the segmented mode, describing the largest number of 
times the record structure is sequentially preserved within the table, and � = �/� is the records 
variability factor. 

The definitions provided propose a concept diametrically opposed to that used in most 
solutions, since it discourages data dispersion, i.e., records with a higher number of fields/columns 
are only favored if their record structure is uniform. The parameter ��  indicates the degree of 
consistency of the records in the table, while  ��  is a fine-grained measure of the dispersion and 
inconsistency within the records. This quality allows the new method to discern between data tables 
by inferring uniformity in two senses: consistent records and invariant records with little dispersion 
in their structure. The parameter ��  ranges from 0 ≤ �� ≤ 1 , being 1  for those tables with 
consistent records; while ��ranges from 0 ≤ �� < ∞, being 0 for those tables with invariant record 
structure and without dispersion. 

5. Type Detection 

Data type detection is the core basis of the methodology implemented. Recognition of the types 
of data fields from each record allows us to collect information about the contents of a given table. In 
this context, the records scoring, �, is defined as  � = �∑ �����1 �2

100 ∗ �2  

 
 

2 Segmented mode refers to the use of segments of the sample, which are defined as the data undergoes dispersion. 
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Where �� is the score for ith field � in �{��, ��, … , ��} from the table ��. If the type of the ith field � is known �� = 100, �� = 0.1 otherwise.  
For the purposes of this paper, the following field types are generally considered to be known: 

 Time and date: matching regular dates and time format, as well stamped ones like 
MM/DD/YYYY[YYYY/MM/DD] HH:MM: SS +/- HH:MM 

 Numeric: matching all numeric data supported by the implementation language selected.  
 Percentage. 
 Alphanumeric: matching numbers, ASCII letters and underscore. 
 Currency 
 Especial data: like “n/a” or empty strings 
 Email. 
 System paths. 
 Structured scripts data types: matching JSON arrays and data delimited by parentheses, curly and 

square brackets. 
 Numeric lists: matching fields with numeric values delimited with common separator character. 
 URLs. 
 IPv4. 

Al other fields will be scored as unknown type. 

6. Table Scoring 

Once the table uniformity �{��, ��}  for the records �{��, ��, … , ��}  contained in table ��{Φ�, Φ�, … , Φ�}, which has been generated by reading a CSV file � using a dialect ��, and the score � are computed, the table score � is defined as 

� = ��0

Δ
 + 1�1 + �� ∗ � ���

��1

;  ∀ � > 1 

Where Δ is a threshold used for indicate the expected number of records to be imported from the 
CSV file � which contains a number of records �. For � > �, and an appropriate selection of ��, ���(�� ← R(�), ��) will generate a table in with Δ = �; therefore, by the definition stated, the table 
score is in the range 0 < � ≤ 200.  

In the case � = 1 we have 

� = � ∗ � + �1��� − �����(� ∗ �) + 1
 

Where � = √��� is a discriminant to ensure the exclusion of false positives with a single record.  

7. Determining CSV File Dialects 

In order to develop a reliable methodology for determining the dialects of CSV files, the cases 
that produced failures in famous dialect detectors were used as a basis. This is because the dialect in 
well-structured files is easily determined with any simple heuristic. 

The main pseudocode for dialect determination is described in Algorithm 1. At line 2 the set of 
predefined dialects are initialized; then, in line 4, a table Γ� is created by parsing the CSV content � 
with each dialect.  

Algorithm 1: Dialect Determination 
Input: CSV content �, expected number of records to import Δ  
Output: the dialect �� the that produces the more accurate table 
1.    function determine (�, Δ): 
2.        Ρ ← StartDialects () 
3.        for � in Ρ do 
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4.            Γ� ← Ψ��(�, �)             ⊳Parsing 
5.            ℵ(�, �) ← TScore (Γ�, Δ) 
6.        return GetBestDialect (ℵ) 
7.    end function 

At this point, it becomes clear that the selection of a robust parser is of utmost importance in 
order to obtain the best results even on messy files. In line 5, the output table Γ� is scored and this 
result is saved within the current dialect in the collection ℵ. At line 6, the dialect that produce the 
highest scored table is selected.  

The table uniformity pseudocode is outlined in Algorithm 4. The method uses a set of sentinels 
to measure table inconsistency through monitoring table changes through the parsed records. 

Algorithm 4: Table Uniformity 
Input: CSV table Γ� with � records containing �� fields.  
Output: the table uniformity factors ��, �� 
1.    function TUniformity (Γ�): 
2.        φ ← AverageFields (Γ�) 
3.        for � = 0 to � − 1 do 
4.            � ← � + (�� −  φ)�           ⊳Deviations 
5.            if � = 0 then 
6.                � ← � + 1                      ⊳Sentinel 1 
7.            else 
8.                if ���� ≠ �� then 
9.                    � ← � + 1                 ⊳Sentinel 2 
10.                  if � > � then 
11.                      � ← �                    
12.                  � ← 0 
13.              else 
14.                  � ← � + 1 
15.                  if � = � − 1 then 
16.                      if � > � then 
17.                          � ← � 
18.      if � > 1 then 
19.          � ← ��/(� − 1) 
20.      else 
21.          � ← ��/� 
22.      �� ← 1/(1 + 2�) 
23.      � ← ���� − ����                  ⊳Range 
24.      if � > 0 then 
25.          � ← �/� 
26.      �� ← 2 ∙ � (�� + 1) (1 − �)/� 
27.      return ��, �� 
28.  end function  

