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Abstract: We propose a neural-network-based watermarking method that introduces the quantized activation
function that approximates the quantization of JPEG compression. Many neural-network-based watermarking
methods have been proposed. Conventional methods have acquired robustness against various attacks by
introducing an attack simulation layer between the embedding network and the extraction network. The
quantization process of JPEG compression was replaced by the noise addition process in the attack layer of the
conventional methods. In this paper, we propose a quantized activation function that can simulate the JPEG
quantization standard as it is in order to improve the robustness against the JPEG compression. Our quantized
activation function consists of several hyperbolic tangent functions and is applied as an activation function for
neural networks. Our network was introduced in the attack layer of ReDMark proposed by Ahmadi et al. to
compare it with their method. That is, the embedding and extraction networks had the same structure. We
compared the usual JPEG compressed images and the images applying the quantized activation function. The
results showed that a network with quantized activation functions can approximate JPEG compression with high
accuracy. We also compared the bit error rate (BER) of estimated watermarks generated by our network with
those generated by ReDMark. We found that our network was able to produce estimated watermarks with lower
BERs than those of ReDMark. Therefore, our network outperformed the conventional method with respect to

image quality and BER.

Keywords: watermarking method; Neural network; Activation function; JPEG compression

1. Introduction

People are now easily able to upload photos and illustrations to the Internet, owing to smartphones
and personal computers. To protect content creators, we need to prevent unauthorized copying and
other abuses because digital content is not degraded by copying or transmissions. Digital watermarking
is effective against such unauthorized use.

In digital watermarking, secret information is embedded in digital content by making slight
changes to the content. In the case of an image, the image in which the information is embedded is
called a stego-image, and the embedded information is called a digital watermark. There are two
types of digital watermarking: blind and non-blind. The blind method does not require the original
image to extract the watermark from the stego-image. However, the non-blind method requires the
original image when extracting a watermark from a stego-image. Therefore, the blind method is more
practical. In addition, because stego-images may be attacked by various kinds of image processing,
watermarking methods must have the ability to extract watermarks from degraded stego-images. Two
types of attacks on stego-images can occur: geometric attacks such as rotation, scaling, and cropping
and non-geometric attacks such as noise addition and JPEG compression [1].

Neural-network-based methods have been proposed. In single-stage-training, where the em-
bedding and extraction are performed in a single network, the network has been trained to output
a watermark from an input image [2,3]. The overall performance of the network is low because the
relationship between the image and the watermark is trained individually. To improve performance,
watermarking methods using autoencoders (AE) have been proposed [4-6]. The input layer to the mid-
dle layer is called the embedding network, and the middle to the output layer is called the extraction
network. Both the original image and the watermark are input into the input layer of the AE, and the

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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identity mapping is learned to retrieve them in the output layer. The stego-image is extracted from the
middle layer [6]. Since the original image is unnecessary during extraction, it is often omitted to output
only the watermark. Furthermore, AE with convolutional neural networks has been proposed [7]. An
adversarial network has also been added to improve image quality [8]. DARI-Mark [9] is a DNN-based
watermarking method useing attention to determine the embedding regions. It can find non-significant
regions that are insensitive to the human eye and increases robustness by embedding the watermark
with larger intensities. Thus, end-to-end models were proposed [6-11]. However, a huge training
dataset was needed to train the connections as the network became more complex. Although data
augmentation was sometimes introduced, a model with internal networks mimicking attacks was
proposed in order to train on a relatively small training dataset [8,10,11].

