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Abstract: Human settlements have historically thrived near rivers for navigation, trade, and availability of 

water supply and resources. However, the increase in the human population and anthropogenic activities over 

time has rendered these areas increasingly susceptible to hazards such as flooding. Satellite imageries are an 

effective and cost-efficient way to analyse spatial patterns of populations within a landscape over decadal 

timescales. Night light data, which represent economic activities, are increasingly available and provide a novel 

approach to studying the interactions between human activity and rivers over time.  Here, we use the Defense 

Meteorological Satellite Program (DMSP) stable night light data from 2000-2013 as a proxy for human presence 

and activities to quantify the statistical relationships between night light presence and intensity in the Indus 

Basin, Asia. We test how these data are affected by proximity to trunk channels and by channel type 

(single/multi-thread) in the study area. We find that night light presence is enhanced by 26% within a 0 to 5 km 

proximity range of the Indus River and its tributaries, relative to the basin as a whole. We interpret this to 

represent increased human presence and activity within this zone. However, the mean intensity is lower near 

the river and higher away from the river signifying denser settlements, such as towns and cities which are 

preferentially located away from the Indus and its tributaries. Moreover, the enhancement of lit pixels 

signifying human presence and activities is increased by 18% near single-thread sections of the Indus River, 

compared to segments of the Indus displaying multi-thread morphologies. We suggest that this is due to the 

enhanced stability of single-threaded channels, relative to mobile multi-threaded channel reaches. This study 

demonstrates how night lights are an important tool to constrain the relationship between human presence 

and river dynamics in large catchments such as the Indus, and we suggest this data will have an important role 

in assessing differential flood spatial and social vulnerability at a regional scale. 

Keywords: night lights; DMSP; floods; channel-pattern; Indus; anthropogenic activities; geomorphology 

 

1. Introduction 

Since the beginning of human civilization, rivers have influenced landscape evolution and 

population dynamics [1]. From ancient times, early humans have settled in the proximity of rivers 

for navigation, trade, and availability of water supply and resources. However, over time these areas 

have become more susceptible to the catastrophic effects of flooding because of the rapid increase in 

the human population and anthropogenic activities on a global scale that have impacted the 

environment [2,3]. Thus, an in-depth understanding of the role of geomorphology in shaping human 

settlements through time is required. The Indus Basin is one of the world’s largest and most populous 

basins. However, the river system in the basin poses a significant threat due to urbanization and 

related human activities [4]. This study aims to explore the influence of terrain and geomorphology 

on human presence to understand the vulnerability of humans to natural hazards like floods. 

Analysis of satellite images is an effective and cost-efficient way to investigate spatial patterns 

of the populations of landscape in a basin at a relatively recent timescale. Traditionally, human 

presence has been analysed using optical data like NASA-provided LANDSAT and MODIS data [2]. 

But the conventional processing and the multispectral classification make it hard to identify or extract 

the urban areas from the bare soil [5].  Thus, as an alternative, we use the Defense Meteorological 
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Satellite Program (DMSP) stable night light data as a proxy for human presence (see also section 3) 

[6]. Stable night lights are cloud-free digital products signifying the absence of lights and distinct 

luminosity. In the past 20 years, the DMSP-OLS night lights data have increasingly been explored for 

demographic, economic, and environmental purposes [7–12]. Importantly, recent efforts toward 

analyzing applications of night light data have indicated their value for determining human exposure 

and vulnerability to natural hazards compared to traditional approaches.  

For instance, Ceola et al. provided night lights as a proxy for the assessment of human exposure 

to floods by associating them with the river network and identifying flood-subjected areas worldwide 

[13]. Following this approach, Gómez et al. used night lights to investigate the temporal variation of 

the spatial distribution of the exposure to hydrometeorological hazards in the Samala River in 

Guatemala [14].  Ceola et al. also quantified the temporal evolution and spatial distribution of urban 

settlements in the proximity of streams and rivers at a global scale [2]. Mård et al. used stable night 

lights to understand the human-environment interactions by studying the relationship between 

catastrophic flood events, flood protection levels, and long-term changes to human proximity to 

rivers [15]. Additionally, Fang et al. explored the river’s geomorphic structure and human settlement 

patterns at a global scale using night lights and identified preferential downstream clustering of 

settlements across six continents, suggestive of distributions related to trade and transport purposes 

in the studied river basins [16]. Recently, Masrur et al. demonstrated the assessment of the human 

presence and flood exposure in proximity to rivers in Bangladesh using the multi-temporal satellite 

nighttime light (NTL) [17]. Their study showed emerging hotspots of night lights and population 

near the Indus River under flood-exposure risk.  

These studies all demonstrate the value of night light data in quantifying human presence within 

river basins. Yet, to date, most research using night light data in this context has been on a global 

scale and research has been limited at the scale of individual catchments and as a function of different 

geomorphic parameters. Compared to prior studies, the novelty in our contribution, therefore, lies in 

characterising the detailed relationship between river patterns, terrain, and human presence using 

the Indus Basin as a well-constrained natural laboratory. To study the relationship of human presence 

using night lights with respect to different geomorphic parameters we test two hypotheses. Our first 

hypothesis is that there is a higher human presence near the river in floodplains due to water 

availability and soil fertility. Thus, we test and evaluate the prediction that both night light presence 

and intensity should be higher near major tributaries for the Indus catchment, compared to the basin 

as a whole. Secondly, we hypothesize that human presence is also affected by the channel pattern 

type i.e., single-thread or multi-thread channel types. Given the documented stability of the channel 

banks for different channel patterns [18], we evaluate whether human presence is higher near single-

thread or meandering river channel reaches rather than braided or multi-thread channels.  

