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Abstract: Developing effective trend estimators is a main method to solve the online portfolio selection
problem. Although the existing portfolio strategies have demonstrated good performance through the
development of various trend estimators, it is still challenging to determine in advance which estimator will
yield the maximum final cumulative wealth in online portfolio selection tasks. This paper studies an online
ensemble approach for online portfolio selection by leveraging the strengths of multiple trend estimators.
Specifically, a return-based loss function and a cross-entropy-based loss function are first designed to evaluate
the adaptiveness of different trend estimators in a financial environment. On this basis, a passive aggressive
ensemble model is proposed to weigh these trend estimators within a unit simplex according to their
adaptiveness. Extensive experiments are conducted on benchmark datasets from various real-world stock
markets to evaluate the performance. The results show that the proposed strategy achieves the state-of-the-art
performance including efficiency and cumulative return.

Keywords: Online Portfolio Selection; Online Ensemble Learning; Passive Aggressive Algorithm

1. Introduction

Online portfolio selection dynamically allocates wealth across real-world assets by analyzing
stream data from financial markets [1,2]. To optimize the wealth allocation, portfolio selection
leverages a range of machine learning techniques, including Newton gradient step [3] and nearest
neighbor [4]. In addition to these methods, portfolio selection must also consider economic and
financial theories and criteria, particularly investment behaviors [5,6]. Accordingly, many of the
current leading portfolio selection systems employ historical price information to predict future
prices to determine the optimal portfolio allocation.

Reversion and momentum are two significant characteristics in finance. Numerous the state-of-
the-art portfolio selection strategies develop trend estimators based on these characteristics for
decision-making. For example, trend estimators like the inverse price [7,8], the simple moving
average [15], and the exponential moving average [9] assume that the asset price will reverse to some
kind of its historical average. On the contrary, the peak price [10,11] assumes that the price of a good
performing asset will continue to rise due to the irrational investing behaviors. Since each trend
estimator is based on different prior assumptions, their effectiveness is contingent on the financial
environment aligning with these assumptions. Consequently, it is challenging to predetermine which
trend estimator will maximize the final cumulative wealth for online portfolio selection tasks.

To take the advantages of various trend estimators during the whole investment period, we pay
attention to the online ensemble learning framework [12]. The online learning adeptly balances each
trend estimator with evolving financial environments, while the ensemble learning combines these
estimators to enhance robustness and precision. A simple but effective ensemble learning approach
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is weighted averaging [13]. Consequently, it is a viable solution to develop a suitable online ensemble
learning algorithm to amalgamate various trend estimators emerges.

In this paper, we address the problem of online portfolio selection with multiple trend estimators
by developing a framework named Passive Aggressive Ensemble (PAE). The characteristics and
contributions of the proposed PAE are summarized as follows:

1. The PAE framework is introduced to employ two distinct schemes to efficiently ensemble four
different types of trend estimators.

2. The PAE framework augments the performance of original trend estimators through reasonable
evaluation and weighting.

3. The hyperparameters are tuned based on the oldest dataset to avoid overfitting. Extensive
experiments are conducted on six real-world datasets to demonstrate our algorithm not only
outperforms competing strategies in terms of multiple evaluation criteria, but also has promising
scalability of transaction costs.

The rest of the paper is organized as follows. Section 2 formally states portfolio selection in
machine learning. Section 3 reviews some related work regarding trend estimator and ensemble
learning in the context of online portfolio selection. Section 4 presents our PAE framework for
portfolio selection. Section 5 presents experiments and results of PAE on real-world benchmark
datasets. Finally, conclusions are made in Section 6.

2. Problem Setting

In this paper, we use a standard and universal setting of portfolio selection in machine learning
[7-11]. Consider a financial market with m assets for n periods. At the end of the t*"
negative m-dimensional vector

period, a non-

p: ERT, t=0/1,..,n, 1)
represents the close price of assets. A relative price vector is introduced to see the change of asset
prices as

P:
X, & , X, ER™ t =1,2,..,n,
£ = b ¢ + ()

where a division between two vectors represents element-wise division in this paper.
At the beginning of the t™ period, an investment in the market is specified by a portfolio vector
in m dimensional unit simplex

m
bteAm:={beRT:Zb(")=1}, )

i=1
where bED denotes the proportion of total wealth invested in the i*"
constrain means no short is allowed and the equality constraint means that the portfolio is self-
financed.

asset. The non-negative

For the t'* trading day, a portfolio b, generated by the portfolio selection algorithm results in
a daily return b/x,. Thus, the cumulative wealth can be calculated as S, = S;_; - (b{x,), and the final
cumulative wealth with a common initial wealth S; = 1 is given by

n n

Sa=5 | [®ixo =] Joorxo. @

t=1 t=1

Finally, a portfolio learning algorithm sequential learns a set of portfolio vectors {b;}{—; to
maximize the final cumulative wealth and satisfy some risk management metrics.

