
Article

Not peer-reviewed version

Modeling Strategic Interventions to

Increase Attendance at BCYF

Community Centers

Alejandro Moro-Araujo 

*

 , Luis Alonso Pastor , Kent Larson

Posted Date: 15 February 2024

doi: 10.20944/preprints202402.0829.v1

Keywords: Policymaking; urban simulation; gravitational Huff models; smart cities

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1278087


Article

Modeling Strategic Interventions to Increase
Attendance at BCYF Community Centers

Alejandro Moro-Araujo 1,*, Luis Alonso 2 and Kent Larson 2

1 Buckingham Browne & Nichols School Cambridge, MA, USA
2 Media Lab, Massachusetts Institute of Technology Cambridge, MA, USA; alonsolp@media.mit.edu (L.A.);

kll@media.mit.edu (K.L.)

* Correspondence: amoro-araujo@bbns.org

Abstract: Community centers play a crucial role in urban environments, providing physical and

educational services to their surrounding communities, particularly for students. Among the many

benefits for students are enhanced academic outcomes, improvement of behavioral problems, and

increased school attendance. Such centers are also particularly vital for low-income and racial

minority students as they are pivotal in giving them outside-of-school learning opportunities.

However, determinants influencing attendance at community centers remain largely unexplored.

Using census data, Boston Centers for Youth and Families (BCYF) attendance data, and specific center

attributes, we develop human mobility gravitational models to predict attendance across the BCYF

network. Using those models, we investigate the potential effects on general and student attendance

by changing center attributes, such as facilities and operating hours. We also research the impact of

changing the walking accessibility to those centers on their respective attendance patterns. After the

analysis, we find that the most cost-effective policy to increase BCYF attendance is changing each

center’s educational and recreational offerings far beyond any accessibility interventions. Our results

provide insights into potential policy changes that could optimize the attendance and reach of BCYF

Community Centers to underserved populations.

Keywords: Policymaking; urban simulation; gravitational Huff models; smart cities

1. Introduction

In numerous urban environments, from metropolitan areas to large towns, community centers are

a key part of society [1,2]. Often publicly funded and run by the government, these centers all share one

common goal: to serve the community [3]. They do this in various ways, and each Community Center,

or network thereof, is different. Nevertheless, these Community Centers run with tight budgets; thus,

they have to optimize their budgets when deciding their offerings, like classes, facilities, or hours open,

so that they can reach as many people as they can within their communities. This creates a heavy

need for tools that enable policymakers to better understand why people go to certain community

centers. With that knowledge, community centers will be able to funnel their resources in a way that

maximizes their attendance.

In general, policymakers and community center directors do not possess comprehensive tools

or models that measure the dependence of demand on the accessibility and attributes of community

centers. However, the problem of accessibility to amenities has been heavily studied for the

past 50 years for other types of infrastructure, namely commercial or retail infrastructure, using

gravitational models, accessibility to transportation, and Agent-Based Modeling [4–8]. This allows

owners and policymakers in those sectors to make better, data-driven decisions to benefit their

respective infrastructures.

In this study, we extend these methodologies to address the issue of community center

engagement. Focusing on the Boston Centers for Youth and Families (BCYF) [3] (see Figure 1),

our collaboration with BCYF directors has provided access to key data, enabling an in-depth analysis

of the BCYF system, its utilization patterns, and the diverse factors influencing engagement within the
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urban demographic [9,10]. By using enhanced gravitational Huff models for modal transportation and

a unique dataset for Community Center attendance across the BCYF network, we build two models

of demand. One of these models represents the total population and one represents the population

aged 5 through 17. The models are built with the same equations; the only difference is that they are

trained with different eligible populations and thus provide guidance for specific actions regarding the

different types of populations. The accuracy of our models allows us to study potential interventions

and offer insights into better, data-driven decisions for policymakers or center directors to increase

attendance at BCYF community centers.
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Figure 1. Map of the BCYF Community Centers in the Boston Area. Symbol size is proportional to

attendance, and colors indicate if they are school-based.

2. Methodology

Following established methodologies identified in our literature review [4,5,11], this study utilizes

a unique dataset on BCYF Community Center attendance and advanced gravitational Huff models.