2. Study area 

The Indus Basin is one of the major river basins of the world having a drainage area of > 1,100,000 

km2 (Figure 1). The basin is shared by four countries of which 47% of the basin is occupied by Pakistan 

and nearly 39% by India. China and Afghanistan account for approximately 8% and 6% of the area 

of the basin [19]. Several tributaries transport the snowmelt, glacier melt, rainwater, and runoff from 

the Himalayas, Hindu Kush, and Karakoram mountain areas. The major tributaries of the Indus are 

the Kabul, Kurram, Jhelum, Ravi, Beas, Sutlej, and Chenab. The Indus River starts in western Tibet at 

an elevation of > 6700 m, initially flowing northwest and then southwest through Pakistan, and finally 

draining into the Arabian Sea. It has a total length of 3180 km [20]. In the Upper Indus Basin, which 

is upstream of Tarbela Dam in Pakistan [21], the river flows as alternating meandering single-channel 

reaches and reaches with multi-channel patterns in an initial length of 1125 km [20]. 

The Indus Basin climate varies from Alpine in the northern mountain highlands to semi-arid to 

temperate subhumid in the plains. The annual precipitation in mountainous areas of the basin is 

around 2000 mm and between 100-500 mm in the lowlands or plains [19]. The basin receives 

maximum rainfall during the monsoon period from July to September, which is the primary reason 

for the flooding [22]. The average rainfall over the lower plains is 125 mm and 500 m upstream [22]. 
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According to UN Food and Agriculture Organization AQUASTAT data, the population of the Indus 

Basin is around 300 million [19]. The inhabitants of the basin are dependent on agriculture irrigation, 

industrial requirements, hydroelectric power, flood control, recharging of aquifers, transportation, 

fisheries, and domestic human consumption [23].  

 

Figure 1. ESRI world imagery showing the Indus basin, Indus River (dark blue), and its major 

tributaries (blue). The red dots are the major cities/urban centers in the study area. The Indus River 

and its major tributaries- Satluj, Chenab, Ravi, Beas, Jhelum, Soham, Shyok, Kabul, Kurram, Tochi, 

Gumal, Kundar, Zhob, are represented in the figure. The inset in the top-right of the figure shows the 

location of the study area within Asia. 

3. Data 

3.1. DMSP Night lights Data 

Nighttime light time series (DMSP-OLS v4) are open-access digital products by the National 

Geophysical Data Center from the National Oceanic and Atmospheric Administration (NOAA) 

collected under the Defense Meteorological Satellite Program (DMSP) from 1992 to 2013 using the 

Operational Linescan System (OLS) [6]. The DMSP-OLS night light data are collected by six satellites 

- F10, F12, F14, F15, F16, and F18. These are cloud-free composites from sites that include cities, towns, 

and gas flares, excluding the sunlit and moonlit data observations from ephemeral sources like fires 

[2]. 

The Operational Linescan System (OLS) sensor acquires global daytime and nighttime images 

in two spectral bands: the thermal infrared band (TIR) from 10.5-13.4 µm and the visible and near-

infrared band (VNIR) from 0.4-1.10 µm. The data is expressed in terms of average annual intensity 

denoted by Digital Number (DN) (DMSP data collected by the US Air Force Weather Agency). The 

digital number (DN) values in the visible band range from 0 to 63, whereas zero signifies the absence 

of lights and distinct luminosity (Figure 2). The OLS night light data represent a grid of 30 arc seconds 

spanning -180 to 180 degrees longitude and -65 to 75 degrees latitude. The spatial resolution is 

roughly 1 km at the equator. In years where two satellites were collecting data, two composites were 

produced. For example, in 1994 and from 1997 to 2007, two satellites simultaneously acquired two 

distinct sets of night light data. To obtain a unique night light value for each pixel in a year, the 
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average luminosity pixel value can be calculated from the two overlapping satellite data for each 

year. 

 

Figure 2. Distribution of the DMSP-night lights across the Indian subcontinent in the year 2013. White 

areas correspond to high-intensity areas, while black areas correspond to the absence of night lights 

(Image and data processing by NOAA's National Geophysical Data Center. DMSP data collected by 

US Air Force Weather Agency). 

The program started in the mid-1960s and originally aimed to gather the global cloud cover day 

and night data. However, the usage of night lights remained limited within the remote sensing 

community until the 1990s because of the unavailability of data in digital form [24]. In 1992, the 

NOAA National Geophysical Data Center established a digital archive of the DMSP data, and now 

the data have usability for studying the human presence and settlement dynamics. Earlier work 

established a relationship between the “stable lights” data and measures of the population regardless 

of economic development [10]. Imhoff studied the correlation between the urban extent using the 

DMSP-OLS night lights and the population using census data [25]. However, the dataset was 

calibrated for radiance due to a lack of intensity information [26]. Thus, we use the calibrated data 

from the Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines, 

calibrated data can be directly downloaded from https://eogdata.mines.edu/products/dmsp.  

Despite the advantages of the DMSP-OLS night lights data, there are some limitations associated 

with it including relatively low spatial resolution [27]; some inconsistency in the DMSP sensors due 

to the absence of onboard calibration [28]; light saturation in urban core areas [29]; and the blooming 

effect, which is the overestimation of night light values over the transition areas between urban and 

rural areas [29]. The average DN values are weaker in developing countries and thus, the threshold 

methods are not always valid [15]. Hence, the influence of these effects can be minimized by studying 

the trends in night lights over the long term rather than measuring absolute values or focusing on 

individual years [30]. 

4. Methods 

4.1. Processing of the DMSP Night lights (2000-2013) 
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We use the Defense Meteorological Satellite Program-Operational Linescan System (DMSP-

OLS) stable night lights data in the Indus Basin from 2000 to 2013 to study human presence in the 

basin. Yearly global calibrated night lights were downloaded in GeoTIFF format for the period 2000 

to 2013. From 2000 to 2009, two simultaneous satellites were operating and gathering the data. Thus, 

to obtain the unique values of a particular year, the average of the two satellite datasets was computed 

in ArcGIS.  