3. Related Works
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In this section, we mainly review the related work of trend estimators and ensemble learning in
online portfolio selection.

3.1. Trend Estimator

Following-the-winner strategies assume that the price of a good performing asset will continue
to rise. Based on this assumption, researchers have designed different trend estimators. Exponential
gradient [14] and its improved variants [15] estimate the asset price as it will continue to change as
last day. The peak price tracking system [10] and short-term portfolio optimization with loss control
[16] adopt the peak price (PP) as trend estimator. PI” assumes the price continues moving in their max
price of a recent time window but fails to capture continuous depreciation of asset price. Recently,
there are many works to handle the shortcomings of peak price, e.g., the trend peak price tracing [11]
and the peak price tracking approach [17].

Following-the-loser strategies are opposite to Following-the-winner strategies, and they assume
that the asset price will reverse to some kind of its historical average. The inverse price (IP) expects
the asset price will reverse to the last day. Passive aggressive mean reversion [7] and confidence
weighted mean reversion [8] adopt the IP as trend estimator but suffer from significant performance
degradation if the underlying short-term reversion fails to exist. The simple moving average (SMA)
and exponential moving average (EMA) [9] improve the estimation of IP. The SMA utilizes the
average of the asset prices within a specified time window to estimate the future price movement. It
assigns equal weight to each asset price in the specified period, effectively smoothing out any extreme
prices within the time frame to derive the most recent price information from the financial market.
The EMA incorporates all historical asset prices but assigns higher significance to recent prices in
predicting future trends, making it generally more reflective of the actual price trends in comparison
to the SMA. Recently, Gaussian weighting reversion [18] uses Gaussian weighting function to
enhance the time validity. Vector autoregressive weighting reversion [19] and weighted multivariate
mean reversion [20] use autoregressive moving average and multi-variate robust mean respectively
to estimate the mean more precisely. The state-dependent exponential moving average [21] predicts
asset returns by additionally analyzing market states.

3.2. Ensemble Learning

In recent years, the ensemble learning algorithm has been promoted more widely in improving
its generalization ability and application scope. The online portfolio selection has garnered significant
interest from both industry professionals and academic researchers. In this context, Guo et al. [22]
introduced a novel approach termed adaptive online moving average. This technique enhances the
prediction of future returns of volatile assets by integrating an adaptive decaying factor with the
traditional moving average approach. Furthermore, it incorporates the concept of ensemble learning
through the inclusion of a net profit maximization model. It significantly enhances the precision of
return forecasts. Kumar and Segev [23] introduced a Bayesian ensembled mean-median reversion to
adeptly integrate the advantages of mean and median reversion techniques. It employs Bayesian
methods to amalgamate these two strategies, improving future portfolio decisions by learning from
past prediction errors. Hong et al. [11] introduced a trend peak price tracing strategy in online
portfolio selection to address market unpredictability by combining trend analysis and ensemble
learning. It employs a dynamic price forecasting method, using linear combinations of slopes to
determine stock price trends. The trend peak price tracing’s three-state forecasting adapts to market
conditions by incorporating peak values, exponential moving averages, or maintaining current
values based on trend analysis.

4. Methodology

To take the advantages of different trends and adapt to different financial environments, we
propose a passive aggressive ensemble (PAE) framework and two strategies: PAE-R and PAE-C in
this section. We take four traditional trend estimators as the input of PAE:
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where W is the time window size, ¥ € (0,1) denotes the decaying factor, 1 isa

m-dimensional vector whose elements are 1, and i = 1,2, ..., m is the order of asset.

4.1. Passive Aggressive Ensemble

. . . - L
The construction of trend composite starts with a trend back-test step. Let {Xl-f+1}z=1 denote a
set of trends—e.g., R;+1 = K541, Rops1 = Kppp1and Rzppq = K41, Where L is the total number of

trends. We project {f(z,tﬂ}lL:l onto a unit simplex [24] to get feasible portfolios

< . o 2
Xiee1 =argmin|x =%, 4[5 1=1,..,L (9)
XEAm

Then we are able to measure the return-based performance [25] of each trend estimator in a certain
time period

Ne = i{txt' I = [T o '"rrL,t]T' (10)

where 7, is the back-tested return of I trend in t** period, X, is the real relative price factor
given by (2), and r; € R is the collection of L different back-tested returns.