The HiDDeN [8] proposed by Zhu et al. has an attack layer that simulates attacks such as
Gaussian blur, per-pixel dropout, cropping, and JPEG compression attacks on images during training.
Here, the implementation of JPEG compression is approximated by JPEG-Mask, which sets the high-
frequency components of the discrete cosine transform (DCT) coefficients to zero, and JPEG-Drop,
which uses progressive dropout to eliminate the high-frequency components of the DCT coefficients.
Therefore, this implementation does not meet the standard for quantization in the JPEG compression
process. It has also been noted that the JPEG-Mask and JPEG-Drop layers of HiDDeN do not provide
sufficient performance for the robustness of the JPEG compression [12,13]. JPEGdiff is a method of
approximating around the quantized values in JPEG compression by a cubic function. Hamamoto
and Kawamura’s method [10] also introduces a layer of additive white Gaussian noise as an attack
layer to improve robustness against JPEG compression. Moreover, ReDMark proposed by Ahmadi
et al. [11] has attack layers implementing salt-and-pepper noise, Gaussian noise, JPEG compression,
and mean smoothing filters. The quantization of the JPEG compression is approximated by adding
uniform noise. As described, the quantization process has been replaced by the process of adding
noise, and the quantization process as per the JPEG standard has not been introduced.

Adversarial examples are a problem in the field of pattern recognition. They are generated by
adding distortions to images to misclassify it. To avoid misclassification, a pattern recognition method
using JPEG compressed images has been proposed [14]. JPEG compression is expected to effectively
reduce noise while preserving the information needed for pattern recognition. However, JPEGdiff has
been proposed as a way to break this technique [12]. By approximating the JPEG quantization with a
differentiable function, a JPEG-resistant adversarial image can be generated. Therefore, approximating
the JPEG quantization with a smooth function may affect the performance of the model. In this
paper, we propose a quantized activation function that can simulate quantization of JPEG compression
according to a standard. We apply this function to the attack layer of the ReDMark [11]. The robustness
against the JPEG compression is expected to be improved using a standard-based function. The
effectiveness of our method was evaluated by comparing JPEG compressed images with images in
which the quantized activation function was applied. The image quality of the stego-image was also
evaluated.

The rest of the paper is organized as follows. In Section 2, the process of JPEG quantisation is
explained. In Section 3, we describe the ReDMark and, in addition, we address our previous work.
In Section 4, we define the quantized activation function and describe the structure of the proposed
network. In Section 5, we show the effectiveness of the function and demonstrate the performance of
our network in computer simulations. The last section concludes the paper.

2. Preliminary: JPEG Quantization

2.1. Quantization of [JPEG Compression

JPEG compression is a lossy compression that reduces the amount of information in an image to
reduce the file size. In this kind of compression, an image is divided into 8 x 8-pixel blocks. Then, in
each block, the processes of the DCT, quantization, and entropy coding are sequentially performed. In
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JPEG compression, the process of reducing the amount of information is the quantization process of
the DCT coefficients. We focus on the quantization of the DCT coefficients of the luminance component
in an image because the watermark is embedded in these coefficients of the image. Figure 1 shows the
quantization process in JPEG compression for DCT coefficients [15]. The process consists of three steps:
1) creation of the quantization table T, 2) the quantization process, and 3) the dequantization process.

ﬂ ........
DCT, .
[co} .
: (2)
DCT
coefficients x m 1)
division H ,,,,,,,, EJ ........ B(u,v)s(Q) + 50 ﬂ ........
host image : : < 100 :
quantized quantization basic table B
'combi- data y Q table T,
" 3)
nation ﬂ -------- (
JPEG-compressed e\ | (1) « - Creation of the quantization table
Image : (2) - - Quantization process

quéntized DCT (3) - - Dequantization process

coefficients z

Figure 1. JPEG compression quantization for luminance components. 1) Creation of the quantization
table Ty, 2) The quantization process, 3) The dequantization process.

