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Abstract: Structures inevitably suffer damages after an earthquake, with their severity ranging from
minimal damages to non-structural elements to partial or even total collapse, possibly with loss
of human lives. Thus, it is essential for engineers to understand the crucial factors that drive a
structure towards suffering higher degrees of damage, so that preventative measures can be taken. In
the present study, we focus on three well-known damage thresholds, namely Collapse Limit State,
Ultimate Limit State and Serviceability Limit State and analyze which of the features obtained via
Rapid Visual Screening, determine whether or not a given structure will cross that threshold. To this
end, we use Machine Learning to perform binary classification for each damage threshold, as well as
Explainability via SHAP values (acronym for SHapley Additive exPlanations) to quantify the effect
of each parameter. The quantitative results obtained demonstrate the potential applicability of ML
methods to re-calibrate the computation of structural vulnerability indices using data from recent
earthquakes.

Keywords: Rapid Visual Screening; Explainable AI; Feature Importance; SHAP

1. Introduction

During the last decades, due to the large number of existing building stock, engineering focus
has shifted from analyzing and designing new structures to maintaining the preexisting buildings
to modern standards of safety and serviceability [1]. As is well known, the results of an earthquake
can be catastrophic to the society in terms of loss of human lives and requirements for large monetary
reparations, with some examples including the Turkey (Izmit) 1999, Athens 1999, Pakistan 2005 and
the 2023 Turkey earthquakes.

Governments and authorities can take preemptive measures to mitigate these effects, however, due
to obvious limitations in resources and manpower, it is not possible to do so for all existing buildings,
especially in large urban areas. Thus, most countries have introduced multi-stage procedures to assess
and evaluate the total potential consequences and losses from an earthquake, and thus identify the
most critical structures where allocation of further resources should be prioritized.

As a first step of these methods a Rapid Visual Screening Procedure (RVSP) [2] is usually
performed, wherein experts quickly inspect buildings and identify key structural characteristics
that affect the overall seismic behaviour. For example, these could include whether or not the structure
has short columns or soft storeys, the presence of neighboring buildings that could results in pounding
effects, irregularities in the horizontal or vertical plan of the building and others [3,4]. Subsequently,
these obtained characteristics are weighted to compute a seismic vulnerability index which is used
to rank the structures according to their expected degree of damage [5]. Finally, the most vulnerable
structures that have been identified from the aforementioned steps, are subjected to more accurate,
analytical methods, such as finite element analysis. These methods are prohibitively costly and time
consuming to be applied to every structure in the population, but yield an accurate assessment of
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the seismic vulnerability of the structures under consideration and, thus, of any potentially required
preemptive measures to be applied to them.

In USA, the Federal Emergency Management Agency (FEMA) first introduced such an RVSP [2] in
1988, which has since been modified to include more structural features that affect the overall seismic
performance [6]. Countries with high seismic activity, such as Japan, Italy, Canada, India or Greece,
have derived similar pre-earthquake assessment, adapted to the characteristics of their respective
building stocks. The success of RVSP in screening the candidate structures for further analysis heavily
depends on an accurate calibration of the weights of the structural characteristics. Thus, data from
major recorded earthquakes in conjunction with engineering expertise have been used in the past by
researchers for this task [7,8].

On the other hand, recent years have seen an increase of the use of Machine Learning (ML)
methods for the task of predicting the degree of a damage of reinforced concrete structures.
Classification techniques have been previously employed to classify structures in predicted damage
categories. Harichian et al. [9] employed Support Vector Machines, which they calibrated on dataset
of earthquakes in four different countries. Sajan et al. [10] employed a variety of models, including
Decision Trees, Random Forests, XGBoost and Logistic Regression. Similarly, regression methods have
also been employed for this task. Among others, Luo and Paal [11] and Kazemi et al. [12] used ML
methods to predict the interstorey drift, which can be used as a damage index.

Even though Machine Learning methods are powerful, they often lack the desired interpretability.
The path a Decision Tree followed to reach its predictions can be readily visualized, but the same
does not hold for more complex ML models. Thus, explainability techniques and models have been
employed in ML [13] in order to analyze how these models weigh their input parameters when making
a decision, thus increasing the reliability of their predictions. Among others, Mangalathu et al. [14]
have recently employed Shapley additive explanations (SHAP) [15] to quantify the effect of each
input parameter on damage predictions of bridges in California. Sajan et al. [10] performed multiclass
classification to predict the damage category of structures. They also employed binary classification
to predict whether the damage was recoverable or reconstruction was needed. Subsequently, they
employed SHAP values to identify 19 of the top 20 most important features for both tasks. However,
the features they employed significantly deviate from the ones in the RVS procedure and lack many of
the features employed in the present study.