To obtain the distribution of night lights over the Indus Basin, the basin boundary was extracted 

from the SRTM Digital Elevation Model (DEM) of 1 km spatial resolution, using the D8 algorithm in 

ArcGIS. Using the DEM as an input flow direction, flow accumulation, and channel network were 

extracted using the ArcHydro tools in ArcGIS. Thus, the Indus River, its major tributaries, and the 

catchment were delineated to understand the distribution of the night lights, as a proxy for human 

presence, with respect to the rivers in the basin. This study considers higher-order streams (6 and 

above) only as these are the major watercourses in the region.  

The DMSP-NLS rasters for 14 years were cropped for the Indus Basin and projected into the 

WGS Albers 1984 projection for calculation purposes. Figure 3 represents the distribution of night 

lights over the Indus Basin for the years 2000, 2007, and 2013. To obtain the average distribution of 

night lights for further statistical analysis, the mean of the annual datasets was computed per pixel 

over the time in the basin in RStudio. Figure 4 shows the average distribution of night lights from 

2000-2013 over the Indus Basin.   

 

Figure 3. Distribution of DMSP-night lights data over the Indus basin for the year (A) 2000, (B) 2007, 

and (C) 2013 over the same color scale. The lighter yellow pixels represent higher-intensity areas, 

usually towns, cities, or urban centers, and the dark pixels represent the absence or lower-intensity 

night light areas. Legend numbers denote the number range of the intensity of the pixels represented 

by Digital Number (DN). 
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Figure 4. Average distribution of the DMSP night lights from 2000-2013 in the Indus Basin (black 

boundary). The darker red pixels represent higher-intensity areas and the lighter color pixels 

represent absence or lower-intensity night light areas. The black dots are the major cities/urban 

centers in the area. The Indus River and its major tributaries- Satluj, Chenab, Ravi, Beas, Jhelum, 

Soham, Shyok, Kabul, Kurram, Tochi, Gumal, Kundar, Zhob, are represented in the figure.  

4.2. Processing of the LandScan Global population data 

In this study, we use night lights as a proxy for human presence. The night lights include 

informal human settlements, for instance- industrial setups, workplaces, highways, etc., where a 

residing population is absent but which are representative of anthropogenic activities. Thus, to 

establish the extent to which night light data can be used as a direct proxy for the human population, 

we used the LandScan Global data, which is considered to have high spatial accuracy and estimated 

errors [31]. LandScan Global is a worldwide data that integrates geographic information systems 

(GIS), remote sensing technology, and machine learning to estimate the ambient population at a 30-

arc-second resolution [32]. The data from 2000-2013 was downloaded from https://landscan.ornl.gov/ 

and reprojected into the WGS Alber 1984 projection using ArcGIS Pro. The raster data for 14 years 

were clipped to the basin boundary and the total population for each year was calculated. The 

population derived from the LandScan data was related to the sum of lights from the night lights 

dataset. Such a correlation between the night lights and the population density would specifically 

show the extent to which night lights record the human population as well as indicate human 

presence in the study area.  

4.3. Presence or Absence of Night lights across the basin and buffer zones 

We started with an evaluation of the basics of night light distribution as a proxy of human 

presence with respect to the catchment, as earlier studies have focused on very large-scale studies 

rather than considering the local terrain. Consequently, to understand the role of the proximity of the 

rivers on human presence and to test our hypothesis of preferential settlements and human activity 

near the river, four “buffer zones” of 5 km each were established for the Indus River and its major 

tributaries. We define buffer zones as areas within specific distances from the river channel. Four 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2024                   doi:10.20944/preprints202402.0528.v1

https://landscan.ornl.gov/
https://doi.org/10.20944/preprints202402.0528.v1


 7 

 

buffer zones: 0-5 km; 5-10 km; 10-15 km; and 15-20 km (as measured from the major water course) 

were extracted using the buffer tool in the Geoprocessing toolbox in ArcGIS Pro.  

To investigate the distribution of lit pixels in the basin and buffer zones, their geographical area 

and the area of the lit pixels were calculated in km2 for each zone. Also, the area percentage (%) for 

the catchment area of the Indus was calculated (Table 1Error! Reference source not found.). Because 

the absolute area of each zone varied, the occurrence of lit pixels frequency was normalized by the 

spatial extent of each zone. This enabled us to determine whether the occurrence of lit pixels simply 

mirrored the area distribution of the different buffer zones or if some zones, for instance close to 

rivers, were associated with an enhanced probability of occurrence of lit pixels. We describe this ratio 

as an Enhancement Factor, Ef, which we obtained by dividing the percentage of lit pixels in a zone by 

the percentage of lit pixels across the basin as a whole (Equation 1). The enhancement factor indicates 

the occurrence of lit pixels independent of the geographical area of each buffer zone.  

Enhancement factor, Ef = 
% 𝑜𝑓 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑏𝑢𝑓𝑓𝑒𝑟 𝑧𝑜𝑛𝑒

% 𝑜𝑓 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑏𝑎𝑠𝑖𝑛
     …………. (1) 

Table 1. Geographical and DMSP-Night lights derived area for different proximity zones of the rivers 

in the Indus Basin. 

