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Abstract: Developing effective trend estimators is a main method to solve the online portfolio selection 
problem. Although the existing portfolio strategies have demonstrated good performance through the 
development of various trend estimators, it is still challenging to determine in advance which estimator will 
yield the maximum final cumulative wealth in online portfolio selection tasks. This paper studies an online 
ensemble approach for online portfolio selection by leveraging the strengths of multiple trend estimators. 
Specifically, a return-based loss function and a cross-entropy-based loss function are first designed to evaluate 
the adaptiveness of different trend estimators in a financial environment. On this basis, a passive aggressive 
ensemble model is proposed to weigh these trend estimators within a unit simplex according to their 
adaptiveness. Extensive experiments are conducted on benchmark datasets from various real-world stock 
markets to evaluate the performance. The results show that the proposed strategy achieves the state-of-the-art 
performance including efficiency and cumulative return. 

Keywords: Online Portfolio Selection; Online Ensemble Learning; Passive Aggressive Algorithm 
 

1. Introduction 

Online portfolio selection dynamically allocates wealth across real-world assets by analyzing 
stream data from financial markets [1,2]. To optimize the wealth allocation, portfolio selection 
leverages a range of machine learning techniques, including Newton gradient step [3] and nearest 
neighbor [4]. In addition to these methods, portfolio selection must also consider economic and 
financial theories and criteria, particularly investment behaviors [5,6]. Accordingly, many of the 
current leading portfolio selection systems employ historical price information to predict future 
prices to determine the optimal portfolio allocation. 

Reversion and momentum are two significant characteristics in finance. Numerous the state-of-
the-art portfolio selection strategies develop trend estimators based on these characteristics for 
decision-making. For example, trend estimators like the inverse price [7,8], the simple moving 
average [15], and the exponential moving average [9] assume that the asset price will reverse to some 
kind of its historical average. On the contrary, the peak price [10,11] assumes that the price of a good 
performing asset will continue to rise due to the irrational investing behaviors. Since each trend 
estimator is based on different prior assumptions, their effectiveness is contingent on the financial 
environment aligning with these assumptions. Consequently, it is challenging to predetermine which 
trend estimator will maximize the final cumulative wealth for online portfolio selection tasks. 

To take the advantages of various trend estimators during the whole investment period, we pay 
attention to the online ensemble learning framework [12]. The online learning adeptly balances each 
trend estimator with evolving financial environments, while the ensemble learning combines these 
estimators to enhance robustness and precision. A simple but effective ensemble learning approach 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0635.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202402.0635.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

is weighted averaging [13]. Consequently, it is a viable solution to develop a suitable online ensemble 
learning algorithm to amalgamate various trend estimators emerges. 

In this paper, we address the problem of online portfolio selection with multiple trend estimators 
by developing a framework named Passive Aggressive Ensemble (PAE). The characteristics and 
contributions of the proposed PAE are summarized as follows: 
1. The PAE framework is introduced to employ two distinct schemes to efficiently ensemble four 

different types of trend estimators. 
2. The PAE framework augments the performance of original trend estimators through reasonable 

evaluation and weighting. 
3. The hyperparameters are tuned based on the oldest dataset to avoid overfitting. Extensive 

experiments are conducted on six real-world datasets to demonstrate our algorithm not only 
outperforms competing strategies in terms of multiple evaluation criteria, but also has promising 
scalability of transaction costs. 
The rest of the paper is organized as follows. Section 2 formally states portfolio selection in 

machine learning. Section 3 reviews some related work regarding trend estimator and ensemble 
learning in the context of online portfolio selection. Section 4 presents our PAE framework for 
portfolio selection. Section 5 presents experiments and results of PAE on real-world benchmark 
datasets. Finally, conclusions are made in Section 6. 

2. Problem Setting 

In this paper, we use a standard and universal setting of portfolio selection in machine learning 
[7–11]. Consider a financial market with � assets for � periods. At the end of the ��� period, a non-
negative m-dimensional vector �� ∈ ℝ��,  � = 0,1, … , �, (1)

represents the close price of assets. A relative price vector is introduced to see the change of asset 
prices as �� ≜ ������ , �� ∈ ℝ�� ,  � = 1,2, … , �, (2)

where a division between two vectors represents element-wise division in this paper. 
At the beginning of the ��� period, an investment in the market is specified by a portfolio vector 

in � dimensional unit simplex 

�� ∈ �� : = �� ∈ ℝ��: � �(�)�
��� = 1� , (3)

where b�(�) denotes the proportion of total wealth invested in the ���  asset. The non-negative 
constrain means no short is allowed and the equality constraint means that the portfolio is self-
financed. 

