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Abstract. Accurate estimations of actual evapotranspiration (ETa) are fundamental for various environmental 

issues. Artificial Intelligence-based models are considered a promising alternative to the most common direct 

ETa estimation techniques and indirect methods by remote sensing (RS)-based surface energy balance models. 

Artificial Neural Networks (ANN) are proven to be suitable for predicting reference evapotranspiration and 

ETa based on RS data. The aim of this study is to develop a methodology based on ANNs for estimating daily 

ETa values using NDVI and land surface temperature, coupled with limited site-specific climatic variables at a 

large irrigation catchment. Two scenarios were implemented by the ANN model. Data from only the 38 days 

of satellite overpass dates was selected in Scenario-I, while the 769-day data included the satellite overpass 

dates and other days located between two satellite overpass acquisitions in Scenario-II. An irrigation scheme 

in the Mediterranean region of Turkiye was selected, and a total of 38 Landsat images, and local climatic data 

were used in 2021 and 2022. Results showed that R2 values in Scenario-I and II were acknowledgeably high for 

training (0.79 and 0.86), testing (0.75 and 0.81), and the entire dataset (0.76 and 0.84), respectively. Results of 

the new model in two scenarios showed acceptable agreement with ETa-METRIC values. The proposed ANN 

model demonstrated the potential of obtaining daily ETa using limited climatic data and RS imagery. 

Keywords: Evapotranspiration; artificial neural networks (ANNs); remote sensing (RS); METRIC; 

NDVI; Akarsu Irrigation District 

 

1. Introduction 

Actual evapotranspiration (ETa) measurements in the field or estimation by any respective 

conventional method (Kumar et al. 2011) are needed in irrigation scheduling at large-scale irrigation 

schemes as well as in a farmyard, water balance works in hydrologic studies, the accurate design of 

hydraulic structures related to irrigation schemes, etc. By introducing a two-step procedure (Cetin 

2020), ETa, in other words, crop evapotranspiration ETc, is estimated under standard conditions 

(Allen et al. 1998), i.e., well-watered and optimal agronomic conditions. On the other hand, ETa is an 

essential component of the water budget, hydrological modeling, and irrigation water management 

in arid and semi-arid regions of the world. Nevertheless, it is not an easy task to acquire a 

representative ETa value for it can be determined directly using either a lysimeter or water balance 

work/approach which are rather labor-intensive, time-consuming, in turn, very expensive. As stated 

clearly by Allen et al. (1998), Rawatet al. (2017), Gharbia et al. (2018), and Alsenjar et al. (2023a), 

among others, ETa describes the physical processes of the amount of water that can occur either 

evaporation or transpiration according to climatic conditions, crop types, and soil status. Since direct 

methods of ETa calculation focus only on one point or parcel, in turn, they have limitations in 

showing the variation of ETa spatially and temporally at a large scale (Zhang et al. 2011), particularly 

in areas with large irrigation schemes of >100 000 ha as in Turkiye. Therefore, accurately estimating 

ETa is of utmost importance as well as a critical issue in water balance methods and agricultural 

water management at the irrigation scheme level. In this regard, the remote sensing (RS)-based 

surface energy balance models are one of the indirect methods to estimate spatially ETa over large-
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scale irrigation catchments with a high spatial and temporal resolution (Alsenjar et al. 2023b; Alsenjar 

and Cetin 2023c; Cetin et al. 2023a, 2023b). 

Several researchers have estimated ETa based on the RS-based surface energy balance models 

such as the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssenet al. 1998a, 1998b), 

Mapping EvapoTranspiration at high Resolution and with Internalized Calibration, i.e., METRIC 

(Allen et al. 2007a, 2007b), and Surface Energy Balance System (SEBS) (Su 2002). These models 

normally use Landsat satellite Imagery or Moderate Resolution Imaging Spectroradiometer (MODIS) 

which include more required RS data alongside weather parameters (Allen et al. 2007a; Alsenjar et 

al. 2023b; Cetin et al. 2023a, 2023b), among others. However, as pointed out by Bachour et al. (2014), 

among others, RS technology has some limitations. Therefore, some of these data cannot be provided 

due to cloud cover and the unavailability of all relevant climatic data. For example, the implemented 

METRIC model to estimate ETa requires more of the input parameters of Landsat satellite data (net 

radiation flux (Rn), soil heat flux (G), sensible heat flux (H), latent heat flux (LE), leaf area index (LAI), 

land surface temperature (LST), surface albedo (α), normalized difference vegetation index (NDVI), 
to name but a few). 