Drawing upon from the cross-entropy [26], we also propose an indicator to evaluate each trend
estimator called cross-entropy-based performance

Cre = —)?Ilogfil,t, € = [C10Cop s CL,t]T' (11)

where X, is the projection of real relative price vector by (9). The cross-entropy allows us to measure
the gap between the trend estimator and the true price movement.

Two ensemble targets are defined to meet the goal of our approach. We expect that our
ensembled trend estimator is no worse than the average performance of any single trend estimator
over the investment period, which is consistent with investing intuition. For the cross-entropy-based
performance, smaller values indicate a better trend estimator, and the opposite is true for returns-
based performance. Our ensemble targets are defined as follow:

T,p = argmax— > Tk, (12)
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Cp Z argmin— » Cpp g, (13)

where w is the window size in the most recent time. We average the back-tested performance of each
trend estimator in the most recent time window and select the one with the best average performance.

Combining the passive aggressive principle [28] and online ensemble framework [13], a
weighting vector w, € 4, for weighted averaging is first defined. Then, we propose two new loss
functions to combine all the trends and consider their performance for our PAE-R and PAE-C
strategies, respectively:

0 T —W'r <&
PAE-R: 4 (w; (1, 7..)) ={ £ L=or

.. —wW'r, — &, otherwise (14)
PAE-C: £, (W; _° wie —ce <
-C: e (W;(Cpcp)) = wTe, —c.,— ¢ otherwise (15)

where 1., and c,, are the performance of ensemble targets, &, is the tolerance threshold between
the return-based performance of ensemble target and weighted averaging trend estimators, ¢, is the
tolerance threshold between the cross-entropy-based performance of ensemble target and weighted
averaging trend estimators.

We update the weighting vector at the end of each trading period through the following
optimization problem

1
. 2
Wiy = argminz |lw — w |
WEA]

e (Wi (r,7.)) =0 PAE-R
St 8w () =0 PAEC (16)

On one hand, if our weighted averaging trend estimators outperform or close to the ensemble target,
our approach passively maintains the weighting vector w in the next trading period. On the other
hand, when the weighted averaging trend estimators perform much worse than the ensemble target,
our approach aggressively adjusts w to seek a better weight. The problem will be solved in Section
4.3.

4.2. Online Portfolio Selection with Multiple Trend Estimators

The next step is to decide the proportion of the wealth being allocated to each asset of the stock
based on the weighting and trend estimators received from the previous step. First proposed by Li et
al. [7,9,27], the portfolio selection through passive aggressive algorithms is widely used today
[18,20,23], especially in single trend estimator situation. We extend the application of this algorithm
to the case of multi-trend estimators. Our basic idea to form the final portfolio is to maximize the
ensemble trend estimator and keep last portfolio information through a regularization term. The final
portfolio optimization problem can be expressed as:

1
_ . 2 T < _Te o
by = argminz b —bl® st bR Wy 26Xy = [R1t41) 00 Riea), (17)
besn,

where X;,; € R™*is the collection of L different trends, w,,, € 4, is the weighting vector, € is the
reversion threshold, and X,,;W;,; is the ensemble trend estimator.

If the expected return b'X,,;w,,, is greater than the threshold, we passively maintain the
original investment portfolio vector. If the expected return is less than the threshold, we aggressively
adjust the investment portfolio vector to maximize our returns. X;,,;W;,; is capable of combining
various trends via the weighting vector w;,; as the output of (16). We will solve this problem in
subsection 4.3.

4.3. Solving Algorithm
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In this subsection, we will derive the solutions for the above optimization problem and
summarize the whole procedure for PAE algorithms in Algorithm 1.
Theorem 1. Without considering the non-negativity constraint, the solution of PAE-R type
optimization problem (16) is
wt+1 = wt + Tl,t(rt' - r_tl)’ (18)

_ 1Tr . .
where 7, = Tt is the mean value of back-tested return-based performance and t;, is computed as:

Tt — WTrt - fr}

T, = max40,
L { Ir, — 71117 (19)

The proof of this theorem is in Appendix A.
Theorem 2. Without considering the non-negativity constraint, the solution of PAE-C type
optimization problem (16) is
wl’+1 = wl’ + Tl,t(Etl - cl’)' (20)
.

where ¢, = % is the mean value of back-tested cross-entropy-based performance and 7, is
computed as:
cht' - C*,t - fc

' (1)

Ty ¢ = Max {0, — 5
"Ctl - Ct"

Because the proof of theorem 2 is almost the same as theorem 1, we omit the proof.
No matter which type of loss function is considered, w;,, should be further projected onto the
L-dimensional unit simplex [24] to satisfy the non-negativity constraint of weighted averaging

. 2
Weipq = argminflw — w4 1%
WEA],

(22)