2.1.1. Creation of the Quantization Table T

During the quantization process, the DCT coefficients are quantized based on a default basic table
or a self-defined basic table. The default basic table B is defined as

[16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

p_ |14 17 22 29 51 8 80 62| W
18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

The quantization table is then determined using the quality factor (Q) and the basic table B. The
quantization table Tp(u,v) for the quantization level Q at coordinates (u,v),u = 0,1---,7,v =
0,1---,7is defined as

(2)

| B(u,v)s(Q) + 50
Toluv) = { 100 ’
where | -] is the floor function and where B(u, v) is the (1, v) component of the basic table B. Also, the
scaling factor s(Q) is given by

. 3)

5000
Q) = { o Q<o

200—-2Q (Q >50)

2.1.2. Quantization Process and Dequantization Process

The quantization process is performed using the quantization table T. Let y(u, v) be the quan-
tized data, and let x(u, v) be the DCT coefficients in an 8 x 8-pixel block. The quantization process is
performed as

y(u,v) = round(%), 4)
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where
0.5 >0
round(a) = [a+05] (a2 ) (5)
—|—a+05] (2<0)
Let z(u,v) be the quantized DCT coefficients; then, the dequantization process is performed as
z(u,v) = y(u,v)To(u,v). (6)

3. Related Works

3.1. ReDMark

Figure 2 shows the overall structure of ReDMark [11], which consists of an embedding network,
an extraction network, and an attack layer. The & and w are the height and width of the 2D watermark,
and H and W are the height and width of the original and stego-images. The images are divided into
M x N-pixel blocks, where M = N = 8 as it is in ReDMark.

host image

I_> embedder
—

SR
e

attack
1 layer
h{: I.'.'.' m actual
N attack
l_w_J

w i
stego-image
watermarks 9 9

st

w
watermarks

| == - - training
attacked image ~ ===P> - - test

SR

Figure 2. Overall structure of ReDMark [11]

The process flow during training is illustrated by the red arrows in Figure 2. The host image and
watermark are fed to the embedding network, and the attack layer degrades the generated stego-image.
By feeding the degraded image to the extraction network, the extraction network learns to extract
the watermark from the degraded image. After training, the embedding and extraction networks
are used individually. The process flow during testing is illustrated by the blue arrows in Figure 2.
A stego-image is generated by the embedding network. This image is published and attacked. Let
us assume that the attack is to compress the image by some JPEG tool. When the attacked image is
obtained, the watermark is extracted from the image in the extraction network.

In ReDMark [11], normalization and reshaping are performed on the input image in preprocessing.
For the input image Iy (7,/),i =0,1,--- ,H—1,j=0,1,--- ,W — 1, the normalized image is given by

1(i,]) = W 7)

Reshape is an operation that divides an image into M x N-pixel blocks and transforms them into a 3D
tensor representation. The image size H X W is assumed to satisfy H = hM, W = wN. The reshaped
image is represented by a 3-dimensional tensor of 1 X w x MN. This image is called the image tensor
of size (h,w, MN). If necessary, the tensor is inverse transformed back to its original dimension.

3.1.1. Embedding Network

The embedding network, as shown in Figure 3, consists of three layers: convolution, circular
convolution, and transform. The transform layer can perform lossless linear transforms using 1 x 1
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convolutional layers, e.g., the DCT, wavelet transform, and Hadamard transform. In our method, the
DCT is selected as the transform layer as it is in ReDMark. The circular convolution layer extends the
input to make it cyclic before the convolution is performed. Figure 4 shows an example of applying a
circular convolution layer with a 2 x 2 filter when the input is 3 x 3 pixels. When a circular convolution
layer is used, the dimension of the output after convolution is the same as the dimension of the input.

1 1

MN MN
reshape £ zllz|l2| 2 £ —— reshape
— 85 SHSeHYSHS c — H
H h{ 0 IEEEN:
% %, | AR Ay
a4 C||O||C|l T
host image DCT — w
1 1x1 filter  2x2 filter stego image
h{ﬁ concatenation embedding intensity «
A,
watermarks

Figure 3. Embedding network of ReDMark [11]

In the embedding network, the convolution and circular convolution layers use 1 x 1 and 2 x 2
filters, respectively, and both have 64 filters. In each layer, an exponential linear unit (ELU) [16]
activation function is used. The output of the embedding network is obtained by summing the output
of the transform layer performing the inverse DCT (IDCT) (for the IDCT layer) with the input image
tensor of size (h, w, MN) and then by performing the inverse process of reshaping. Here, the output of
the IDCT layer can be adjusted by the embedding intensity «. The intensity is fixed as « = 1 during
training and can be changed during an evaluation.

a b c b ;@3

d e f|mp ¢ J
ho hot 19

9 b ¢ a

imensionality
expansion

a
d
g
a
input d

Figure 4. Extended input in a circular convolution layer. @ Extended in the column direction. @
Extended in the row direction.

