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Abstract. Accurate estimations of actual evapotranspiration (ETa) are fundamental for various environmental
issues. Artificial Intelligence-based models are considered a promising alternative to the most common direct
ETa estimation techniques and indirect methods by remote sensing (RS)-based surface energy balance models.
Artificial Neural Networks (ANN) are proven to be suitable for predicting reference evapotranspiration and
ETa based on RS data. The aim of this study is to develop a methodology based on ANNs for estimating daily
ETa values using NDVI and land surface temperature, coupled with limited site-specific climatic variables at a
large irrigation catchment. Two scenarios were implemented by the ANN model. Data from only the 38 days
of satellite overpass dates was selected in Scenario-I, while the 769-day data included the satellite overpass
dates and other days located between two satellite overpass acquisitions in Scenario-II. An irrigation scheme
in the Mediterranean region of Turkiye was selected, and a total of 38 Landsat images, and local climatic data
were used in 2021 and 2022. Results showed that R? values in Scenario-I and II were acknowledgeably high for
training (0.79 and 0.86), testing (0.75 and 0.81), and the entire dataset (0.76 and 0.84), respectively. Results of
the new model in two scenarios showed acceptable agreement with ETa-METRIC values. The proposed ANN
model demonstrated the potential of obtaining daily ETa using limited climatic data and RS imagery.

Keywords: Evapotranspiration; artificial neural networks (ANNSs); remote sensing (RS); METRIC;
NDVI; Akarsu Irrigation District

1. Introduction

Actual evapotranspiration (ETa) measurements in the field or estimation by any respective
conventional method (Kumar et al. 2011) are needed in irrigation scheduling at large-scale irrigation
schemes as well as in a farmyard, water balance works in hydrologic studies, the accurate design of
hydraulic structures related to irrigation schemes, etc. By introducing a two-step procedure (Cetin
2020), ETa, in other words, crop evapotranspiration ETc, is estimated under standard conditions
(Allen et al. 1998), i.e., well-watered and optimal agronomic conditions. On the other hand, ETa is an
essential component of the water budget, hydrological modeling, and irrigation water management
in arid and semi-arid regions of the world. Nevertheless, it is not an easy task to acquire a
representative ETa value for it can be determined directly using either a lysimeter or water balance
work/approach which are rather labor-intensive, time-consuming, in turn, very expensive. As stated
clearly by Allen et al. (1998), Rawatet al. (2017), Gharbia et al. (2018), and Alsenjar et al. (2023a),
among others, ETa describes the physical processes of the amount of water that can occur either
evaporation or transpiration according to climatic conditions, crop types, and soil status. Since direct
methods of ETa calculation focus only on one point or parcel, in turn, they have limitations in
showing the variation of ETa spatially and temporally at a large scale (Zhang et al. 2011), particularly
in areas with large irrigation schemes of >100 000 ha as in Turkiye. Therefore, accurately estimating
ETa is of utmost importance as well as a critical issue in water balance methods and agricultural
water management at the irrigation scheme level. In this regard, the remote sensing (RS)-based
surface energy balance models are one of the indirect methods to estimate spatially ETa over large-
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scale irrigation catchments with a high spatial and temporal resolution (Alsenjar et al. 2023b; Alsenjar
and Cetin 2023c; Cetin et al. 2023a, 2023b).

Several researchers have estimated ETa based on the RS-based surface energy balance models
such as the Surface Energy Balance Algorithm for Land (SEBAL) (Bastiaanssenet al. 1998a, 1998b),
Mapping EvapoTranspiration at high Resolution and with Internalized Calibration, i.e., METRIC
(Allen et al. 2007a, 2007b), and Surface Energy Balance System (SEBS) (Su 2002). These models
normally use Landsat satellite Imagery or Moderate Resolution Imaging Spectroradiometer (MODIS)
which include more required RS data alongside weather parameters (Allen et al. 2007a; Alsenjar et
al. 2023b; Cetin et al. 2023a, 2023b), among others. However, as pointed out by Bachour et al. (2014),
among others, RS technology has some limitations. Therefore, some of these data cannot be provided
due to cloud cover and the unavailability of all relevant climatic data. For example, the implemented
METRIC model to estimate ETa requires more of the input parameters of Landsat satellite data (net
radiation flux (Rn), soil heat flux (G), sensible heat flux (H), latent heat flux (LE), leaf area index (LAI),
land surface temperature (LST), surface albedo (a), normalized difference vegetation index (NDVI),
to name but a few).