Theorem 3. Without considering the non-negativity constraint, the solution of problem (17) is

by =b, + Tz,t(bt - Ml(m)): (23)

where 1, denotes the m-dimensional 1 vector to distinguish with L-dimensional 1 in (19) and
(21), and p = %1(Tm)it+1wt+1 is the average value of trend composite. Then 7,, is calculated as:

To
€ — b Xy 1Weyq

T, = max 0 (24)

o 210
X1 Wers — #1mll
The proof of theorem 3 is in Appendix B.
b1 is further projected onto a m-dimensional unit simplex [24] to satisfy the non-negativity
constraint

by = inflb — by, 1.
t+1 ai%zr::n" t+1" (25)

Algorithm 1. The general computing process of PAE-R and PAE-C.
Algorithm 1 PAE framework

Input: Given parameters w, &, ., €, the trends {ﬁz,t—k}

w—1
k=-1
and the actual price relatives {x,_,}}-s in recent time

window, the current weighting vector w; and the current
portfolio b,.
Output:  The next portfolio by, .

1 Calculating the feasible portfolio {il,t—k}::_()l by (9);
2 Calculating the recent back-tested returns {rl,t_w}xz_ol by (10) and

{cl_t_w}::_: by (11) to measure the performance of each trend;
3 Defining the ensemble target 7., by (12) and c,, by (13);
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4 Setting parameter T, ,.:

Tot=w're—§
b= max {O,W} PAE-R ;

’ W Ce—Cut—Sc
max {0, W} PAE-C
5 Updating weighting vector:

W + 1 (r — 7 1) PAE-R

Weer = {wt +1,,(E1-¢) PAE-C’
Normalizing the next weighting vector w,,; by (9);
Setting parameter 7, by (24);
Updating by, = b, +7,.(b, — plgm));
Normalizing the next portfolio b;,; by (9).

O 0 N &

4.4. Complexity Analysis

In the context of online portfolio selection, the running efficiency is a crucial factor to consider
as the application has time constraints. The ideal candidate for high-frequency trading [29] would be
a portfolio selection strategy that effectively balances wealth accumulation and computational
efficiency. The main factors that affect the computational cost of PAE are the total investing periods
n, the number of assets m, and the number of trends L. All the steps of PAE cost 0(m) except step
7, which consume O(Lm). Table 1 shows the time complexity for different portfolio selection
strategies. Our PAE algorithm achieves the lowest complexity when using multiple trend estimators.
As the number of trends and assets increases, PAE is still efficient to compute. To be specific, PAE
maintains the complexity in 0(Lmn), which makes it applicable to time-limited applications.

Table 1. Complexity comparison with other strategies.

Type Strategies Complexity
. . OLMAR 0(mn)
Single trend estimator PPT 0(m?n)
. . AICTR O0((m + L)mn)
Multiple trend estimators PAE 0(Lmn)

5. Experiments and Results

In this section, we mainly focus on the comparison studies. First, we introduce experimental
datasets and competing portfolio strategies and criteria of evaluation in turn. Then, we conduct
experiments on parameter settings and ensemble effectiveness. Finally, we report and analyze the
results of comparison studies, and also discuss the transaction costs and running time.

5.1. Data

To improve the reproducibility of the experiments and get close to the recent market, we conduct
comparison studies on four popular traditional datasets and three new datasets. All of them are
publically available. Four traditional datasets include: NYSE(O) [30], NYSE(N) [8], TSE [31], and
MSCI [7]. Three new datasets include: NYSE19 [16], ZZ28 [32], and ETF23.

They contain real-world daily close price relatives from different stock and index markets,
including the New York Stock Exchange (NYSE(O), NYSE(N), NYSE19), the Toronto Stock Exchange
(TSE), the MSCI World Index (MSCI), and the China Securities 500 index (ZZ28). In 2023, China’s ETF
market achieved leapfrog development, with a total scale exceeding 1.8 trillion yuan, an increase of
nearly 40% from 2022. The significant growth of this market underscores its importance, and we
propose the ETF23 dataset, comprising the largest ETFs by market capitalization from 23 different
industries in the Chinese ETF market. The detailed information about these datasets are listed in
Table 2.

Table 2. Detailed Information of 7 datasets.
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Dataset Region Time Days Assets
NYSE(O)* us 3/7/1962 - 31/12/1984 5651 36
NYSE(N) us 1/1/1985 - 30/6/2010 6431 23
TSE CA 4/1/1994 - 31/12/1998 1259 88
MSCI Global 1/4/2006 - 31/3/2010 1043 24
NYSE19 us 2/1/2015 - 4/9/2019 1167 47
7728 CN 4/1/2000 - 1/4/2020 4905 28
ETF23 CN 1/2/2021-1/10/2023 647 23

* NYSE(O) was used as the parameter search.