3.1.2. Extraction Network

The extraction network consists of a convolution layer, a circular convolution layer, and a trans-
form layer, as shown in Figure 5. The transform layer of the extraction network also performs the DCT.
The filter sizes of the convolutional and circular convolutional layers are 1 x 1 and 2 X 2, respectively.
The number of filters is 64 for the fourth layer and 1 for the fifth layer. The activation function up to
the fourth layer is ELU [16], and a sigmoid function is used in the fifth layer. Let p, (i, j) be the output
of the extraction network, and the estimated watermark p, (i, j) is given by

1, polij)>05
pE(lI]) { O, po(i,]-) §05 . (8)
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Figure 5. Extraction network of ReDMark [11]

3.1.3. Attack Layer

The attack layer lies between the embedding and the extraction networks and operates when
ReDMark is trained. The attack layer itself is not trained. By simulating possible attacks on the
stego-image and feeding the attacked image to the extraction network, the network can be trained
to extract the watermark from the degraded image. Various attacks can be simulated in the attack
layer. In the attack layer of ReDMark [11], three networks were implemented according to the type
of attacks: a GT-Net (Gaussian-trained network), a JT-Net (JPEG-trained network), and a MT-Net
(multi-attack-trained network).

In ReDMark, the quantization process is approximated using the quantization table Tg (1, v) and
uniform noise €. Let x(u, v) represent the DCT coefficients of an 8 x 8-pixel block of a stego-image,
and the quantized DCT coefficients z(u, v) are given as

z(u,v) = (;CQ((LZ/ZZ) —I—e) To(u,v) 9)
= x(u,v)+ Tgo(u,v)e, (10)

where € represents noise subject to a uniform distribution in the interval [—0.5, 0.5]. In other words,
the quantization process is equivalent to adding a uniform noise € proportional to the quantization
table T (u, v).

3.2. Previous Work

In our previous work [17], we proposed a quantized activation function (QAF). This function was
a functional representation of the quantization process of JPEG compression. Specifically, the QAF(x)
consists of several hyperbolic tangent functions and returns the quantized value of the argument x.
In this study, all DCT coefficients x(u, v) were quantized with the same intensity. In other words, the
value of the quantization table T (1, v) was constant, as given by

To(u,v) = 9, (11)

where delta is a constant. Even with a constant quantization table, the previous method had a certain
level of tolerance to JPEG compression. However, if the original values of the quantization table could
be applied, the tolerance could be enhanced.

4. Proposed Method

We propose an attack layer that implements JPEG quantization using a quantized activation
function (QAF). To demonstrate the effectiveness of the QAF, we compare the proposed layer using
the QAF with the JT-Net of ReDMark [11] . The embedding and extraction networks of the proposed
method is the same as those of ReDMark.
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4.1. Quantized Activation Function

In the quantization of JPEG compression, the DCT coefficient values are converted to integers.
This causes a problem that the activation function cannot be differentiated when training a neural
network. For example, the JPEG-Mask and JPEG-Drop layers of HiDDeN do not provide sufficient
performance against robustness for JPEG compression. Therefore, the JPEGdiff, which approximates
the activation function to a cubic function around the quantized value, has been proposed [12,13]. This
approximation could reduce the number of non-differentiable points and reduce the number of regions
with zero gradient. As a result, performance was improved by training. The JPEGdiff is given by

JPEGdiff(x) = round(x) + (x — round(x))>. (12)

Note that this function still has non-differentiable points on the boundaries of the intervals.