In addition, H calculation in the METRIC model is based on the anchoring pixels, i.e., hot and
cold, so there are complexities involved in sensitivity selecting anchor pixels for improved estimation
of H and LE fluxes (Singh and Irmak 2011). Moreover, Landsat satellite data with 30 m by 30 m spatial
resolution are normally available every 16 days for satellite scenes (Alsenjar et al. 2023b; Cetin et al.
2023a, 2023b). As such, the methodology obtained by Allen et al. (2007a) has been used to estimate
ETa based on the METRIC model for each pixel during the satellite image overpass date. In this
regard, to determine ETa values based on the METRIC model for a predetermined period, i.e., month
or season, Allen et al. (2007a) have applied the procedure by making the interpolation of daily
reference evapotranspiration fraction (ETrF) or crop coefficient (Kc) values between two satellite
images and multiplying by reference evapotranspiration, i.e., ETo, for each day and then integrated
for a specific period of time. However, the accepted method by Allen et al. (2007a) has some gaps or
limitations in showing the effect of precipitation or irrigation precisely on the daily growth stages
and NDVI of crops between two satellite image overpasses. As known, both ETa and ETo have a
nonlinear character in nature (ASCE 2000a), and in turn, is a complex phenomenon. Therefore, more
nonlinearity exists in the evapotranspiration process due to its stochastic behavior (ASCE 2000b).
Thus, over the past few decades, artificial neural networks (ANNs) have been successfully utilized
in modelling reference evapotranspiration, i.e., ETo (ASCE 2000a, 2000b; Kumar et al. 2011). As such,
the idea of artificial neural networks usage in engineering applications goes back to the 1940s (ASCE
2000a), it has been widely used in hydrological practices, particularly in the estimations of reference
evapotranspiration, since the early nineties. Contrary to this, the literature review revealed that there
have been hardly ever studies on estimating METRIC-based actual evapotranspiration values by
ANN models.

The most significant merit of the ANN models is to solve complex problems using fewer inputs
by adjusting the weights to be able to predict the correct output of the input parameters. Recently,
the ANN algorithm has been applied to estimate reference evapotranspiration (ETo) and crop
evapotranspiration (ETc) for wheat, maize, and potato, in different regions of the world (Bruton et al.
2000; Odhiambo et al. 2001; Kumar et al. 2002; Dehbozorgi and Sepaskhah 2011; Khoshhal and
Mokarram 2012; Abrishami et al. 2019; Yamac and Todorovic 2020). As for ANN-based ET estimation,
rarely studies used land surface parameters calculated from RS data, including but not limited to
land surface temperature, vegetation indices, etc., and limited meteorological parameters as inputs
in the ANN model (Virnodkar et al. 2020).

ETa estimation by the ANN model can be beneficial and powerful for using it as an input factor
in water balance calculations at large-scale irrigation catchments since, as claimed by Kumar et al.
(2011), theoretically, ANN is expected to produce better results than a regression model for the same
data length. The novelty of this study is to establish a new methodology for generating daily actual
evapotranspiration (ETa) series based on the ANN model using some of the parameters of MODIS
data coupled with availably daily moderate spatial and less input of weather variables as compared
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to the existing methods of ETa-based surface energy balance models estimation. Therefore, this study
aims to use an artificial neural network (ANN) approach to estimate daily actual evapotranspiration
(ETa) values in large-scale irrigation catchments using two parameters of MODIS data, i.e., NDVI
and LST, coupled with limited site-specific climatic variables at a large-scale irrigation scheme located
in the Lower Seyhan Plain irrigation project area with >210 000 ha land (Cetin et al. 2023b).
Furthermore, this paper is the first attempt to generate a new model using the ANN algorithm as an
alternative to the existing methods of actual evapotranspiration estimation in a large-scale irrigation
district in the Eastern Mediterranean Region of Turkiye. Moreover, this methodology can be
generalized for estimating daily ETa using the ANN model to different climate regions and zones of
the world.