The parameter ��  is derived from the standard deviation that indicates how uniformly the 
fields count are grouped around the average number of fields contained in the parsed records, 
resulting in an appropriate measure to qualify the structure of a table [13]. However, when there are 
two or more dialects with a small variance, the �� parameter is not decisive. It is in this situation 
where the ��  parameter provides support by penalizing tables with variations in its records 
structures, and whose structure resembles sparse data that do not maintain consistency.  
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The following illustration shows the preview from the modified content of one of the files used 
during the testing phase. It was published in the CleverCSV repository on GitHub3. 

The star character has been replaced by the vertical bar “|” to include in the detection a potential 

dialect with this character. As the author points out, the CSV file is comma delimited, using double 
quotes as the quote and escape character, then the file is compliant with RFC-4180 specifications. 
When running dialect detection, CleverCSV gets the vertical bar “|” as the delimiter as this field 
pattern gets a � = 93.6395 score vs a � =  37.647059 from the patterns with the “,” character as 
delimiter. This behavior is due to the fact that the logic used strongly weights the count of delimiters 
over the detected data types. This behavior is due to the fact that the logic used strongly weights the 
delimiter count over the types of data detected, where dialects containing the comma as delimiter 
obtain a type score of � = 0.942647 against the type score of � = 0.843074 obtained by dialects with 
the vertical bar as delimiter. 

By executing the algorithms presented in this research, the following is obtained for dialects with 
the vertical bar as the delimiter � = 448.2243, �� = 0.2056, �� = 12, and � = 29.5883. For the comma 
the results are � = 897.3315 , �� = 1 , �� = 0 , and � = 179.4663 . Then the comma “,” character is 
selected as delimiter. 

8. Experiments 

It was decided to code the new method and integrate it with CSV Interface4, a VBA CSV file 
parser. Thus, the new CSV dialect determination method will be available in a widespread 
programming language without overinvesting efforts. 

The new solution was tested on a dataset provided in the research by Gerardo Vitagliano et al. 
One or two polluted CSV file per pollution case are used for testing, all the 99 survey having at least 
one pollution case as described in the aforementioned study (excluding empty ones by the fact 
infinite dialects can be produce no payload files [14]). In addition, data from the OpenRefine5 testing, 
CleverCSV failure cases and other files used at development phase serves as testing samples. In total, 
the solution was tested against 148 CSV files (104 MB of data). In this way the proposed solution will 
be tested against real-world and programming like files with pollutions that make dialect detection 
difficult. 

The solution presented in this research is compared head to head in the CSV dialect detection 
field with the alternative method CleverCSV [5], a tool showing an accuracy of close to 97% [15]. 

 
 

3 https://github.com/alan-turing-institute/CleverCSV/issues/99 
4 GitHub repositories: https://github.com/ws-garcia/CSVsniffer, https://github.com/ws-garcia/VBA-CSV-interface 
5 An open-source tool for working with messy data: https://openrefine.org/ 

title,description,url,group,… 

sample title,"### 

# ||abc – abc|| 

||def -|| def 

||ghi-|| ghi 

||jkl-|| sdf 

||def:|| jkl 

||abc:|| mno 

### def: pqr",https://example.com/,group 1,… 

… 
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8.1. Dialect Detection Accuracy 

To measure the accuracy of dialect determination, the dialect for each of the files in the testing 
set provided was manually verified and a CSV file containing the filename along with the 
corresponding dialect was produced. When executing the implemented algorithms, it is determined 
whether the dialect has been properly determined by comparing the result returned with the 
expected result, accumulating the total number of files for which the dialect was correctly detected 
by the implemented heuristic. 

The results obtained in the test runs are shown in the Error! Reference source not found.. It is 
noticeable the perfect score of the new method proposed in this paper. 

Table 1. Accuracy on dialect detection in testing dataset. An erroneous detection implies that the 
method has failed to infer either the delimiter or the quote character, or both. 

Method Success Erroneous 
CleverCSV 94.59% 5.41% 
Actual (10R) 99.32% 0.68% 
Actual (25R) 99.32% 0.68% 
Actual (50R) 100% 0.00% 

When using tables of ten or twenty-five records (10R, 25R) for dialect determination, the 
proposed method was not able to determine the dialect of one of the files present in the testing 
dataset. This file has been sectioned to show the variation of certainty as the size of the table 
considered in the computations increases. 