In addition, H calculation in the METRIC model is based on the anchoring pixels, i.e., hot and 

cold, so there are complexities involved in sensitivity selecting anchor pixels for improved estimation 

of H and LE fluxes (Singh and Irmak 2011). Moreover, Landsat satellite data with 30 m by 30 m spatial 

resolution are normally available every 16 days for satellite scenes (Alsenjar et al. 2023b; Cetin et al. 

2023a, 2023b). As such, the methodology obtained by Allen et al. (2007a) has been used to estimate 

ETa based on the METRIC model for each pixel during the satellite image overpass date. In this 

regard, to determine ETa values based on the METRIC model for a predetermined period, i.e., month 

or season, Allen et al. (2007a) have applied the procedure by making the interpolation of daily 

reference evapotranspiration fraction (ETrF) or crop coefficient (Kc) values between two satellite 

images and multiplying by reference evapotranspiration, i.e., ETo, for each day and then integrated 

for a specific period of time. However, the accepted method by Allen et al. (2007a) has some gaps or 

limitations in showing the effect of precipitation or irrigation precisely on the daily growth stages 

and NDVI of crops between two satellite image overpasses. As known, both ETa and ETo have a 

nonlinear character in nature (ASCE 2000a), and in turn, is a complex phenomenon. Therefore, more 

nonlinearity exists in the evapotranspiration process due to its stochastic behavior (ASCE 2000b). 

Thus, over the past few decades, artificial neural networks (ANNs) have been successfully utilized 

in modelling reference evapotranspiration, i.e., ETo (ASCE 2000a, 2000b; Kumar et al. 2011). As such, 

the idea of artificial neural networks usage in engineering applications goes back to the 1940s (ASCE 

2000a), it has been widely used in hydrological practices, particularly in the estimations of reference 

evapotranspiration, since the early nineties. Contrary to this, the literature review revealed that there 

have been hardly ever studies on estimating METRIC-based actual evapotranspiration values by 

ANN models. 

The most significant merit of the ANN models is to solve complex problems using fewer inputs 

by adjusting the weights to be able to predict the correct output of the input parameters. Recently, 

the ANN algorithm has been applied to estimate reference evapotranspiration (ETo) and crop 

evapotranspiration (ETc) for wheat, maize, and potato, in different regions of the world (Bruton et al. 

2000; Odhiambo et al. 2001; Kumar et al. 2002; Dehbozorgi and Sepaskhah 2011; Khoshhal and 

Mokarram 2012; Abrishami et al. 2019; Yamac and Todorovic 2020). As for ANN-based ET estimation, 

rarely studies used land surface parameters calculated from RS data, including but not limited to 

land surface temperature, vegetation indices, etc., and limited meteorological parameters as inputs 

in the ANN model (Virnodkar et al. 2020). 

ETa estimation by the ANN model can be beneficial and powerful for using it as an input factor 

in water balance calculations at large-scale irrigation catchments since, as claimed by Kumar et al. 

(2011), theoretically, ANN is expected to produce better results than a regression model for the same 

data length. The novelty of this study is to establish a new methodology for generating daily actual 

evapotranspiration (ETa) series based on the ANN model using some of the parameters of MODIS 

data coupled with availably daily moderate spatial and less input of weather variables as compared 
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to the existing methods of ETa-based surface energy balance models estimation. Therefore, this study 

aims to use an artificial neural network (ANN) approach to estimate daily actual evapotranspiration 

(ETa) values in large-scale irrigation catchments using two parameters of MODIS data, i.e., NDVI 

and LST, coupled with limited site-specific climatic variables at a large-scale irrigation scheme located 

in the Lower Seyhan Plain irrigation project area with >210 000 ha land (Cetin et al. 2023b). 

Furthermore, this paper is the first attempt to generate a new model using the ANN algorithm as an 

alternative to the existing methods of actual evapotranspiration estimation in a large-scale irrigation 

district in the Eastern Mediterranean Region of Turkiye. Moreover, this methodology can be 

generalized for estimating daily ETa using the ANN model to different climate regions and zones of 

the world. 