2. Materials and Methods

2.1. Study area And Its Characteristics

The research area that has gained popularity under the name Akarsu Irrigation District
(hereafter, AID, A=9495 ha~95 km?, Figure 1) in the studies carried out so far is located in the Lower
Seyhan Plain (LSP) in the southeastern part of the Mediterranean region of Turkiye. The LSP shows
typical characteristics of a deltaic plain with a rather flat topography (a slope of 1% or less) and a
large-scale irrigation and drainage network (Alsenjar et al. 2023a, b; Cetin et al. 2023a, b). The
Mediterranean climate, characterized by warm and rainy in the winter season whereas dry and hot
in the summer season, prevails utterly in the LSP and, in turn, in the study area. The average annual
precipitation of the basin is around 650 mm (Cetin et al. 2020). In the LSP of Turkiye, there is a very
remarkable difference in temperature and evaporation values in the irrigation season, in July and
August in particular, compared to those in the winter season, specifically in December, January, and
February (Alsenjar et al. 2023b; Cetin et al. 2020, 2023a). As reported by Alsenjar et al. (2023b), due to
meteorological and geographical factors, the definition of the water year, i.e., hydrological year,
varies from region to region. It has been defined as the period, with a length of 365-day, between
October 1st of one year and September 30th of the next, as late September to early October is the time
for many drainage areas or catchments in Turkiye to have the lowest stream flows and consistent
groundwater levels.
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Figure 1. The study area is located in the southeastern Mediterranean region of Turkiye.
Meteorological stations are located at L8 and Cotlu. Irrigation water is diverted from L6 and L9
locations into the AID; L2 and L11 stand for drainage water inputs and L4 is the drainage outlet of
the catchment.

2.2. Remote Sensing Data Used

2.2.1. Landsat Satellite Imagery

To run the METRIC model and for the actual evapotranspiration (ETa) estimations, a total of 38
clear-sky Landsat satellite images were downloaded from the USGS website
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(http://earthexplorer.usgs.gov) (path 175, row 34) and used in this research (Table 1). These images
are Landsat 7, Landsat 8, and Landsat 9 with 30 m by 30 m spatial resolution. General characteristics
of the Landsat satellite images are given in Table 1. The Environment for Visualizing Images (ENVI)
software program was applied to perform a cloud mask for one satellite image on May 1, 2022, i.e.,
DOY 121, of grayscale fill, as shown in Table 1.

Table 1. Availability of Landsat 7, Landsat 8, and Landsat 9 scene information in the 2021 and 2022
water years: names of scenes, acquisition dates, and overpass time.

Day of the Clou
y Satellite d Acquisiti Overpass local
Image year Landsat scene-ID .
type cover on dates time (AM)
(DOY)
(%)