For the ��� trading day, a portfolio �� generated by the portfolio selection algorithm results in 
a daily return �����. Thus, the cumulative wealth can be calculated as �� = ���� ⋅ (�����), and the final 
cumulative wealth with a common initial wealth �� = 1 is given by 

�� = �� �(�����)�
��� = �(�����)�

��� . (4)

Finally, a portfolio learning algorithm sequential learns a set of portfolio vectors {��}����  to 
maximize the final cumulative wealth and satisfy some risk management metrics. 

3. Related Works 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 February 2024                   doi:10.20944/preprints202402.0635.v1

https://doi.org/10.20944/preprints202402.0635.v1


 3 

 

In this section, we mainly review the related work of trend estimators and ensemble learning in 
online portfolio selection. 

3.1. Trend Estimator 

Following-the-winner strategies assume that the price of a good performing asset will continue 
to rise. Based on this assumption, researchers have designed different trend estimators. Exponential 
gradient [14] and its improved variants [15] estimate the asset price as it will continue to change as 
last day. The peak price tracking system [10] and short-term portfolio optimization with loss control 
[16] adopt the peak price (PP) as trend estimator. PP assumes the price continues moving in their max 
price of a recent time window but fails to capture continuous depreciation of asset price. Recently, 
there are many works to handle the shortcomings of peak price, e.g., the trend peak price tracing [11] 
and the peak price tracking approach [17].  

Following-the-loser strategies are opposite to Following-the-winner strategies, and they assume 
that the asset price will reverse to some kind of its historical average. The inverse price (IP) expects 
the asset price will reverse to the last day. Passive aggressive mean reversion [7] and confidence 
weighted mean reversion [8] adopt the IP as trend estimator but suffer from significant performance 
degradation if the underlying short-term reversion fails to exist. The simple moving average (SMA) 
and exponential moving average (EMA) [9] improve the estimation of IP. The SMA utilizes the 
average of the asset prices within a specified time window to estimate the future price movement. It 
assigns equal weight to each asset price in the specified period, effectively smoothing out any extreme 
prices within the time frame to derive the most recent price information from the financial market. 
The EMA incorporates all historical asset prices but assigns higher significance to recent prices in 
predicting future trends, making it generally more reflective of the actual price trends in comparison 
to the SMA. Recently, Gaussian weighting reversion [18] uses Gaussian weighting function to 
enhance the time validity. Vector autoregressive weighting reversion [19] and weighted multivariate 
mean reversion [20] use autoregressive moving average and multi-variate robust mean respectively 
to estimate the mean more precisely. The state-dependent exponential moving average [21] predicts 
asset returns by additionally analyzing market states. 

3.2. Ensemble Learning 

In recent years, the ensemble learning algorithm has been promoted more widely in improving 
its generalization ability and application scope. The online portfolio selection has garnered significant 
interest from both industry professionals and academic researchers. In this context, Guo et al. [22] 
introduced a novel approach termed adaptive online moving average. This technique enhances the 
prediction of future returns of volatile assets by integrating an adaptive decaying factor with the 
traditional moving average approach. Furthermore, it incorporates the concept of ensemble learning 
through the inclusion of a net profit maximization model. It significantly enhances the precision of 
return forecasts. Kumar and Segev [23] introduced a Bayesian ensembled mean-median reversion to 
adeptly integrate the advantages of mean and median reversion techniques. It employs Bayesian 
methods to amalgamate these two strategies, improving future portfolio decisions by learning from 
past prediction errors. Hong et al. [11] introduced a trend peak price tracing strategy in online 
portfolio selection to address market unpredictability by combining trend analysis and ensemble 
learning. It employs a dynamic price forecasting method, using linear combinations of slopes to 
determine stock price trends. The trend peak price tracing’s three-state forecasting adapts to market 
conditions by incorporating peak values, exponential moving averages, or maintaining current 
values based on trend analysis. 

4. Methodology 

To take the advantages of different trends and adapt to different financial environments, we 
propose a passive aggressive ensemble (PAE) framework and two strategies: PAE-R and PAE-C in 
this section. We take four traditional trend estimators as the input of PAE: 
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SMA: ���,���(�) = ∑ ������������� , (5)

EMA: ���,���(�) = �� + (1 − �) ���,��� , (6)

IP: ���,��� = 1�� = ������ , (7)

PP: ���,��� = ������� , �����(�) = max�����������(�) , (8)

where � is the time window size, � ∈ (0,1) denotes the decaying factor, � is a 
m-dimensional vector whose elements are 1, and � = 1,2, … , � is the order of asset. 

4.1. Passive Aggressive Ensemble 

The construction of trend composite starts with a trend back-test step. Let ��� �,��������  denote a 
set of trends—e.g., ���,��� = ���,���, ���,��� = ���,���and ���,��� = ���,���, where L is the total number of 
trends. We project ��� �,��������  onto a unit simplex [24] to get feasible portfolios 

�� �,��� = argmin�∈�� ∥∥� − �� �,���∥∥�,  � = 1, … , �. (9)

Then we are able to measure the return-based performance [25] of each trend estimator in a certain 
time period  ��,� = �� �,�� �� , �� = [��,� , ��,� , … , ��,�]�, (10)

where ��,�  is the back-tested return of ���  trend in ���  period, ��  is the real relative price factor 
given by (2), and �� ∈ ℝ� is the collection of � different back-tested returns.  