5.2. Competing Portfolio Srategies

For comparison, we consider some benchmarks and a number of existing online portfolio
management strategies (including some the state-of-the-art ones). In the following, we show these
benchmarks and strategies, where the parameters of each strategy are set according to the
recommendations of the corresponding studies.

e  BAH: the uniform Buy-And-Hold trading strategy. The strategy invests equally in m assets at
the onset and maintains this allocation throughout.

e  OLMAR [9]: It takes the moving average to predict the future price. The parameters are set as:
€ =10 and a = 0.5.

e  PPT [10]: It takes the PP in recent time window to predict the future price. The parameters are
setas: w =5 and € = 10.

e AICTR [25]: The adaptive input and composite trend representation combines three trends
(SMA, EMA, PP) and market conditions through radial basis functions. The parameters are set
as: w =5, o/ = 0.0025, and € = 1000.

e  SPOLC [16]: The short-term portfolio optimization with loss control strategy with the window
size w =5 and the mixing parameter y = 0.025.

5.3. Evaluation Critteria

For the convenience of calculations, we assume that the initial wealth is 1 [33]. Under such a
circumstance, the single-period growth rate is equal to portfolio’s gross return at t™* period, and the
cumulative growth rate is equal to cumulative wealth. Then, we evaluate the characteristics of the
aforementioned portfolio strategies by two criteria and five performance metrics. The two criteria are
return and risk-adjusted return. Basically, the higher the values of metrics are in return and risk-
adjusted return criteria, the better the portfolio strategy performs.

e  Cumulative wealth. The cumulative wealth (CW) is utilized as the key evaluation metric for the
investment performance of each portfolio selection algorithm.

¢  Annualized Percentage Yield. The annualized percentage yield (APY) is a widely used metric
for evaluating investment returns. It represents the average return of a strategy over the course
of a year. APY is computed as follow:

= 1/y
APY = CW 1, (26)
where y represents the number of years according to n trading days. In this study, all datasets
consist of daily prices. Therefore, y is calculated as n divided by 252, which is the average number
of annual trading days.

e  Sharpe ratio. In the realm of financial trading, it is often observed that higher returns are
accompanied by elevated levels of risk. Thus, it is crucial for an investment algorithm to strike a
balance between maximizing returns and managing risks. The Sharpe Ratio (SR) serves as a
widely utilized metric for evaluating risk-adjusted returns and is defined as follows:

s — 1
T o)’ (27)



https://doi.org/10.20944/preprints202402.0635.v1

Preprints.org (Wwww.preprints.org) | NOT PEER-REVIEWED | Posted: 12 February 2024 doi:10.20944/preprints202402.0635.v1

Where 7; is the mean of 1,1y is the return of a risk-free asset and is set to 0 in this paper since we do
not consider a risk-free asset, o(r;) is the standard deviation of return 7; estimated by the samples
Ts¢ in n trading periods.

e Information ratio. The Information Ratio (IR) [34,35] is a performance evaluation metric that
quantifies the excess risk-adjusted return of an investment strategy compared to a benchmark.
It is defined as:
IR = ﬂ
O'(T'S - rm)

(28)
e  Calmar ratio. The Calmar Ration (CR) [36] is a comparison of the average annual compound
return and the maximum drawdown (MDD) risk, which is widely adopted in fund management.

The calculation formula is CR=APY/MDD, where MDD = max Mt_st,Mt = maxS;.
te[1,T] Me ke[1,t]

In addition, to test whether the strategy achieves its returns just by luck [34], we introduce the
statistic t-test method into the measurement of the proposed strategies. Particularly, a regression
model of portfolio excess returns and market excess returns is established as follows:

rs,t =a+ ﬁrm,t- (29)
By assuming that parameter a follows a normal distribution, we conduct a statistic t-test on a and
derive the probability of achieving the excess return by luck.

5.4. Results

5.4.1. Parameter Setting

Previous studies [10,16-18] typically search for parameters across all datasets, and they carry the
risks of overfitting. To finely tune hypermeters in PAE and avoid overfitting, we tune our PAE in the
oldest dataset NYSE(O) and make sure the training set ends earlier than the start of other datasets.

We take four trends (Rs:+1, Xp¢v1, Xit+1 and RKpeyq) as the input of PAE and initiate the
weighting vector as w =[1/4, 1/4, 1/4, 1/4]. The value of w is set to 5. It aligns with previous research
[9-11,16,25] and is a commonly used time window size in stock and futures investment because it
reflects the recent financial environment. To run trend back-test step, the PAE strategies require at
least w + 1 days of data. For fairness, all strategies adopt their respective algorithm outputs for
investment from the sixth day.