2.1. Data

In our methodology, we use a variety of data to analyze attendance patterns at the BCYF

Community Centers. Our research utilizes anonymous data from visits to each Community Center,

including variables such as age, class, encrypted name, and contact ID. To calculate the number of

unique visitors at each center, we identify distinct encrypted names and contact IDs. The data was

anonymized by using the SHA-512 Algorithm [12]. For consistency across all data, we limit our time

range to 1/1/2022 - 5/31/2023. We also access a specific dataset of visit data only for the BCYF Quincy

Community Center that includes the same variables with the addition of a zip code, which lets us fit

our probability equations for distance.

Furthermore, we gather the different attributes of each center [3], shown in Table 1. We use

this data to optimize the attractiveness function as well as inform our interventions. We also use

geographic and demographic data from the U.S. Census. This includes, for each CBG [13], the number
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of current residents, the age distribution (specifically focusing on the total and 5-17 population), and

socioeconomic data regarding the number of people below the poverty line.

Table 1. Attributes of the different BCYF Community Centers considered in the study.

Community # of Hours School- Computer Dance Fitness
Center Classes Open/Week Facilities Based Pool Lab Studio Center

Quincy 84 58 6 1 1 1 1 0
Blackstone 21 58 11 1 0 1 1 0
Nazzaro 183 60 8 0 0 0 0 1
Condon 22 58 6 1 1 1 0 0
Tobin 61 73 10 0 0 1 1 1
Mason Pool 82 66 2 0 1 0 0 0
Charlestown 59 40 6 0 1 1 0 1
Tynan 73 50 4 1 0 0 0 0
Curley 54 78.5 9 0 1 1 1 1
Paris Street 73 68 12 0 1 1 1 1
Hennigan 61 70 6 1 1 1 0 0
Curtis Hall 266 78 13 0 1 1 1 1
Holland 18 58 8 1 1 1 0 0
Marshall 43 50 4 1 1 1 0 0
Perkins 57 68 8 1 1 1 0 0
Gallivan 47 68 6 0 0 1 0 0
Menino 38 55 6 0 0 1 0 0
Flaherty Pool 66 78 2 0 1 0 0 0
Roche 198 73 5 0 0 0 1 0
Hyde Park 61 60 12 0 0 1 1 0
Ohrenberger 264 40 7 1 0 1 0 1

2.2. Model

We develop two models: one encompassing the entire available population and another focusing

on individuals aged 5-17. Our methodology, akin to the Huff model, employs a gravitational approach.

In this framework, the likelihood of an individual from CBG c visiting Community Center z is inversely

related to the distance between c and z, and directly related to the attractiveness of z.

Pcz = sz/ f (dcz), (1)

where f (d) is a function that grows with distance d and sz measures the attractiveness of Community

Center z. Traditional forms of f (d) are power-law or exponential functions, and they vary depending

on the transportation modal choice [11].

To determine the functional form of these modal choice functions, we use two datasets. The first

is attendance data from a specific Community Center known as the BCYF Quincy Community Center.

This data contains Ncz, the number of visitors to the center from each zip code in the Boston area.

Using a regression for the probability Pcz = Ncz/Ec (where Ec is the population in each CBG c), we

find that a power law fit like Ncz ∼ d/(2 + dγ) describes the data accurately for large distances, with

exponent γ = 2.47 ± 0.35 and a Root Mean Square Error (RMSE) of 0.288.

Since driving is the most common mode of transportation at large distances, we use the previous

fit to model the probability that an individual from CBG c visits a Community Center z by driving as

P
(d)
cz (sz, dcz) =







sc
dcz

2 + d
γ
cz

/α if dcz ≥ d
(d)
min

0 otherwise.
(2)

In this equation, we use the traditional Huff Model [4], where the probability is proportional

to the attractiveness of the center, sc, and inversely proportional to the distance. Furthermore, from
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our analysis of the data and previous research made by Ibaragoyen et al. (2023) [14] and Hidalgo

et al. (2020) [15], we discover that individuals typically opt not to drive for distances shorter than

d
(d)
min ≃ 0.25 km.

From the same surveys in Ibaragoyen et al. (2023) [14], we approximate the probability of visiting

a Community Center c by walking as the probability of walking to an elementary school, and found

that

P
(w)
cz (sz, dcz) = sc A · e−(

d
B )

C

/α, (3)

with A = 0.93 ± 0.00344352, B = 0.903 ± 0.00359974, and C = 2.21 ± 0.03706364. Finally, from

Ibaragoyen’s et al. (2023) [14] research, we estimate the probability of visiting a Community Center c

by public transportation with the following equation:

P
(t)
cz (sz, dcz) =











sc
dcz

2 + d
β
cz

/α if dcz ≥ d
(t)
min

0 otherwise,

(4)

where β = 3 and d
(t)
min ≃ 0.5 km. We have tested that our results do not depend critically on these

assumptions for their functional form.