Drawing upon from the cross-entropy [26], we also propose an indicator to evaluate each trend 
estimator called cross-entropy-based performance ��,� = −����log�� �,� , �� = [��,� , ��,� , … , ��,�]�, (11)

where ��� is the projection of real relative price vector by (9). The cross-entropy allows us to measure 
the gap between the trend estimator and the true price movement.  

Two ensemble targets are defined to meet the goal of our approach. We expect that our 
ensembled trend estimator is no worse than the average performance of any single trend estimator 
over the investment period, which is consistent with investing intuition. For the cross-entropy-based 
performance, smaller values indicate a better trend estimator, and the opposite is true for returns-
based performance. Our ensemble targets are defined as follow: 

�∗,� ≜ argmax����� 1� � ��,������
��� , (12)
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�∗,� ≜ argmin����� 1� � ��,������
��� , (13)

where � is the window size in the most recent time. We average the back-tested performance of each 
trend estimator in the most recent time window and select the one with the best average performance. 

Combining the passive aggressive principle [28] and online ensemble framework [13], a 
weighting vector �� ∈ �� for weighted averaging is first defined. Then, we propose two new loss 
functions to combine all the trends and consider their performance for our PAE-R and PAE-C 
strategies, respectively: 

PAE-R:  ℓ��(�; (�� , �∗,�)) = �0 �∗,� − ���� ≤ ���∗,� − ���� − ��  otherwise 
, (14)

PAE-C:  ℓ��(�; (�� , �∗,�)) = �0 ���� − �∗,� ≤ ������ − �∗,� − ��  otherwise 
, (15)

where �∗,� and �∗,� are the performance of ensemble targets, ��  is the tolerance threshold between 
the return-based performance of ensemble target and weighted averaging trend estimators, �� is the 
tolerance threshold between the cross-entropy-based performance of ensemble target and weighted 
averaging trend estimators. 

We update the weighting vector at the end of each trading period through the following 
optimization problem ���� = argmin�∈��

12 ∥∥� − ��∥∥�  s.t. �ℓ��(�; (�� , �∗,�)) = 0 PAE-Rℓ��(�; (�� , �∗,�)) = 0 PAE-C . (16)

On one hand, if our weighted averaging trend estimators outperform or close to the ensemble target, 
our approach passively maintains the weighting vector � in the next trading period. On the other 
hand, when the weighted averaging trend estimators perform much worse than the ensemble target, 
our approach aggressively adjusts � to seek a better weight. The problem will be solved in Section 
4.3. 

4.2. Online Portfolio Selection with Multiple Trend Estimators 

The next step is to decide the proportion of the wealth being allocated to each asset of the stock 
based on the weighting and trend estimators received from the previous step. First proposed by Li et 
al. [7,9,27], the portfolio selection through passive aggressive algorithms is widely used today 
[18,20,23], especially in single trend estimator situation. We extend the application of this algorithm 
to the case of multi-trend estimators. Our basic idea to form the final portfolio is to maximize the 
ensemble trend estimator and keep last portfolio information through a regularization term. The final 
portfolio optimization problem can be expressed as: 

���� = argmin�∈��
12 ∥∥� − ��∥∥� s.t. ����������� ≥ �, ����� = ����,���, … , ���,����, (17)

where ����� ∈ ℝ�×�is the collection of � different trends, ���� ∈ �� is the weighting vector, � is the 
reversion threshold, and ��������� is the ensemble trend estimator. 

If the expected return �����������  is greater than the threshold, we passively maintain the 
original investment portfolio vector. If the expected return is less than the threshold, we aggressively 
adjust the investment portfolio vector to maximize our returns. ��������� is capable of combining 
various trends via the weighting vector ���� as the output of (16). We will solve this problem in 
subsection 4.3. 

4.3. Solving Algorithm 
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In this subsection, we will derive the solutions for the above optimization problem and 
summarize the whole procedure for PAE algorithms in Algorithm 1. 
Theorem 1. Without considering the non-negativity constraint, the solution of PAE-R type 
optimization problem (16) is ���� = �� + ��,�(�� − �‾��), (18)

where �‾� = �����  is the mean value of back-tested return-based performance and ��,� is computed as: ��,� = max �0, �∗,� − ���� − ��∥∥�� − �‾��∥∥� � . (19)

The proof of this theorem is in Appendix A. 
Theorem 2. Without considering the non-negativity constraint, the solution of PAE-C type 
optimization problem (16) is ���� = �� + ��,�(�‾�� − ��), (20)

where �‾� = �����  is the mean value of back-tested cross-entropy-based performance and ��,�  is 
computed as: ��,� = max �0, ���� − �∗,� − ��∥∥�‾�� − ��∥∥� � . (21)