The features employed in the present study have been used before [16,17]. However, there
is no consensus on the magnitude of the effect each feature has on the vulnerability ranking and
different researchers or different seismic codes employ different values. In this paper, we implement
explainable Machine Learning techniques and SHAP values to analyze features’ contribution to the
relative classification of structures in the respective damage categories. To the best of our knowledge,
the novelty contribution of the introduced approach is that it does not attempt to directly predict the
damage category. It considers the well-known thresholds of Serviceability Limit State (SLS), Ultimate

Limit State (ULS) as well as Collapse Limit State (CLS), to distinguish structures that not only surpassed
the ULS threshold, but suffered partial or total collapse as well, which could potentially lead to loss of
human life. Moreover, Machine Learning was used in order to develop binary classification models,
capable to distinguish between adjacent damage categories.

The benefit of this modeling research effort in comparison with the previously established
literature is twofold. On the one hand, the obtained binary classifiers have significantly improved
accuracy, compared to previously examined models. A higher accuracy enhances the reliability of
the extracted feature importance coefficients, which is the main focus of the present study. On the
other hand, this binary classification approach allows us to examine each of the damage thresholds
separately, and thus it answers the following questions: what were the deciding factors that led a
structure that would have otherwise suffered minimal to no damages to cross the serviceability limit
threshold?”. “If a structure did cross the serviceability threshold, what prevented it from crossing
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the ultimate limit state threshold as well?”. Finally, “if it did cross the ULS threshold, what factors
prevented it from ultimately collapsing?”

2. Materials and Methods

2.1. Dataset description

The dataset used in the present study is a sample consisting of 457 structures obtained after the
1999 Athens Earthquake via Rapid Visual Screening (RVS) [16]. The selected structures had suffered
damages across the spectrum, ranging from very low or minimal damages, to structures that partially
or completely collapsed during the earthquake. The dataset was drawn from different geographical
regions and, thus, the local conditions varied across the sample. The authors in [16] took steps to
mitigate their effect on the study: when sampling from a specific local area, they sampled structures
across the damage spectrum. The degree of damage was labeled using 4 categories, specifically:

• “Black”: Structures that suffered total or partial collapse during the earthquake, potentially
leading to loss of human life.

• “Red”: Structures with significant damages to their structural members.
• “Yellow”: Structures with moderate damages to the structural members and potentially including

extended damages to non-structural elements.
• “Green”: Structures that suffered very little or no damages at all.

An example of the application of the RVS procedure can be seen in Figure 1, courtesy of [16].

Figure 1. Application of Rapid Visual Screening in a specific area. Samples of structures across the
damage spectrum were drawn, to mitigate local effects. The image is courtesy of [16].

The distribution of structures across the above damage categories is shown in Figure 2.
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Figure 2. Distribution of structures across the damage spectrum.

For each structure, a set of attributes were documented, specifically:

1. Free ground level (Pilotis), soft storeys and/or short columns: In general, this attribute pertains to
structures wherein a storey has significantly less structural rigidity than the rest. For example,
this can manifest on the ground floor (pilotis) when it has greater height than the typical structure
storey, or when the wall fillings do not cover the whole height of a storey, effectively reducing
the active height of the adjacent columns.

2. Wall fillings regularity: This indicated whether the non-bearing walls were of sufficient thickness
and with few openings. The presence of such wall fillings is beneficial to its overall seismic
response.

3. Absence of design Seismic codes: This pertained to pre-1960 structures, which were not designed
following a dedicated seismic code.

4. Poor condition: Very high or non-uniform ground sinking, concrete with aggregate segregation or
erosion, or corrosion in the reinforcement bars are examples of maintenance related factors that
can reduce the seismic capacity of the building.

5. Previous damages: This pertained to structures which had suffered previous earthquake damages
that had not been adequately repaired.

6. Significant height: This described structures with 5 or more storeys.
7. Irregularity in-height: This described structures with a discontinuity in the vertical path of the

loads.
8. Irregularity in-plan: This pertained to structures with floor plan that significantly deviated from

being a rectangle, e.g. floor plans with highly acute angles in their outer walls, or E, Z, or
H-shaped.