 Geographical Area Night lights   

 
Geographica

l Area (km2) 

Geographica

l area 

percentage 

w.r.t basin 

(%) 

Number 

of lit 

pixels 

(N) 

Area 

percentag

e of lit 

pixels 

w.r.t basin 

(%) 

Area of lit 

pixels 

(km2) 

Percentage 

of lit pixels 

w.r.t 

geographic

al area (%) 

Enhancemen

t factor 

(Ef) 

 (1) (2) (3) (4) (5) (6) (7) 

Basin 1,168,436 100 560,906 100 
533,211.3

0 
45.63 1.00 

0-5 km 112,657 9.64 68,352 12.19 64,977.12 57.68 1.26 

5-10 km 104,533 8.95 55,692 9.93 52,942.21 50.65 1.11 

10-15 km 99,004 8.47 48,884 8.72 46,470.35 46.94 1.03 

15-20 km 92,233 7.89 43,778 7.80 41,616.46 45.12 0.99 

4.4. Night light intensity distribution with relation to river channel pattern 

To explore the influence of channel patterns on human presence in the Indus Basin, the 

distribution of lit pixels adjacent to the Indus River was calculated with relation to channel pattern 

type - single thread versus multi-channel patterns. Single-thread and multi-thread reaches of the 

Indus River were identified through visual inspection on Google Earth Pro between 2000 to 2013 

(Figure 5A and 5B). The first-order channel pattern type was recognized based on detailed 

observation from Google Earth imagery, including the number of styles of channel threads. Multi-

thread river segments had multiple channel bars separated by channels, whereas single-thread 

channel segments had a single channel with a sinuous planform typically characterised by high 

sinuosity [33]. Due to the area of the basin, the distribution of night lights across the pattern type of 

only the Indus River was studied for this analysis; we also do not consider local variations in 

planform over short distances (<500m). The points of change in the predominant pattern type of the 

Indus River were identified on Google Earth Pro. Four buffer zones of 0-5 km, 5-10 km, 10-15 km, 

and 15-20 km were created for each pattern type using the buffer tool in the Geoprocessing toolbox 

in ArcGIS Pro.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2024                   doi:10.20944/preprints202402.0528.v1

https://doi.org/10.20944/preprints202402.0528.v1


 8 

 

To understand the distribution of night lights across the two-channel pattern types, the 

geographical area and the lit pixel area were calculated within each buffer zone for each channel 

pattern. Table 2 represents the geographical and night light occupied area percentages for each buffer 

zone for the single thread channel. The total area represents the area occupied within the 20 km 

vicinity of the single-thread channel from its centreline. Similarly, geographical and night light-lit 

areas were calculated for the buffers for the multi-thread channel (Table 3). Further, the enhancement 

factor (Ef) was computed by dividing the percentage of lit pixels in each class of channel pattern type 

by the percentage of lit pixels of the total area of the respective channel pattern type (Equation 2 and 

3). This enables a normalized relation between the presence of lit pixels and the distance from the 

river for different channel pattern types to be analysed (Table 2 and 3).     

Enhancement factor, Ef = 
% 𝑜𝑓 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑠𝑖𝑛𝑔𝑙𝑒−𝑡ℎ𝑟𝑒𝑎𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑢𝑓𝑓𝑒𝑟 𝑧𝑜𝑛𝑒

% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 4 𝑏𝑢𝑓𝑓𝑒𝑟 𝑧𝑜𝑛𝑒𝑠 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒−𝑡ℎ𝑟𝑒𝑎𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙
 ....(2) 

Enhancement factor, Ef = 
% 𝑜𝑓 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑚𝑢𝑙𝑡𝑖−𝑡ℎ𝑟𝑒𝑎𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑢𝑓𝑓𝑒𝑟 𝑧𝑜𝑛𝑒

% 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑙𝑖𝑡 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 4 𝑏𝑢𝑓𝑓𝑒𝑟 𝑧𝑜𝑛𝑒𝑠 𝑜𝑓 𝑚𝑢𝑙𝑡𝑖−𝑡ℎ𝑟𝑒𝑎𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙
 .....(3) 

 

Figure 5. (A) Single-thread Channel pattern of the Indus River; (B) Multi-thread Channel pattern of 

the Indus River. Source – ESRI, Maxar Technologies 2022. 
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Table 2. Geographical and DMSP-Night lights derived area for 4 proximity zones of the single-thread 

channel of the Indus River. 

Single-thread Channels of the Indus River 
 

Geographical Area Night lights 

  

 

Geographica

l Area (km2) 

Geographica

l area 

percentage 

w.r.t total 

buffer (%) 

Numbe

r of lit 

pixels 

(N) 

Area 

percentag

e of lit 

pixels 

w.r.t total 

buffer (%) 

Area of 

lit pixels 

(km2) 

Percentage 

of lit pixels 

w.r.t 

geographica

l area (%) 

Enhancemen

t factor 

(Ef)  

 (1) (2) (3) (4) (5) (6) (7) 

0-5 

km 

21,995.42 27.01 10,544 32.00 10,023.3

9 

45.57 1.18 

5-10 

km 

20,248.08 24.86 8,174 24.81 7,770.41 38.38 1.00 

10-15 

km 

19,678.50 24.16 7,129 21.64 6,777.01 34.44 0.90 

15-20 

km 

19,517.19 23.97 7,102 21.55 6,751.34 34.59 0.90 

Tota

l 

81,439.19 100 32,949 100 31,322.1

4 

38.46 1.00 

Table 3. Geographical and DMSP-Night lights derived area for 4 proximity zones of the multi-thread 

channel of the Indus River. 