Because the proof of theorem 2 is almost the same as theorem 1, we omit the proof. 
No matter which type of loss function is considered, ���� should be further projected onto the �-dimensional unit simplex [24] to satisfy the non-negativity constraint of weighted averaging ���� = argmin�∈�� ∥∥� − ����∥∥�. (22)

Theorem 3. Without considering the non-negativity constraint, the solution of problem (17) is ���� = �� + ��,���� − ��(�)�, (23)

where �(�) denotes the �-dimensional � vector to distinguish with �-dimensional � in (19) and 
(21), and � = �� �(�)� ��������� is the average value of trend composite. Then ��,� is calculated as: ��,� = max �0, � − ������������∥∥��������� − ��(�)∥∥�� . (24)

The proof of theorem 3 is in Appendix B. ���� is further projected onto a �-dimensional unit simplex [24] to satisfy the non-negativity 
constraint ���� = argmin�∈�� ∥∥� − ����∥∥�. (25)

Algorithm 1. The general computing process of PAE-R and PAE-C. 
Algorithm 1 PAE framework 
Input: Given parameters � , �� ,  �� , � , the trends ��� �,�����������  

and the actual price relatives {����}������  in recent time 
window, the current weighting vector �� and the current 
portfolio ��. 

Output: The next portfolio ����. 
1 Calculating the feasible portfolio ��� �,���������� by (9); 
2 Calculating the recent back-tested returns ���,���������� by (10) and ���,���������� by (11) to measure the performance of each trend; 
3 Defining the ensemble target �∗,� by (12) and �∗,� by (13);  
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4 Setting parameter ��,�: 
��,� = �max �0, �∗,���������∥∥����‾��∥∥� �  PAE-R

max �0, ������∗,����∥∥�‾�����∥∥� �    PAE-C 
; 

5 Updating weighting vector: ���� = ��� + ��,�(�� − �‾��)  PAE-R�� + ��,�(�‾�� − ��)    PAE-C ; 

6 Normalizing the next weighting vector ���� by (9); 
7 Setting parameter ��,� by (24); 
8 Updating ���� = �� + ��,���� − ��(�)�; 
9 Normalizing the next portfolio ���� by (9). 

4.4. Complexity Analysis 

In the context of online portfolio selection, the running efficiency is a crucial factor to consider 
as the application has time constraints. The ideal candidate for high-frequency trading [29] would be 
a portfolio selection strategy that effectively balances wealth accumulation and computational 
efficiency. The main factors that affect the computational cost of PAE are the total investing periods �, the number of assets �, and the number of trends �. All the steps of PAE cost �(�) except step 
7, which consume �(��) . Table 1 shows the time complexity for different portfolio selection 
strategies. Our PAE algorithm achieves the lowest complexity when using multiple trend estimators. 
As the number of trends and assets increases, PAE is still efficient to compute. To be specific, PAE 
maintains the complexity in �(���), which makes it applicable to time-limited applications. 

Table 1. Complexity comparison with other strategies. 

Type Strategies Complexity 

Single trend estimator 
OLMAR �(��) 

PPT �(���) 

Multiple trend estimators AICTR �((� + �)��) 
PAE �(���) 

5. Experiments and Results 

In this section, we mainly focus on the comparison studies. First, we introduce experimental 
datasets and competing portfolio strategies and criteria of evaluation in turn. Then, we conduct 
experiments on parameter settings and ensemble effectiveness. Finally, we report and analyze the 
results of comparison studies, and also discuss the transaction costs and running time. 

5.1. Data 

To improve the reproducibility of the experiments and get close to the recent market, we conduct 
comparison studies on four popular traditional datasets and three new datasets. All of them are 
publically available. Four traditional datasets include: NYSE(O) [30], NYSE(N) [8], TSE [31], and 
MSCI [7]. Three new datasets include: NYSE19 [16], ZZ28 [32], and ETF23. 

They contain real-world daily close price relatives from different stock and index markets, 
including the New York Stock Exchange (NYSE(O), NYSE(N), NYSE19), the Toronto Stock Exchange 
(TSE), the MSCI World Index (MSCI), and the China Securities 500 index (ZZ28). In 2023, China’s ETF 
market achieved leapfrog development, with a total scale exceeding 1.8 trillion yuan, an increase of 
nearly 40% from 2022. The significant growth of this market underscores its importance, and we 
propose the ETF23 dataset, comprising the largest ETFs by market capitalization from 23 different 
industries in the Chinese ETF market. The detailed information about these datasets are listed in 
Table 2. 