9. Torsion: This affected structures with high horizontal eccentricity, which are subjected to torsion
during the earthquake.

10. Pounding: If adjacent buildings do not have a sufficient gap between them and especially if they
have different heights, then the floor slabs of one building can ram into the columns of the other.

11. Heavy non-structural elements: If such elements are displaced during the earthquake they can
potentially create eccentricities, leading to additional torsion.

12. Foundation Soil: The Greek Code for Seismic Resistant Structures - EAK 200 [3] classifies soils into
categories A, B, C, D and X. Class A refers to rock or semi-rock formations extending in wide
area and large depth. Class B refers to strongly weathered rocks or soils, mechanically equivalent
to granular materials. Classes C and D refer to granular materials and soft clay respectively,
while class X refers to loose fine-grained silt [3]. In [16] and in the present study, soils in EAK
category A are classified as S1, category B is classified as S2. Soils in EAK category C, D and X
were not encountered.
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13. The design Seismic Code: This feature described the Seismic Codes the structures adhered to at the
time of their design. Specifically, structures that were built before 1984 were classified as RC1,
buildings constructed between 1985 and 1994 were labeled RC2 and, finally, building constructed
after 1995 were labeled RC3, as the Greek state introduced updated Seismic Codes at these
milestones.

Note that most of the above features were binary, i.e. , a Yes/No statement was given about
whether or not the structure displayed the relevant feature. We transformed these to Boolean values,
i.e. , {Yes, No} → {0, 1}. The design Seismic Code was transformed to an integer value, i.e. ,
{RC1, RC2, RC3} → {1, 2, 3}. Finally, in 452 out of the 457 total documents, the authors in [16] noted
the exact number of storeys instead of whether or not this was ≥ 5. Given that this was deemed more
informative, we opted to disregard these structures (1.09% of the sample) and use this feature instead.

2.2. Data preprocessing

The core of the designed and employed modeling effort lies in the development of a Machine
Learning (ML) model for binary classification f : Rn ×R

n → {−1,+1} that, given a pair of structures
(si, sj) with corresponding feature vectors xi, xj ∈ R

n, is capable of predicting whether sj should rank
higher than si or vice versa [18].

However, it can be readily observed from Figure 2 that the “Red” label heavily dominates the
sampled dataset. This so-called “class imbalance problem” has significant adverse effects on any
Machine Learning algorithm [19–22]. It leads the model to be skewed towards the majority class,
creating bias and rendering the algorithm unable to adapt to the features of the minority classes [19,20].
This imbalance can be treated with undersampling the majority class, and there are numerous methods
in the literature in order to do so [23–25]. These methods include randomly selecting a subset of the
samples in the majority class [26,27], or model based methods, such as NearMiss, Tomek Links, or Edited

Nearest Neighbours [23–25]. NearMiss-2 was found to perform better by the authors and it is what will
be using in the sequel. Using the above, we undersampled the majority class by a factor of 50%, in
order to achieve a relative class balance, which, as was mentioned, is crucial to the performance of the
machine learning algorithms. The distribution of structures across the above damage categories after
undersampling is shown in Figure 3.

Now, in order to represent the pair (xi, xj) using a single feature vector xnew as input for the
Machine Learning model, we considered the pairwise transformation T : R

n × R
n → R

n with
T(xi, xj) = xj − xi. Other pairwise transformations can be employed, e.g. T2 : Rn ×R

n → R
2n, with

T2(xi, xj) = [xi; xj], i.e. , appending xj to xi [28]. However, the transformation employed in the present
study has the advantage of a more natural interpretation, which is the goal of this study. For a example,
a value in the transformed dataset of 2 storeys indicates that structure sj had 2 more storeys than si.
Similarly, a transformed value of −1 for the “pounding” attribute indicates that si suffered from it,
while sj did not.

A similar transformation was applied to the labels of the damage categories. To this end, the
labels where first ranked in ascending order, i.e. , Green, Yellow, Red, Black→ {1, 2, 3, 4}. Then, for a
pair of structures (si, sj) with (yi, yj) ∈ {1, 2, 3, 4}2 and yi ̸= yj, the transformed target variable was
ynew = sign(yj − yi), where sign denotes the sign function. Thus, for example, a transformed variable
of −1 indicates that sj suffered more severe damages than si. It is a fact that the focus of this research
is to gauge the contribution of the involved parameters to the extend of a structure’s relative damage.
Therefore, pairs with yi = yj were not included in the transformed dataset.
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Figure 3. Distribution of structures across the damage spectrum after undersampling.