2. Materials and Methods 

2.1. Study area And Its Characteristics 

The research area that has gained popularity under the name Akarsu Irrigation District 

(hereafter, AID, A=9495 ha≈95 km2, Figure 1) in the studies carried out so far is located in the Lower 

Seyhan Plain (LSP) in the southeastern part of the Mediterranean region of Turkiye. The LSP shows 

typical characteristics of a deltaic plain with a rather flat topography (a slope of 1% or less) and a 

large-scale irrigation and drainage network (Alsenjar et al. 2023a, b; Cetin et al. 2023a, b). The 

Mediterranean climate, characterized by warm and rainy in the winter season whereas dry and hot 

in the summer season, prevails utterly in the LSP and, in turn, in the study area. The average annual 

precipitation of the basin is around 650 mm (Cetin et al. 2020). In the LSP of Turkiye, there is a very 

remarkable difference in temperature and evaporation values in the irrigation season, in July and 

August in particular, compared to those in the winter season, specifically in December, January, and 

February (Alsenjar et al. 2023b; Cetin et al. 2020, 2023a). As reported by Alsenjar et al. (2023b), due to 

meteorological and geographical factors, the definition of the water year, i.e., hydrological year, 

varies from region to region. It has been defined as the period, with a length of 365-day, between 

October 1st of one year and September 30th of the next, as late September to early October is the time 

for many drainage areas or catchments in Turkiye to have the lowest stream flows and consistent 

groundwater levels. 

 

Figure 1. The study area is located in the southeastern Mediterranean region of Turkiye. 

Meteorological stations are located at L8 and Cotlu. Irrigation water is diverted from L6 and L9 

locations into the AID; L2 and L11 stand for drainage water inputs and L4 is the drainage outlet of 

the catchment. 

2.2. Remote Sensing Data Used 

2.2.1. Landsat Satellite Imagery 

To run the METRIC model and for the actual evapotranspiration (ETa) estimations, a total of 38 

clear-sky Landsat satellite images were downloaded from the USGS website 
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(http://earthexplorer.usgs.gov) (path 175, row 34) and used in this research (Table 1). These images 

are Landsat 7, Landsat 8, and Landsat 9 with 30 m by 30 m spatial resolution. General characteristics 

of the Landsat satellite images are given in Table 1. The Environment for Visualizing Images (ENVI) 

software program was applied to perform a cloud mask for one satellite image on May 1, 2022, i.e., 

DOY 121, of grayscale fill, as shown in Table 1. 

Table 1. Availability of Landsat 7, Landsat 8, and Landsat 9 scene information in the 2021 and 2022 

water years: names of scenes, acquisition dates, and overpass time. 

Image 

Day of the 

year 

(DOY) 

Landsat scene-ID 
Satellite 

type 

Clou

d 

cover 

(%) 
 

Acquisiti

on dates 

Overpass local 

time (AM) 