In our equations, α is a normalization so that the probabilities of going to all Community Centers

z from a CBG c equal one.

n

∑
c

P
(d)
cz (sz, dcz) + P

(w)
cz (sz, dcz) + P

(t)
cz (sz, dcz) = 1 (5)

To determine the number of individuals visiting Community Center z from a CBG c, we multiply

each probability by the relevant eligible population, Ec, which varies depending on the model used.

In our primary model, the eligible population is the total population of the CBG. Conversely, in our

student model, the eligible population is restricted to those aged 5-17 within each CBG. This results in

the following equations:

N
(w)
cz = φP

(w)
cz (sz, dcz)Ec (6)

N
(d)
cz = φP

(d)
cz (sz, dcz)Ec (7)

N
(t)
cz = φP

(t)
cz (sz, dcz)Ec, (8)

where φ is a normalization factor so that the ∑c,z N
(w)
cz + N

(d)
cz + N

(t)
cz equals the known amount of

individuals that attend the entire network of BCYF Community Centers. From the BCYF network

attendance data, we know that the total amount of people attending the entire network is 42,686

individuals for the total population model and 20,720 for the 5-17 age group model.

However, this enhanced Huff model remains a competitive one, where the total number of visitors

remains constant. In other words, demand never increases. Changes in the center attributes, or the

accessibility to them, will only change how the amount of visitors is distributed between centers.

However, demand is elastic, and the number of visitors to all Community Centers could increase if

center attributes or accessibility to Centers were altered. In fact, there is evidence that attendance to

public infrastructure increases with accessibility. For example, in [5], it was found that the number

of visitors to retail centers decreases when residents have less access to these centers. To account for

this accessibility difference between individuals as was done in [5], we add a third component to our

equations 6, which decreases the number of visitors from each CBG c to a Community Center z by the
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same inverse decay function used in our driving model, Pacc(d) =
d

2+d2.33 . Thus, our final equations

are:

N
(w)
cz = φP

(w)
cz (sz, dcz)Pacc(dcz)Ec (9)

N
(d)
cz = φP

(d)
cz (sz, dcz)Pacc(dcz)Ec (10)

N
(t)
cz = φP

(t)
cz (sz, dcz)Pacc(dcz)Ec. (11)

Note that this change allows for an increasing demand if accessibility or attractiveness to centers is

increased.

Finally, we model sz, the attractiveness of each Community Center z, as a linear combination of

the Community Center attributes xz,i

sz({xz,i}) = exp

(

∑
i

wixz,i

)

(12)

Table 1 shows the attributes of each of our Community Centers, ranging from the number of hours

open to the number of classes or facilities. We also had binary variables, such as having a pool,

computer lab, dance studio, or fitness center.

These attributes are not independent of one another. For example, the number of facilities is

heavily correlated with the existence of a computer lab, dance studio, and fitness center (see Figure 2).

Thus, we employ a feature selection process, discarding the attributes that have large correlations with

one another in order to prevent multicollinearity. Therefore, we choose the number of classes based

inside a school as well as the possession of a pool, dance studio, fitness center, and computer lab to

model each center’s attractiveness.

A B

Figure 2. A) Correlation matrix between center attributes. B) Biplot of the first two PCA components of

center attributes.

2.3. Optimization of the Model

Since the transportation modal probabilities are fixed to existing literature, our model only

depends on the relative weights assigned to the attributes of a center as in equation 12. We fit them

using an optimization algorithm [16] to minimize the RMSE between our predictions and the actual

attendance to each center. The result of this optimization is shown in Figure 3, where we can see

that our models for the total and 5-17 population are very accurate, with RMSE = 0.090 and RMSE

= 0.063, respectively. During our optimization, we found that the most important attributes for the

attractiveness of a center are the number of classes offered and the possession of a pool. Interestingly,

centers that are based inside of a school have less attractiveness. This is due to centers located within
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schools offering fewer hours and classes and lacking fitness center facilities, as can be seen by the

correlations in Figure 2.

Total Population

Age 5-17 Population

A B

C D

Figure 3. Model Fitting Results. Relationship between our model predictions and real data for the

attendance at each Community Center for the total population (A) and 5-17 year-old population (C).