2.3. Machine Learning Algorithm

In order to analyze the importance of each feature for the relative classification of each pair of
structures, we considered 3 different pairings of structures. Specifically, we considered the subset
consisting of the (Green, Yellow), (Yellow, Red) and (Red, Black) structures. We did this because each of
the labels has a very distinct definition: The Black and Red structures correspond to the Collapse state
and Ultimate Limit State (ULS) respectively, while Yellow corresponds to the Serviceability Limit State
(SLS). Thus, by using this pairing, our models will learn to distinguish adjacent damage states and the
features that lead to this increase in the suffered damages. For each of these pairs, we performed the
pairwise transformations presented above. The number of structures in each pair as well as in each
transformed dataset is shown in Table 1.

Table 1. Number of structures for each label pair and corresponding samples in the transformed
dataset.

Pair Damage Threshold Number of Structures Samples in the transformed dataset

(Green, Yellow) Serviceability Limit State (92, 69) 6,348
(Yellow, Red) Ultimate Limit State (69, 102) 7,038
(Red, Black) Collapse Limit State (102, 90) 9,180

For each of the above pairs, we constructed a binary classifier as described in Section 2.2. The
subsequent analysis on the importance of the features of these classifiers will help us answer questions
like“what were the deciding factors that led a structure to be Red and not Yellow, to cross ULS and
suffer heavy damages, instead of only crossing SLS and suffering moderate damages?”. There are
many classifiers available in the literature to perform this task. The authors in [18] worked on the
same dataset and analyzed a variety of models. The best performing one was found to be the Gradient

Boosting (GB) Classifier [29], which is what we will be employing in the sequel. GB is a powerful
method that learns a classifier incrementally, starting from a base model. Specifically, it learns a
function

f (x) =
N

∑
i=1

αihi(x; θi), (1)

where hi are the individual “weak” models (Decision Trees [30]) that the algorithm learns at each
iteration with their parameters θi, N is the user defined number of these models and αi are the learned
weights that produce the final linear combination. The steps of the method are shown in Algorithm 1
[31]. The algorithm was implemented in Python programming language, using the Machine Learning
library scikit-learn [32].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0704.v1

https://doi.org/10.20944/preprints202402.0704.v1


7 of 15

Algorithm 1 Gradient Boosting learning process [31].

Initialize f0(x)
for i = 1, 2, ..., N do:

Compute wj(xj) =
∂L(yj ,F(xj))

∂F(xj)

∣

∣

∣

F(x)=Fi−1(x)
, j = 1, 2, ...M

Compute θi = arg min
θ,µ

M

∑
j=1

[

−wj(xj)− µhi(x; θi)
]2

Compute αi = arg min
α

M

∑
j=1

L(yj, fi−1 + αhi(x; θi))

Update fi(x) = fi−1(x) + λαihi(x; θi))

end for

In the above, L is the loss function that measures the error between the predictions and the true
values, M is the number of samples the model is trained on and λ > 0 is a so-called “learning rate”,
which modifies the contribution of each individual Tree [33].

2.4. Hyperparameter tuning

As is evident from (1) and Algorithm 1, Gradient Boosting learns a number of parameters during
its training, e.g. the weights αi. However, there are a number of so-called hyperparameters, i.e. ,
parameters set by the user before training begins, such as the number N of the individual Decision
Trees, or the maximum allowed depth of each tree. The configuration of these hyperparameters can
reduce overfitting [34,35] and has a direct impact on the overall accuracy of the model [36].

Thus, it becomes clear the importance of an appropriate tuning of these hyperparameters to
achieve optimal results. This has led to a variety of methods to address this, with some reviews of
the existing algorithms given by Yu and Zhu [37] or Yang and Shami [36]. In this paper, we opted
for Bayesian optimization, as it does not search the hyperparameter space blindly, but using each
iteration’s results on the next one, which can lead to faster convergence to the optimal solution [38].
The implementation was carried out using the dedicated Python library scikit-optimize [39].