1 260 
LC81750342020260L

GN00 
Landsat 8 1 

16.09.202

0 
11:15:56.5028510 

2 300 
LE71750342020300S

G100 
Landsat 7 8 

26.10.202

0 
10:38:56.1154274 

3 316 
LE71750342020316N

PA00 
Landsat 7 3 

11.11.202

0 
10:37:51.0228172 

4 364 
LE71750342020364N

PA00 
Landsat 7 1 

29.12.202

0 
10:34:21.8153233 

5 22 
LC81750342021022L

GN00 
Landsat 8 9 

22.01.202

1 
11:15:49.9861710 

6 54 
LC81750342021054L

GN00   
Landsat 8 7 

23.02.202

1 
11:15:43.2139690 

7 79 
LE71750342021078S

G100 
Landsat 7 5 

19.03.202

0 
10:28:24.8443048 

8 118 
LC81750342021118L

GN00 
Landsat 8 8 

28.04.202

1 
11:15:15.8809360 

9 134 
LC81750342021134L

GN00 
Landsat 8 1 

14.05.202

1 
11:15:15.9098560 

10 158 
LE71750342021158S

G100 
Landsat 7 1 

07.06.202

1 
10:21:43.6865663 

11 182 
LC81750342021182L

GN00 
Landsat 8 4 

01.07.202

1 
11:15:35.1871370 

12 190 
LE71750342021190S

G100 
Landsat 7 3 

09.07.202

1 
10:19:04.5579664 

13 198 
LC81750342021198L

GN00 
Landsat 8 5 

17.07.202

1 
11:15:36.9021800 

14 214 
LC81750342021214L

GN00 
Landsat 8 0 

02.08.202

1 
11:15:45.3409259 

15 230 
LC81750342021230L

GN00 
Landsat 8 2 

18.08.202

1 
11:15:51.0643500 

16 262 
LC81750342021262L

GN00 
Landsat 8 9 

19.09.202

1 
11:15:59.0216650 

17 278 
LC81750342021278L

GN00 
Landsat 8 1 

05.10.202

1 
11:16:04.4435930 

18 294 
LC81750342021294L

GN00 
Landsat8 0 

21.10.202

1 
11:16:07.4309270 

19 326 
LC81750342021326L

GN00 
Landsat 8 6 

22.11.202

1 
11:16:02.0432969 
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20 358 
LC81750342021358L

GN00 
Landsat 8 4 

24.12.202

1 
11:15:59.4307040 

21 001 
LE71750342022001N

PA00 
Landsat 7 13 

01.01.202

2 
10:03:01.7753300 

22 017 
LE71750342022017N

PA00 
Landsat 7 3 

17.01.202

2 
10:01:30.1854341 

23 049 
LE71750342022049N

PA00 
Landsat 7 6 

18.02.202

2 
09:58:18.1083401 

24 081 
LE71750342022081N

PA00 
Landsat 7 19 

22.03.202

2 
09:55:10.7155745 

25 089 
LC81750342022089L

GN00 
Landsat 8 7 

30.03.202

2 
11:15:25.6965150 

26 113 
LC91750342022113L

GN00 
Landsat 9 2 

23.04.202

2 
11:15:26.7327310 

27 121 
LC81750342022121L

GN00 
Landsat 8 60 

01.05.202

2 
11:15:28.7371250 

28 140 
LE71750342022140S

G100 
Landsat 7 12 

20.05.202

2 
09:50:56.6332014 

29 157 
LE71750342022157S

G100 
Landsat 7 23 

06.06.202

2 
09:50:06.2292853 

30 169 
LC81750342022169L

GN00 
Landsat 8 1 

18.06.202

2 
11:15:53.3072380 

31 186 
LE71750342022186S

G100 
Landsat 7 0 

05.07.202

2 
09:42:29.8002719 

32 201 
LC81750342022201L

GN00 
Landsat 8 1 

20.07.202

2 
11:15:58.6410700 

33 209 
LC91750342022209L

GN00 
Landsat 9 0 

28.07.202

2 
11:15:42.4933480 

34 220 
LE71750342022220S

G100 
Landsat 7 29 

08.08.202

2 
09:39:50.3921524 

35 237 
LE71750342022237S

G100 
Landsat 7 9 

25.08.202

2 
09:38:18.9640686 

36 249 
LC81750342022249L

GN00 
Landsat 8 8 

06.09.202

2 
11:16:15.2109079 

37 271 
LE71750342022271S

G100 
Landsat 7 3 

28.09.202

2 
09:34:51.9536731 

38 297 
LC81750342022297L

GN00 
Landsat 8 0 

24.10.202

2 
11:16:18.0041120 

2.2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Products 

Two parameters of MODIS data, i.e., normalized difference vegetation index (NDVI) and land 

surface temperature (LST) were downloaded by the Google Earth engine 

(‘MODIS/MOD09GA_006_NDVI’; ‘MODIS/061/MOD11A1_LST’) to apply the artificial neural 

network (ANN) for estimating daily ETa values for the entire study area. Typical characteristics of 

MODIS data are illustrated in Table 2 along with the spatial and temporal resolutions. Daily NDVI 

and LST data sets were used as casual variables in the modelling practice. 

Table 2. MODIS data used in the research area. 