1 260 LCB1750342020260L Landsat8 1 1609202 11:15:56.5028510
GNO00 0

2 300 LE717508420203005 Landsat7 8 26-10.202 10:38:56.1154274
G100 0

3 316 LE71750542020316N Landsat7 3 1111202 10:37:51.0228172
PA0O 0

4 364 LE71750542020364N Landsat7 1 2912.202 10:34:21.8153233
PA0O 0

5 22 LCB1750342021022L Landsat8 9 22.01.202 11:15:49.9861710
GNO00 1

6 54 LCBI750342021054L Landsat8 7 23.02.202 11:15:43.2139690
GNO00 1

7 79 LE717508420210785 Landsat7 5 1905202 10:28:24.8443048
G100 0

8 118 LCBI750342021118L Landsat8 8 28.04.202 11:15:15.8809360
GNOO 1

9 134 LCBI750342021134L Landsat8 1 14.05:202 11:15:15.9098560
GNOO 1

10 158 LE717508420211585 Landsat7 1 07.06.202 10:21:43.6865663
G100 1

11 182 LCBI750342021182L Landsat8 4 01.07.202 11:15:35.1871370
GNOO 1

12 190 LE717508420211905 Landsat7 3 09.07.202 10:19:04.5579664
G100 1

13 198 LCBI750342021198L Landsat8 5 17.07.202 11:15:36.9021800
GNOO 1

14 214 LCBI7503420212141 Landsat8 0 02.08.202 11:15:45.3409259
GNOO 1

15 230 LCB1750342021230L Landsat8 2 18.08.202 11:15:51.0643500
GNOO 1

16 262 LCB1750342021262L Landsat8 9 19.09:202 11:15:59.0216650
GNOO 1

17 278 LCB1750342021278L Landsat8 1 05.10.202 11:16:04.4435930
GNOO 1

18 294 LC81750342021294L Landsat8 0 21.10.202 11:16:07.4309270
GNOO 1

LC81750342021326L 22.11.202
19 326 Landsat8 6 11:16:02.0432969

GNO00 1
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LC81750342021358L 24.12.202

20 358 CNOO Landsat8 4 . 11:15:59.4307040

21 001 LE7175034202200IN Landsat7 13 01.01.202 10:03:01.7753300
PA0O 2

22 017 LE71750342022017N Landsat? 3 17.01.202 10:01:30.1854341
PA0O 2

23 049 LE71750342022049N Landsat7? 6 18.02.202 09:58:18.1083401
PA0O 2

24 081 LE71750342022081N Landsat7 19 22.03.202 09:55:10.7155745
PA0O 2

25 089 LC81750342022089L, Landsat8 7 30.03.202 11:15:25.6965150
GNO00 2

26 113 LC91750342022113L, Landsat9 2 23.04.202 11:15:26.7327310
GNO00 2

27 121 LBCeIvEL e A A Landsat8 60 01.05.202 11:15:28.7371250
GNO00 2

28 140 LE717503420221405 Landsat7 12 20.05.202 09:50:56.6332014
G100 2

29 157 LE717503420221575 Landsat7 23 06.06.202 09:50:06.2292853
G100 2

30 169 LC81750342022169L, Landsat8 1 18.06.202 11:15:53.3072380
GNO00 2

31 186 LE717503420221865 Landsat7? 0 05.07.202 09:42:29.8002719
G100 2

32 201 LC81750342022201L, Landsat8 1 20.07.202 11:15:58.6410700
GNO00 2

33 209 LC91750342022209L, Landsat9 0 28.07.202 11:15:42.4933480
GNO00 2

34 220 LE717503420222205 Landsat7 29 08.08.202 09:39:50.3921524
G100 2

35 237 LE717503420222375 Landsat? 9 25.08.202 09:38:18.9640686
G100 2

36 249 LC81750342022249L, Landsat8 8 06.09.202 11:16:15.2109079
GNO00 2

37 271 LE717503420222715 Landsat7 3 28.09.202 09:34:51.9536731
G100 2

38 297 LC817523£§822297L Landsat8 0 24'12'202 11:16:18.0041120

2.2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Products

Two parameters of MODIS data, i.e., normalized difference vegetation index (NDVI) and land
surface  temperature  (LST) were downloaded by the Google Earth engine
(‘MODIS/MODO09GA_006_NDVTI’; ‘MODIS/061/MOD11A1_LST’) to apply the artificial neural
network (ANN) for estimating daily ETa values for the entire study area. Typical characteristics of
MODIS data are illustrated in Table 2 along with the spatial and temporal resolutions. Daily NDVI
and LST data sets were used as casual variables in the modelling practice.

Table 2. MODIS data used in the research area.