We propose a quantized activation function for neural networks to implement the quantization
process of the JPEG compression according to the standard. The QAF consists of n hyperbolic tangent
(tanh) functions and is defined as

n

QAF(x|tg) = Ztgtanh{ﬁ(x:l:tQ(;—i-i))}, (13)

i=0

where t( is the value of the quantization table T (1, v) when the quantization level is Q. The n is the
number of tanh functions. When the minimum value of Tg(u,v) = 1, because the maximum value
of the DCT coefficients is 2040, at most 2039 tanh functions are required. The number n can vary
depending on the value of T (1, v), but a sufficiently large constant n was used. f8 is the slope of the
tanh function. The red dashed line in Figure 6 represents QAF(x|16) when the slope f = 1000 and
the value of the quantization table Tg(u,v) = 16. In addition, the values of the DCT coefficients after
JPEG quantization are plotted with a black line. Although the sign function should be used in (13) to
represent JPEG quantization, the tanh function was used in the proposed method. When training a
neural network, the differentiable function works better for training. Therefore, we chose the tanh
function, which is a continuous function. Figure 7 (a) shows the tanh functions for various slopes
B =1,10,100,1000. We can see that the slope becomes steeper and asymptotically closer to the sign
function as § increases. When the slope of tanh is set to § — oo, it asymptotically approaches the sign
function. For practical use, a large value of B can approximate quantization with sufficient accuracy.
Figure 7 (b) shows comparison of JPEGdiff (12) with QAF functions. The green curve represents the
JPEGJiff, and the blue and orange curves represent the QAF at slope 8 = 10,1000. We can see that the
JPEGJiff has discontinuities, while the QAF is smooth. Since QAF has no discontinuities, the network
may be better trained.
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Figure 6. Overview of the quantized activation function: QAF(x|16) with slope § = 1000 and number
of hyperbolic tangent functions, n = 500.
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Figure 7. Activation functions: (a) the hyperbolic tangent functions for slopes g = 1, 10,100, 1000. (b)

JPEGdiff vs QAF.

4.2. Proposed Attack Layer

The proposed attack layer consists of three sub-layers: a DCT layer, a layer introducing QAF
(QAF layer), and an IDCT layer. Note that in our network, the DCT coefficients are quantized as in
the JPEG compression. Figure 8 shows the structure of the network. The embedding and extraction
networks have the same structure as that of ReDMark [11]. The output O(, j, k),i =0,1,--- ,h —1, j =
01,---,w—1,k=0,1,---, MN — 1 of the DCT layer is processed by the QAF (13) at the QAF layer.
The output z(i, j, k) of this layer is calculated by

2(i,j, k) = QAF (O(i,j, k)'TQZ(;‘S’U) ) (14)

Note that the quantization table To(u,v) is divided by 255 because it is normalized by (7). The
quantization table values in (14) are determined according to T (u, v) because the quantization table
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values are different for each of the coordinates (1, v) of the DCT coefficients. The coordinates (u,v) are

defined by
k k

The attack layer [11] in ReDMark performs noise addition to the coefficients, while the one in our
network performs the quantization with the QAF.

1 1
MN E £ 64
reshape —N— S5 § 5 —~N— reshape
> — 2z ol —> > H
> ch c&
H h = = h{
4 Ay Ay
~ W DCT IDCT w
stego image JPEG attacked image

Figure 8. Proposed attack layer

4.3. Training Method

The embedding and extraction networks are trained in the same way as they were in ReDMark [11],
respectively. The loss function L; of the embedding network is defined as

Ly =1—SSIM(I, 1,), (16)

where SSIM represents the structural similarity function (SSIM) [18], which measures the structural
similarity between two images. The closer to 1.0, the larger the similarity between the two images [18].