MODIS standard products 
 

Parameter Spatial resolution Temporal resolution 

MOD09GA-Terra NDVI 500 m by 500 m Daily 
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MOD11A1.061-Terra LST 1000 m by 1000 m Daily 

2.3. In-Situ Meteorological Observations 

In this research, hourly and daily climatic variables (minimum and maximum temperatures 

(Tmin, Tmax), wind speed (U), solar radiation (Rs), minimum and maximum relative humidity 

values (RHmin and RHmax), and precipitation (P)) acquired from two meteorological stations, i.e., 

L8 and Cotlu meteorological stations established in the AID, were used (Figure 1). Before using any 

climatic data observed in L8 and Cotlu meteorological stations, quality controls, i.e., QC (gaps in the 

data, outliers, constant values, jumps, etc.) were checked thoroughly. No consistency was found in 

the meteorological data sets. Climatic data sets cover from September 16, 2020, to October 24, 2022, 

i.e., 769 daily data sets. 

2.4. Reference Evapotranspiration (ETo) Estimation 

Reference evapotranspiration (ETo in mm day−1 unit) is defined and computed using the FAO-

Penman-Monteith approach given by Allen et al. (1998). Equation 1 was developed for short grass; 

the albedo was 0.23, whilst the aerodynamic resistance was 70 s m-1. 

 ETo =
0.408 ∆ (Rn − G)  +  γ 900

 T +  273
 u2 (es − ea)∆  +  γ (1 +  0.34 u2)

 (1) 

where ETo is the reference evapotranspiration (mm day−1), Rn is the net radiation at the crop surface 

(MJ m−2day−1), G is the soil heat flux density (MJ m−2 day−1), T is the mean daily air temperature at 2 

m height (°C), u2 is the wind speed at 2 m height (m s−1), es is the saturation vapor pressure (kPa), ea 

is the actual vapor pressure (kPa), es−ea is the saturation vapor pressure deficit (kPa), Δ slope (kPa 

°C−1) is the vapor pressure curve and γ the psychrometric constant (kPa °C−1). 

2.5. METRIC Model 

The METRIC model was applied to estimate a) surface energy balance components (SEB), i.e., 

latent heat (LE), net radiation (Rn), the sensible heat (H), and soil heat flux (G) in Equation 2, b) ETa 

for each pixel, and the whole study area by using Landsat satellite imagery and meteorological 

stations, i.e., L8 and Cotlu at the time of satellite overpass, primarily based on Allen et al. (2007a, 

2007b) through R-METRIC model using a water package in the R program (Olmedo et al. 2016) and 

LandMOD ET mapper-MATLAB (Bhattarai et al. 2017). 

 𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑛𝑛 − 𝐺𝐺 − 𝐻𝐻 (2) 

All the fluxes are in the unit of watt per meter square (i.e., W m−2). Further information on the 

METRIC model and equations, i.e., step-by-step ETa calculation, as well as the FAO-Penman-

Monteith approach are given by Allen et al. (2007a). 

2.6. Developing an ANN Model for Actual Evapotranspiration (ETa) Estimation 

Artificial Neural Networks (ANNs) are mathematical models that resemble biological neural 

networks. ANNs can learn from examples and adapt solutions over time by recognizing patterns in 

data, along with rapidly processing information (Jain et al. 2008). In essence, ANNs are tools to mimic 

the underlying likely relationship between input and output variables in the hand adequately. 

Water resources and hydrological processes are often complex, multivariable, and nonlinear. 

ANNs exhibit a flexible structure to address these complex relationships, making them capable of 

learning and integrating complex relationships by using various input data. Therefore, in recent 

times, ANNs have been increasingly utilized in hydrology and water resource management. ANNs 

might be considered as flexible modeling tools and can theoretically model any type of relationship 

with good accuracy. With ANNs, there is no need to make specific assumptions about the models 

and the underlying relationships; the underlying relationship is determined solely through data 

mining procedures. 
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This data-driven approach is one of the most significant advantages of ANNs in solving various 

complex real-world prediction problems. ANNs have been used in a whole range of hydrological 

applications, including reference evapotranspiration estimations and predicting groundwater levels 

(Coppola et al. 2003; Daliakopoulos et al. 2005), flood forecasting simulations (Karahan et al. 2014), 

rainfall and streamflow modeling (Luk et al. 2000), and aquifer parameter estimations (Garcia and 

Shigidi 2006; Karahan and Ayvaz 2006). 