MODIS standard products Parameter Spatial resolution Temporal resolution
MODO09GA-Terra NDVI 500 m by 500 m Daily
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MOD11A1.061-Terra LST 1000 m by 1000 m Daily

2.3. In-Situ Meteorological Observations

In this research, hourly and daily climatic variables (minimum and maximum temperatures
(Tmin, Tmax), wind speed (U), solar radiation (Rs), minimum and maximum relative humidity
values (RHmin and RHmax), and precipitation (P)) acquired from two meteorological stations, i.e.,
L8 and Cotlu meteorological stations established in the AID, were used (Figure 1). Before using any
climatic data observed in L8 and Cotlu meteorological stations, quality controls, i.e., QC (gaps in the
data, outliers, constant values, jumps, etc.) were checked thoroughly. No consistency was found in
the meteorological data sets. Climatic data sets cover from September 16, 2020, to October 24, 2022,
i.e., 769 daily data sets.

2.4. Reference Evapotranspiration (ETo) Estimation

Reference evapotranspiration (ETo in mm day~! unit) is defined and computed using the FAO-
Penman-Monteith approach given by Allen et al. (1998). Equation 1 was developed for short grass;
the albedo was 0.23, whilst the aerodynamic resistance was 70 s m.

900
0.408 A (R, —G) + Y 573 W (&5 — €2)

A+v(1+ 034uy)

ETo = ey

where ETo is the reference evapotranspiration (mm day), Ra is the net radiation at the crop surface
(MJ] m2day™), G is the soil heat flux density (M] m=2 day™), T is the mean daily air temperature at 2
m height (°C), uz is the wind speed at 2 m height (m s7), es is the saturation vapor pressure (kPa), ea
is the actual vapor pressure (kPa), es—ea is the saturation vapor pressure deficit (kPa), A slope (kPa
°C1) is the vapor pressure curve and y the psychrometric constant (kPa °C1).

2.5. METRIC Model

The METRIC model was applied to estimate a) surface energy balance components (SEB), i.e.,
latent heat (LE), net radiation (Rn), the sensible heat (H), and soil heat flux (G) in Equation 2, b) ETa
for each pixel, and the whole study area by using Landsat satellite imagery and meteorological
stations, i.e., L8 and Cotlu at the time of satellite overpass, primarily based on Allen et al. (20073,
2007b) through R-METRIC model using a water package in the R program (Olmedo et al. 2016) and
LandMOD ET mapper-MATLAB (Bhattarai et al. 2017).

LE=R,—G—-H (2)

All the fluxes are in the unit of watt per meter square (i.e., W m). Further information on the
METRIC model and equations, i.e., step-by-step ETa calculation, as well as the FAO-Penman-
Monteith approach are given by Allen et al. (2007a).

2.6. Developing an ANN Model for Actual Evapotranspiration (ETa) Estimation

Artificial Neural Networks (ANNs) are mathematical models that resemble biological neural
networks. ANNSs can learn from examples and adapt solutions over time by recognizing patterns in
data, along with rapidly processing information (Jain et al. 2008). In essence, ANNs are tools to mimic
the underlying likely relationship between input and output variables in the hand adequately.

Water resources and hydrological processes are often complex, multivariable, and nonlinear.
ANNSs exhibit a flexible structure to address these complex relationships, making them capable of
learning and integrating complex relationships by using various input data. Therefore, in recent
times, ANNs have been increasingly utilized in hydrology and water resource management. ANNs
might be considered as flexible modeling tools and can theoretically model any type of relationship
with good accuracy. With ANNSs, there is no need to make specific assumptions about the models
and the underlying relationships; the underlying relationship is determined solely through data
mining procedures.
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This data-driven approach is one of the most significant advantages of ANNs in solving various
complex real-world prediction problems. ANNs have been used in a whole range of hydrological
applications, including reference evapotranspiration estimations and predicting groundwater levels
(Coppola et al. 2003; Daliakopoulos et al. 2005), flood forecasting simulations (Karahan et al. 2014),
rainfall and streamflow modeling (Luk et al. 2000), and aquifer parameter estimations (Garcia and
Shigidi 2006; Karahan and Ayvaz 2006).