Multi-thread Channels of the Indus River 
 

Geographical Area Night lights 

  

 

Geographical 

Area (km2) 

Geographica

l area 

percentage 

w.r.t total 

buffer (%) 

Number 

of lit 

pixels 

(N) 

Area 

percentag

e of lit 

pixels 

w.r.t total 

buffer (%) 

Area of lit 

pixels 

(km2) 

Percentage 

of lit 

pixels 

w.r.t 

geographi

cal area 

(%) 

Enhancement 

factor 

(Ef) 
 

 (1) (2) (3) (4) (5) (6) (7) 

0-5 km 6,392.98 26.21 5,399 24.10 5,132.42 80.28 0.92 

5-10 km 6,037.94 24.76 5,933 26.48 5,640.06 93.41 1.07 

10-15 km 5,950.71 24.40 5,743 25.63 5,459.44 91.74 1.05 

15-20 km 6,005.78 24.63 5,328 23.78 5,064.93 84.33 0.97 

Total 24,387.40 100 22,403 100 21,296.85 87.33 1.00 
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5. Results 

5.1. How well do night light data serve as a proxy for human activity? 

To establish how well night lights data approximate human presence and activity in our study 

area, we compared the sum of lights derived from night lights data with population density data over 

the Indus Basin derived from the Landscan Global population dataset. The sum of lights is the 

summation of the lit pixel values over the study area. This enables us to evaluate the extent to which 

night light data serves as a reasonable proxy for human presence and activity. We note that the sum 

of lights represents data captured from four different satellite sensors – F14, F15, F16, and F18 - 

capturing the night lights data between 2000-2013 (Figure 6- red, blue, green, and yellow colors 

respectively).  

Figure 6 shows an overall positive correlation between summed night lights and population 

with a linear correlation coefficient (R) of 0.655 over 14 years and R2 of 0.429. To further test its 

statistical significance, we computed the p-value which was found to be 0.011, less than the 

significance level of 0.050. This provides evidence against the null hypothesis of variables being not 

dependent, as there is less than a 5% probability the null is correct (and the results are random). 

Therefore, we reject the null hypothesis and accept the alternative hypothesis of variables being 

dependent. Thus our results suggest that the night light data provide a good proxy for human 

presence in the study area (red-dash line, Figure 6). 

 

Figure 6. Scatter plot (blue dots) between the DMSP-derived sum of lights and the Landscan-derived 

population data. The red dashed line is the regression line, the correlation coefficient is 0.66 and R2 is 

0.43. The figure also shows the different DMSP satellite sensors as different color bands which 

occupied data from 2000 to 2013. The data points in the red region were collected between 2000-2003 

by F14 and F15, in the blue region between 2004-2007 by F15 and F16, in the green region between 

2008-2009 by F16, and in the yellow region between 2010-2013 by F18. 

5.2. Relation between night light distribution and proximity to rivers  

To investigate the proximity of human presence to the main rivers in the Indus Basin we 

examined the relation between the occurrence of lit pixels and distance to rivers. In Figure 7 we 

compare the spatial distribution of lit pixels in each of the four buffer zones progressively moving 

outwards from the river centreline with the geographical area covered by each of the buffer zones. 

The buffer zone geographical area percentage with respect to the basin area was 9.64%, 8.95%, 8.47%, 

and 7.89% for the 0-5 km, 5-10 km, 10-15 km, and 15-20 km buffer zones respectively (Figure 7A).  

Figure 7B shows the area (in km2) of lit pixels across these different buffer zones. Around 533,200 km2 

of the Indus Basin is occupied with night lights, equivalent to 46% of the area of the basin, indicating 
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extensive human presence across the basin. The percentage area of the lit pixels with respect to the 

total lit pixels area of the basin across the four buffer zones are 12.19%, 9.93%, 8.72%, and 7.80% for 

the 0-5 km, 5-10 km, 10-15 km, and 15-20 km buffer zones respectively. The lit pixels area is higher 

within the 0-5 km river network buffer, signifying a larger number of lit pixels in proximity to the 

river.  

 

Figure 7. (A) Bar plot of the geographical area of the Basin (teal green), 0-5 km (turquoise), 5-10 km 

(orange), 10-15 km (gold), and 15-20 km (grey) buffer zones. (B) Bar plot of the DMSP night lights 
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derived lit pixels area in the Basin, 0-5 km, 5-10 km, 10-15 km, and 15-20 km buffer zones. (C) Bar plot 

of the enhancement factor (Ef) of the basin and 4 buffer zones, denoting the normal occurrence of lit 

pixels independent of the geographical area of each buffer zone. 

To characterize the degree of enhancement of lit pixels independent of the geographical area of 

the buffer zone, an enhancement factor, Ef was calculated as described in Equation 1. Figure 7C shows 

that the number of lit pixels is enhanced by 26% (a factor of Ef = 1.26) within 5 km of the river network 

in the Indus Basin, compared to the data set as a whole. Moreover, the number of lit pixels is enhanced 

by 11% and 3% within the 5-10 km and 10-15 km buffer zone respectively. However, the distribution 

of night lights in the 15-20 km zone is approximately the same as the whole basin (Ef = 0.99). 

Consequently, our data suggest that at more than 15 km away from the Indus and its major 

tributaries, human presence or activity recorded in night light data is not statistically different from 

the basin as a whole.  Figure 7C also demonstrates that human presence is significantly enhanced 

near major rivers in the basin, with a particular concentration within 5 km of the drainages analysed.  

5.3. How does the intensity of night lights vary in proximity to rivers?  

Figure 7C demonstrates a statistically significant increase in the occurrence of lit pixels in 

proximity to rivers in the Indus Basin. We now turn to an exploration of whether the intensity of 

these lit pixels captured in the data set behaves similarly. The relationship between the intensity of 

the lit pixels and the occurrence of lit pixels is explored by a comparison of the frequency distribution 

of lit pixel digital number (DN) across the basin and the four buffer zones of 0-5 km, 5-10 km, 10-15 

km, and 15-20 km. DN is a proxy for night light intensity. Figure 8 shows histograms plotting of the 

frequency of occurrence of DN values in the overall Indus Basin and the various designated buffer 

zones outward of river centrelines. These plots represent the variation in the frequency of the 

intensity of night lights across the buffer zones. Importantly the histograms in Figure 8 indicate that 

the distribution of intensities (DN value) within the basin and the buffer zones identified for this 

study are not the same shape as the frequency of lit pixels differs. 
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Figure 8. Frequency plots of lit pixels as a function of the intensity of the lit pixels (represented by 

Digital number, DN) for the Indus Basin and the 4 buffer zones. The red line in the plots represents 

the mean of the distribution. (A) Frequency distribution plot of the lit pixels in the basin (teal green). 