Regarding the threshold parameters &., ¢, and €, an initial approximation is made by
following gird searching. As shown in Figure 1, PAE-C performs better and stable around € > 5 and
¢. > 1.4. Thus, we recommend to choose € =30 and ¢, = 1.5 for PAE-C. Similarly, Figure 1
indicates that PAE-R performs better and stable around € > 10 and 7.5 x 10™* > &, > 6.8 x 107*.
We recommend to choose € =30 and &, =7 x 10™* for our PAE-R. The rest experiments adopt this
parameter setting for comparison.

1el8 lel8

L .

P A o O P N
S P TPV

(a)PAE-C

Figure 1. Parameter sensitivity of PAE strategies in terms of CW. Gird searching is used for finding
the optimal threshold parameters.
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5.4.2. Ensemble Effectiveness

Drawing upon from previous study [25], we compare our PAE performance against single trend
situation to evaluate the effectiveness of our ensemble method in combining diverse trends for
improved investment performance.

Different trend estimators exhibit significant variability in performance across various datasets.
As what we initially emphasized, it is impossible to predict which trend estimator will demonstrate
the best performance over the entire investment period. Therefore, we evaluate the effectiveness of
our ensemble strategy from two perspectives. First, we expect the strategy to optimize the
performance. Second, the baseline for evaluating this strategy is that its performance should not be
inferior to that of any single trend estimator.

In Table 3, the best-performing strategy is highlighted in bold, while the two worst-performing
strategies are underlined. The results from Table 3 clearly show that our PAE-C and PAE-R strategies
consistently exceed the baseline method. Furthermore, they demonstrate leading performance on
multiple datasets. It significantly validates the effectiveness of the PAE strategy in integrating trend
estimators.

Table 3. CWs of different trend estimator. The best-performing strategy is highlighted in bold, while
the two worst-performing strategies are underlined.

Trend estimator NYSE(N) MSCI TSE 7728 NYSE19 ETF23
PP 2.08E+09 8.33 226.84 906.7 1.46 1.4
EMA 4.64E+08 23.6 680.83 283.58 2.46 1.69
SMA 4.26E+08 14.1 76.77 134.64 1.14 1.26
1P 1.16E+06 10.28 1.39E+03 185.13 9.34 0.84
PAE-C 6.83E+08 23.63 706 348.31 2.51 1.29
PAE-R 4.15E+09 14.98 2.26E+03 867.83 2.44 1.71

5.4.3. Comparison Studies

Table 4 shows the performance of PAE and competing strategies on six real-world datasets. We
evaluate the performance of portfolio strategies comprehensively with respect to return and risk-
adjusted return.

Table 4. Performance of different strategies. The best score is highlighted in each row.

Dataset Metrics BAH OLMAR PPT AICTR SPOLC PAE-C PAE-R
Cw 1829 4.19E+08  2.63E+09  1.01E+09  1.99E+07  6.83E+08  4.15E+09
NYSE(N APY 0.121 1.177 1.339 1.254 0.932 1.219 1.382
SR 0.046 0.104 0.108 0.106 0.105 0.105 0.113
) IR -0.025 0.096 0.102 0.099 0.095 0.097 0.107
CR 0.225 1.28 1.561 1.374 1.082 1.298 1.629
CwW 0.89 14.5 7.99 12.38 7.34 23.63 14.98
APY -0.027 0.908 0.652 0.837 0.618 1.147 0.923
MSCI SR 0.001 0.116 0.09 0.108 0.09 0.132 0.116
IR -0.036 0.169 0.136 0.158 0.132 0.193 0.17
CR -0.041 1.889 1.269 2.026 1.13 2.677 1.901
CwW 1.56 57.79 265.05 544.47 277.1 706  2.26E+03
APY 0.093 1.252 2.055 2.529 2.083 2.717 3.692
TSE SR 0.048 0.082 0.101 0.111 0.111 0.114 0.129
IR -0.002 0.078 0.098 0.108 0.107 0.111 0.127
CR 0.311 1.527 2.672 3.81 4.087 4.779 5.127
CwW 31.76 124.58 922.47 195.73 853.07 348.31 867.83
APY 0.194 0.281 0.42 0.311 0.415 0.351 0.416
7728 SR 0.048 0.05 0.063 0.053 0.068 0.057 0.063
IR 0.002 0.024 0.044 0.029 0.044 0.034 0.043
CR 0.335 0.389 0.583 0.436 0.711 0.474 0.548