Table 2. Detailed Information of 7 datasets. 
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Dataset Region Time Days Assets 
NYSE(O)* US 3/7/1962 - 31/12/1984 5651 36 
NYSE(N) US 1/1/1985 - 30/6/2010 6431 23 

TSE CA 4/1/1994 - 31/12/1998 1259 88 
MSCI Global 1/4/2006 - 31/3/2010 1043 24 

NYSE19 US 2/1/2015 - 4/9/2019 1167 47 
ZZ28 CN 4/1/2000 - 1/4/2020 4905 28 
ETF23 CN 1/2/2021-1/10/2023 647 23 

* NYSE(O) was used as the parameter search. 

5.2. Competing Portfolio Srategies 

For comparison, we consider some benchmarks and a number of existing online portfolio 
management strategies (including some the state-of-the-art ones). In the following, we show these 
benchmarks and strategies, where the parameters of each strategy are set according to the 
recommendations of the corresponding studies. 
 BAH: the uniform Buy-And-Hold trading strategy. The strategy invests equally in � assets at 

the onset and maintains this allocation throughout. 
 OLMAR [9]: It takes the moving average to predict the future price. The parameters are set as: � = 10 and � = 0.5. 
 PPT [10]: It takes the PP in recent time window to predict the future price. The parameters are 

set as: � = 5 and � = 10. 
 AICTR [25]: The adaptive input and composite trend representation combines three trends 

(SMA, EMA, PP) and market conditions through radial basis functions. The parameters are set 
as: � = 5, ��� = 0.0025, and � = 1000. 

 SPOLC [16]: The short-term portfolio optimization with loss control strategy with the window 
size � = 5 and the mixing parameter � = 0.025. 

5.3. Evaluation Critteria 

For the convenience of calculations, we assume that the initial wealth is 1 [33]. Under such a 
circumstance, the single-period growth rate is equal to portfolio’s gross return at ��� period, and the 
cumulative growth rate is equal to cumulative wealth. Then, we evaluate the characteristics of the 
aforementioned portfolio strategies by two criteria and five performance metrics. The two criteria are 
return and risk-adjusted return. Basically, the higher the values of metrics are in return and risk-
adjusted return criteria, the better the portfolio strategy performs. 
 Cumulative wealth. The cumulative wealth (CW) is utilized as the key evaluation metric for the 

investment performance of each portfolio selection algorithm. 
 Annualized Percentage Yield. The annualized percentage yield (APY) is a widely used metric 

for evaluating investment returns. It represents the average return of a strategy over the course 
of a year. APY is computed as follow: APY = CW�/� − 1 , (26)

where � represents the number of years according to � trading days. In this study, all datasets 
consist of daily prices. Therefore, � is calculated as � divided by 252, which is the average number 
of annual trading days. 
 Sharpe ratio. In the realm of financial trading, it is often observed that higher returns are 

accompanied by elevated levels of risk. Thus, it is crucial for an investment algorithm to strike a 
balance between maximizing returns and managing risks. The Sharpe Ratio (SR) serves as a 
widely utilized metric for evaluating risk-adjusted returns and is defined as follows: SR = �‾� − ���(��)  , (27)
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Where �‾� �� �ℎ� ���� �� ��, �� is the return of a risk-free asset and is set to 0 in this paper since we do 
not consider a risk-free asset, �(��) is the standard deviation of return �� estimated by the samples ��,� in � trading periods. 
 Information ratio. The Information Ratio (IR) [34,35] is a performance evaluation metric that 

quantifies the excess risk-adjusted return of an investment strategy compared to a benchmark. 
It is defined as: IR = �‾� − �‾��(�� − ��) . (28)

 Calmar ratio. The Calmar Ration (CR) [36] is a comparison of the average annual compound 
return and the maximum drawdown (MDD) risk, which is widely adopted in fund management. 
The calculation formula is CR=APY/MDD, where MDD = ����∈[�,�] ������� , �� = ����∈[�,�]��. 

In addition, to test whether the strategy achieves its returns just by luck [34], we introduce the 
statistic t-test method into the measurement of the proposed strategies. Particularly, a regression 
model of portfolio excess returns and market excess returns is established as follows: ��,� = � + ���,� . (29)

By assuming that parameter � follows a normal distribution, we conduct a statistic �-test on � and 
derive the probability of achieving the excess return by luck. 

5.4. Results 

5.4.1. Parameter Setting 

Previous studies [10,16–18] typically search for parameters across all datasets, and they carry the 
risks of overfitting. To finely tune hypermeters in PAE and avoid overfitting, we tune our PAE in the 
oldest dataset NYSE(O) and make sure the training set ends earlier than the start of other datasets.  

We take four trends (���,��� , ���,��� , ���,���  and ���,��� ) as the input of PAE and initiate the 
weighting vector as � = [1/4, 1/4, 1/4, 1/4]. The value of � is set to 5. It aligns with previous research 
[9–11,16,25] and is a commonly used time window size in stock and futures investment because it 
reflects the recent financial environment. To run trend back-test step, the PAE strategies require at 
least � + 1 days of data. For fairness, all strategies adopt their respective algorithm outputs for 
investment from the sixth day. 