2.5. SHAP

A common measure in order to gauge the strength of the effect of each feature on the outcome,
which is the focus of the present study, are the so-called SHapley additive exPlanations (SHAP) [15].
They are the equivalent in the Machine Learning literature of the Shapley values in cooperative game
theory, introduced by Lloyd Shapley in 1951 [40]. SHAP values provide interpretability by constructing
a simpler, explainable model at the local neighborhood of each point in the dataset. Thus, given a
learned Machine Learning model f , a local approximation g can be formulated as follows [15]:

g(u) = φ0 +
n

∑
i=1

φiui, (2)

where in the above n is the number of features, u ∈ R
n is a binary vector whose value in the ith position

denotes whether or not the corresponding feature was used in the prediction and φi denotes the SHAP
value of that feature, i.e. , the strength of its contribution to the model’s output.

The values of the φi’s, following the notation of Lundberg et al. [41] are computed as follows: Let
N = 1, 2, ..., n be the set of features used and let S ⊆ N be a subset of N. Then, we have [41,42]

φi = ∑
S⊆N\{i}

|S|!(n − |S| − 1)!
n!

[ f (S ∪ {i})− f (S)] . (3)
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Intuitively, this corresponds to the weighted average over all feature combinations (coalitions) of the
difference in the model prediction with and without the inclusion of the ith feature.

As it has been mentioned, the above φi values pertain to a specific point. Consider, for example,
the pair (Red, Black). There were 102 Red structures in the undersampled dataset and 90 Black ones.
This yielded 90 × 102 = 9180 pairs, i.e. , samples in the transformed space, as shown in Table 1

Thus, we have a matrix Φ ∈ R
9,180×13, where each value φij is the SHAP value of the jth feature

calculated at the ith sample. Thus, in order to obtain an aggregated value for the whole dataset, we
used a normalized norm of each column in the matrix. We compared the results obtained using the L1

norm (sum of absolute values), which is the most commonly used in the literature, and the well-known
Euclidean norm L2, which increases the contribution of larger values while simultaneously reducing
the effect of smaller, noisy components. Thus, for each feature j = 1, 2, ..., 13 we considered the
alternatives as obtained by equation (4).

φij =























1
m

m

∑
i=1

|φij|, using L1

1
m

√

m

∑
i=1

φ2
ij, using L2

(4)

where in the above m is the number of samples in the transformed space for each pair, as shown in
Table 1. The computation of the SHAP values was carried out using the dedicated Python library by
Lundberg et al. [43].

3. Results

As it was previously stated, the main focus of this study is to analyze the importance of each
feature in deciding whether a structure will cross each of the respective damage thresholds. As
explained in Section 2.5, this is carried out using the SHAP values which offer such a quantification.
However, the reliability of any feature importance analysis, is directly related to the performance of
the model under consideration. If a model has poor performance, then the way that it arrives at its
predictions is not very informative. On the other hand, the higher a model’s performance the closer its
predictions are to the truth. Thus, the extracted feature importance values are closely coupled with the
underlying physical phenomenon and they can be considered as highly reliable.

To this end, this Section is structured as follows: In the first part, Section 3.1, we present the results
of the hyperparameters’ tuning and the classification performance metrics. The hyperparameters’
tuning allows us to find the model with the highest accuracy and, thus, with the most reliable feature
importance values. Subsequently, we present the accuracy metrics obtained using the optimal values
of the involved hyperparameters. This demonstrates the high accuracy obtained by the models,
especially in the most critical damage categories, which enhances the reliability of the extracted feature
importance values. Finally, in Section 3.2, we present the main results of this research, based on the
feature importance values obtained from these models.

3.1. Binary classifiers and hyperparameter tuning

As was mentioned in Section 2.3, we constructed a binary classifier for each pair of labels
considered here, namely (Green, Yellow), (Yellow, Red) and (Red, Black). Each of these classifiers was
tuned separately and we optimized the following hyperparameters:

• max_depth: This is the maximum allowed depth of each individual Decision Tree. Too large or
too small values can lead to overfitting or underfitting respectively [44].

• n_estimators: This is the number of individual Decision Trees used in Gradient Boosting.
• min_samples_leaf: This is the minimum number of samples that must remain in an end node

(leaf) of each individual Tree.
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• learning_rate: Controls the contribution of each individual Tree, as shown in Algorithm 1.
If the value is too large, the algorithm might overfit. A lower learning rate, however, has the
trade-off that more Trees are required to reach the desired accuracy.