NYSE19 CW 1.37 0.98 1.5 1.79 2.45 2,51 2.44
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APY 0.07 -0.005 0.092 0.133 0.214 0.22 0.213
SR 0.034 0.018 0.028 0.032 0.04 0.04 0.039
IR -0.022 0.009 0.021 0.024 0.033 0.033 0.032
CA 0.288 -0.006 0.113 0.168 0.299 0.277 0.301
CwW 0.87 1.19 1.41 1.28 0.84 1.29 1.71
APY -0.053 0.07 0.143 0.102 -0.064 0.104 0.231
ETF23 SR -0.012 0.023 0.034 0.028 -0.003 0.029 0.048
IR -0.005 0.036 0.051 0.043 0.005 0.043 0.067
CR -0.185 0.156 0.375 0.24 -0.181 0.224 0.532

In terms of return, PAE-R demonstrates the best performance for most of the datasets, especially
in TSE and NYSE(N), where its cumulative wealth far exceeds other strategies. PAE-C performs well
in the MSCI and ETF23 datasets but generally is inferior to PAE-R for other datasets. To provide a
visual representation of the evolution of trajectory, cumulative wealth plots of various portfolio
selection strategies on the benchmark datasets are presented in Figure 2. The plots reveal that the
PAE algorithm consistently attains higher wealth return compared to others over a majority of time
periods, demonstrating the superiority of the model in portfolio decision-making.
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Figure 2. Cumulative wealth of different portfolio selection algorithms during the entire investments
on six datasets.

Regarding the risk-adjusted returns, PAE-R outperforms other strategies for most of the datasets,
especially in ETF23 and TSE. PAE-C has a higher Sharpe ratio in the MSCI dataset, indicating better
performance. PAE-R exhibits higher information ratios in TSE and MSC], indicating stronger relative
outperformance against benchmarks. PAE-C, while performing well in multiple datasets, is generally
not as strong as PAE-R. PAE-R almost always has the highest Calmar ratio across all datasets,
particularly in ETF23 and TSE. PAE-C shows strength in the MSCI and NYSE19 datasets but is usually
inferior to PAE-R for other datasets.

Besides the quantitative evaluation results, Table 5 lists the results of t-test to justify the
effectiveness of the proposed PAE. Table 5 shows that except for NYSE19 and ETF23, it is almost
impossible for PAE-C to produce the corresponding returns simply by luck at a high confidence level
of 97%. There are also around 80% of confidence level for PAE-C not to produce their returns by luck
in the rest datasets. The results also indicate that the values of a of PAE-R are significantly larger
than 0 at a high confidence level of 99% on four datasets while the rest are higher than 90%.

Table 5. Statistical ¢ -test of performance of PAE-C and PAE-R.

Statistics NYSE(N) MSCI TSE 7728 NYSE19 ETF23
PAE-C PAE-R PAE-C PAE-R PAE-C PAE-RPAE-CPAE-R PAE-C PAE-R PAE-C PAE-R
a 0.0030 0.0033 0.0033 0.0029 0.0061 0.0071 0.0007 0.0009 0.0009 0.0014 0.0008 0.0012
B 1.3411 1.3561 1.2009 1.1946 2.2057 2.0434 1.0666 1.0718 1.7696 1.4239 1.1315 1.1495
t-statistics 7.3420 8.0863 6.3287 5.5531 3.6954 4.2855 2.2146 2.8055 1.3519 1.7481 1.1124 1.7443
p-value 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0268 0.0050 0.1769 0.0807 0.2664 0.0816

In general, PAE show noticeable advantages over other competing strategies in terms of
comprehensive performance.

5.4.4. Transaction Costs

The paramount concern in practical real-world trading is the transaction cost. When there is a
transaction cost rate of r for each trade in the portfolio re-balancing process, the cumulative wealth
can be determined using the proportional transaction cost model [9] as:

n ~ Tr L ~ (i -
si=5] | [(blxt) X (1 —5 ) [bf - b?-)ll)l' (30)
t=1 i=1

=1 jg the price adjusted portfolio of asset i in the (t — 1) period and by is set

BT
be_1Xt-1

to [0,...,0]". The term (r/2) Z?;1|BED —B?_)1| represents the transaction cost incurred from the

. p®D O
O _ beigrx
where b,”, =

adjustment of portfolio b,_; to b, through re-balancing.

To evaluate the practicality of the portfolio selection algorithms, we perform experiments on
cumulative wealth while changing the transaction cost rate r between 0 and 0.5%. The findings,
displayed in Figure 3, indicate that PAE-R delivers superior results on NYSE(N), MSCI, TSE and
ETF23. Additionally, PAE-R is comparable to other the state-of-the-art algorithms on the remaining
datasets. PAE-C shows competitive performance in MSCI and NYSE19.
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Figure 3. Cumulative wealth of different algorithms under different transaction cost rates on six
benchmarks datasets.