Regarding the threshold parameters �� , ��  and � , an initial approximation is made by 
following gird searching. As shown in Figure 1, PAE-C performs better and stable around � > 5 and �� > 1.4 . Thus, we recommend to choose � = 30  and �� = 1.5  for PAE-C. Similarly, Figure 1 
indicates that PAE-R performs better and stable around � > 10 and 7.5 × 10�� > �� > 6.8 × 10��. 
We recommend to choose � = 30 and �� = 7 × 10�� for our PAE-R. The rest experiments adopt this 
parameter setting for comparison. 

  
(a)PAE-C (b)PAE-R 

Figure 1. Parameter sensitivity of PAE strategies in terms of CW. Gird searching is used for finding 
the optimal threshold parameters. 
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5.4.2. Ensemble Effectiveness 

Drawing upon from previous study [25], we compare our PAE performance against single trend 
situation to evaluate the effectiveness of our ensemble method in combining diverse trends for 
improved investment performance.  

Different trend estimators exhibit significant variability in performance across various datasets. 
As what we initially emphasized, it is impossible to predict which trend estimator will demonstrate 
the best performance over the entire investment period. Therefore, we evaluate the effectiveness of 
our ensemble strategy from two perspectives. First, we expect the strategy to optimize the 
performance. Second, the baseline for evaluating this strategy is that its performance should not be 
inferior to that of any single trend estimator. 

In Table 3, the best-performing strategy is highlighted in bold, while the two worst-performing 
strategies are underlined. The results from Table 3 clearly show that our PAE-C and PAE-R strategies 
consistently exceed the baseline method. Furthermore, they demonstrate leading performance on 
multiple datasets. It significantly validates the effectiveness of the PAE strategy in integrating trend 
estimators. 

Table 3. CWs of different trend estimator. The best-performing strategy is highlighted in bold, while 
the two worst-performing strategies are underlined. 

Trend estimator NYSE(N) MSCI TSE ZZ28 NYSE19 ETF23 
PP 2.08E+09 8.33 226.84 906.7 1.46 1.4 

EMA 4.64E+08 23.6 680.83 283.58 2.46 1.69 
SMA 4.26E+08 14.1 76.77 134.64 1.14 1.26 

IP 1.16E+06 10.28 1.39E+03 185.13 9.34 0.84 
PAE-C 6.83E+08 23.63 706 348.31 2.51 1.29 
PAE-R 4.15E+09 14.98 2.26E+03 867.83 2.44 1.71 

5.4.3. Comparison Studies 

Table 4 shows the performance of PAE and competing strategies on six real-world datasets. We 
evaluate the performance of portfolio strategies comprehensively with respect to return and risk-
adjusted return.  

Table 4. Performance of different strategies. The best score is highlighted in each row. 

Dataset Metrics BAH OLMAR PPT AICTR SPOLC PAE-C PAE-R

NYSE(N
) 

CW 18.29 4.19E+08 2.63E+09 1.01E+09 1.99E+07 6.83E+08 4.15E+09
APY 0.121 1.177 1.339 1.254 0.932 1.219 1.382
SR 0.046 0.104 0.108 0.106 0.105 0.105 0.113
IR -0.025 0.096 0.102 0.099 0.095 0.097 0.107
CR 0.225 1.28 1.561 1.374 1.082 1.298 1.629

MSCI 

CW 0.89 14.5 7.99 12.38 7.34 23.63 14.98
APY -0.027 0.908 0.652 0.837 0.618 1.147 0.923
SR 0.001 0.116 0.09 0.108 0.09 0.132 0.116
IR -0.036 0.169 0.136 0.158 0.132 0.193 0.17
CR -0.041 1.889 1.269 2.026 1.13 2.677 1.901

TSE 

CW 1.56 57.79 265.05 544.47 277.1 706 2.26E+03
APY 0.093 1.252 2.055 2.529 2.083 2.717 3.692
SR 0.048 0.082 0.101 0.111 0.111 0.114 0.129
IR -0.002 0.078 0.098 0.108 0.107 0.111 0.127
CR 0.311 1.527 2.672 3.81 4.087 4.779 5.127

ZZ28 

CW 31.76 124.58 922.47 195.73 853.07 348.31 867.83
APY 0.194 0.281 0.42 0.311 0.415 0.351 0.416
SR 0.048 0.05 0.063 0.053 0.068 0.057 0.063
IR 0.002 0.024 0.044 0.029 0.044 0.034 0.043
CR 0.335 0.389 0.583 0.436 0.711 0.474 0.548

NYSE19 CW 1.37 0.98 1.5 1.79 2.45 2.51 2.44
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APY 0.07 -0.005 0.092 0.133 0.214 0.22 0.213
SR 0.034 0.018 0.028 0.032 0.04 0.04 0.039
IR -0.022 0.009 0.021 0.024 0.033 0.033 0.032
CA 0.288 -0.006 0.113 0.168 0.299 0.277 0.301