As can be seen in the illustration above, the file contains a twelve-row header with no comment 
identifier. When the stated heuristic is applied, it is concluded that the delimiter is the equal sign “=“, 
since the dialects containing it divide each record into known data types: an alphanumeric 
field/column and a field with structured data delimited by square brackets. By increasing the table 
size to twenty-five (25R) the heuristic begins to highlight the semicolon “;” as a possible field 
delimiter character. Finally, the semicolon is correctly detected as a delimiter when the threshold of 
fifty records (50R) in the table is stated. This behavior demonstrates that the proposed methodology 
is strongly related to the changes in the structure of the tables used in dialect inference and it is 
illustrated in the Error! Reference source not found.. 

 
Figure 3. scoring variation of three different delimiters and their dialects when applying the 
uniformity heuristic over tables from the dd_Wickenburg_nobmp_623.csv file. 

9. Discussion 
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The results obtained by the table uniformity method proposed in this research have their genesis 
in two aspects: the type of heuristics used, the behavior of the CSV file analyzer while producing 
tables using a certain dialect.  

9.1. Heuristic 

In contrast to CleverCSV, in whose heuristic the detection of data types serves as a factor to scale 
down the score obtained by a certain pattern; the table consistency method uses data detection as a 
base score to be narrowed using the table consistency and data dispersion parameters.  

Since the detection of data types is the foundation of the method, a wide range of typologies is 
required to be recognized. According to Mitlohner’s research [4], with a base of 104,826 CSV files, the 
vast majority of data commonly stored in this type of files are numeric, tokens (words separated by 
spaces), entities, URLs, dates, alphanumeric fields and general text, so these data types must be 
recognized. Additionally, in the field of programming, there are other types of data frequently 
dumped in CSV files, namely: structured data with the Regex pattern ([� − �� − �] + [\([� − �� − �] +[ \[{][^\]] ∗ [\]}])[{][^\]] ∗ [\]}]), numerical lists, tuples, arrays among others.  

It is worth mentioning that dialect detection is prone to failure when the CSV file is composed 
of unknown data types. In these cases, the table uniformity tends to select dialects that produce 
registers with a single field. When reviewing the cases where CleverCSV was not able to determine 
the dialect, it has been observed that the common denominator has been the high count of a potential 
delimiter with more occurrences than the expected delimiter. 

As pointed out earlier, the table uniformity method prefers grouped data over those that appear 
to be sparse data. In these cases, detection tends to depend exclusively on the data types detected in 
the records. This fact is evidenced by plotting the values of the uniformity parameter ��.  

Looking at Error! Reference source not found., it can be seen that, even though the score 
obtained by the semicolon dialect is very close to zero, the value of �� is maximum. In contrast, this 
value fluctuates to almost zero for the dialect containing the semicolon; it remains almost unchanged 
among the dialects containing the other characters. In these cases, the dialect determination is 
relegated to data type detection and fine-grained monitoring of changes in table structures through 
the �� parameter. The above serves as a basis for reaffirming that the table uniformity method helps 
to properly adjust the metrics obtained by inferring the data types. 

 
Figure 4. uncertainty caused by analyzing tables with a single field across all their records. 

9.2. CSV Parser Basis 

The accuracy of dialect determination is intimately related to the way CSV parsers behave when 
confronted with atypical situations. This is because heuristics use these results to infer the 
configuration that returns the most suitable data structures.  
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One of the capabilities required for dialect determination is the recovery of data after the 
occurrence of a critical error. This is the case for the import of CSV files where there is no balance 
between quotation marks. This situation breaks the RFC-4180 specifications and causes an import 
error in all solutions intended to work with CSV files. In this sense, the recovery of this error should 
include a specific message after which the loading of information should continue until the whole 
file is processed.  

Since the determination of dialects can be done with a few records received from a CSV file, 
there is a probability that some of the parameters that compose the dialect cannot be determined 
properly. Given this reality, it is preferable that CSV parsers be able to convert between one escaping 
mechanism and another instead of making the escape character mutually exclusive as established in 
the most relevant proposals on these topics [16]. This results in the correct interpretation of escape 
sequences that use the backslash “\” in those files in which a quote character has been detected as 
part of their dialect. 

10. Appendix: Algorithms Pseudocode 

Algorithm 2: Table Score 
Input: CSV table Γ� with � records, expected number of records to import Δ  
Output: the score � for the given table 
1.    function TScore (Γ�, Δ): 
2.        � ← SumScore (Γ�) 
3.        if � > 1 then 
4.            (��, ��) ← TUniformity (Γ�) 
5.            return � ∙ (��/Δ  + 1/(�� + �)) 
6.        else  
7.            � ← √�/10 
8.            return � ∙ ��(�/�)�������(�∗�)�� 

9.    end function 

 
Algorithm 3: Sum of Records Score 
Input: CSV table Γ� with � records containing �� fields. 
Output: the sum of records score for the given table 
1.    function SumScore (Γ�): 
2.        for � = 0 to � − 1 do 
3.            for � = 0 to �� − 1 do 
4.                if KnownDataType (Γ�[�, �]) then 
5.                    ℴ ← ℴ + 100 
6.                else  
7.                    ℴ ← ℴ + 0.1 
8.            ℓ ← ℓ +(ℴ�/ (100 ∙ ���)) 
9.        return ℓ 
10.   end function 
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