It is defined in
(2upo +¢1)(2Cov(1, 1) + c3)

(125 + e1) (0205 + c2)
where I is the original image given as a teacher and where I, is the output of the embedding network.
u and p, are the means of I and I,, respectively. ¢ and o, are the variances of each image, and
Cov(I, 10) represents the covariance between the two images. Let c; and ¢, be constants, and let
c1 = 107%,c; = 9 x 107%. Because the output of the embedding network takes a real number, the
stego-image I is obtained by converting it back to 256 levels of the pixel value. That is, it is given by

SSIM(I,1,) = 17)

255, I,(i,j) > 0.5
Lst(i,j) = { 255 I,(i,j) + 128]. —0.5 < Io(i,j) < 0.5. (18)
0, I(i,j) < =05

The loss function L, of the extraction network is defined as

H[\’_]\

_i (i )08 (po(i, 1)) + (1= p(i,])) log(1 = pa(i, )}, (19)

where p is the watermark used as a teacher for the extraction network. p, is the output of the sigmoid
function of the extraction network. That is, the value of the element takes a value between 0 and 1.
The total loss function L of our network is defined as

L=vyLi+(1—7)L, (20)

where the parameter 7y determines the balance between the two loss functions. The embedding and
extraction network are trained by the back propagation [19] using stochastic gradient descent (SGD) as
the optimization method.

d0i:10.20944/preprints202402.0657.v2
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5. Computer Simulations

5.1. Evaluation of the QAF

First, the ability that the QAF function can approximate the quantization process of JPEG com-
pression was assessed, using computer simulations. Because the DCT and quantization were applied
to 8 x 8-pixel blocks in the JPEG compression, the QAF was also applied to 8 x 8-pixel blocks. The
evaluation images were taken from a dataset provided by the University of Granada [20]. They consist
of 49 images of 512 x 512 pixels. Each image was normalized by (7). The 512 x 512-pixel image is
divided into blocks of 8 x 8 pixels, resulting in 64 x 64 blocks. These blocks were indexed in raster scan
orderasyu =1,2,3,---,4096. The DCT was performed on each block. Let Ig‘(u, v),u=1,23,---,4096
be the DCT coefficients of the u-th block. The QAF was applied to the p-th block as

T7O(i/j) ), (21)

where the quantization level of the JPEG compression was set to Q = 70. The parameters of the QAF
in (13) were set as gradient f = 1000 and the number of the hyperbolic tangent functions n = 500.
For all the QAF-applied blocks, an IDCT was performed, and the luminance values were inversely
normalized using (18). Next, all blocks were combined. The combined image was converted back to
the original image size. Then, the QAF-applied image was given by

Igar = (I%QAFI IéAFr' o r%ﬁ%)- (22)
In general, the peak signal to noise ratio (PSNR) of an evaluated image I’ against a reference
image I is defined by
PSNR(I'|T) = 101lo ﬂ [dB] (23)
S0\ MSE(r', 1) )7
where
) 1 How-1o )
MSE(I',I) = — I'i,j) —1(i,7)}". 24
S ( 4 ) HW = ];0{ (l/]> (l/]>} ( )

To see the difference between the QAF and JPEG-compressed images shown in Figure 6, the difference
could be evaluated by PSNR rather than MSE. The accuracy of the QAF could be measured by the PSNR
of a QAF-applied image against a JPEG-compressed image, that is, PSNR (Igap|Iipeg ), where Ijpes was
the JPEG-compressed image. Note that the PSNR was measured against the JPEG-compressed image,
not the original image. Similarly, we evaluated the approximation ability of JT-Net using PSNR and
compared it with QAF. Figure 9 showed a histogram of PSNRs for JT-Net-applied images by using
(9) and QAF-applied images given by (21) and (22), where the quantization level was Q = 70. The
PSNRs for QAF-applied images were clearly greater than those for JT-Net-applied images. Figure 10
showed three examples of QAF-applied images and their PSNRs. Thus, we found that the QAF more
adequately represents the quantization of the JPEG compression.
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Figure 10. QAF-applied images and their PSNRs

5.2. Evaluation of the Proposed Attack Layer

We compared the JT-Net in the ReDMark and the proposed attack layer based on the image quality
of stego-images and the BER of watermarks extracted from stego-images after the JPEG compression.