In Table 2 we present the tuning range of each hyperparameter, as well as the optimal value for each of
the three classifiers considered here.

Table 2. Hyperparameter tuning

Hyperparameter Tuning Range
Optimal value per pair

(Green, Yellow) (Yellow, Red) (Red, Black)

max_depth [3,11] 3 5 3
n_estimators [50,300] 297 50 293
min_samples_leaf [1,10] 9 8 10
learning_rate [0.05, 0.25] 0.086887 0.120314 0.182278

Having obtained the optimal hyperparameters’ configurations, we trained and tested our three
models using 5-fold cross validation [45]. We measured their performance using the well-known
classification metrics of Precision, Recall, F1-score, Accuracy and Area Under the Curve (AUC) [46] and the
results are shown in Table 3. The results clearly show that the classifiers achieved high performance,
especially in the most critical pairs, i.e. , (Red, Black) and (Yellow, Red). Thus the accuracy with which
the model was able to distinguish between these two categories increases the reliability of the analysis
on the feature importance, which is the main focus of the study.

Table 3. Classification metrics for the binary classifier of each pair, cross validated on the whole dataset.

(Green, Yellow) (Yellow, Red) (Red, Black)

-1 +1 -1 +1 -1 +1

Precision 0.69585 0.76301 0.90943 0.86933 0.93992 0.90379
Recall 0.73221 0.72928 0.84995 0.92183 0.88501 0.95024
F1-score 0.71357 0.74576 0.87869 0.89481 0.91164 0.92644

Accuracy 0.73062 0.88732 0.91972
AUC 0.81451 0.95232 0.98128

3.2. Feature importance

In this Section, we present our main results on the analysis of the importance of the RVS features
for the relative classification of structures, which we performed using the SHAP values as explained in
Section 2.5. Note that there is some inherent variability in the computations of the φi and thus in φ

from (3) and (4). For example, this can stem from how the algorithm splits the dataset between training
and testing at each iteration. To alleviate this, we performed 100 runs of our proposed methodology.
Thus, we constructed a matrix Θ ∈ R

100×13, where θij is the value φj from (4) for the jth feature at the

ith iteration. From this, we calculated the average value per column/feature, i.e. , we defined

λj =
1

100

100

∑
i=1

θij. (5)

This heavily reduces the variability of the computations and increases the reliability of the extracted
feature importance values. Finally, in order to normalize these coefficients, we divided them with their
sum, i.e. ,

λi =
λj

13
∑

j=1
λj

. (6)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0704.v1

https://doi.org/10.20944/preprints202402.0704.v1


10 of 15

With this normalization, we now have 0 ≤ λi ≤ 1 and
13
∑

i=1
λi = 1, therefore these coefficients can be

interpreted as the percentage of the contribution of the corresponding features to the overall predictions
of the model. We carried out the above using both alternatives used in (4). The results are shown in
Figure 4.

(a) (Red, Black) Pair.

(b) (Yellow, Red) Pair.
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(c) (Green, Yellow) Pair.
Figure 4. Feature importance coefficients λi as defined in (6) for the three damage label pairs (Green,
Yellow), (Yellow, Red) and (Red, Black).

This figure presents the comparative results of the contribution of each feature in the models
predictions, expressed as a percentage of the total. The left subfigures in 4a-4c pertain to L1, i.e. the
absolute values of these features, while the right subfigures pertain to L2, i.e. their squares. The results
demonstrate a basic hierarchy of the structural properties that influenced the seismic vulnerability of
the studied structures and contributed to the observed damage degrees. The results in general are in
agreement with the existing literature in structural mechanics and the seismic behaviour of reinforced
concrete structures. We will analyze and discuss each of the Figures 4a-4c separately.

• Distinction between Red (ULS) and Black (Collapse): As can be seen from the left part of
Figure 4a, the most crucial factor overall for the Collapse Limit State was the presence of soft
storeys and/or short columns, with a weight of approximately 18%. The presence of regular infill
panel walls, however, had an almost equal in magnitude, but positive effect, which is why the
corresponding bar is hatched in the Figure. This was an important feature that helped prevent
structures that crossed ULS to cross CLS as well. Finally, the absence of design seismic codes, the
number of storeys in the structure and the presence of in-plan irregularity also played an import
role for this damage threshold.