ETF23 

CW 0.87 1.19 1.41 1.28 0.84 1.29 1.71
APY -0.053 0.07 0.143 0.102 -0.064 0.104 0.231
SR -0.012 0.023 0.034 0.028 -0.003 0.029 0.048
IR -0.005 0.036 0.051 0.043 0.005 0.043 0.067
CR -0.185 0.156 0.375 0.24 -0.181 0.224 0.532

In terms of return, PAE-R demonstrates the best performance for most of the datasets, especially 
in TSE and NYSE(N), where its cumulative wealth far exceeds other strategies. PAE-C performs well 
in the MSCI and ETF23 datasets but generally is inferior to PAE-R for other datasets. To provide a 
visual representation of the evolution of trajectory, cumulative wealth plots of various portfolio 
selection strategies on the benchmark datasets are presented in Figure 2. The plots reveal that the 
PAE algorithm consistently attains higher wealth return compared to others over a majority of time 
periods, demonstrating the superiority of the model in portfolio decision-making.  

  
(a)NYSE(N) (b)MSCI 

  
(c)TSE (d)ZZ28 

  
(e)NYSE19 (f)ETF23 
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Figure 2. Cumulative wealth of different portfolio selection algorithms during the entire investments 
on six datasets. 

Regarding the risk-adjusted returns, PAE-R outperforms other strategies for most of the datasets, 
especially in ETF23 and TSE. PAE-C has a higher Sharpe ratio in the MSCI dataset, indicating better 
performance. PAE-R exhibits higher information ratios in TSE and MSCI, indicating stronger relative 
outperformance against benchmarks. PAE-C, while performing well in multiple datasets, is generally 
not as strong as PAE-R. PAE-R almost always has the highest Calmar ratio across all datasets, 
particularly in ETF23 and TSE. PAE-C shows strength in the MSCI and NYSE19 datasets but is usually 
inferior to PAE-R for other datasets. 

Besides the quantitative evaluation results, Table 5 lists the results of t-test to justify the 
effectiveness of the proposed PAE. Table 5 shows that except for NYSE19 and ETF23, it is almost 
impossible for PAE-C to produce the corresponding returns simply by luck at a high confidence level 
of 97%. There are also around 80% of confidence level for PAE-C not to produce their returns by luck 
in the rest datasets. The results also indicate that the values of � of PAE-R are significantly larger 
than 0 at a high confidence level of 99% on four datasets while the rest are higher than 90%. 

Table 5. Statistical t -test of performance of PAE-C and PAE-R. 

Statistics NYSE(N) MSCI TSE ZZ28 NYSE19 ETF23 
 PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R PAE-C PAE-R � 0.0030 0.0033 0.0033 0.0029 0.0061 0.0071 0.0007 0.0009 0.0009 0.0014 0.0008 0.0012 � 1.3411 1.3561 1.2009 1.1946 2.2057 2.0434 1.0666 1.0718 1.7696 1.4239 1.1315 1.1495 

t-statistics 7.3420 8.0863 6.3287 5.5531 3.6954 4.2855 2.2146 2.8055 1.3519 1.7481 1.1124 1.7443 
p-value 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0268 0.0050 0.1769 0.0807 0.2664 0.0816 

In general, PAE show noticeable advantages over other competing strategies in terms of 
comprehensive performance. 

5.4.4. Transaction Costs 

The paramount concern in practical real-world trading is the transaction cost. When there is a 
transaction cost rate of r for each trade in the portfolio re-balancing process, the cumulative wealth 
can be determined using the proportional transaction cost model [9] as: 

��� = �� � ���� ����� × �1 − �2 ���� �(�) − �� ���(�) ��
��� ���

��� , (30)

where �� ���(�) = �� ���(�) ∗����(�)�� ���� ����  is the price adjusted portfolio of asset � in the (� − 1)�� period and �� is set 

to [0, … ,0]� . The term (�/2) ∑ ��� �(�) − �� ���(�) �����  represents the transaction cost incurred from the 
adjustment of portfolio �� ��� to �� through re-balancing. 

To evaluate the practicality of the portfolio selection algorithms, we perform experiments on 
cumulative wealth while changing the transaction cost rate � between 0 and 0.5%. The findings, 
displayed in Figure 3, indicate that PAE-R delivers superior results on NYSE(N), MSCI, TSE and 
ETF23. Additionally, PAE-R is comparable to other the state-of-the-art algorithms on the remaining 
datasets. PAE-C shows competitive performance in MSCI and NYSE19. 
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(a) NYSE(N) (b) MSCI (c) TSE 

   
(d) ZZ28 (e) NYSE19 (f) ETF23 

Figure 3. Cumulative wealth of different algorithms under different transaction cost rates on six 
benchmarks datasets. 