Models for calculating ETo and plant water requirements involve a myriad of variables such as 

meteorological data, soil properties, plant type, and climate conditions. ANNs have a significant 

advantage in handling these complexities due to their ability to use a large amount of data. 

Particularly, when trained with large datasets, these networks have a better capacity to learn complex 

relationships and patterns. Predicting future changes in water resources and plant water 

requirements due to climate change is becoming increasingly important. In ET modeling, machine 

learning algorithms are being used more and more as an alternative to traditional methods (Granata 

2019; Tikhamarine et al. 2019). These algorithms can be used as alternatives to traditional equations 

for ETc and/or ETo predictions. They also provide insights into how ET behaves over time and space 

(Madugundu et al. 2017; Tang et al. 2018). ANNs can be trained and adapted to be used in different 

geographical areas, allowing for customized predictions based on different plant species and climatic 

conditions. 

Despite their mentioned advantages, ANNs have some important disadvantages. They require 

a significant amount of data to learn complex relationships and to determine the optimal network 

architecture (Karahan and Ayvaz 2008). To create the network structure, the number of hidden layers 

in the model and the optimal number of neurons in each layer need to be determined. In most of the 

ANN studies in the literature, a trial-and-error procedure is used to determine the network 

architecture, which is a time-consuming process. According to Maier and Dandy (2000), in most water 

resources problems, using a single hidden layer is sufficient. Therefore, in this study, a single hidden 

layer is used in ETa estimation. 

To determine the optimal number of neurons in the hidden layer, 80% of the data was used for 

training the network, and 20% was used for testing. This process was repeated for 100 different 

randomly selected training and testing datasets, and the Mean Squared Error (MSE) value was 

calculated. This process was repeated in a loop from 1 to the maximum number of neurons, which is 

30 in this study, and the number of neurons that yielded the minimum MSE value was selected as 

the optimal number of neurons, and the analyses were conducted accordingly. Figure 2 illustrates 

the typical structure of multi-layer ANNs. The input layer consists of 6 nodes, 4 parameters acquired 

by the two meteorological stations (Figure 1) installed in the study area and two variables 

downloaded from MODIS satellite data. In situ-climatic observations are solar radiation (Rs), 

extraterrestrial radiation (Ra), wind speed (u2) at 2 m height, and the reference evapotranspiration 

values, i.e., ETo, were calculated by the standard FAO-Penman-Monteith approach through 

following Allen et al. (1998). The connections between the input layers and 30 hidden layers take 

different weights and are trained depending on the required output of daily ETa. 
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Figure 2. The typical structure of multi-layer ANNs used in this study. 

3. Results 

3.1. Implementation of the ANN Model 

The ANN model has been applied to two different scenarios. In the training of Scenario I, data 

from only the 38 days of satellite observations listed in Table 1 were used, while the data from the 

other days were used as test data. In Scenario II, 80% of the total data set was used for training, and 

the remaining 20% was used for testing. 

For both scenarios, firstly, the network architecture was created, and the change in the MSE 

value concerning the number of neurons is presented in Figures 3a and 3b. As seen from Figure 3, 

the optimum number of neurons obtained for Scenario I and II is 5 and 15, respectively. 
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Figure 3. A three-layer feed-forward ANN. 

3.1.1. Scenario I 

The developed model was applied to Scenario I, and the model results are summarized in Figure 

4. As seen from Figure 4, even though the data used in the model training accounts for approximately 

5% of the total data, the R-squared value is 0.7547 for the test data and 0.7561 for the total data. This 

indicates that the developed model has quite good with respect to the learning stage and prediction 

ability; however, it also shows an increased error rate in predicting high ETa values. This result is a 

natural consequence of the need for a substantial amount of data for ANN models to learn complex 

relationships in complex problems, as mentioned above. In the following section, this situation will 

be evaluated in more detail. 
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Figure 4. Model results for Scenario I. 
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3.1.2. Scenario II 

Figure 5 shows the model results of the developed model for Scenario II. As seen in Figure 5, the 

number of data points used in the model training is 615, which constitutes 80% of the total data. 

During the training phase, the R-squared value is 0.8496, while for the test data, it is 0.8055, and for 

the total data, it is 0.8411. These results indicate that the developed model has a very good learning 

and prediction ability. 
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Figure 5. Model results for Scenario II. 