The coefficient weights found for our model for the total population (B) and the 5-17 population (C).

For illustration purposes, the coefficient for the number of classes is normalized to one.

3. Interventions

Given the high accuracy of our models, attributed by an RMSE of 0.090 for the total population

model and 0.063 for the 5-17 population model, we can study the impact on attendance of two

interventions: enhancing the center offerings and changing the walking accessibility to centers.

The first is an intervention regarding the attractiveness of centers, where we change their attributes

so that more individuals are enticed to visit them. Note that, as Figure 2 shows, individual attributes

of a center are not independent. For example, we cannot independently change whether the center

is school-based from the number of classes. To determine the direction of an intervention, we use

Principal Component Analysis of the different attributes to suggest possible linear combinations of

changes to a center’s attributes. We found that the first principal component is mostly described by the

number of classes, having a fitness center, being based inside of a school, and having a dance studio, see

Figure 2B. Thus, we choose our interventions along the directions of the first PCA. Namely, we study

how attendance at a particular Community Center changes when the center becomes independent from

a school when we add a fitness center, and when we increase the number of classes the center offers by

one hundred. Our results for different centers subject to this intervention can be found in Figure 4.

The effect of the intervention is substantial, with percentage increases in attendance of 100-130% in the

total population and around 40% in the 5-17 population. We have also studied the percentage change
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in attendance of the low-income population, calculated by multiplying our predicted attendance for

each CBG by the fraction of people living under the poverty line in that CBG. In this intervention, we

do not see any significant difference in attendance change between total and low-income populations.

Our second intervention modifies the walking accessibility of a particular center. To do this, we

modify the function P
(w)
cz (sz, dcz) so that it becomes more likely that an individual will come to the

center walking. This can be done by doubling the B coefficient in the equation 3 so that the function

decays slower with distance. Our results for this intervention, shown in Figure 4 Panels B and D, still

show a substantial change. In regards to the low-income population, the percentage change is higher

than for the total population, suggesting that by changing the walking accessibility of a center, we

impact the low-income communities around them more.

Center Attributes Intervention Center Accessibility Intervention
A B

C D

Figure 4. Effect of interventions. A) Percent change of attendance for total and low-income total

populations when changing center attributes. B) Percent change of attendance for total and low-income

total populations when changing the walking accessibility to centers. C) Percent change of attendance

for 5-17 and low-income 5-17 populations when changing center attributes. D) Percent change of

attendance for 5-17 and low-income 5-17 populations when changing the walking accessibility to

centers.

The geographical effects of these interventions can be seen in Figure 5. As we can see, both

interventions significantly increase attendance from nearby CBGs. Nevertheless, we can see in

Figure 5B that the increase in attendance extends to CBGs further away from the community center.

We attribute this to the fact that driving is the most probable modal choice for larger distances.
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Predicted attendance
Predicted attendance after 

center attributes intervention

Predicted attendance after 

walking accessibility intervention
A B C

Figure 5. Geographical representation of the effects of each intervention labeled with the square root of

the total attendance per CBG

4. Conclusions and Future Work

This study offers a detailed analysis of attendance patterns at BCYF Community Centers, utilizing

enhanced Huff models based on census and real attendance data. Our findings reveal significant

insights into factors influencing attendance and effective policy interventions for increasing it. We

found that the most impactful factor is enhancing the educational and recreational offerings at each

center, notably more than improving walking accessibility. Centers within schools are less attractive,

suggesting that making centers independent, thereby allowing for more classes, longer hours, and

fitness facilities, would significantly boost attendance.

Predicted attendance increases substantially with these interventions: independence, added

fitness centers, and additional classes could lead to attendance increases of 100-130% for the entire

population and around 40% for the 5-17 age group, with similar rises in low-income populations.

Modifications to walking accessibility show notable impacts as well, showing a 20-40% increase

in the entire population and a 15-40% increase in the 5-17 population. However, with this type

of intervention, we see a large percentage increase for the low-income population, suggesting that

improving pedestrian access greatly benefits underserved communities.

Despite its insights, the study has limitations: incomplete data for smaller centers, unaddressed

detailed transit accessibility, and a simplified linear attractiveness function in the model. Future

research could enhance model accuracy with more comprehensive data collection and transportation

accessibility analysis. Nevertheless, our model’s high accuracy renders it a valuable and robust tool,

capable of providing policymakers and center directors with data-driven insights to optimize the

BCYF program’s reach.
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