5.2.1. Experimental Conditions

The training and test images were selected as they were in ReDMark [11]. The training images
were 50,000 images of 32 x 32 pixels from CIFAR10 [21] (H = 32, W = 32). An h x w-bit watermark
was embedded, where h = 4, w = 4. The watermark was randomly generated. In the parameters
used for training, the block height and width sizes were set to M = 8 and N = 8, respectively. The
parameter of the loss function (20) was set to y = 0.75, the number of learning epochs was set to 100,
and the mini-batch size was set to 32. For the parameters of SGD, the training rate was set to 104, and
the moment was set to 0.98. For training the proposed attack layer, the gradient of the QAF (13) was set
to f = 1000 and the number of the hyperbolic tangent functions was set to n = 500. In the attack layer
of JT-Net and the proposed method, the quantization level was set to Q = 70, and the quantization
table Ty was used. The embedding, attack, and extraction networks were all connected, and the
network was trained using the training images and watermarks. Here, the embedding intensity was
fixedata = 1.

For testing, 49 images of 512 x 512 pixels from the University of Granada were used. These
images were divided into 32 x 32 pixel subimages, and the embedding process was performed on
each of them. The 256 subimages were given to the network as test images. Meanwhile, a 32 x 32-bit
watermark was randomly generated. One watermark was embedded four times in one image. That
is, the watermark was divided into 4 x 4-bit subwatermarks, and finally each subwatermark was
embedded in one subimage. An estimated watermark was determined by bit-by-bit majority voting
because the same watermark was embedded four times in one image.
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As stated in 3.1, the attack layer was not used during testing. The test images and the watermarks
were used to output stego-images in the embedding network. Here, the embedding intensity was
set to values from a = 0.5 to 1.0. The stego-image is published. Subsequently, we assume that it was
JPEG compressed by some JPEG tool with quantization levels Q = 10,20, - - - ,90. The compressed
stego-images were input to the extraction network, and the estimated watermarks were output. These
networks were trained 10 times with different initial weights for the comparison of our network with
the JT-Net on image quality and BER. The mean and standard deviation of structural similarity index
measures (SSIMs), PSNRs, and BERs were calculated.

5.2.2. Evaluation of the Image Quality

The image quality of the stego-images obtained from the JT-Net and our network was evaluated
using the SSIMs and PSNRs. The image quality of the stego-image I; against the original image I can
be expressed as SSIM(Is, I) by (17) and PSNR(Is|I) by (23). Figure 11 shows the SSIM and PSNR.
The horizontal and vertical axes represent the embedding intensity « and SSIM or PSNR, respectively.
The error bars represent the standard deviation of the SSIMs and PSNRs. Embedding the watermark
strongly causes degradation in the image quality. Therefore, the SSIM and PSNR decreased as the
intensity &« increased. The image quality of our network was higher than that of the JT-Net. In other
words, our network can reduce the degradation of image quality even with the same embedding

intensity.
1.00 55
-{-- JT-Net -{-- JT-Net
—f— our network —f— Our network
0.98 50 -
0.96 1 S"I‘“-}g_ 454
= ! =4
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) 4
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0.92 354
90— — n—_
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
embedding intensity a embedding intensity a
(a) SSIM (b) PSNR

Figure 11. Image quality of stego-images (tained by Q = 70)

As the images were processed block by block, they were visually checked for block artefacts.
Three images selected from the dataset were cropped to 128 x 128-pixel size as shown in the Figure 12.
These images were generated from the proposed network trained with embedding intensity « = 1.0.
The images were not reduced in size when displayed. Few noticeable artifacts were observed.
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Figure 12. Images cropped to 128 x 128 pixels.
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5.2.3. Evaluation of the BER

The robustness of our network against the JPEG compression was evaluated. The estimated
watermark obtained by (8) was evaluated by using the BER. The BER of the estimated watermark p,
can be defined by

BER = i
hw

H‘MT

i (i,]) @ pe(iv f), (25)

where p is the original watermark, and @ represents the exclusive OR.