(B) Frequency distribution plot of the lit pixels within the 0-5 km buffer zone (turquoise). (C) 

Frequency distribution plot of the lit pixels within the 5-10 km buffer zone (orange). (D) Frequency 

distribution plot of the lit pixels within the 10-15 km buffer zone (gold). (E) Frequency distribution 

plot of the lit pixels within the 15-20 km buffer zone(grey). 

Descriptive statistics for the lit pixels in the buffer zones were calculated in Table 4. The mean 

DN of the basin is 8.0, and the median is 6.4. Figure 9, shows the cumulative frequency of the lit pixels 

as a function of DN intensity in the night light data. The median intensity (DN) of lit pixels over the 

5 km buffer zone closest to the major rivers is 5.6; this increases to 7.15 in the 5-10 km zone; 7.7 in the 

10-15 km and 7.9 in the 15-20 km buffer zone, values which are greater than the median for the basin 

(=6.4) as a whole. Thus, all five distributions are offset from each other. To further test the statistical 

significance of varying night lights distribution two sample KS-tests were computed. This allowed 

us to reject the null hypothesis that these distributions were similar at a 95% confidence level showing 

that night light intensity was greater further from the river. 
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Table 4. Descriptive statistics of the night light data for the basin and the four buffer zones. 
 

Count Area (km 

sq.) 

Min Max Mean Std. 

Dev. 

Sum Median 

Basin 560,906 533,211.30 0 62.64 8.01 8.05 4,491,618.90 6.39 

5 km 68,352 64,977.12 0 62.64 7.22 7.63 493,725.20 5.63 

10 km 55,692 52,942.21 0 62.64 9.10 8.95 506,808.10 7.15 

15 km 48,884 46,470.35 0 62.64 9.60 8.92 469,529.80 7.73 

20 km 43,778 41,616.46 0 62.55 9.66 8.89 422,969.80 7.89 

 

Figure 9. Cumulative distribution plot of the basin and 4 buffer zones. The median of the basin, 5 km 

buffer zone, 10 km buffer zone, 15 km buffer zone, and 20 km buffer zone are 6.39, 5.63, 7.15, 7.73, and 

7.89 respectively. Thus, 50% of lit pixels across the basin and four buffer zones have an intensity below 10. 

To understand the relationship between the distance to the river and the mean intensity of night 

lights, the mean intensity (DN) of the lit pixels was plotted against the count of lit pixels across each 

buffer zone (Figure 10). We recover a quadratic relationship that shows that as the distance from the 

river increases, the number of lit pixels decreases whereas the mean intensity (DN) increases. For 

instance, in the 0-5 km buffer zone, the mean intensity was 7.2 and the total number of lit pixels was 

68,000 compared to the 15-20 km buffer zone where the mean intensity was 9.7 and the total number 

of lit pixels was 44,000. This variation in intensity and count of lit pixels is important as it clearly 

shows that while the number of lit pixels near the Indus and its tributaries is enhanced relative to the 

basin as a whole, the intensity of lit pixels is greatest in zone 10-20 km away from the river. We 

hypothesize, based on this observation, that the relation between intensity and night light presence 

may be an important parameter to understanding settlement density in proximity to rivers and we 

return to this idea in the discussion.  
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Figure 10. Correlation plot between the DMSP-night lights derived mean intensity of lit pixels and 

the count of the lit pixels in the four buffer zones: 0-5 km, 5-10 km, 10-15 km, 15-20 km. The red dashed 

line shows the polynomial regression relationship between the mean intensity and the count of the 

night light pixels. 

5.4. Channel pattern influence on human presence  

To evaluate the hypothesis that human presence as indicated by night light data is also 

influenced by the planform river channel pattern, we used a conceptual framework to illustrate and 

focus on the planform of the trunk channel-Indus River in the basin. To do this we calculate 

enhancement factors for each buffer zone comparing across single-thread and multi-thread channels 

of the Indus River (Figure 11). We investigate the relationship between the occurrence of lit pixels, 

distance to the river, and the channel pattern type by calculating the geographical area for each 

channel pattern (Figure 11A & 11D) and the area of lit pixels in each buffer zone (Figure 11B & 11E).  

For the multi-thread channel zones, the geographical area mapped was ~ 24,400 km2 (Figure 

11A). The area of the lit pixels in the multi-thread channel across the four buffer zones are ca. 5,100 

km2, 5,600 km2, 5,500 km2, and 5,100 km2 for the 0-5 km, 5-10 km, 10-15 km, and 15-20 km buffer zones 

respectively (Figure 11B). The lit pixels area is higher across the 5-10 km river network buffer, 

signifying a larger number of lit pixels. When the spatial occurrence of night lights in each class is 

normalized independently of the geographical area (Figure 11C), we find an enhancement of lit pixels 

by 7% in the 5-10 km zone for the multi-thread channels. Whereas, for the 0-5 km buffer zone, the lit 

pixel occurrence is reduced by 8% relative to the multi-thread river channel area.  However, at a 

distance of more than 10 km from the river, lit pixels are within 5% of what we observe across the 

basin. 

For single-thread channels, the total area of the buffer zones is ca. 81,400 km2 (Figure 11D). The 

area of lit pixels across the single-thread channel buffer zones are 10,000 km2, 7,800 km2, 6800 km2, 

and 6700 km2 for the 0-5 km, 5-10 km, 10-15 km, and 15-20 km zones. To understand the occurrence 

of lit pixels independent of the geographical area, an enhancement factor of 1.18 was computed for 

the 0-5 km zone (Figure 11F), representing an 18% enhancement of lit pixels near the single-thread 

channel of the Indus River. For 5-10 km the lit pixels occurrence is the same as that of the total area 

of the single-thread channel. Whereas, for distances more than 10 km from the river the enhancement 

factor, Ef is 0.9, signifying a decrease of 10% of the lit pixel presence relative to the basin as a whole. 