4. Discussion 

The primary objective of this study was to develop a methodology for estimating daily ETa 

values for large irrigation areas based on artificial neural networks using some parameters of MODIS 

data and climatic variables with ETo values. It is important to highlight that ETo estimations will be 

an easy task provided that climatic data required by the standard FAO-Penman-Monteith approach 

are available at the study site. In our study, there are two meteorological stations for collecting data. 

However, the problem is that Landsat satellite images are available with a 16-day repeat cycle. 

Therefore, ETa values for the days of no satellite overpass should be estimated by using an 

appropriate methodology such as ANNs. To this end, the developed methodology consists of two 

main parts. In the first stage of the methodology, daily ETo values calculated using the FAO-Penman-

Monteith approach detailed in Allen et al. (1998) are combined with MODIS data to create the input 

data for the model. These values are based on observations from a meteorological station established 

in the study area. Additionally, observed ETa values are calculated based on Allen et al. (2007a, 

2007b) using L8 and Cotlu meteorological station data for each pixel at satellite overpass times and 

other times. This completes the data set required for the training and testing stages of the developed 

ANN model. 

After completing the data set, calculations are performed in two different scenarios. In Scenario 

I, only data acquired for the days with satellite imagery are used for model training, while in Scenario 

II, a randomly selected 80% portion of the total data set is used. It should be noted that the input and 

output layers of both scenarios are the same, as shown in Figure 2. The optimal number of neurons 

in the hidden layer is determined to be 5 for Scenario I and 15 for Scenario II, as detailed in the 

previous section. After determining the appropriate network architecture, detailed analyses were 

conducted for both scenarios. 

In the model training, the goal was to minimize the MSE values as the objective function, and 

the results obtained for training, testing, and the entire dataset were provided graphically in the 

previous section. In the relevant graphs, the number of data points used, the R2 value, and the 

regression relationships between predicted values and observed values are presented. 

As seen in Figure 4, in Scenario I, even though approximately 5% of the total dataset was used 

for model training, high R2 values of 0.7855, 0.7547, and 0.7561 were achieved for training, testing, 

and the entire dataset, respectively. However, it can be observed from the relevant graphs that despite 

the overall high model performance, the model’s prediction ability in Scenario I decreases 

unexpectedly if the ETa values are around 4 mm day-1 or greater, indicating conspicuous 

underestimates at high for high actual evapotranspiration rates. In Scenario I, the model fails to mimic 
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the high actual evapotranspiration rates. This can be seen more clearly in Figure 6, where the model 

results are presented graphically for both scenarios in comparison with ETa values calculated based 

on Allen et al. (2007a, 2007b). As clearly visible in the respective Figure, although the general trend is 

captured in both scenarios, it is noteworthy that the error rate in predicting values, especially those 

greater than 4, increases in Scenario I. It is believed that this is due to the low number of satellite 

observations (only 38 daily data) available for training the ANN model. Scatter plots provided in 

Figure 5 for Scenario II, as well as the temporal ETa values presented in Figure 6, support this 

hypothesis. Most studies in the literature also support this argument by allocating 80% of the total 

dataset for training and the remaining 20% for testing when training ANN models. 
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Figure 6. Model results for Scenario I and II. 

5. Conclusions 

This study presents a novel approach that allows daily ETa estimation using a new ANN model 

in a large-scale irrigation scheme using limited climatic data and MODIS satellite data. The study 

demonstrated that the daily ETa predicted values are comparable with the ETa which is estimated by 

the RS-based surface energy balance models. Furthermore, this methodology is the first attempt to 

generate a new model using the ANN algorithm as an alternative to the existing methods of ETa 

estimation in a large-scale irrigation district in the Eastern Mediterranean Region of Turkiye. In this 

context, the results of the new model in two implemented scenarios in this study showed acceptable 

agreement with ETa values estimated by the METRIC model at the large irrigation scale. Thus, this 

work is considered a significant contribution to obtaining reliable results without the need for lengthy 

and labor-intensive processes for complex equations as in RS-based surface energy balance models. 

This study revealed that the proposed model is a powerful tool for estimating daily actual ET using 

the limited meteorological observations and some of the parameters of remote sensing in arid and 

semi-arid regions as well as in different climate regions and zones of the world. 
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