Models for calculating ETo and plant water requirements involve a myriad of variables such as
meteorological data, soil properties, plant type, and climate conditions. ANNs have a significant
advantage in handling these complexities due to their ability to use a large amount of data.
Particularly, when trained with large datasets, these networks have a better capacity to learn complex
relationships and patterns. Predicting future changes in water resources and plant water
requirements due to climate change is becoming increasingly important. In ET modeling, machine
learning algorithms are being used more and more as an alternative to traditional methods (Granata
2019; Tikhamarine et al. 2019). These algorithms can be used as alternatives to traditional equations
for ETc and/or ETo predictions. They also provide insights into how ET behaves over time and space
(Madugundu et al. 2017; Tang et al. 2018). ANNs can be trained and adapted to be used in different
geographical areas, allowing for customized predictions based on different plant species and climatic
condjitions.

Despite their mentioned advantages, ANNs have some important disadvantages. They require
a significant amount of data to learn complex relationships and to determine the optimal network
architecture (Karahan and Ayvaz 2008). To create the network structure, the number of hidden layers
in the model and the optimal number of neurons in each layer need to be determined. In most of the
ANN studies in the literature, a trial-and-error procedure is used to determine the network
architecture, which is a time-consuming process. According to Maier and Dandy (2000), in most water
resources problems, using a single hidden layer is sufficient. Therefore, in this study, a single hidden
layer is used in ETa estimation.

To determine the optimal number of neurons in the hidden layer, 80% of the data was used for
training the network, and 20% was used for testing. This process was repeated for 100 different
randomly selected training and testing datasets, and the Mean Squared Error (MSE) value was
calculated. This process was repeated in a loop from 1 to the maximum number of neurons, which is
30 in this study, and the number of neurons that yielded the minimum MSE value was selected as
the optimal number of neurons, and the analyses were conducted accordingly. Figure 2 illustrates
the typical structure of multi-layer ANNs. The input layer consists of 6 nodes, 4 parameters acquired
by the two meteorological stations (Figure 1) installed in the study area and two variables
downloaded from MODIS satellite data. In situ-climatic observations are solar radiation (Rs),
extraterrestrial radiation (Ra), wind speed (u2) at 2 m height, and the reference evapotranspiration
values, ie., ETo, were calculated by the standard FAO-Penman-Monteith approach through
following Allen et al. (1998). The connections between the input layers and 30 hidden layers take
different weights and are trained depending on the required output of daily ETa.
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HIDDEN LAYER

OUTPUT

Figure 2. The typical structure of multi-layer ANNs used in this study.
3. Results

3.1. Implementation of the ANN Model

The ANN model has been applied to two different scenarios. In the training of Scenario I, data
from only the 38 days of satellite observations listed in Table 1 were used, while the data from the
other days were used as test data. In Scenario II, 80% of the total data set was used for training, and
the remaining 20% was used for testing.

For both scenarios, firstly, the network architecture was created, and the change in the MSE
value concerning the number of neurons is presented in Figures 3a and 3b. As seen from Figure 3,
the optimum number of neurons obtained for Scenario I and Il is 5 and 15, respectively.
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Figure 3. A three-layer feed-forward ANN.

3.1.1. Scenario I

The developed model was applied to Scenario I, and the model results are summarized in Figure
4. As seen from Figure 4, even though the data used in the model training accounts for approximately
5% of the total data, the R-squared value is 0.7547 for the test data and 0.7561 for the total data. This
indicates that the developed model has quite good with respect to the learning stage and prediction
ability; however, it also shows an increased error rate in predicting high ETa values. This result is a
natural consequence of the need for a substantial amount of data for ANN models to learn complex
relationships in complex problems, as mentioned above. In the following section, this situation will
be evaluated in more detail.
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Figure 4. Model results for Scenario I.
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3.1.2. Scenario II

11

Figure 5 shows the model results of the developed model for Scenario II. As seen in Figure 5, the
number of data points used in the model training is 615, which constitutes 80% of the total data.
During the training phase, the R-squared value is 0.8496, while for the test data, it is 0.8055, and for
the total data, it is 0.8411. These results indicate that the developed model has a very good learning

and prediction ability.
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Figure 5. Model results for Scenario II.