The variation in night lights distribution across the buffer zones of multi-thread and single-

thread channels are interpreted to be representative of the preferential human presence in these two 

different geomorphic settings. We hypothesize that this is related to the differing channel dynamics 

and mobility of braided versus single-thread channels and we return to this below in the discussion. 

Thus, our analysis indicates that the combination of channel type and proximity to the river plays an 

important factor in determining the human presence in alluvial basins.   
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Figure 11. (A, B, C) Bar plots for the multi-thread channels. The figure represents the geographical 

area, DMSP night lights derived lit pixels, and enhancement factor of the multi-thread channel and 

its four buffer zones: 0-5 km, 5-10 km, 10-15 km, and 15-20 km. (D, E, F) Histogram plots for the single-

thread channels. The figure represents the geographical area, DMSP night lights derived lit pixels, 

and enhancement factor of the single-thread channel and its four buffer zones: 0-5 km, 5-10 km, 10-15 

km, and 15-20 km. 

6. Discussion  

6.1. What do night lights reveal about human presence and activity in the Indus Basin? 

In this study, we investigated the application of DMSP night lights data from 2000-2013 across 

the Indus Basin to characterise human presence and activity as a function of proximity to rivers and 

the geomorphic style of the river.  

We demonstrated that the night lights serve as a useful proxy for human presence and activity 

in the Indus Basin. The DMSP-night light distribution shows a moderate correlation (R= 0.655) with 
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the population derived from the LandScan Global population dataset. The possible reason for 

moderate correlation could be inconsistencies in the different satellites capturing the night lights data, 

sensor degradation, and sensor settings for the period 2000 to 2013 [24]. Also, unlike other measures 

of obtaining population data, night lights reflect signatures from a broad range of zones of human 

activities - such as cities, towns, industrial setups, streets, residential areas, etc. [29]. From our 

analysis, we find that around 92% of the distribution of the night lights across the Indus Basin is 

concentrated within the plains of the basin with an elevation of less than or equal to 800 meters. This 

demonstrates preferential settlement within the plains regions. The availability of census data in 

developing nations can be a limitation in estimating population. However, recent advancements in 

night lights have enabled spatial correlation with population density in developing nations even with 

limited census data [34]. Thus, our approach at the basin scale enables us to understand how 

hydrological and geomorphic processes can reflect human settlement patterns within a specific river 

catchment and how these can be quantified using night light data.   

6.2. What is the relation between geomorphological parameters and night lights distribution? 

To explain how geomorphology plays a driving role in the distribution of night lights signifying 

human activities, we analysed the normalized night light distribution within each buffer of the basin 

and the channel-patterns as well. Based on our first hypothesis that preferential human presence 

occurs in proximity to rivers, we show that night light luminosity is enhanced by 26% within the 0 to 

5 km buffer zone adjacent to a river and by 11% in the 5 to 10 km buffer zone. This finding suggests 

that human presence and activity are concentrated in proximity to major rivers in the basin. This 

signature of enhanced human presence and activity is not detectable in the night lights luminosity 

data set beyond 15 km of distance from the centreline of the major rivers studied. Our findings are 

consistent with previous independent findings from literature from other parts of the world which 

have inferred that people prefer settlement locations closer to the rivers [3,16,35]. Studies by Masrur 

et al. and Ceola et al. studied human presence and activity in near proximity to the river network 

consisting of all order streams. The stream network for their analyses was extracted from the 

HydroSHED data, which incorporates streams of all orders [2,17]. However, as a fact lower order 

streams do not practically cause floods [15]. Thus, our study aimed to assess human presence near 

the vicinity of higher-order streams of the major rivers in the basin, which are likely to cause large-

scale flooding. 

However, when we study the relation between intensity and the number of lit pixels, we observe 

greater pixel intensities and concomitant reduction in the percentage of lit pixels within the 15-20 km 

buffer zone compared to the 0-5 km buffer zone. We interpret this to indicate that denser settlements 

(with higher intensity luminosity), such as towns and cities are preferentially located away from the 

Indus River and its tributaries in the basin. Historically, it may be the case that large settlements like 

towns and cities developed away from close proximity to rivers where they were less susceptible to 

river flooding. A similar independent study in China by Cao et al. provides further evidence of high 

population density away from the river in the basins having relatively large plains area percentage 

[35]. Similarly, Fang and Jawitz found that people living in regions constituting plains in the US 

preferred to live away from the rivers [36]. This implies that the presence of the river is a driver of 

the density of lit pixels and the spatial distribution of the lit pixels in our night light data set signifying 

varying human activities and presence. Thus, such an approach could help in the estimation of flood 

exposure near the river at a regional scale in contrast to the global approaches suggested by Fang et 

al., Ceola et al., and Kummu et al. which does not account for geomorphic variation in rivers within 

the basin [2,3,16].   

To further demonstrate the relation between human activity and the channel patterns of the 

Indus River, we tested our second hypothesis which posits that human presence is enhanced in 

proximity to single-thread sinuous river channels compared to multi-thread channels of the Indus 

River. Multi-thread or braiding rivers are the most dynamic or rapidly changing river patterns due 

to their continuously shifting channels compared to single-thread channels having stable banks. Since 

rivers such as the Indus do not have a single planform type, we tried to correlate the distribution of 
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human presence as derived from night lights data with different channel patterns. We analysed the 

night lights distribution in the Indus River's single-thread and multi-thread channels buffer zone. 