The right part of this feature displays is an important distinction, as the absence of design seismic
codes is now, even slightly, the dominant feature. This can be explained in the following way:
the absence of design seismic codes feature is indeed a crucial factor, as is well-known in the
literature, and indeed the model assigned high SHAP values to it. However, not many structures
were affected by this feature. Indeed, from our 452 structures, only 26 lacked design seismic
codes. From those, 20 (77%) crossed ULS and from those, 19 (95%) crossed CLS as well. Thus,
by taking the squares of the SHAP values, as per the right figure of 4a, we assign more weight
to those extreme SHAP values, even though they pertained to a limited number of cases. It is
important to note that there is not a noteworthy distinction in the other factors, such as the soft
storeys/short columns, infill panel walls regularity or the structure height, between the left and
right subfigures of 4a, as the corresponding SHAP values were more balanced.

• Distinction between Yellow (SLS) and Red (ULS): As can be seen from Figure 4b, the most
important features by far were the presence of soft storeys and/or short columns as well as
the presence of regular infill wall panels. Soft storeys/short columns had a detrimental effect,
accounting for approximately 30% of the total. On the other hand, regular infill wall panels had a
beneficial effect with approximately equal magnitude. This is in agreement with the established
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engineering literature, as bricks walls help reduce storey drift and, thus, the overall degree of
damage. The absence of design seismic codes did not play an important role in this case, as
most structures that displayed this feature crossed CLS as well, as was previously mentioned.
Pounding, on the other hand had a contribution of approximately 15%. The height of the
structure as well as potentially preexisting poor conditions accounted for 7 − 8% each. These
five features combined, out of 13 in total, accounted for approximately 85% of the total in the
model’s predictions. Finally, note that in this cases the SHAP values were balanced, as the left
and right subfigures, using L1 and L2 respectively had minimal differences.

• Distinction between Green (minimal to no damages) and Yellow (SLS): Finally, for the
distinction between structures that crossed the SLS (Yellow) and those that suffered minimal to
no damages, the results are shown in Figure 4c. It can be seen that the most important factors
here were the existence and type of design seismic codes used, which account for approximately
20% of the total each. This is in agreement with the post-1985 Greek Seismic Codes, which
enforce lower damage degrees for the same design earthquake. Regular infill panel walls, soft
storeys and/or storeys and the presence of adjacent structures that could lead to pounding were
also relevant here, although the magnitude of their effect was only approximately 10%.

4. Summary and Conclusions

In this research, we have performed an analysis of how the features obtained in the Rapid Visual

Screening procedure, affect the seismic vulnerability of structures. Specifically, we have focused on
three well-known damage thresholds the Serviceability Limit State, the Ultimate Limit State and, finally,
the Collapse Limit State, to further put emphasis on structures that not only crossed ULS, but in addition
suffered total or partial collapse. To perform our analysis, we have employed a pairwise approach,
creating pairs from all structures belonging to adjacent damage categories, as shown in Table 1. Then,
we used a Gradient Boosting Machine to create a binary classification model that learned to distinguish
structures for each of the above damage thresholds. As shown in Table 2, we tuned some of the model’s
hyperparameters to increase its performance. This led to the model having high accuracy, especially in
the higher damage categories.

As can be seen from Table 3, the model learned to distinguish the CLS threshold with almost
92% accuracy and similarly for the ULS threshold it displayed an accuracy close to 89%. The model’s
performance dropped to 73% for the SLS, but in engineering practice this is the least impactful of
the three. Finally, we used SHAP values to quantify the effect of each of the features in our models’
predictions. The previously mentioned high accuracy of our models, especially in the higher damage
categories, enhances the reliability of the subsequently extracted SHAP values.

Additionally, the present study highlights the participation of various factors that contribute to
the overall structural vulnerability index, as calculated via the RSVP. Qualitatively, the results broadly
agree with the previously established engineering literature. For the CLS threshold, soft storeys/short
columns, the height of the structure, absence of design seismic codes and irregularities in height and
in plan where the most impactful detrimental factors. Regular infill wall panels were shown to have a
very positive effect as well. For the ULS threshold, the absence of design seismic code did not have a
significant influence, since the vast majority of structures that cross with this feature crossed CLS as
well. Finally, the implementation of modern design seismic codes played a crucial role in preventing
structures from crossing the SLS threshold.

Furthermore, the quantitative results obtained via the application of such ML methods and
SHAP values demonstrate the potential of its applicability to re-calibrate the computation of structural
vulnerability indices using data from recent earthquakes.
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