This demonstrates that PAE is a capable framework for managing transaction costs, making it 
suitable for real-world financial environments. 

5.4.5. Running Time 

To evaluate the computational cost of the PAE, we conducted 5 iterations of the algorithms on 
each dataset using an AMD 3500x CPU with two 16G DDR4 3000MHz RAM. The average running 
times (in seconds) of PAE-C per trading period are 0.0064, 0.0064, 0.0071, 0.0064, 0.0067 and 0.0073 
on NYSE(N), MSCI, TSE, ZZ28, NYSE19 and ETF23, respectively. The average running times (in 
seconds) of PAE-R per trading period are 0.0056, 0.0056, 0.0063, 0.0057, 0.0056 and 0.0060. It indicates 
that PAE has a fast running time, making it applicable to real-world financial environments that 
require efficient computations. 

6. Conclusion and Future Work 

In this study, we present a Passive Aggressive Ensemble (PAE) framework, a new approach for 
online portfolio selection to integrate multiple trend estimators. PAE stands out by efficiently 
combining different estimators and enhancing their performance through a novel weighting 
mechanism. Our extensive experiments across various real-world datasets demonstrate that PAE not 
only outperforms the competing algorithms in key evaluation metrics but also shows potential in 
managing transaction costs effectively. This approach is particularly notable for its adaptability to 
different market conditions and scalability, making it suitable for practical financial applications. 

This paper envisages three primary directions for future research. First, the exploration of 
different loss functions: In our framework, the weighting factors of different trend estimators are 
determined by their relative loss to the market. Identifying more optimal loss functions to evaluate 
the effectiveness of trend estimators could significantly enhance the overall performance of the 
framework. Second, the investigation into the application of regularization techniques in ensemble 
methods: Regularization techniques can prevent overfitting and bolster the robustness of the 
ensemble approach. Finally, we acknowledge that our model has substantial room for improvement 
in high transaction fee environments. Therefore, refining the PAE model to improve its performance 
by considering transaction costs is also a pivotal aspect of our forthcoming research endeavors. 
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Appendix A 

Proof of Theorem 1. When ℓ�� = 0, the constraint in (14) is satisfied by �� , and it becomes the 
optimal solution. For the case where ℓ�� ≠ 0, we can solve the optimization problem by introducing 
the Lagrangian of the problem in (14): ℒ��, ��,� , �� = 12 ∥ � − �� ∥�+ ��,���∗,� − ���� − ��� + �(��� − 1), (31)

where ��,� ≥ 0 and � are the Lagrangian multipliers. Taking the gradient with respect to � and 
setting it to zero, we get, ∂ℒ∂� = (� − ��) − ��,��� + �� = 0. (32)

By left multiplying �� on both sides, we get 1 = 1 − ��,����� + ��, (33)

� = ��,��‾� , (34)

where �‾� = �����  is the mean value of back-tested returns. Plugging the above equation to (32), we get 
the update of � � = �� + ��,�(�� − �‾��). (35)

Simplifying the formula after plugging (34) and (35) to Lagrangian (31), we get ℒ(��,�) = − 12 ��,�� ∥∥�� − �‾��∥∥� + ��,���∗,� − ����� − ���. (36)

Taking derivative with respect to ��,� and setting it to zero, we have ∂ℒ∂��,� = −��,�∥∥�� − �‾��∥∥� + ��∗,� − ����� − ��� = 0, (37)

which implying, ��,� = �∗,� − ����� − ��∥∥�� − �‾��∥∥� . (38)

Further projecting ��,� to [0, +∞), we complete the proof of (19). □ 

Appendix B 

Proof of Theorem 3. The Lagrangian of optimization problem (17) is 
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ℒ(�, ��,� , �) = 12 ∥ � − �� ∥�+ ��,�(� − ���̂�������) + �(��� − 1), (39)

where ��,� ≥ 0 and � are the Lagrangian multipliers. Taking the gradient with respect to � and 
setting it to zero, we have ∂ℒ∂� = (� − ��) − ��,���������� + ��(�) = 0, (40)

where �(�) denotes the �-dimensional � vector. By left multiplying both sides with �(�)� , we have 1 = 1 − ��,��(�)� ��������� + ��, (41)� = ��,��, (42)

where � = �� �(�)� ���������. Plugging the above equation to (40), we have the update of � � = �� + ��,���� − ��(�)�. (43)

Simplifying the formula after plugging (42) and (43) to Lagrangian (39), we have ℒ(��,�) = − 12 ��,�� ∥∥�� − ��∥∥� + ��,��� − ������������. (44)

Taking derivative with respect to ��,� and setting it to zero, we arrive at ∂ℒ∂��,� = −��,�∥∥�� − ��∥∥� + �� − ������������� = 0, (45)

which can be simplified to, ��,� = � − ������������∥∥��������� − ��(�)∥∥� . (46)

Further projecting ��,� to [0, +∞), we finally complete the proof of (24). □ 
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