First, we compared the robustness of our network with that of the JT-Net using the same embed-
ding intensity a. Figure 13 shows the BER of the estimated watermark for the embedding intensity a.
The horizontal and vertical axes represent the intensity « and BER, respectively. The solid and dashed
lines were the results of our network and the JT-Net for various compression levels Q, respectively.
When the watermark was strongly embedded, it was extracted correctly. Therefore, the BER decreased
as the intensity « increased. The lowest BER was obtained when a« = 1.0. At compression level Q < 70,
the BER of the proposed network was lower than that of the JT-Net. Also, at Q = 80, they had almost
the same BER. Furthermore, at Q = 90, the BER of our network was higher than that of the JT-Net.

--- JT-Net,Q=90
--- JT-Net,Q=80
JT-Net, Q=70
JT-Net,Q=60
JT-Net,Q=50
JT-Net,Q=40
JT-Net,Q=30
JT-Net,Q=20
JT-Net,Q=10
Qur network, Q=90
Our network,Q=80
Our network,Q=70
Qur network, Q=60
QOur network,Q=50
Our network,Q=40
—— Our network,Q=30
Our network,Q=20
—— Our network,Q=10

10714

10—2 4

BER

10—3 4

04

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
embedding intensity a

Figure 13. BER for embedding intensity «

Even with the same embedding intensity, the image quality of our network differs from that of
the JT-Net. Therefore, we next adjusted the embedding intensity so that the PSNR of both networks
was almost the same, and we compared the BERs of both networks under this condition. Figure 14
shows the histograms of PSNRs for our network with embedding strength « = 1.0. The histograms for
JT-Net with embedding strengths (a) « = 1.0 and (b) « = 0.95 are also displayed. The two histograms
shown in (b) appear to be similar to each other. To measure the robustness against JPEG compression,
we set the intensity a to ensure that the PSNR obtained from both networks is approximately the same.
Specifically, we set the intensity for the JT-Net and our network to & = 0.95 (average PSNR= 37.58
dB) and & = 1.0 (average PSNR= 37.81 dB), respectively. Figure 15 is the BER for the compression
level Q. The error bars are the standard deviation of the BERs. The BER of the estimated watermark
for our network was lower than that for the JT-Net. Thus, we can say that our network can generate
watermarks with fewer errors under the given PSNR.
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Figure 14. Histograms of PSNR for QAF network with an embedding strength of # = 1.0 are shown in
(a) for JT-Net with « = 1.0 and in (b) for JT-Net with « = 0.95.
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6. Conclusion

The JT-Net in ReDMark [11] is a network that simulates JPEG compression. This network
substituted the quantization process with a process that adds noise proportional to the value of
the quantization table. In this paper, we proposed the quantized activation function (QAF), which
can approximate the quantization process of the JPEG compression according to the standard. By
approximating the quantization of the JPEG compression using the QAF, we expected to improve the
robustness against the JPEG compression. The results of computer simulations showed that the QAF
represented quantization with sufficient accuracy. Also, we found that the network trained with the
QAF was more robust against the JPEG compression than those trained with the JT-Net. Because the
embedding and extraction networks were more robust against the JPEG compression when trained
with the QAF, we conclude that our method is more suitable for simulating JPEG compression than
conventional methods applying additive noise.

Further studies with QAF are expected. For example, since QAF is differentiable over the whole
interval, it may produce better adversarial images compared to JPEGdiff [12]. Furthermore, there is a
study on the estimation of the sign bit of DCT coefficients [22]. The non-linearity of the quantized DCT
coefficients made the estimation difficult. The solution could be simplified by using QAF.
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