This demonstrates that PAE is a capable framework for managing transaction costs, making it
suitable for real-world financial environments.

5.4.5. Running Time

To evaluate the computational cost of the PAE, we conducted 5 iterations of the algorithms on
each dataset using an AMD 3500x CPU with two 16G DDR4 3000MHz RAM. The average running
times (in seconds) of PAE-C per trading period are 0.0064, 0.0064, 0.0071, 0.0064, 0.0067 and 0.0073
on NYSE(N), MSCI, TSE, Z728, NYSE19 and ETF23, respectively. The average running times (in
seconds) of PAE-R per trading period are 0.0056, 0.0056, 0.0063, 0.0057, 0.0056 and 0.0060. It indicates

that PAE has a fast running time, making it applicable to real-world financial environments that
require efficient computations.

6. Conclusion and Future Work

In this study, we present a Passive Aggressive Ensemble (PAE) framework, a new approach for
online portfolio selection to integrate multiple trend estimators. PAE stands out by efficiently
combining different estimators and enhancing their performance through a novel weighting
mechanism. Our extensive experiments across various real-world datasets demonstrate that PAE not
only outperforms the competing algorithms in key evaluation metrics but also shows potential in
managing transaction costs effectively. This approach is particularly notable for its adaptability to
different market conditions and scalability, making it suitable for practical financial applications.

This paper envisages three primary directions for future research. First, the exploration of
different loss functions: In our framework, the weighting factors of different trend estimators are
determined by their relative loss to the market. Identifying more optimal loss functions to evaluate
the effectiveness of trend estimators could significantly enhance the overall performance of the
framework. Second, the investigation into the application of regularization techniques in ensemble
methods: Regularization techniques can prevent overfitting and bolster the robustness of the
ensemble approach. Finally, we acknowledge that our model has substantial room for improvement
in high transaction fee environments. Therefore, refining the PAE model to improve its performance
by considering transaction costs is also a pivotal aspect of our forthcoming research endeavors.
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Appendix A

Proof of Theorem 1. When ¢; =0, the constraint in (14) is satisfied by w,, and it becomes the
optimal solution. For the case where ¢ # 0, we can solve the optimization problem by introducing
the Lagrangian of the problem in (14):

1
L(w, 1 1) = 2 Iw—w; I+ 7 (r, —w'r,— &)+ 217w —1), (31)

where 7;;, 2 0 and 4 are the Lagrangian multipliers. Taking the gradient with respect to w and
setting it to zero, we get,

oL

Tw o (W=w;) =1y, + 11 = 0. (32)
By left multiplying 17 on both sides, we get

1 _ T
1=1-1,,1"r, + 1L, 33)

A= Tl,fft’ (34)

.
where 7} = % is the mean value of back-tested returns. Plugging the above equation to (32), we get
the update of w

w=w; + 7y, (r, — 131).

(35)
Simplifying the formula after plugging (34) and (35) to Lagrangian (31), we get
1
L(tye) == ET%,t"rt -7 + Tl,t(r*,t —Wr — fr) (36)
Taking derivative with respect to 7;, and setting it to zero, we have
oL
ory, = "allre — R+ (e - win - ) =0, (37)
which implying,
T — wir, — ¢,
Tt == — 2 (38)

)
I, — 71

Further projecting 7,, to [0, +0), we complete the proof of (19). o

Appendix B

Proof of Theorem 3. The Lagrangian of optimization problem (17) is
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1 A
L, 1301 = 2 I'b—b, 1>+ 75, (6 = b X1 Wey1) +7(17b — 1), (39)

where 7,, > 0 and 7 are the Lagrangian multipliers. Taking the gradient with respect to b and
setting it to zero, we have
oL

T (b—by) — 75 Xe 41 Weyq + Nlgmy =0, (40)

where 1., denotes the m-dimensional 1 vector. By left multiplying both sides with 1(,,), we have

1=1- Tz,tlz—m)it+1wt+1 +nm,

(41)
n= To (42)
where u = % 1(Tm)it+1wt+1. Plugging the above equation to (40), we have the update of b
b = b, +75(be — tlam). (43)
Simplifying the formula after plugging (42) and (43) to Lagrangian (39), we have
1 -
L(ty) = _ET%,t"bt - /«¢1||2 + Tz,t(€ - bTXt+1Wt+1)- (44)
Taking derivative with respect to 7,, and setting it to zero, we arrive at
= —Ty.lIb, — #1"2 + (E - bg—it+1wt+1) =0, (45)
07y
which can be simplified to,
€= b{ X, 1Weis
T2e = (46)

—~ 2"
"Xt+1wt+1 - #1(m)"

Further projecting 7,, to [0, 4+0o0), we finally complete the proof of (24). o
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