4. Discussion

The primary objective of this study was to develop a methodology for estimating daily ETa
values for large irrigation areas based on artificial neural networks using some parameters of MODIS
data and climatic variables with ETo values. It is important to highlight that ETo estimations will be
an easy task provided that climatic data required by the standard FAO-Penman-Monteith approach
are available at the study site. In our study, there are two meteorological stations for collecting data.
However, the problem is that Landsat satellite images are available with a 16-day repeat cycle.
Therefore, ETa values for the days of no satellite overpass should be estimated by using an
appropriate methodology such as ANNs. To this end, the developed methodology consists of two
main parts. In the first stage of the methodology, daily ETo values calculated using the FAO-Penman-
Monteith approach detailed in Allen et al. (1998) are combined with MODIS data to create the input
data for the model. These values are based on observations from a meteorological station established
in the study area. Additionally, observed ETa values are calculated based on Allen et al. (2007a,
2007b) using L8 and Cotlu meteorological station data for each pixel at satellite overpass times and
other times. This completes the data set required for the training and testing stages of the developed
ANN model.

After completing the data set, calculations are performed in two different scenarios. In Scenario
I, only data acquired for the days with satellite imagery are used for model training, while in Scenario
II, a randomly selected 80% portion of the total data set is used. It should be noted that the input and
output layers of both scenarios are the same, as shown in Figure 2. The optimal number of neurons
in the hidden layer is determined to be 5 for Scenario I and 15 for Scenario II, as detailed in the
previous section. After determining the appropriate network architecture, detailed analyses were
conducted for both scenarios.

In the model training, the goal was to minimize the MSE values as the objective function, and
the results obtained for training, testing, and the entire dataset were provided graphically in the
previous section. In the relevant graphs, the number of data points used, the R? value, and the
regression relationships between predicted values and observed values are presented.

As seen in Figure 4, in Scenario I, even though approximately 5% of the total dataset was used
for model training, high R? values of 0.7855, 0.7547, and 0.7561 were achieved for training, testing,
and the entire dataset, respectively. However, it can be observed from the relevant graphs that despite
the overall high model performance, the model’s prediction ability in Scenario I decreases
unexpectedly if the ETa values are around 4 mm day! or greater, indicating conspicuous
underestimates at high for high actual evapotranspiration rates. In Scenario I, the model fails to mimic
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the high actual evapotranspiration rates. This can be seen more clearly in Figure 6, where the model
results are presented graphically for both scenarios in comparison with ETa values calculated based
on Allen et al. (2007a, 2007b). As clearly visible in the respective Figure, although the general trend is
captured in both scenarios, it is noteworthy that the error rate in predicting values, especially those
greater than 4, increases in Scenario I. It is believed that this is due to the low number of satellite
observations (only 38 daily data) available for training the ANN model. Scatter plots provided in
Figure 5 for Scenario II, as well as the temporal ETa values presented in Figure 6, support this
hypothesis. Most studies in the literature also support this argument by allocating 80% of the total
dataset for training and the remaining 20% for testing when training ANN models.
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Figure 6. Model results for Scenario I and IL

5. Conclusions

This study presents a novel approach that allows daily ETa estimation using a new ANN model
in a large-scale irrigation scheme using limited climatic data and MODIS satellite data. The study
demonstrated that the daily ETa predicted values are comparable with the ETa which is estimated by
the RS-based surface energy balance models. Furthermore, this methodology is the first attempt to
generate a new model using the ANN algorithm as an alternative to the existing methods of ETa
estimation in a large-scale irrigation district in the Eastern Mediterranean Region of Turkiye. In this
context, the results of the new model in two implemented scenarios in this study showed acceptable
agreement with ETa values estimated by the METRIC model at the large irrigation scale. Thus, this
work is considered a significant contribution to obtaining reliable results without the need for lengthy
and labor-intensive processes for complex equations as in RS-based surface energy balance models.
This study revealed that the proposed model is a powerful tool for estimating daily actual ET using
the limited meteorological observations and some of the parameters of remote sensing in arid and
semi-arid regions as well as in different climate regions and zones of the world.

Research Impact Statement: The proposed methodology is promising to generate a new ANN model
for estimating daily ETa as an alternative to the conventional ETa estimation procedures in large-
scale irrigation schemes.
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