Due to the difference in the geomorphic setting of the channel pattern, the enhancement factor (Ef) 

varies within different buffer zones. Thus, in support of our null hypothesis, we observe an 18% 

enhancement of lit pixels signifying human presence and activity within the 0-5 km of the single-

thread channel compared to multi-thread channels. We interpret this as representing small urban 

centers or towns located near single-thread reaches of the channel. This is possibly due to the relative 

stability of the channel banks as stable channels (single-thread channels) tend to migrate in an 

organized manner on their floodplains having a single set of bars on alternate sides, whereas the 

unstable channels (multi-thread channels) are in continuous movement and migrating across their 

floodplains [37]. Thus, mobile braided or multi-thread river channels are laterally shifting, making 

them less suitable for riverside human settlements compared to single-thread channels which are less 

mobile and are more suitable for human settlements [38].  

However, within the 5-15 km buffer of the Indus River, multi-thread channel tends to have 

higher enhancement compared to single-thread channels. The repeated inundation in the case of 

multi-thread mobile channels tends to make the plains cultivable but the valley-margins building 

sites or terraces having river incision might be preferred sites for settlements [38].  Beyond 15 km, 

the distributions of lit pixels are similar to the whole basin. Thus, an important finding emerging 

from this study is the importance of channel type and proximity to the river in determining the 

human presence in an area as well as night lights as a tool to study this relationship. 

6.3. Implications 

The interplay between human presence, channel patterns, and distance to rivers can improve 

how we try to assess flood risk and vulnerability in a given region. While Earth scientists possess an 

increasingly comprehensive knowledge of river geomorphology and dynamics, our understanding 

of how geomorphological features influence human settlement patterns adjacent to river systems 

remains incomplete. In an endeavour to bridge this knowledge gap, our study aimed to elucidate the 

role of channel pattern type and proximity to rivers in determining where humans are present in a 

landscape. 

This study presents a novel approach in the assessment of human presence near rivers by 

utilizing night lights data, building on previous studies that were either constrained by political 

boundaries or global-scale analyses that lacked specific regional detail [2,16]. The study shows the 

usefulness of the remotely sensed night lights dataset in providing a proxy for human presence near 

the rivers. Moreover, the study considered major rivers or higher-order streams of the basin for 

human presence in proximity to the rivers. Nevertheless, there are a few limitations that need to be 

considered. The data-driven methodology employed in this study incorporates data spanning the 

period from 2000 to 2013, primarily due to the availability of the Landscan Population and DMSP 

NLS datasets. Also, the temporal frequency of the DMSP NLS data is yearly, compared to the recent 

version of the night lights products like VIIRS and the Black Marble product suite which are available 

daily or monthly. The data used in this study provides a coarser resolution compared to recent 

versions of night light data, which might not be suitable for understanding human presence at a 

micro or lower administrative level.  

Though this study is based on the Indus Basin, it provides a framework that can be used to 

identify the different socio-economic classes of people exposed to flood risk within the floodplains of 

the river. The occurrence of extreme flood events can lead to loss of life and infrastructure. As 

floodplains of the basin are prone to frequent flooding, this approach of studying human presence 

using earth observation data, specifically night lights, can be used to identify spatial vulnerability as 

well as social vulnerability to floods. For instance, floods often cause interruptions in electricity, thus 

affecting the distribution of lights during the disaster period [39]. Recent data with daily temporal 

frequency like the VIIRS/DNB sensor or the NASA Black-marble product can be used to evaluate the 

effect of floods in real-time [40]. 
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This remote sensing study has implications for policymakers involved in assessing flood 

vulnerability and risk to human society at the basin scale, enabling the implementation of effective 

mitigation measures in high-risk areas. Such information in the long run can help planners to develop 

land-use plans and building codes that take into account differential channel patterns and distance 

from the river for flooding, reducing vulnerability to people and infrastructure, and ensuring 

developments that are less susceptible to flooding. By examining the influence of varying channel 

patterns on anthropogenic activities and settlements, this research sheds light on the complex 

interactions between natural river processes and human presence, enabling more informed flood 

management strategies.  

7. Conclusions 

To date, most research using night light data in the context of human presence near rivers has 

been on a global scale. Compared to prior studies, the novelty of our contribution lies in the detailed 

relationship between river patterns, proximity to the rivers, and human presence/activities using the 

Indus Basin as a detailed case study. We used remotely sensed DMSP-derived night lights to quantify 

statistically the enhancement of lit pixels which are a proxy for human presence and human activities 

with river systems offering a unique perspective of the influence of channel patterns and proximity 

to the river on humans. We establish that anthropogenic presence is enhanced by ca. 26% from the 

night lights data within a 0 to 5 km proximity range of the Indus River and its tributaries, relative to 

the basin as a whole. Also, away from the river, the mean intensity is higher and the number of lit 

pixels is lower compared to areas in close proximity to the river centreline. These data are interpreted 

to signify denser settlements, like towns and cities which are preferentially located away from the 

Indus and its tributaries due to lower susceptibility to flooding. Moreover, our study established 

enhanced human presence near single-thread channels of the Indus River of around 18%, compared 

to multi-thread channels likely because of stable channel banks and less channel mobility associated 

with single-thread channels. The seasonal inundation within the close reaches of multi-threaded 

channels makes it less preferred sites for settlements but valley margins or terraces further away from 

the river channels are preferred sites for settlements. Thus, we observe that enhancement beyond 5 

km was greater for multi-thread channels. Our study provides new insight into understanding the 

dynamics of geomorphology in natural hazards using night lights as a proxy for human presence. As 

future work, it would be important to explore their role in evaluating flood risk spatially and in 

understanding the differential social vulnerability at a regional scale. We propose that this might 

provide a unique perspective of landscape dynamics for identifying flood-prone areas and vulnerable 

communities to devise mitigation measures.  
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